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Abstract. In this paper, we consider tomographic reconstruction for axially
symmetric objects from a single radiograph formed by fan-beam X-rays. All

contemporary methods are based on the assumption that the density is piece-
wise constant or linear. From a practical viewpoint, this is quite a restric-

tive approximation. The method we propose is based on high-order total

variation regularization. Its main advantage is to reduce the staircase effect
while keeping sharp edges and enable the recovery of smoothly varying regions.

The optimization problem is solved using the augmented Lagrangian method
which has been recently applied in image processing. Furthermore, we use a
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one-dimensional (1D) technique for fan-beam X-rays to approximate 2D tomo-
graphic reconstruction for cone-beam X-rays. For the 2D problem, we treat

the cone beam as fan beam located at parallel planes perpendicular to the
symmetric axis. Then the density of the whole object is recovered layer by

layer. Numerical results in 1D show that the proposed method has improved

the preservation of edge location and the accuracy of the density level when
compared with several other contemporary methods. The 2D numerical tests

show that cylindrical symmetric objects can be recovered rather accurately by

our high-order regularization model.

1. Introduction. The X-ray tomography has been widely applied in many areas,
including medicine, optics, material science, astronomy, and geophysics. Another
important application of X-ray tomography is in nuclear physics. In this paper,
we focus on the problem of tomographic reconstruction for flash X-ray radiography.
The purpose here is to characterize the state of matter subjected to powerful shocks
under the effect of explosives. By tomographic reconstruction we aim to recover the
object density.

In our experimental setting, the object is assumed axially symmetric. Only a
single radiograph is taken with a radiographic axis perpendicular to the symmetric
axis of the object. The diagram for the experiment is depicted on Figure 1(a)
where the symmetric axis of the object is defined as the z-axis. The X-ray source is
placed sufficiently far from the object compared to its size, so that the X-rays can
be assumed to be parallel on different layers. The object density is reconstructed
layer by layer independently. In each layer, i.e. for each constant z, we consider
that the X-rays form a fan-beam shape, see Figure 1(b). The transmitted radiation
is measured by a detector lying on a plane x = x0. Each cross section of the object
is projected onto a line of the detector plane.
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Figure 1. Illustration to the tomographic experiments in (a) 2D
and (b) 1D.

In flash radiography, a very high photon energy is emitted so that it passes
through the object. The X-ray energy is attenuated after absorption by the object.
The absorption depends on the nature, density, and thickness of the materials con-
tained in the object. The logarithm of the attenuation is regarded proportional to
the integral of the density function of the object along the X-ray beam path. For
the tomographic reconstruction we will assume that the integral value of density
function is known. In each cross section, the density function is one dimensional,
denoted by ρ(r, z). The integral

∫
ρ(r, z)dl along each line through the object is

given by the radiograph intensity d(y, z). For simplicity, in the following part we
will use d(y) and ρ(r) to respectively represent the radiograph intensity and object
density for any cross section for each fixed z and y. The relationship between r, l
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and a(y) reads

l2 = r2 − a(y)2,

where a(y) is the distance from the center of the cross section to the corresponding
X-ray for each fixed y. Introducing the latter equation into d(y) =

∫
ρ(r)dl yields

d(y) = 2

∫ R

|a(y)|

rρ(r)√
r2 − a(y)2

dr,(1.1)

which is the Abel transform of ρ. Let us remind that the Abel transform is the 1D
version of the usual Radon transform.

Solving ρ(r) from (1.1) amounts to invert the Abel transform. In practice, there
are a number of difficulties to address the Abel transform based tomography. First,
(1.1) is a simplified description of a very nonlinear experimental process where all
the measurements are subject to noise. Second, the inverse problem is ill-posed.
It makes the corresponding discrete Abel transform very ill-conditioned. In the
discrete setting, we formulate the Abel transform as a matrix A ∈ Rm×n and the
object radial density values as ρ ∈ Rn. Hence (1.1) is then discretized as

d = Aρ,(1.2)

where d ∈ Rm. Here, m is a fixed number determined by the projection data
projection. And n is independently chosed according to the discretization of ρ.
Usually, we set n is bigger than m.

In order to take into account the degradations occurring during the data produc-
tion, we consider the general observation model given by

d = KAρ + n,(1.3)

where n is a vector denoting the noise and K presents the blurring that may be
produced in the process of radiographing.

In the literature, Hanson [19] has applied the Bayesian approaches to the to-
mographic reconstruction problem. Based on the work by Tikhonov in [30] and
Rudin-Osher-Fatemi in [29], researchers have proposed a number of regularization
methods [3, 4, 1, 2] for the Abel inversion. All these methods can be formulated as
solving a minimization problem of the form:

min
ρ

{
µR(ρ) +

1

2
‖KAρ− d‖22

}
,(1.4)

where R(ρ) is a regularization functional based on Total-Variation (TV). Abraham
et al. [1] has applied Chambolle’s dual method [10] to solve the minimization prob-
lem in (1.4) for binary axial symmetric objects. In [4], the authors have proposed
an adaptive TV method where the TV regularization is used to identify the loca-
tions of the suspected density discontinuities, and the H1 regularization [4] acts
on the data set apart from these locations. These existing methods focus on Abel
inversion with noise removal for parallel X-ray beams and pay more attention to
recover piecewise constant or at most linear density [4].

