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Abstract—A deterministic maximum likelihood (DML) ap-
proach is presented for the blind channel estimation problem. It
is first proposed in a block version, which consists of iterating
two steps, each one solving a least-squares problem either in
the channel or in the symbols. In the noiseless case and under
certain conditions, this algorithm gives the exact channel and
the exact symbol vector with a finite number of samples. It is
shown that even if the DML method has a single global minimum,
the proposed iterative procedure can converge to spurious local
minima. This problem can be detected (under some channel
diversity conditions) by using a numerical test that is proposed in
the paper.

Based on these considerations, we extend the maximum likeli-
hood block algorithm (MLBA) to recursive implementations [max-
imum likelihood recursive algorithm (MLRA)]. The MLRA is able
to track variations of the system by the introduction of an exponen-
tial forgetting factor in the DML criterion. The link between the
adaptive algorithm and a soft decision feedback equalizer (SDFE)
is emphasized. Low-complexity versions of the recursive and adap-
tive algorithm are presented.

Index Terms—Adaptive algorithm, blind equalization, deter-
ministic maximum likelihood method, joint estimation.

I. INTRODUCTION

B LIND identification/equalization is an important problem
in wireless communications, either in a passive listening

situation or in fast fading environments. Blind techniques
present some advantages compared with the traditional training
methods. First, the reduced need for overhead information
increases the bandwidth efficiency. Furthermore, in certain
communication systems, the synchronization between the
receiver and the transmitter is not possible, and thus, training
sequences are not exploitable. However, when some symbols
are known, “semi-blind” techniques are preferred since they
are able to track system variations much more efficiently than
algorithms based only on training sequences while having
performance much enhanced compared with fully blind al-
gorithms. When the known symbols are grouped, maximum
likelihood (ML) permits us to obtain easily a semi-blind
criterion [1]. Therefore, we choose to focus on blind criteria.
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The earlier approaches to blind equalization were based on
higher order statistics of the received signal [2]–[5]. Although
these algorithms are robust and reliable in many cases, esti-
mating high-order statistics usually requires a large number of
data samples. Hence, their application in a fast varying environ-
ment is intrinsically limited. Tonget al. suggested a different
option [6]. They make use of time or spatial diversity at the
output of the channel, which is obtained when the measured
samples are oversampled or when several antennas are used.
Thus, the considered system is a single input/multiple output
system (SIMO). The SIMO equalization problem can be solved
using second-order statistics only, as long as the subchannels do
not share common zeros. Second-order techniques have the po-
tential for estimating the required statistics with fewer samples;
hence, they do not have the intrinsic limitations of higher order
ones. However, whether a given method converges faster than
another one relies on other properties.

Some second-order methods rely on assumptions on the sta-
tistics of the input sequence (usually, an assumption of the se-
quence to be white) [7]–[10]. In a fast fading environment, if
only a few data samples corresponding to the same channel char-
acteristics are available, then the statistical estimate is not reli-
able. In that case, the problem may be solved by treating the
input as a deterministic variable. This paper focuses on this sit-
uation: The input sequence is considered as a deterministic pa-
rameter to be identified. More precisely, this paper deals with
deterministic maximum likelihood (DML) methods. The good
property of DML methods in a SIMO context relies on the fact
that it can be obtained through a sequence of least-squares prob-
lems, as we will see. However, their main drawback lies in the
difficulty to express the estimator in closed form and in the pres-
ence of local minima. This is partially solved here in the context
of DML.

Among the major contributions to DML methods, we can cite
the work of Hua, who proposed in [11] the two-step maximum
likelihood (TSML) method. The TSML method establishes
a connection between the cross relation (CR) method, which
belongs to subspace methods, and the ML estimator. Around
the same time, Slock developed a method denoted the iterative
quadratic maximum likelihood (IQML) method [12], [13],
which is similar to the TSML method. Both methods iterate
two steps to estimate the channel. The performance comparison
with the Cramér-Rao bound has been obtained in [11], [14],
and [15]. Others DML methods are available in [16] and the
references therein. DML algorithms are capable of obtaining
perfect channel estimation within a finite number of samples
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in the absence of noise. On the other hand, TSML and IQML
give biased channel estimates [17] and may behave poorly at
low SNR, even with an asymptotical number of data. Ayadi
proposed, in [18], two solutions to remedy this situation, which
lead to “denoised” ML algorithms. Unfortunately, these deter-
ministic algorithms have been developed for batch processing,
and their adaptive implementations are often cumbersome. The
approach proposed in this paper has the attractive properties of
DML with, at the same time, a structure suitable for recursive
and adaptive implementation.

