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Adaptive Solution for Blind
|dentification/Equalization Using Deterministic
Maximum Likelihood

Florence Alberge, Pierre Duhameékllow, IEEE and Mila Nikolova

Abstract—A deterministic maximum likelihood (DML) ap- The earlier approaches to blind equalization were based on
proach is presented for the blind channel estimation problem. It higher order statistics of the received signal [2]-[5]. Although
is first proposed in a block version, which consists of iterating these algorithms are robust and reliable in many cases, esti-

two steps, each one solving a least-squares problem either in . - L .
the channel or in the symbols. In the noiseless case and underMating high-order statistics usually requires a large number of

certain conditions, this algorithm gives the exact channel and data samples. Hence, their application in a fast varying environ-
the exact symbol vector with a finite number of samples. It is ment is intrinsically limited. Tonget al. suggested a different
shown that even if the DML method has a single global minimum, gption [6]. They make use of time or spatial diversity at the
the proposed iterative procedure can converge to spurious local output of the channel, which is obtained when the measured
minima. This problem can be detected (under some channel ’
diversity conditions) by using a numerical test that is proposed in samples are OYersamp|Ed or When .sever.al antennf’sls are used.
the paper. Thus, the considered system is a single input/multiple output
Based on these considerations, we extend the maximum likeli- system (SIMO). The SIMO equalization problem can be solved
hood block algorithm (MLBA) to recursive implementations [max-  uysing second-order statistics only, as long as the subchannels do
imum likelihood recursive algorithm (MLRA)]. The MLRA is able not share common zeros. Second-order techniques have the po-

to track variations of the system by the introduction of an exponen- tential f timating th ired statisti ith f les:
tial forgetting factor in the DML criterion. The link between the ~ €ntialfor esimating the required statistics with rewer samples,

adaptive algorithm and a soft decision feedback equalizer (SDFE) hence, they do not have the intrinsic limitations of higher order
is emphasized. Low-complexity versions of the recursive and adap- ones. However, whether a given method converges faster than

tive algorithm are presented. another one relies on other properties.
Index Terms—Adaptive algorithm, blind equalization, deter- Some second-order methods rely on assumptions on the sta-
ministic maximum likelihood method, joint estimation. tistics of the input sequence (usually, an assumption of the se-

quence to be white) [7]-[10]. In a fast fading environment, if
only afew data samples corresponding to the same channel char-
acteristics are available, then the statistical estimate is not reli-
LIND identification/equalization is an important problemable. In that case, the problem may be solved by treating the
in wireless communications, either in a passive listenirigput as a deterministic variable. This paper focuses on this sit-
situation or in fast fading environments. Blind techniquesation: The input sequence is considered as a deterministic pa-
present some advantages compared with the traditional trainiagneter to be identified. More precisely, this paper deals with
methods. First, the reduced need for overhead informatigsterministic maximum likelihood (DML) methods. The good
increases the bandwidth efficiency. Furthermore, in certaynoperty of DML methods in a SIMO context relies on the fact
communication systems, the synchronization between theit it can be obtained through a sequence of least-squares prob-
receiver and the transmitter is not possible, and thus, trainirgns, as we will see. However, their main drawback lies in the
sequences are not exploitable. However, when some symbdifficulty to express the estimator in closed form and in the pres-
are known, “semi-blind” techniques are preferred since theyce of local minima. This is partially solved here in the context
are able to track system variations much more efficiently thaf DML.
algorithms based only on training sequences while havingAmong the major contributions to DML methods, we can cite
performance much enhanced compared with fully blind alhe work of Hua, who proposed in [11] the two-step maximum
gorithms. When the known symbols are grouped, maximulikelihood (TSML) method. The TSML method establishes
likelihood (ML) permits us to obtain easily a semi-blinda connection between the cross relation (CR) method, which
criterion [1]. Therefore, we choose to focus on blind criteria. belongs to subspace methods, and the ML estimator. Around
the same time, Slock developed a method denoted the iterative
quadratic maximum likelihood (IQML) method [12], [13],
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in the absence of noise. On the other hand, TSML and IQMivo-steps block iterative algorithm and show that it can con-
give biased channel estimates [17] and may behave poorlyatge to local minima. A recursive version is derived in Sec-
low SNR, even with an asymptotical number of data. Ayadion IV. We prove that the recursive algorithm converges only
proposed, in [18], two solutions to remedy this situation, whidloward the global minimum. A simplified version of the recur-

lead to “denoised” ML algorithms. Unfortunately, these detesive algorithm is presented in Section IV-D. In Section V-A,

ministic algorithms have been developed for batch processimgg introduce a weighting factor into the criterion, and we ob-
and their adaptive implementations are often cumbersome. Thm the adaptive algorithm. A comparison between the struc-
approach proposed in this paper has the attractive propertiesuré of our adaptive algorithm and of a DFE is proposed in Sec-
DML with, at the same time, a structure suitable for recursit@n V-B. The performance of the algorithms and comparison

and adaptive implementation. with existing approaches are provided in Section VI.
This paper is built on a previous work performed in the same
team [19], where a block algorithm (MLBA) was proposed. Il. PROBLEM FORMULATION