Unlike the pre-existing methods [3, 4, 2, 1], we focus on the tomographic re-
construction of 1D piecewise smooth objects involving sharp edges, radiographed by
fan-beam X-rays. Our method is based on solving the regularized minimization
problem of the form (1.4) where the regularization term R is designed to tackle the
recovery of piecewise smooth objects involving edges. This constitutes the main
novelty of our approach.
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Since [26], using first-order TV gives rise to locally constant solutions while
second-order TV as in [24] yields locally planar solutions without neat edges. So we
focus on compound regularization R(ρ) mixing the `1 norms of the gradient and of
the Laplacian of ρ. A famous achievement in this direction being the total gener-
alized variation (TGV) model of Bredies, Kunisch and Pock [7], we explored this
regularization but results were not convincing. The best-suited compound regular-
ization R(ρ) for our problem is much simpler: it is given by a linear combination of
the `1 norms of the gradient and of the Laplacian of ρ. According to the theory in
[26], the corresponding solutions generically involve constant and linear shapes, as
well as edges. The properties of high-order TV in keeping sharp edges and avoiding
staircase effects on the smooth part have also been discussed in [6, 11, 24, 25]. To
solve the proposed high-order regularization problem, fast augmented Lagrangian
method (ALM) is used. In addition, we shall also apply the proposed 1D technique
for fan-beam X-rays to approximate 2D tomographic reconstruction for cone-beam
X-rays. For the 2D problem, we treat the cone beam as a fan beam at parallel planes
perpendicular to the symmetric axis. Then we apply the proposed algorithm on
each layer to reconstruct the whole 2D cylindrical symmetric object. We compare
our method with several contemporary image restoration approaches. Extensive
numerical tests confirm that our proposed high-order TV approach outperforms
the concurrent methods in terms of restoration quality and computational costs.
2D numerical experiments show clearly the successful application of the proposed
algorithm for 2D cylindrical object density reconstruction.

The rest of the paper is organized as follows: In §2, the discrete Abel transform
for the fan-beam X-rays is described in more detail. In §3, we present the high-order
TV regularized Abel inversion model and solve it with ALM. In §4, we introduce
some other standard approaches that can be adapted to solve (1.4): (i) the TV
model of [29]; (ii) the 4th-order model of [25]; and (iii) the TGV model of [7]. In
§5, we apply our algorithm to reconstruct piecewise smooth density functions for
1D axially symmetric and 2D cylindrically symmetric objects. Comparisons of our
algorithm and other three standard approaches are also given in this section. We
finally summarize and give some conclusions in §6.

2. Discrete Abel Transform for Fan-beam X-rays. First, we give some details
on the discretization of the Abel transform. The projection matrix A is obtained by
discretizing the Abel transform of equation (1.1). Here, we assume that the X-rays
at different layers are parallel. Hence, the projection matrix A is always the same
for each layer. In each layer, the projection matrix A is generated from fan-beam
X-rays, as shown in Figure 1(b). We want to emphasis that this simplification has
been used in industries.

Without loss of generality, we use the layer z = 0 to illustrate how to formulate
the projection operator A, see Figure 1(b). Let ρ(r) be the radial density for the
layer. Since the object has finite volume, we can assume that ρ(r) = 0 when r > R.
The distances from the source to the object and the object to the detector are
denoted by L1 and L2 respectively, where L1 = |SO| and L2 = |OP1|. We consider
Figure 1(b) on the rectangular coordinate system with origin O. Thus, the detector
lies at plane x = L2 and the areal density d(y) is measured at y ∈ [−H,H] , where
H > (L1 + L2) · R/L1 to ensure that the projection data for the whole object
is covered. Separate [−H,H] into 2m − 1 uniform partitions each with step size
∆h = H/(m − 1). Considering the symmetry of the object, we only need half of
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the projection data. Take d to be a vector of m elements, with di = d(yi), for
i = 1, · · · ,m. For the cross section of radius R, we subdivide [0, R] into n uniform
partitions with step size ∆r = R/n and ri = i∆r. Then ρ is a vector of n elements
with its i-th entry being ρ(ri). Hence, A is a matrix of size m × n. The (i, j)-th
element of A is equal to the length of the X-ray li lying between circles of r = rj
and r = rj+1.

The Abel projection operator A is very ill-conditioned, which makes the direct
Abel inversion formula very sensitive to the noise contained in the measured data
d. To overcome the sensitivities, suitable regularization term R(ρ) can be applied,
as in (1.4).

3. Our Proposed Method—High-order TV Regularization. We propose the
following minimization model to find the density function:

min
ρ

{
E(ρ) = µ1‖∇ρ‖1 + µ2‖∆ρ‖1 +

1

2
‖KAρ− d‖22

}
,(3.1)

where ∆ is the discrete Laplacian operator, µ1 and µ2 are regularization constants
that need to be properly chosen. In the next section, we shall introduce some
standard regularization models in image processing. We shall modify these models
to solve the Abel inversion problem and compare (3.1) against them.

It is common to use gradient descent method to solve the minimization prob-
lem (3.1). Recent research reveals that this kind of regularization problem can be
solved much more efficiently using some special iterative procedures. Split-Bregman
method [18] and augmented Lagrangian methods [33] have been experimentally
proven to be some of the fastest methods in image processing.

To solve (3.1), we introduce two auxiliary variables v and w and reformulate
(3.1) to be the following constrained minimization problem:

(3.2)
min
ρ,v,w

{
µ1‖v‖1 + µ2‖w‖1 + 1

2‖KAρ− d‖22
}

s. t. v = ∇ρ, w = ∆ρ,

Then (3.2) is solved by the alternating direction method of multiplier (ADMM),
which was first proposed in [17]. The combined technique of the above is also called
ALM as in [33, 31, 32]. In detail to the ADMM for (3.2), we fist define the following
augmented Lagrangian functional

L(ρ,v,w;q1,q2) = µ1(‖v‖1 + 〈q1,v −∇ρ〉+
1

2γ
‖v −∇ρ‖22)

+µ2(‖w‖1 + 〈q2,w −∆ρ〉+
1

2η
‖w −∆ρ‖22)(3.3)

+
1

2
‖KAρ− d‖22,

with Lagrange multipliers q1,q2 and positive penalization constants γ, η. According
to our tests, it is enough to take γ = η = 1.