This paper is built on a previous work performed in the same
team [19], where a block algorithm (MLBA) was proposed.
Each step of the MLBA solves a least-squares problem alter-
nately in the channel and in the symbols, whereas in previous
contributions, either the symbols or the channels were not com-
puted explicitly during the iterations. Alternating methods have
also been proposed in contributions like [20] or [21], where the
finite alphabet property is used. In the absence of noise, the
MLBA estimates the channels and symbols perfectly, using a fi-
nite number of symbols, and the MLBA has a single global min-
imum [19]. Some recursive versions were proposed, including
decision devices. The behavior of the algorithm was proved to
be very similar to a DFE. Pité wrongly stated in [22] that the
MLBA does not admit local minima in the noiseless case. Un-
fortunately, the implementation of the MLBA is complicated by
the existence of local minima even with noiseless data. The nov-
elty of this paper is twofold.

• A numerical test is proposed to circumvent the local
minima problem. Actually, we combine the iterative al-
gorithm with a growing window technique, and we show
that under the classical assumptions of channel diversity
and sufficient excitation of the symbols, we are able to
check whether the obtained stationary point is the global
minimum or a spurious local minimum. This property can
be extended to noisy data when a large amount of data is
considered.

• A recursive version of the MLBA that does not involve
any hard decision is presented. Then, the error propaga-
tion problem frequently encountered with the DFE-like al-
gorithm (and, thus, with the algorithm proposed by Ges-
bert [19]) is solved. Moreover, we prove, in the noiseless
case, that when the recursive algorithm converges, then it
converges toward the global minimum. System adaptivity
is then obtained by introducing an exponential weighting
factor in the criterion. The connection between this algo-
rithm and the structure of the DFE is emphasized. The re-
sulting algorithm is very similar to a DFE where the hard
decision is replaced by a soft estimate of all symbols in-
volved in the computation of a given channel output. Up-
date strategies of the filters can be either of a least-squares
type (RLS like) or of a stochastic gradient type (LMS like).
Both of them are derived in this paper.

This paper is organized as follows. The general setup and the
DML criterion, which is a quadratic minimization problem in
both the channels and the symbols, are presented in Section II.
For noise-free data, we recall that the global minimum of the
DML criterion is unique. Then, in Section III, we derive the

two-steps block iterative algorithm and show that it can con-
verge to local minima. A recursive version is derived in Sec-
tion IV. We prove that the recursive algorithm converges only
toward the global minimum. A simplified version of the recur-
sive algorithm is presented in Section IV-D. In Section V-A,
we introduce a weighting factor into the criterion, and we ob-
tain the adaptive algorithm. A comparison between the struc-
ture of our adaptive algorithm and of a DFE is proposed in Sec-
tion V-B. The performance of the algorithms and comparison
with existing approaches are provided in Section VI.

II. PROBLEM FORMULATION

Let be the continuous-time baseband signal received at
the output of a noisy channel

(1)

where denotes the baseband equivalent channel, in-
cluding the effects of the emission and reception filters, of the
channel response, and of the modulation and demodulation. The
symbol sequence is emitted with rate , and stands
for some additive independent white Gaussian noise. Consider
a fractionally spaced equalizer, the received continuous time
signal being sampled at rate . For , set

and . The discrete time version of
the signal model in (1) may be expressed as

where and are complex variables. This
single-input/multiple-output (SIMO) model can also be used
for systems involving multiple receivers. For convenience, we
adopt the following notations throughout the paper.

• are variables denoting any channel and any symbol
sequence, respectively.

• are the true channels and symbols, respectively, and
is the corresponding (noisy) observation.

• are the estimates of and .
• and

is the time index.
•

is a vector of length containing symbols estimated
at iteration .

The channel impulse responses
are assumed to have a finite length, and stands for
the maximum order of any channel. Let

denote the vector obtained by interlacing the outputs of the
different channels,
the vector containing transmitted symbols, and

. Then, the output reads:

(2)
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Here, stands for the noise vector. The noise sequences
are assumed to be i.i.d., Gaussian, and mutually uncorrelated.
In (2), operator transforms a sequence of channel

into the following
generalized Sylvester matrix [23]:

...
...

. . .
...

...
. . .

. . .
. . .

Let be the operator that transforms a vector into a
matrix , in such a way that

(3)

It can be shown that this matrix reads

...

where is the Kronecker product, is the identity
matrix, and . The
results displayed in the paper rely on the following assumptions.

H1) has full column rank.
H2) The symbol sequence has linear complexity

or greater [24]. The linear complexity of
the sequence is defined as the
smallest value of for which there exists
such as

The linear complexity measures the predictability of a
finite length deterministic sequence.

H2’) When H2) is met, it can be shown that is
full column rank.

H3) (maximum order of the channels) is known or cor-
rectly estimated.

AssumptionH1) means that there is channel diversity that
guarantees that (2) is an overdetermined system of equations for

fixed. Similarly, H2’) ensures that (2) is an overdetermined
system for fixed. Denote by the matrix

...
...

...
...

Then, H2) implies rank .
Hence, the sample covariance of the vector sequence

is full
rank, and it is seen that the linear complexity property is
strongly connected with the notion of persistent excitation [25]
of a sequence. We can remark that rank
implies that, necessarily, .

We consider the problem of identifying bothand from
without using any prior about the transmitted sequence

or the channel. Following [11], [13], and [19], are esti-
mated through the minimization of the DML criterion with re-
spect to the joint variable :

where the second formulation comes from (3). Hence, the esti-
mated channels and symbols read

(4)

In the noiseless case, is a global minimum of if
and only if . The following theorem estab-
lished in [19] and [22] gives a characterization of the global
minimum.

Theorem 1: In the noiseless case and underH1) andH2),
iff such as and

.
Proof: The equality can be

rearranged as

H2) ensures that rank , which im-
plies that range range ,
where range stands for the column space of. Then,
range range . Since range
and range have the same dimensions, we get
range range . Using [26, Th. 2], we
conclude that there exists such as .

It can be observed that Theorem 1 and the sufficient condition
of identifiability presented in [27] are similar. This is not sur-
prising since, when the noise is Gaussian, all information about
the channel in the likelihood function is concentrated in the
second-order moments of the observation. Theorem [27] proves
that the global minimum is obtained only for the true values of
the parameters up to a scalar factor. However, the implemen-
tation of DML based algorithms is most often complicated by
the existence of local minima. Actually, the criterionhas a
quadratic form in terms of and separately, but is non-
convex with respect to the joint variable and does
not admit an explicit solution. Thus, even if we characterize the
global minimum, we do not know whether the algorithms that
will be used to minimize (4) will converge toward this global
minimum.

In the next section, we recall the block algorithm proposed
by Gesbert to minimize (4), and we present a characterization
of the possible stationary points of this algorithm and a strategy
that permits us to circumvent the local minima problem.

III. M AXIMUM LIKELIHOOD BLOCK ALGORITHM

In this section, we provide a block algorithm based on
DML techniques. Usually, the local minima problem, which
is frequently encountered with these methods, is solved by
initializing the procedure using less efficient (in terms of
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performance) techniques, which are not subject to these local
minima problems. By doing so, it is hoped that even if local
minima occur, they will not be close to the optimal solution
so that the iterative algorithm will converge to the global
minimum. This has two drawbacks: i) It is not clear that such
local minima close to the global one does not exist, and ii)
such a procedure is usually computationally demanding. As a
substitute to this procedure, we propose a test allowing to check
whether the obtained stationary point is the global minimum or
a spurious local minimum. In the last case, the procedure must
be reinitialized. Our test is also computationally demanding,
but the objection pointed out in i) does not apply to our method.
Moreover, the test emphasizes why it is pertinent to derive
a recursive algorithm in this context (besides the arithmetic
complexity problem). The proposed procedure is the first step
toward a recursive algorithm.

A. Two-Step Iterative Algorithm

Classical ways of solving the minimization problem of (4)
consist in expressing the minimizer with respect to as
a function of and inserting this expression in. Then, an
iterative procedure is applied. Finally, the symbols are com-
puted when the algorithm has converged. This formulation is
not appropriate for building recursive algorithms, and we follow
the approach proposed by Gesbert [19], who derives a simple
iterative algorithm in two steps in which each step solves a
least-squares problem alternately inand in .

1) Algorithm: After some initialization, one iterates the fol-
lowing two steps until convergence:

(5)

(6)

This is the MLBA. and are assumed to be
full rank for all . The desired solution verifiesH1)
andH2’) , which justifies this restriction. Each step decreases
the value of , and the MLBA converges, possibly toward a
local minimum. The corresponding stationary points are char-
acterized below.