It is known that one of the saddle points of the augmented Lagrangian functional
corresponds to the minimizers of the constrained minimization problem (3.2) [33,
31, 32]. The following algorithm is often used to find the saddle points of augmented
Lagrangian functionals:

Algorithm 1:
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1. Initialize v0 = 0,w0 = 0,q0
1 = 0,q0

2 = 0;
2. For k = 0, 1, 2, · · · :

(a) Update (ρk+1,vk+1,wk+1) by solving the following minimization problem
with Lagrange multipliers qk1 ,q

k
2 , i.e.

(ρk+1,vk+1,wk+1) = arg min
ρ,v,w

L(ρ,v,w;qk1 ,q
k
2);(3.4)

(b) Update Lagrange multipliers qk+1
1 and qk+1

2 by

qk+1
1 = qk1 +

1

γ
(vk+1 −∇ρk+1), qk+1

2 = qk2 +
1

η
(wk+1 −∆ρk+1).(3.5)

Since the variables in (3.4) are coupled together, it is very difficult to solve this
minimization problem exactly. It is common to use an alternating minimization
strategy to find approximate minimizers. In the following part, we separate prob-
lem (3.4) into three sub-problems and give details on how to apply an alternative
minimization approach to find the approximate minimizers.

To find an approximate minimizer for (3.4), the following three sub-problems
shall be solved sequentially once in each iteration.

• ρ-subproblem: Given v,w,

(3.6) min
ρ

{
µ1〈qk1 ,−∇ρ〉+ µ1

2γ ‖v −∇ρ‖
2
2 + µ2〈qk2 ,−∆ρ〉

+µ2

2η ‖w −∆ρ‖22 + 1
2‖KAρ− d‖22

}
• v-subproblem: Given ρ,w,

min
v

{
‖v‖1 + 〈qk1 ,v −∇ρ〉+

1

2γ
‖v −∇ρ‖22

}
.(3.7)

• w-subproblem: Given ρ,v,

min
w

{
‖w‖1 + 〈qk2 ,w −∆ρ〉+

1

2η
‖w −∆ρ‖22

}
.(3.8)

Next, we shall show that the three subproblems either have explicit solutions or can
be solved by inexpensive numerical solvers.

3.1. Solving the ρ-subproblem. Notice that ρ-sub problem is quadratic in ρ. To
find the solution of (3.6), we just need to take the derivative of its energy functional
with respect to ρ and solve the following linear system

(3.9)

(
− µ1

γ div · ∇+ µ2

η ∆ ·∆ +A>K>KA
)
ρ

= A>K>d− µ1

γ div · (v + γqk1) + µ2

η ∆ · (w + ηqk2)

where div denotes the divergence operator. In our simulations, this linear system
is solved directly since our problem is one-dimensional problem and the coefficient
matrix is not too ill-conditioned.

3.2. Solving the v-subproblem. Subproblem (3.7) is equivalent to

min
v

{
γ‖v‖1 +

1

2
‖v − (∇ρ− γqk1)‖22

}
.

This subproblem has a closed-form solution which is given by the soft thresholding

v = Tγ(∇ρ− γqk1),(3.10)
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where the i-th entry vi = Tγ(∇iρ− γqk1,i) and Tγ is defined by

Tγ(x) = arg min
y
{γ|y|+ 1

2
|y − x|2} = sign(x) max(|x| − γ, 0),(3.11)

for x ∈ R, γ > 0. See [14].

3.3. Solving the w-subproblem. Similar to the v-subproblem, the w-subproblem
is equivalent to

min
w

{
η‖w‖1 +

1

2
‖w − (∆ρ− ηqk2)‖22

}
.

It has a closed-form solution given by

w = Tη(∆ρ− ηqk2).(3.12)

Combining the above results together, (3.4) is solved by the alternating mini-
mization approach:

Algorithm 2: Alternating minimization approach for solving (3.4)

1. Initialize ρk,0 = ρk, vk,0 = vk,wk,0 = wk;
2. For l = 0, 1, 2, · · · , L− 1 :

(a) Update ρk,l+1 by solving (3.9), i.e.(
−µ1

γ div · ∇+ µ2

η ∆ ·∆ +A>K>K>A
)
ρ

= A>K>d− µ1

γ div ·
(
vk,l + γqk1

)
+ µ2

η ∆ ·
(
wk,l + ηqk2

)
;

(b) Update vk,l+1 using (3.10) for ρ = ρk,l+1;
(c) Update wk,l+1 using (3.12) for ρ = ρk,l+1;

3. ρk+1 = ρk,L,vk+1 = vk,L,wk+1 = wk,L.

We can see that the cost per iteration for the above scheme is very cheap. Nu-
merical tests will also show that the total number of iterations needed to reach
convergence is also very low.

4. Other Possible Regularization Techniques. In this section, we adapt sev-
eral other popular contemporary methods in image restoration to solve Abel in-
version problem (1.4). Augmented Lagrangian methods and corresponding schemes
will also be derived for these regularization methods without going into much detail.
In the numerical section, we will compare our model with these regularizers.

4.1. TV Regularization. The TV regularization model [29] has been successfully
and widely applied to various problems in image processing. Its success relies on
the remarkable ability of TV-norm in preserving edges and suppressing noise. The
TV regularization methods for Abel inversion has been studied in [3, 4, 1, 2], Here
we state the TV regularization method for the convenience of the comparison. We
consider

min
ρ

{
µ1‖∇ρ‖1 +

1

2
‖KAρ− d‖22

}
.(4.1)

Many efficient methods have been proposed to solve (4.1) recently. For exam-
ple, the very popular forward-backward splitting algorithm [13] combined with the
Chambolle’s TV denoising method [10], ALM [18, 33]. Here, we apply the ALM

Inverse Problems and Imaging Volume 9, No. 1 (2015), 55–77



62 R. H. Chan, H. Liang, S. Wei, M. Nikolova and X.-C. Tai

to solve (4.1). We introduce one auxiliary variable v into (4.1). Then (4.1) is
equivalent to the following constrained minimization problem:

(4.2) min
ρ,v
{µ1‖v‖1 +

1

2
‖KAρ− d‖22} s.t. v = ∇ρ.