2) Characterization of the Stationary Points:Let
denote a stationary point of the MLBA; then

(7)

(8)

The two equations above are equivalent to

Null Null

(9)

where stands for the estimation of
, and Null denotes the null space of. In the noise-

less case, the global minimum is obtained for ; other-
wise, is a local minimum. Therefore, local minima
do exist if Null . We intro-
duce the matrix . One can easily verify
that Null Null Null . Matrix
cannot be full column rank if it has more columns than rows, i.e.,
if . In Section II, we underlined that
H2) requires that . In general, both relations cannot
hold simultaneously; then Null is not an empty set, and the
MLBA does present local minima. Experience shows that fortu-
nately, local minima seldom happen, which is logical from their
characterization. The size of their “subspace” is small. We will
provide a procedure allowing us to check whether the algorithm
has converged toward a local minimum, as well as offering in-
sights into possible methods that would not be sensitive to this
problem. The demonstration relies on the stability of the esti-
mate of the channel in a recursive procedure.

B. Solving the Local Minima Problem

For a slowly varying channel (with respect to the block-size
), the true channel may remain identical during several

blocks. This observation suggests that we initialize block
with the channel of block . If and are proportional, the
vector in block is computed in one iteration. Other-
wise, it is crucial to know whether a local minimumof block

may also be a local minimum of block since in the latter
case, initializing each block with the previousmight propa-
gate an error from one block to another. We answer partially by
providing a necessary and sufficient condition forto be a local
minimum different from the global minimum. Based on it, we
build a simple numerical test that combines the block algorithm
with a growing window technique (the BGWT, cf. Fig. 1).

Block Growing Window Technique (BGWT)

• Step 0: Minimize using the block algorithm (5)
and (6) to obtain .

• Step where : At time , a
new symbol is transmitted. The vector of emitted
symbols is , and its length is . The
minimizer of is (which
is obtained via MLBA).

At the end of these iterations, either for
or , such as . The

consequences of these issues are formalized below.
1) Noiseless Case:The following theorem gives a rule to

distinguish the global minimum from the local ones.
Theorem 2: Assume that there is no noise and

that the channel is constant over the window
. Assume also that

are full column rank matrices for any and
that rank .

If, all along the BGW procedure, and
for any , then

and are the global minimizers of .
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Fig. 1. Procedure BGWT: Block algorithm combined with a growing window technique.

Proof: Assume that is
a stationary point of . Then, for any

computed in is
zero:

(10)

By comparing the expression in (10) corresponding to with
the expression relevant to, we see that the latter is satisfied
whenever

(11)

is a matrix that has full column
rank, provided that . Then, (11) is equivalent
to

(12)

Equation (12) holds for all , and stacking the
obtained equations, we get

Thus, the noiseless DML criterion is zero in :

UnderH1) andH2) (which requires ), the con-
ditions of theorem [27] are satisfied, and hence, there exists
such as and . Then, at step
zero, ; therefore, ,
which completes the proof.

As a consequence, the only stationary point such that the filter
and the symbol estimate remain unchanged during
consecutive steps is the global minimum. The proof above is
based on the unrealistic assumption of noiseless data. In the next
section, an extension to the case of noisy data is provided with
the restriction that a large amount of symbols is considered.

2) Case of Noisy Data:In the noisy case and if a large
number of data is considered,and can be read as

where is the noiseless DML criterion (the proof is
outlined in Appendix I). Thus, for a number of symbols large
enough, the proof for the noisy case is similar to the proof pre-
sented for noise-free data, and Theorem 2 holds.

The BGW procedure is not suited for working with large data
sequences. On the other hand, the test provides a solution to the
local minima problem that is one of the main difficulties with
these methods. These remarks justify our choice to develop a
low-cost recursive version of the BGWT, paying attention that
the property established in this section is maintained.

IV. M AXIMUM LIKELIHOOD RECURSIVEALGORITHM (MLRA)

The above result strongly suggests that the local minima
problem could be easily solved in a recursive growing window
procedure. Such a recursive algorithm can be derived from
the BGWT of Section III by applying some approximations
to the BGWT, which leads to a lower complexity algorithm.
Moreover, we show that in the digital communication context,
the update of the filters in the proposed algorithm is equivalent
to a stochastic gradient-based method. The computational
complexity of the resulting algorithm is reasonably small for
being used in practical implementation. At the same time,
we prove, under some classical assumptions, that when the
proposed algorithm converges, then it converges toward the
global minimum.

A. Derivation of the MLRA

Here, we modify the BGWT for obtaining a recursive algo-
rithm such that, given the least-squares estimates of the symbols
and of the filters at iteration , we may update the estimates
of these vectors at iterationon the arrival of a new symbol.
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The filters and the symbols are still computed alternately. Let
and denote, respectively, the channel and the

symbol vector estimated at iteration. The
first simplification consists of replacing the minimization in step

of the BGWT by the two relations

(13)

(14)

The equations above are quite similar to the equations in the
first iteration of step of the BGWT. Equation (13) solves a
least-squares problem in , whose length is .
Hence, the computational complexity of (13) increases quickly
with . Considering that it is unlikely that the most recent re-
ceived samples have a strong impact on the estimate of symbols
that have been emitted long ago, we update only the lastsym-
bols. Hence, is a fundamental parameter to be determined,
which will drive a complexity/efficiency tradeoff. Implicitly, the
other symbols are thus supposed to be correctly estimated. At it-
eration is split into two parts:

Updated at iteration

...

Not updated at and after iteration

Now, we consider separately the minimization w.r.t. the symbols
and the filter.

1) Minimization With Respect to the Symbols:Since only
symbols are updated at iteration, the minimization with respect
to the symbols in (13) reduces to

argmin

(15)

Matrix can be split into two submatrices:

...

(16)

By combining (15) and (16), the estimated symbol vector at
iteration can be calculated as

(17)

where stands for the multiplication operator.
2) Minimization With Respect to the Filter:The filter is

obtained using (14). It can be computed recursively from .
Let denote the block

diagonal covariance matrix of the estimated symbols. Then, the
update of is performed thanks to

(18)

More details on the derivation of this equation is given in
Appendix B. The MLRA consists of (17) and (18). Matrix

turns out to be a block diagonal matrix with diag-
onal and the

empirical covariance matrix of the estimated
symbols. Hence, for , (18) reduces to the classical
equations of recursive least-squares (RLS) algorithms (each
subchannel being updated separately).

3) Comparison Between the MLRA and the BGWT:The
computational complexity of the MLRA is largely reduced
compared to the BGWT for the following reasons.

1) The minimization with respect to the joint variable in step
of the BGWT (iterative procedure) is replaced by

the minimization of a criterion with respect to each vari-
able separately, which coincides with the first iteration of
step in the BGWT.

2) At iteration , the BGWT computes symbols whose
length increases with, whereas only a fixed number
(independent of) symbols are computed in the MLRA.

3) In the MLRA, is updated recursively from ,
which is done without any approximation, whereas, in the
BGWT, the whole channel computation is performed in a
single step without having any benefit from the channel
computations done in the previous steps.

Unfortunately, possible divergence problems may occur. These
diverging situations are essentially due to the choice of, which
should be greater than (order of the channel). This point is
illustrated in Figs. 7 and 8.

B. Initialization

In recursive implementations, the computation usually starts
with known initial conditions and makes use of the information
contained in the new data samples to update the previous esti-
mates. Here, neither the symbols nor the channel are known.
Hence, we need to find a reliable initial estimate. A similar
problem is encountered in TSML [11] or IQML [12]. Gener-
ally, the problem is solved by making use of an initialization
procedure such as the subspace algorithm, for example. Here,
we propose to initialize the MLRA with defined
as the stationary point of the MLBA (5) and (6) over a block
of size . The MLBA starts with a randomly chosen ini-
tialization point. The choice of reflects a tradeoff between
the accuracy of the estimates and the involved computational
cost. Experience shows that choosingabout leads to
a reasonable tradeoff. In any case, this always corresponds to
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, which ensures that is the unique global
minimum of (cf. Theorem 1).

C. Convergence of the Recursive Algorithm

Our main result concerning the convergence of the MLRA is
as follows.

Theorem 3: In the noiseless case, if the MLRA converges, if
H1) andH2) are met, and if situated after the convergence

, then the MLRA converges toward the
global minimum.

Proof: If the MLRA converges, then such as
and . At iteration , the

estimated filter satisfies the following relation:

(19)

Equation (19) is equivalent to

(20)

We split the previous expression into two terms, and we obtain

(21)

Since and and
using (19) taken at time , we conclude that the right member
of (21) is zero. Then, (21) reduces to

(22)
Matrix is full column rank as long as

. Then, we get

(23)

Equation (23) holds . We stack the equations obtained
for with , and we obtain

UnderH1) andH4), the conditions of Theorem 1 are satisfied;
hence, and are the true values of the parameters
up to a scalar factor.

Once again, the theorem above, which has been established
for noiseless data, can be extended to noisy data with the re-
striction that a large amount of data are considered (see Ap-
pendix A).