In order to solve (4.2), we define the following augmented Lagrangian functional

L1(ρ,v;q1) = µ1(‖v‖1 + 〈q1,v −∇ρ〉+
1

2γ
‖v −∇ρ‖22) +

1

2
‖KAρ− d‖22,(4.3)

with Lagrange multiplier q1 and positive constant γ. In our experiments, we al-
ways take γ = 1. The corresponding algorithm for finding the saddle point of this
functional is the same algorithm by setting µ2 = 0 in Algorithm 1.

4.2. The LLT Model. In [24], Lysaker, Lundervold and Tai proposed a second-
order method for image noise removal. For a given noisy image u0 in Rn, the
problem they considered is min

u

{
µ2R(u) + 1

2‖u− u0‖22
}

, where

R(u) =

∫ √√√√ n∑
i,j=1

(
∂2u

∂xi∂xj

)2

dx =

∫
|D2u|dx,(4.4)

withD2u =
(

∂2u
∂xi∂xj

)n
i,j=1

.We apply the approach to the Abel inversion and consider

min
ρ

{
µ2R(ρ) +

1

2
‖KAρ− d‖22

}
.(4.5)

In [31], ALM has been introduced for this kind of problems where an auxiliary
variable is introduced into (4.5). In the discrete setting, the equivalent constrained
problem is:

(4.6) min
ρ,w
{µ2‖w‖+

1

2
‖KAρ− d‖22}, s.t. w = D2ρ

where the differential operator D2 is to be replaced by its discrete counter part. We
define the following augmented Lagrangian functional

(4.7)
L2(ρ,w;q2) = µ2(‖w‖1 + 〈q2,w −D2ρ〉+ 1

2η‖w −D
2ρ‖22)

+ 1
2‖KAρ− d‖22,

where q2 is the Lagrange multiplier and η is a positive parameter which is always
taken to be 1 in all our tests. For 1D problems, we have D2 = ∆, the discrete
Laplacian, and the corresponding algorithm for finding the saddle point of (4.7) is
then an algorithm by setting µ1 = 0 in Algorithm 1.

4.3. TGV Regularization. Total generalized variation (TGV) was proposed in
[7] and is defined by

(4.8)
TGVk

ν(u) = sup
v

{∫
Ω
u divkvdx

}
s. t v ∈ Ckc (Ω,Symk(Rd)), ‖divl∞v‖ ≤ νl, l = 0, · · · , k − 1.

Here Symk(Rd) denotes the space of symmetric tensors of order k, Ckc (Ω,Symk(Rd))
= {ξ ∈ Ck(Ω̄,Symk(Rd)) | supp ξ ⊂⊂ Ω}, and ν = (ν0, ν1, · · · , νk−1) is a fixed

positive parameter set. If k = 1, ν0 = 1, TGVk
ν coincides with TV. As k > 1, TGVk

ν

involves higher order derivatives, which is referred as total generalized bounded
variation semi-norm. Comparing with TV, the high-order TGV has a novel property
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in avoiding the staircasing effect for reconstructing the affine and even smooth
images. In [7, 8, 9], the authors solved

min
u

{
TGV2

ν(u) +
1

2
‖u− u0‖22

}
.(4.9)

as an example to illustrate the high quality of TGV in image denoising. There,
primal-dual algorithm is developed to solve (4.9) and the idea is later adopted to
solve an MRI reconstruction problem in [22].

To introduce the dual algorithm, we begin from the dual form of the total vari-
ation

TV(u) = sup
v

{∫
Ω

u div vdx | v ∈ C1
c (Ω,Cn), ‖v‖∞ ≤ 1

}
,(4.10)

whose supremum is attained at v = −∇u/|∇u|. This is the special case of (4.8)
with ν0 = 1 and k = 1. When k = 2, TGV2

ν can be represented as

TGV2
ν(u) = min

v

{
ν1

∫
Ω

|∇u− v| dx + ν0

∫
Ω

|E(v)| dx
}
,(4.11)

where E(v) = 1
2 (∇v +∇v>) denotes the symmetrized derivative [7, 22].

Here we adopt the same primal-dual approach to solve the TGV regularized Abel
inversion:

min
ρ

{
TGV2

ν(ρ) +
1

2
‖KAρ− b‖22

}
.(4.12)

Introducing (4.11) into (4.12), then minimization problem (4.12) becomes

min
ρ,v

{
ν1‖∇ρ− v‖1 + ν0‖E(v)‖1 +

1

2
‖KAρ− b‖22

}
.(4.13)

Minimization problem (4.13) is then solved by a convex-concave saddle-point ap-
proach based on the duality principles:

min
ρ,v

max
p∈P,q∈Q,r∈Rn

{
〈∇ρ− v,p〉+ 〈E(v),q〉+ 〈KAρ− b, r〉 − 1

2
‖r‖22

}
,(4.14)

where P = {p ∈ Rn | ‖p‖∞ ≤ ν1}, Q = {q ∈ Rn | ‖q‖∞ ≤ ν0}, and r ∈ Rn is the
dual variable with respect to the data-fitting term. We denote the Euclidean projec-
tors onto the convex sets P,Q by projP (p̃), projQ(q̃) respectively. The projections
can be easily computed by pointwise operations:

projP (p̃) =
p̃

max(1, |p̃|ν1 )
, projQ(q̃) =

q̃

max(1, |q̃|ν0 )
.

In addition, we denote

projσ2 (r̃) = arg min
r∈Rn

{‖r− r̃‖22
2σ

+
1

2
‖r‖22

}
=

r̃

1 + σ
.

The following primal-dual algorithm will be used for solving the TGV regular-
ized Abel inversion (4.14). For more details on the derivation and analysis of this
algorithm, the interested readers can refer to [7]:

Algorithm 3:

1. Initialize ρ0, ρ̂ = 0,v0, v̂0 = 0,p0 = 0,q0 = 0, r0 = 0, choose step size τ, σ;
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2. Repeat until {ρk} converges:

pk+1 = projP (pk + σ(∇ρ̂k − v̂k));
qk+1 = projQ(qk + σE(v̂k));

rk+1 = proxσ2 (rk + σ(KAρ̂k − b));

ρk+1
old = ρk;

ρk+1 = ρk + τ(div1p
k+1 −A>K>rk+1);

ρ̂k+1 = 2ρk+1 − ρk+1
old ;

vk+1
old = vk;

vk+1 = vk + τ(pk+1 + div2q
k+1);

v̂k+1 = 2vk+1 − vk+1
old ;

where div1 is divergence operator of ∇ and div2 is divergence operator of E. The
convergence of the algorithm is guaranteed provided that στ < (9 +

√
8)−1. In our

experiment, we take σ = τ = 1/16.

5. Numerical Results. In this section, we apply all the compared methods to
tomography reconstruction. We will also use the 1D techniques to the 2D problems.
The regularization parameters µ, µ1, µ2, ν0, ν1 are chosen by trial and error. Their
values are given in the subfigures of Figure 2 – 8.

5.1. Numerical tests in 1D. In this section, we show the numerical results of the
proposed algorithm on the tomography reconstruction for some 1D objects.

To simulate the possible phenomenon which could happen in real applications,
we construct two objects with function ρ(r) consisting of constant, linear and curve
parts. See Figures 2 and 5. In the first three tests, the blur is not considered. In
these examples, R,L1, L2 of Figure 1(b) are taken to be 5cm, 349cm and 449cm
respectively. From the numerical tests, we find that 280 partitions for the radius r
and 512 measuring points for d are enough. More partitions increase more compu-
tational cost, but no much improvement for the reconstructions. See Figure 4 of 560
partitions for comparition. Taking 280 partitions, ρ is a vector of n = 280 elements
and d of m = 256 elements. Figures 2 and 3 show the reconstruction results for
different noise levels for the first example. Figure 5 shows the reconstruction result
for the second example. Inspecting the recovered results and the computational
costs produced by TV, LLT, TGV, and high-order TV regularization methods, the
high-order TV is the most competitive.

In Figure 2, we take the noise variance to be 1% of the maximum noiseless pro-
jection data. In Figure 3, we take the noise variance to be 1.5%. The reconstruction
results are shown in Figure 2(c)–2(f), and Figure 3(c)–3(f) respectively. Figure 2(c)
and 3(c) show that TV regularization based reconstruction is severely affected by
the “staircase” effect at the linear and curvilinear parts, while the high-order TV
regularization model can reduce the staircase effect, meanwhile preserves the edges
and the density level, cf. Figure 2(d)–2(f) and 3(d)–3(f).

The density function in Figure 4 is the same to that in Figure 2 and 3 but
with 560 partitions for radius and 1024 measuring points for d. Therefore, in this
example, ρ is a vector of n = 560 elements and d of m = 512 elements. The noise
variance here is taken to be 1.5% of the maximum noiseless projection data.

Figure 5 shows the reconstruction results on another piecewise smooth density
function. Here, we take the noise variance to be 1.5% of the maximum noiseless
projection data. The reconstruction results are shown in Figure 5(c)–5(f). As in
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Figures 2 and 3, the high-order TV regularization method is the most competitive
among all the compared methods, cf. Figure 5(f).

Next, we consider the density reconstruction from the blurred and noisy areal
density. The blurring matrix K is generated by the MATLAB command:

fspecial(’Gaussian’, [7,1], 1).

The reconstruction results are shown in Figure 6.
From Figure 2 – 6, we can have an “eyeball” impression of the reconstruction

quality by different methods. The reconstructions by the TV regularized model
are polluted by “staircases”, while LLT, TGV and high-order TV models reduce
the staircase phenomenon and meanwhile keeps the sharp edges. To show the
quantitative comparison, we list the signal-to-noise ratio (SNR) in Table 1. SNR
has been used in [32], which is defined by

SNR =: 10 log10

‖u−M(u)‖22
‖û− u‖22

(dB).

Here u and û denote the original signal and the restored signal respectively, and
M(u) is the mean gray-level value of the original signal. The largest SNR values
are in italic. Amongst all the results, the high-order TV produces the largest SNR
values.

Figure TV LLT TGV High-order TV
2 20.4211 23.5092 23.5245 25 .0431
3 19.3409 20.8442 20.6134 23 .8263
4 19.5428 22.8945 22.2193 23 .9042
5 18.3551 19.5241 19.5255 21 .8096
6 19.7328 17.2194 20.3809 21 .5414
7 25.0204 23.0264 23.3205 26 .9992
8 23.0011 23.1198 23.1089 23 .5224

Table 1. Comparisons of SNR of the reconstruction results by
TV, LLT, TGV, and high-order TV regularization (our method)
methods for examples shown in Figures 2–8. The largest SNR
values are in italic.

5.2. Numerical tests in 2D. In this section, we apply the TV, LLT, TGV, and
high-order TV regularizers to the tomographic reconstruction for general cylindri-
cally symmetric objects (2D) from a single radiograph. The radiograph is taken by
cone-beam X-rays. To do tomographic reconstruction, we approximate the cone-
beam by fan-beam lying in different parallel planes perpendicular to the symmetry
axis of the object. As discussed in Section 1, each object layer is recovered by solv-
ing our proposed model, and it is a 1D tomography problem. The whole density is
reconstructed layer by layer. Here, we use the same projection operator A (at layer
z = 0) to reconstruct the density function for all the layers.