D. Simplified Recursive Algorithm

In the recursive algorithm, the channels are updated thanks to
(18), which is equivalent to

(24)

where , and where

diag

blocks

Each block is a matrix. Let denote the el-
ement of at line and column ; then,

. We assume that the sequence is er-
godic; then, ,
where is the covariance matrix
of the estimated symbols. We proved (in Section IV-C) that, in
the noiseless case, if the recursive algorithm converges, then it
converges toward the global minimum. Therefore, forafter the
convergence, and , which
leads to

It is generally assumed that is a sequence of i.i.d., com-
plex, circular, random variables with zero mean [16]

Note that in the digital communication context, these hy-
potheses are most often met [26], [28]. Consequently,

is a diagonal matrix, namely

Therefore, for a time index large enough,
, and . Replacing

the new expression for in (24), we obtain

(25)
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where . Equation (25) is a member
of the stochastic gradient-based algorithms with decreasing
step-size parameter (inversely proportional to) and does not
require any longer the inversion of the covariance matrix. In
practical situations, this decreasing step strategy should not
be used, but the connection with LMS-like algorithms was
worth pointing out. It is clear, after these considerations, that
LMS-based algorithms will perform very much like RLS-like
algorithms.

V. MAXIMUM LIKELIHOOD ADAPTIVE ALGORITHM (MLAA)

Adaptivity is an important feature for tracking the variations
of time-varying channels, as well as for providing current op-
timal solutions, without introducing a large delay due to block
processing. The MLAA is obtained by introducing an expo-
nential weighting factor into the DML criterion and by writing
the corresponding recursions. Under the same assumptions as
for the MLRA, it converges toward the global minimum. The
MLAA is closely connected with a soft decision feedback equal-
izer (SDFE). This link is emphasized at the end of the section.

A. Derivation of the MLAA

The adaptivity feature can be obtained by introducing an ex-
ponential weighting factor into the definition of the criterion

. Thus, the new criterion can be written

(26)

where . The use of the weighting factor is intended to
ensure that data in the distant past is forgotten. Such an algo-
rithm is able to track the variations of the channel in a nonsta-
tionary environment. Using a matrix formulation,
can be read as

(27)

where

diag
...

...
...

We replace with in Section IV-A, and
the MLAA is obtained in the same way as the MLRA. The up-
date of the symbols for the MLAA is given by the expression

(28)

As to the update of the filter, we obtain a set of equations that
are similar to (18):

(29)

where will

be obtained recursively from . This algorithm will be
referred to as the maximum likelihood adaptive algorithm
(MLAA). The MLAA also needs a good initialization that is
easily obtained by running a block algorithm on a very short
window in a manner very similar to the block algorithm of
Section III. Arguments very similar to those of Section IV-C
can be applied to the MLAA, which prove the following.

i) In the noiseless case and asymptotically in the noisy
case, ifH1) and H4) are met, if the channel is slowly
varying, and if the MLAA converges, then it converges
toward the global minimum of the weighted criterion

. To the best of our knowledge, this is the
first time that we can distinguish the local minima from
the global one in that kind of algorithm.

ii) Moreover, is a diagonal matrix, and its diagonal
elements are all nonzero. Then, is equivalent to

. Therefore, if the previous assumptions are met,
the MLAA converges toward the global minimum of .

In the case of the MLAA, we do not know . The
consequence is that we cannot prove that the MLAA is equiv-
alent to a stochastic gradient method. This question will be ad-
dressed through simulation in Section VI.

B. Link With an SDFE

Here, we emphasize that the structure of the MLAA is very
close to the structure of an SDFE. In [19], Gesbert has proposed
an adaptive algorithm [the channel symbol algorithm (CSA)],
based on least-squares techniques that aims at minimizing the
criterion (27). We first recall some properties of the
CSA.

1) Link Between the CSA and a DFE:For each iteration of
the CSA, we have

(30)

(31)

updated via RLS (32)
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Fig. 2. Decision feedback update of the symbols in the CSA.

Fig. 3. Decision feedback update of the symbols in the MLAA.

The operator in (31) is a decision device. The link between
the CSA and the DFE structure is shown in [19]. It is summa-
rized below. An explicit expression for is obtained as

(33)

The decision feedback structure of (33) and (31) is shown in
Fig. 2. The main difference between the structure of the CSA
and of a DFE is the following: the presence of a feedforward
filter in the DFE and the presence, in the CSA, of a “spatial”
filter , which combines the signals before the
decision. Gesbert has also underlined the similarities between
our criterion and a decision-directed criterion

[29] defined as

Replacing (30) in the previous relation, we obtain

The difference between the criterion and lies
only in the presence of the term

. This so-called CSA is thus very similar
to the kind of algorithm one would obtain by implementing the
equivalent of a DFE in a SIMO context: The adaptive algorithm
is driven by the decision device. The additional properties of
the SIMO system make such an algorithm more useful than in
the SISO situation, as explained in [19].

2) Link Between the MLAA and a Soft DFE:In the MLAA,
we do not have exactly the same structure as in the CSA: Both
the number of symbols computed at each iteration and the deci-
sion function are different. Actually, the CSA computes, at each
iteration, one and only one symbol, whereas the MLAA updates
the first symbols in the delay line. Therefore, possible er-
rors made during the first estimation can be corrected, and the
error propagation phenomenon frequently observed in the DFE
is limited. The absence of hard decision device in the MLAA
permits us to preserve a linear estimation of the data, which can
thus be considered a “soft decision device,” the estimate being
refined during the time the symbol is seen in the delay line (or
even less if the arithmetic complexity is of major importance).
The corresponding scheme is outlined in Fig. 3.

VI. SIMULATIONS

To gain more insights about the results obtained in the pre-
vious sections, we present evaluations and simulations.

A. Block Algorithm

We first evaluate the performance (in terms of MSE) of the
MLBA, and we compare them with the performance of the
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Fig. 4. MSE for the channels versus� (diversity indicator)—Block algorithms.

TSML. For both algorithms, we investigate the influence of
the channel diversity. We consider a channelinvolving two
subchannels of order associated with the following
transfer function:

The parameter is the distance between the zeros of the sub-
channels. Therefore, is an indicator of the channel diversity.
The additive noise is assumed Gaussian with zero mean and
variance . Each simulation is driven by one symbol sequence
belonging to the binary alphabet . The performance
are measured in terms of mean-square error defined as

MSE

where stands for theth run estimate of . denotes the
number of Monte Carlo runs. Here, . The CRB has
been computed thanks to the formulae presented in [11].

Fig. 4 shows the MSE against (relative positions of
the zeros), and the SNR is set to 45 dB. This SNR is quite un-
realistic; however, this choice combines two advantages. First,
it permits a meaningful comparison between MLBA and TSML
with the CRB since the DML methods are known to be noneffi-
cient at low SNR [30]. Second, it also permits a fair comparison
between MLBA and TSML since TSML is biased at low SNR,
whereas MLBA is not. The simulation shows that the TSML
and the MLRA are close to the Cramér-Rao bound for good
channel diversity conditions. The TSML offers more robustness
to the diversity conditions, but this drawback of the MLBA can
be overcome thanks to the introduction of a convex constraint
like in [31]. The resulting algorithm is able to estimate the true
channels and symbols, even when the subchannels are not co-
prime. A full paper is in preparation.

Fig. 5. MSE for the channels versus the iteration number. (1) MLRAP = 4.
(2) MLRA P = 10. (3) MLRA P = 25. (4) MLAA P = 10 and� =
1 � 1=(6L(M + 1)). (5) The BGWT.

Fig. 6. MSE for the symbols versus the iteration number. (1) MLRAP = 4.
(2) MLRA P = 10. (3) MLRA P = 25. (4) MLAA P = 10 and� =
1 � 1=(6L(M + 1)). (5) The BGWT.

B. Adaptive/Recursive Algorithm

In this section, we first check the relevance of the approxima-
tions used to derive the MLRA, the MLAA, and their simplified
versions. First of all, we compare the performance of the MLRA
and of the MLAA to the ones of the BGWT (Figs. 5 and 6).
Then, the choice of the best value foris analyzed (Figs. 7 and
8). Fig. 9 suggests that the MLAA can be turned into a LMS-like
algorithm without loss of performance.

Figs. 5 and 6 compare the MLAA and the MLRA for dif-
ferent values of with the BGWT. The true channel tapsare
shown in Table I. The SNR was set to 10 dB, and all algorithms
have been initialized with obtained from the MLBA
ran for . The BGWT is optimal since at each iteration,
the criterion is minimized, whereas only the first step of the min-
imization process is performed in the MLRA. This remark, com-
bined with the fact that the MLRA is almost equivalent to the
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Fig. 7. MSE for the channels versus SNR obtained with the MLRA for various
values ofP .

Fig. 8. MSE for the symbols versus SNR obtained with the MLRA for various
values ofP .