We simulate two spherical objects. Their density profiles passing through the
symmetric axis are shown in Figure 7(a) and Figure 8(a). The density function of
Figure 7(a) is a piecewise smooth function of radius r. We call it “DISK”. Figure
8(a) is a simulated face image, whose density function has more sharp edges than
that of Figure 7(a). We call it “FACE”. Their radiographs are shown in Figure
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Figure 2. Abel inversion for piecewise smooth object. The object
density is defined at 280 radial positions and composed of piece-
wise smooth and piecewise constant functions. The areal density
is corrupted with Gaussian noise at level 1% of maximum of the
noiseless projection data, shown in (b). In subfigures (c)–(f), green
line presents true density, while blue presents the recovered den-
sity. The reconstruction by TV is staircase in linear and curvilinear
part. Other methods provide acceptable reconstructions, as shown
in (d)–(f). Among them, our method (high-order TV regularizer)
(f) is the most competitive considering reconstruction effect and
computational cost.

7(b) and Figure 8(b), which are corrupted by the Gaussian noise with the noise
variance taken to be 2.5% for “Disk” and 5% for “FACE” of the maximum of
noiseless projection data for each layer. We finally take a nonnegative projection
to improve the reconstruction results since our simulated spherical objects are of
nonnegative density. In the process of density reconstruction, the regularization
parameters are identical in different layers, which have been listed in Figure 7 and
Figure 8. Figure 7(c)–7(f) and Figure 8(c)–8(f) show the reconstruction results by
TV, LLT, TGV, and high-order TV models. The SNR values of the reconstructions
have been listed in Table 1. We see that the high-order TV regularizers reaches the
highest SNR value.

To see the details of the density reconstruction, we show several slices of the
recovered functions by different algorithms. Figure 9 is for “DISK” and Figure 10
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Figure 3. Abel inversion for different noise level. The object den-
sity is defined at 280 radial positions. It is the same function as
in Figure 2. The areal density is corrupted with Gaussian noise at
level 1.5% of maximum of the noiseless projection data. From sub-
figures (c)–(f), green line corresponds to true density, while blue
the recovered density, we give different reconstructions by TV, LLT,
TGV and our model. For high noise level, our method keeps the
most competitive resconstruction.

is for “FACE”. In Figure 9, left column is for layer 290, which corresponds to the
cross section z = 0. Middle column is for layer 200, and right column for layer 100.
In Figure 10, from left to right, the reconstructions for layer 100, 200 and 350 are
shown respectively. From Figure 9 and Figure 10, we see that reconstructions by
high-order TV show the best restoration in view of the edge reservation and density
value accuracy.

6. Conclusion. In this paper, we concentrate on the tomographic reconstruction
technique for axially symmetric objects from a single radiograph formed by fan-
beam X-rays. To deal with the ill-posedness of Abel inversion, we apply the high-
order TV regularization method based on its good property in reducing staircase
effect and meanwhile keeping sharp edges. Fast ALM is applied to solve the high-
order TV regularization model. We compare three other models in terms of CPU
time costs, SNR values as well as feature reconstruction. Numerical results show

Inverse Problems and Imaging Volume 9, No. 1 (2015), 55–77



68 R. H. Chan, H. Liang, S. Wei, M. Nikolova and X.-C. Tai

(a) True density

radial

de
ns

ity
(b) Noisy areal density (blue), σ = 1.4708

radial

ar
ea

l d
en

si
ty

(c) By TV, µ
1
=5, cputime=3.28s

radial

de
ns

ity

 

 
(I)
(II)

(d) By LLT, µ
2
=30, cputime=41.28s

radial

de
ns

ity

 

 
(I)
(II)

(f) By our method, µ
1
=2, µ

2
=15, cputime=24.61s

radial

de
ns

ity

 

 
(I)
(II)

(e) By TGV, ν
0
=15, ν

1
=30, cputime=372.12s

radial

de
ns

ity

 

 
(I)
(II)

Figure 4. Abel inversion by using more projection data. For the
same object of Figure 3, we divide the object radius by 560 parti-
tions. The areal density is recorded at 512 points. It is corrupted
by Gaussian noise at level 1.5% of maximum of the noiseless pro-
jection data. Similar to Figures 2 and 3, in subfigures (c)–(f),
green is the true value and blue is the recovered, we see that the
reconstruction quality is improved a little by using more projection
points and subdividing radius. Meanwhile, the computational cost
increases a lot.

that high-order TV improves well density level preservation comparing to the other
potentially good methods. To recover any cylindrical symmetric object (2D) radio-
graphed by a cone beam X-rays, the high-order TV regularization method is applied
layer by layer. Numerical results show that our method is efficient for 2D object
tomographic reconstruction.

APPENDIX. In this appendix, we adapt the convergence theory in [32] to prove
the convergence of Algorithm 1 with L→∞ and L = 1 in Algorithm 2 respectively.
Based on the theory in convex analysis [20], problem (3.1) has minimizers, and
especially has a unique minimizer if KA is column full-rank. In addition, we have
a similar result as Theorem 4.1 in [32].

Proposition ρ∗ is a solution of (3.1), if and only if there exists (ρ∗,v∗,w∗;q∗1,q
∗
2)

being a saddle point of (3.2).
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Figure 5. Abel inversion for different object. The object density
is defined at 280 radial positions and mixed by piecewise smooth
and piecewise constant functions. The areal density is corrupted
with Gaussian noise at level 1.5% of maximum of the noiseless
projection data. From subfigures (c)–(f), we show different recon-
structions by TV, LLT, TGV and our model. We get the same
impression that our proposed model is the most efficient.

The proof can be easily obtained referring from Theorem 4.1 of [32]. In this
section, we mainly adapts the proof for Theorem 4.2 and Theorem 4.3 in [32] to
discuss the convergence of Algorithm 1 with L→∞ and L = 1.

Theorem 1 Assume (ρ∗,v∗,w∗;q∗1,q
∗
2) be a saddle-point of L(ρ,v,w;q1,q2).