LMS algorithm with decreasing stepsize, provides an explana-
tion for the growing gap between the MSE of the MLRA and
of the BGWT and of the MLAA. Actually, the MLRA has no
practical interest, but it was an essential step toward the MLAA.
Figs. 5 and 6 show that the MLAA is able to improve the esti-
mates with the arrival of new data. Moreover, the simplifications
involved in the MLAA lead to small degradations on the perfor-
mance.

Figs. 7 and 8 confirm the assumption of Section IV-A
dealing with the influence of old symbols on the update of
the filters. In this simulation, we compute the MSE on the
channels and on the symbols for the MLRA ran for various
pairs . We consider the channel described in Table I.
The MSE is averaged over 50 Monte Carlo runs (each run
corresponds to an independent realization of noise) and is
computed at the 1000th iteration. At low SNR and for
or , the MLRA diverges for some realizations, which
is why the corresponding lines on the figures are incomplete.

Fig. 9. MSE for the channels versus the iteration number obtained for the
MLAA and with the simplified MLAA.

TABLE I
IMPULSE RESPONSE OFCHANNEL ~h

When divergence occurs, the algorithm can be reinitialized
by an appropriate procedure, which has not been done in the
simulation. Note also that the reason for divergence is strongly
linked to a true growing window procedure, which is known to
be very sensitive to this kind of problems. Adaptive versions
are less sensitive to this phenomenon, as explained below. For

and for any SNR, the value of the MSE remains very
close to the value obtained when . Here, the order of the
channel is . Therefore, the update of the filters seems
to be influenced only by the symbols in the delay line of the
channels.

Fig. 9 compares the MLAA and the simplified MLAA
(SMLAA—LMS-like algorithm) for and
dB. The SMLAA is obtained by replacing in (29) with
the diagonal matrix , where is a
scale factor at iterationbetween the true parameters and their
estimates, and stands for the forgetting factor. The scale factor

is obtained thanks to .
The MSE is averaged over 25 realizations. For each realization,
the channel, the symbol sequence, and the noise realization
change. In our context, the covariance matrix of the estimated
symbols is nearly a diagonal matrix. The proposed simplifica-
tion is justified. This is emphasized in Fig. 9.

VII. CONCLUSION

In this paper, three algorithms are proposed to implement
DML methods. The MLBA has several desirable properties,
including high-SNR consistency, high-SNR efficiency, and a
structure suitable for deriving a recursive algorithm. Moreover,
a test that permits us to circumvent the local minima problem
is provided. A recursive (MLRA) and an adaptive (MLAA)
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algorithm based on least-squares techniques are derived. The
MLRA follows from various approximations applied to the
BGWT. We can remark that both algorithms are strongly con-
nected with a RLS. Therefore, fast versions could be obtained
using techniques similar as for a fast RLS. Furthermore, the up-
date of the filters in the MLRA and the MLAA can be simplified
by stochastic gradient techniques. Derivation of the algorithms
is straightforward. The MLAA combines several advantages,
such as adaptivity, low arithmetic complexity (can be turned
into a LMS-like algorithm without loss in the performance),
and a DFE-like structure, where the soft decisions limits the
error propagation phenomenon, and the local minima can be
distinguished from the global minimum (which is unusual with
this kind of algorithm). Moreover, the convergence speed of
the MLAA can be improved by constraining the symbols into a
convex set [31], which will be reported in another paper.

APPENDIX A
DML CRITERION FOR ALARGE AMOUNT OF DATA

In the noisy case, the channel and the symbols are estimated
through

where . Both and are de-
terministic parameters to be determined, whereas is sto-
chastic. Actually, is assumed zero-mean Gaussian with
covariance . Asymptotically, in the number of data, we have

where is the mathematical expectation w.r.t. the
random variable . Moreover,

can be read
trace .
The term trace is independent of and , and
trace
is the noiseless DML criterion. Then, asymptotically (in
the number of data), the DML criterion is equivalent to the
noiseless DML criterion.

APPENDIX B
RECURSIVE COMPUTATION

OF THE FILTER

At iteration verifies the stationary point condition

(34)

We split the covariance matrix of the symbols into two terms
in (35), shown at the bottom of the page. The first term will be
updated at the next iteration, whereas the second will remain
unchanged. Replace by in (34) to obtain a recursive
solution for and, thanks to (35), we have

(36)

At iteration , the stationary point condition is

(37)

The product can be expressed
as

(38)

(35)
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Replacing the previous equations in (36) leads to

Finally, comparing (39) with (34) leads to the update equation
for the filters

where . is also
updated recursively:

Then, applying twice the Woodbury’s identity, the recursive
equations for the update of is

where is an intermediary matrix.
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