Suppose that the minimization problem (3.4) is exactly solved in each iteration,
i.e. L→∞ in Algorithm 2. Then the sequence (ρk,vk,wk;qk1 ,q

k
2) satisfies

(6.1)


lim
k→∞

µ1‖vk‖1 + µ2‖wk‖1 + 1
2‖KAρ

k − d‖22 = E(ρ∗),

lim
k→∞

‖vk −∇ρk‖2 = 0,

lim
k→∞

‖wk −∆ρk‖2 = 0,

lim
k→∞

‖KA(ρk − ρ∗)‖2 = 0.

Moreover, (6.1) indicates that {ρk} is a minimizing sequence of E(·). If the mini-
mizer of E(·) is unique , then ρk → ρ∗.
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Figure 6. Abel inversion for noisy and blurred projection data.
The object density is defined at 280 radial positions. The areal den-
sity is corrupted by Gaussian noise and blur. The blur is generated
by the MATLAB command: fspecial(’Gaussian’, [7,1], 1).
The noise level is 1.5% of maximum of the noiseless blurred projec-
tion data. By subfigures (c)–(f), we show density reconstructions
by different methods from noisy and blurred data. Our method is
efficient to recover density from the noisy and blurred projection
data.

Proof. Let us define ρ̄k, v̄k, w̄k, q̄k1 , q̄
k
2 as

ρ̄k = ρk − ρ∗, v̄k = vk − v∗, w̄k = wk −w∗, q̄k1 = qk1 − q∗1, q̄
k
2 = qk2 − q∗2.

Since (ρ∗,v∗,w∗;q∗1,q
∗
2) is a saddle-point of min

ρ,v,w
max
q1,q2

L(ρ,v,w;q1,q2) as in (3.3),

we have

L(ρ∗,v∗,w∗;q1,q2) ≤ L(ρ∗,v∗,w∗;q∗1,q
∗
2) ≤ L(ρ,v,w;q∗1,q

∗
2),(6.2)

and

(6.3)

{
v∗ = ∇ρ∗
w∗ = ∆ρ∗.
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(a) True density profile (b) Noisy radiography with σ = 0.025 (c) By TV,  µ
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Figure 7. 2D tomographic reconstructions for “DISK”.

This relationship, together with (3.5), indicates{
q̄k+1

1 = q̄k1 + 1
γ (v̄k+1 −∇ρ̄k+1)

q̄k+1
2 = q̄k2 + 1

η (w̄k+1 −∆ρ̄k+1)
,

which is equivalent to
√

1
η q̄

k+1
1 =

√
1
η q̄

k
1 + 1

γ

√
1
η (v̄k+1 −∇ρ̄k+1)√

1
γ q̄

k+1
2 =

√
1
γ q̄

k
2 + 1

η

√
1
γ (w̄k+1 −∆ρ̄k+1)

.

It follows that (
µ1

η
‖q̄k1‖22 +

µ2

γ
‖q̄k2‖22

)
−
(
µ1

η
‖q̄k+1

1 ‖22 +
µ2

γ
‖q̄k+1

2 ‖22
)

= −2µ1

ηγ
〈q̄k1 , v̄k+1 −∇ρ̄k+1〉 − µ1

ηγ2
‖v̄k+1 −∇ρ̄k+1‖22(6.4)

−2µ2

ηγ
〈q̄k2 , w̄k+1 −∆ρ̄k+1〉 − µ2

η2γ
‖w̄k+1 −∆ρ̄k+1‖22.

In the following, we show that the right hand side of (6.4) is no less than 0 and

thus the sequence
{(

µ1

η ‖q̄
k
1‖22 + µ2

γ ‖q̄
k
2‖22
)}

is monotonically decreasing. From the
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(a) True density profile (b) Noisy radiography with σ = 0.05 (c) By TV,  µ
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Figure 8. 2D tomographic reconstructions for “FACE”.

second inequality of (6.2), (ρ∗,v∗,w∗) is characterized by

µ1〈div · q∗1,ρ− ρ∗〉 − µ1

γ
〈div · (∇ρ∗ − v∗),ρ− ρ∗〉 − µ2〈∆ · q∗2,ρ− ρ∗〉

+
µ2

η
〈∆ · (∆ρ∗ −w∗),ρ− ρ∗〉+ 〈A>K>(KAρ∗ − d),ρ− ρ∗〉 ≥ 0,(6.5)

‖v‖1 − ‖v∗‖1 + 〈q∗1,v − v∗〉+
1

γ
〈v∗ −∇ρ∗,v − v∗〉 ≥ 0,(6.6)

‖w‖1 − ‖w∗‖1 + 〈q∗2,w −w∗〉+
1

η
〈w∗ −∆ρ∗,w −w∗〉 ≥ 0,(6.7)

where (6.5) is indeed 〈∇ρL(ρ∗,v∗,w∗;q∗1,q
∗
2),ρ− ρ∗〉 ≥ 0 from Proposition 2.1 on

P36 of [15]; (6.6) and (6.7) are indeed from Proposition 2.2 on P38 of [15]. Similarly,
(ρk+1,vk+1,wk+1) is characterized by

µ1〈div · qk1 ,ρ− ρk+1〉 − µ1

γ
〈div · (∇ρk+1 − vk+1),ρ− ρk+1〉

−µ2〈∆ · qk2 ,ρ− ρk+1〉+
µ2

η
〈∆ · (∆ρk+1 −wk+1),ρ− ρk+1〉(6.8)

+〈A>K>(KAρk+1 − d),ρ− ρk+1〉 ≥ 0,

‖v‖1 − ‖vk+1‖1 + 〈qk1 ,v − vk+1〉+
1

γ
〈vk+1 −∇ρk+1,v − vk+1〉 ≥ 0,(6.9)

‖w‖1 − ‖wk+1‖1 + 〈qk2 ,w −wk+1〉+
1

η
〈wk+1 −∆ρk+1,w −wk+1〉 ≥ 0,(6.10)
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Figure 9. 2D tomographic reconstruction for “DISK” of layer
290, 200, 100. Left column is for layer 290; middle column is for
layer 200, and right one is for layer 100.

since (ρk+1,vk+1,wk+1) is the solution of (3.4). Take ρ = ρk+1 in (6.5), ρ = ρ∗

in (6.8), v = vk+1 in (6.6), v = v∗ in (6.9), w = wk+1 in (6.7), and w = w∗ in
(6.10), respectively. Taking addition (6.5)+(6.8)+µ1[(6.6)+(6.9)]+µ2[(6.7)+(6.10)],
we have

−µ1〈qk1 , v̄k+1 −∇ρ̄k+1〉 − µ2〈q̄k2 , w̄k+1 −∆ρ̄k+1〉

≥ µ1

γ
‖v̄k+1 −∇ρ̄k+1‖22 +

µ2

η
‖w̄k+1 −∆ρ̄k+1‖22 + ‖KAρ̄k+1‖22,

which is equivalent to

−µ1

ηγ
〈q̄k1 , v̄k+1 −∇ρ̄k+1〉 − µ2

ηγ
〈q̄k2 , w̄k+1 −∆ρ̄k+1〉(6.11)

≥ µ1

ηγ2
‖v̄k+1 −∇ρ̄k+1‖22 +

µ2

η2γ
‖w̄k+1 −∆ρ̄k+1‖22 +

1

ηγ
‖KAρ̄k+1‖22.

From (6.4) and (6.11), we have(
µ1

η
‖q̄k1‖22 +

µ2

γ
‖q̄k2‖22

)
−
(
µ1

η
‖q̄k+1

1 ‖22 +
µ2

γ
‖q̄k+1

2 ‖22
)

(6.12)

≥ µ1

ηγ2
‖v̄k+1 −∇ρ̄k+1‖22 +

µ2

η2γ
‖w̄k+1 −∆ρ̄k+1‖22 +

1

ηγ
‖KAρ̄k+1‖22,
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Figure 10. 2D tomographic reconstruction for “FACE” of layer
100, 200, 350. Left column is for layer 100; middle column is for
layer 200, and right one is for layer 350.

which indicates


{q̄k1 : ∀k} and {q̄k2 : ∀k} are bounded,
lim
k→∞

‖v̄k+1 −∇ρ̄k+1‖2 = 0,

lim
k→∞

‖w̄k+1 −∆ρ̄k+1‖2 = 0,

lim
k→∞

‖KAρ̄k+1‖2 = 0.

Together with (6.3) and definitions of ρ̄k, v̄k, w̄k, q̄k1 , q̄
k
2 , we have

(6.13)


{qk1 : ∀k} and {qk2 : ∀k} are bounded,
lim
k→∞

‖vk+1 −∇ρk+1‖2 = 0,

lim
k→∞

‖wk+1 −∆ρk+1‖2 = 0,

lim
k→∞

‖KA(ρk+1 − ρ∗)‖2 = 0.
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On the other hand, the second inequality of (6.2) implies

µ1‖v∗‖1 + µ2‖w∗‖1 +
1

2
‖KAρ∗ − d‖22

≤ µ1‖vk+1‖1 + µ2‖wk+1‖1 + µ1〈q∗1,vk+1 −∇ρk+1〉(6.14)

+µ2〈q∗2,wk+1 −∆ρk+1〉+
µ1

2γ
‖vk+1 −∇ρk+1‖22

+
µ2

2η
‖wk+1 −∆ρk+1‖22 +

1

2
‖KAρk+1 − d‖22.

If we take ρ = ρ∗ in (6.8), v = v∗ in (6.9), and w = w∗ in (6.10), we have

µ1‖v∗‖1 + µ2‖w∗‖1 +
1

2
‖KAρ∗ − d‖22

≥ µ1‖vk+1‖1 + µ2‖wk+1‖1 + µ1〈qk1 ,vk+1 −∇ρk+1〉(6.15)

+µ2〈qk2 ,wk+1 −∆ρk+1〉+
µ1

γ
‖vk+1 −∇ρk+1‖22

+
µ2

η
‖wk+1 −∆ρk+1‖22 +

1

2
‖KAρk+1 − d‖22.

Together with (6.13), we have

lim inf

(
µ1‖vk+1‖1 + µ2‖wk+1‖1 +

1

2
‖KAρk+1 − d‖22

)
≥ µ1‖v∗‖1 + µ2‖w∗‖1 +

1

2
‖KAρ∗ − d‖22

≥ lim sup

(
µ1‖vk+1‖1 + µ2‖wk+1‖1 +

1

2
‖KAρk+1 − d‖22

)
,

by taking lim inf in (6.14) and lim sup in (6.15). Hence, we complete the proof of
(6.1).

(6.1) implies clearly that {ρk} is a minimizing sequence of E(·). If the minimizer
of E(·) is unique, then ρk → ρ∗.

We can also adapt Theorem 4.3 in [32]to get the following theorem.

Theorem 2 Assume (ρ∗,v∗,w∗;q∗1,q
∗
2) be a saddle-point of L(ρ,v,w;q1,q2).

Suppose that the minimization problem (3.4) is roughly solved in each iteration,
i.e. L = 1 in Algorithm 2. Then the sequence (ρk,vk,wk;qk1 ,q

k
2) satisfies

(6.16)


lim
k→∞

µ1‖vk‖1 + µ2‖wk‖1 + 1
2‖KAρ

k − d‖22 = E(ρ∗),

lim
k→∞

‖vk −∇ρk‖2 = 0,

lim
k→∞

‖wk −∆ρk‖2 = 0,

lim
k→∞

‖KA(ρk − ρ∗)‖2 = 0.

Moreover, (6.16) indicates that {ρk} is a minimizing sequence of E(·). If the mini-
mizer of E(·) is unique , then ρk → ρ∗.

Similar to the proof for Theorem 1, we can also adapt the proof for Theorem 4.3
of [32] to prove Theorem 2 here. In interest readers can consult [32].
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