Each step of the MLBA sqlves a least-squares pro_blem a_lter'Letx(t) be the continuous-time baseband signal received at
nately in the channel and in the symbols, whereas in previo S output of a noisy channel

contributions, either the symbols or the channels were not com-

puted explicitly during the iterations. Alternating methods have +oo
also been proposed in contributions like [20] or [21], where the z(t) = Z h(t — nT)3(n) + b(t) 1)
finite alphabet property is used. In the absence of noise, the n=—oo

MLBA estimates the channels and symbols perfectly, using a fi-

nite number of symbols, and the MLBA has a single global mirwhereﬁ(t — nT) denotes the baseband equivalent channel, in-
imum [19]. Some recursive versions were proposed, includistuding the effects of the emission and reception filters, of the
decision devices. The behavior of the algorithm was proved ¢bhannel response, and of the modulation and demodulation. The
be very similar to a DFE. Pité wrongly stated in [22] that theymbol sequenc&n) is emitted with ratd /7", andb(¢) stands
MLBA does not admit local minima in the noiseless case. Uier some additive independent white Gaussian noise. Consider
fortunately, the implementation of the MLBA is complicated by fractionally spaced equalizer, the received continuous time
the existence of local minima even with noiseless data. The n@ignal z(¢) being sampled at rat€/L. For1 < i < L, set

elty of this paper is twofold. Z;(n) = 2((t — )T/L 4+ nT),bi(n) = b((i — 1)T/L + nT)
ndh;(1) = h((i — 1)T/L + nT). The discrete time version of

* A numerical test is proposed to circumvent the Ioc% e signal model in (1) may be expressed as

minima problem. Actually, we combine the iterative al-
gorithm with a growing window technique, and we show too

that under the classical assumptions of channel diversity zi(n) = Z hi(n — k)$(k) + b;(n) i=1,.
and sufficient excitation of the symbols, we are able to
check whether the obtained stationary point is the global

minimum or a spurious local minimum. This property cawherex;(n), h;(n), 5(n) andb;(n) are complex variables. This

be extended to noisy data when a large amount of datasiagle-input/multiple-output (SIMO) model can also be used

considered. for systems involving multiple receivers. For convenience, we
* A recursive version of the MLBA that does not involveadopt the following notations throughout the paper.

any hard decision is presented. Then, the error propaga-, h, s are variables denoting any channel and any symbol

tion problem frequently encountered with the DFE-like al- sequence, respectively.

gorithm (and, thus, with the algorithm proposed by Ges- , , 5 are the true channels and symbols, respectively, and

bert [19]) is solved. Moreover, we prove, in the noiseless s the corresponding (noisy) observation.

case, that when the recursive algorithm converges, theniit, j, s are the estimates @ ands.

converges toward the global minimum. System adaptivity sn(n) = [s(n)s(n — 1)...s(n — N — M + 1)]” andn

is then obtained by introducing an exponential weighting  is the time index.

factor in the criterion. The connection between this algo- , Sg\z) (n+4) = [(n+i)5(n+i—1) ... 8(n+i— N—M~+1)]T

rithm and the structure of the DFE is emphasized. The re-

sulting algorithm is very similar to a DFE where the hard at iterations.

decision is replaced by a soft estimate of all symbols ir:fhe channel impulse responshs 1 < i < LL > 1)

volved in th? computa.'uon ofa given channel output. Upére assumed to have a finite length, add stands for
date strategies of the filters can be either of a least-squa|

type (RLS like) or of a stochastic gradient type (LMSIike)Efg(nTaX?u(?) orge(rn of ;n)g_ cif)lannfl.(nLeK%(? 1)]?
. . . 1 RN i ... L1 - ... X -
Both of them are derived in this paper. denote the vector obtained by interlacing the outputs of the

This paper is organized as follows. The general setup and tlilerent channelssy(n) = [$(n)...5(n — N — M + 1)]¥
DML criterion, which is a quadratic minimization problem inthe vector containingV + M transmitted symbols, and
both the channels and the symbols, are presented in Sectiom(l) = [h1 (k) ... hr(k)]T. Then, the outpuK v (n) reads:

For noise-free data, we recall that the global minimum of the ,
DML criterion is unique. Then, in Section Ill, we derive the X n(n) = Tn(h)én(n) + By(n). (2)

L

ey

k=—oc

is a vector of lengtd/ + N containing symbols estimated
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Here,Bx(n) stands for the noise vector. The noise sequencesWe consider the problem of identifying bathandsy from
are assumed to be i.i.d., Gaussian, and mutually uncorrelat¥dy (») without using any prior about the transmitted sequence

In (2), operatorZy transforms a sequence of chanhék) = or the channel. Following [11], [13], and [19]]{1, Sy ) are esti-
[(hi(k)...hp(B)¥,k = 0,..., M into the following LN x mated through the minimization of the DML criterion with re-
(M + N) generalized Sylvester matrix [23]: spect to the joint variabléh, sy (n)):
h(0) ... h(M) 0 ... 0 J(h,sy(n)) = || Xn(n) — Ty (h)sy(n)]]?
3 S = | X (n) — Ulsn(n)h]?
=] 0 o X () — (s (n))h]
: 0 where the second formulation comes from (3). Hence, the esti-
0 ... 0 h(0) ... h(M) mated channels and symbols read
Let ¢/ be the operator that transfprms a vectar(n) into a (h,8x(n)) =arg min J(h,sy(n)). (4)
LN x L(M + 1) matrixU{(sy(n)), in such a way that (s (n)
U(sy(n))h =Txy(h)sy(n), Vsy, Vh (3) Inthe noiseless caseﬁ,éN(n)) is a global minimum of7 if
and only if 7(h,sx5(n)) = 0. The following theorem estab-
It can be shown that this matrix reads lished in [19] and [22] gives a characterization of the global
7 T minimum.
7 L ®Sl(”)1 T Theorem 1:In the noiseless case and unditt) and H2),
Usnny = | Qsi(n—1) J(h,5x(n)) = 0iff Ja € C* such adh = ah andéy (n) —
: sn(n)/a. § )
Ir@si(n— N+ 1)t Proof: The equalityZy(h)sy(n) = Tn(h)sx(n) can be

rearranged as
where ) is the Kronecker product];, is the L x L identity

~ ~

matrix, ands; (n) = [s(n) s(n — 1) --- s(n — M)]?. The Tr+1(W)va Sy (n)) = Ty (v (Sn(n)).
results displayed in the paper rely on the following assumptions. . o
H1) Zw(h) has full column rank. H2) ensures that rartky (sy(n))) = 2M + 1, which im-

H2) The symbol sequencéy(n) has linear complexity PlES that rangely.ii(hjvar(sy(n))) = rang&Zu1(h)),
9M + 1 or greater [24]. The linear complexity of Where rangeA) stands for theAcolun_m space &. Then,
the sequencés(n — k)}i=) ™~ is defined as the rang€7ys11(h)) C rangg7Zy11(h)). Since rang€Z 11 (h))
smallest value of: for which there exists{\;}_, 29 rang€Zys+1(h)) have the same dimensions, we get
such as range€7ys+1(h)) = rang€7y;41(h)). Using [26, Th. 2], we
conclude that there exists€ C such ash = ah. [ |
. ) . . It can be observed that Theorem 1 and the sufficient condition
s(n—4) =~ Z Ajs(n—i—j) i=e¢....N+M—1  stiqentifiability presented in [27] are similar. This is not sur-
=1 prising since, when the noise is Gaussian, all information about

The linear complexity measures the predictability of H‘le channel in the likelihood function is concentrated in the

finite length deterministic sequence. second-order moments qf the ok_)servation. Theorem [27] proves
H2") WhenH?2) is met, it can be shown that(sy(n)) is that the global minimum is obtained only for the true _values of

full column rank. the parameters up to a scalar factor. However, the implemen-
H3) M (maximum order of the channels) is known or cortation of DML based algorithms is most often complicated by

rectly estimated. the existence of local minima. Actually, the criterigh has a

AssumptionH1) means that there is channel diversity thaluadratic forminterms di ands (n) separately, buf is non-
guarantees that (2) is an overdetermined system of equation<SfRJfvex With respect to the joint variablé, sy (n)) and does
h fixed. Similarly, H2") ensures that (2) is an overdetermine§©t admit an explicit solution. Thus, even if we characterize the

system fors y (n) fixed. Denote by, (5 (n)) the matrix global minimum, we do not know whether the algorithms that
will be used to minimize (4) will converge toward this global

5(n) 5(n—1) oo, 3n—N+M+1) minimum.
. . In the next section, we recall the block algorithm proposed

o ) : o : by Gesbert to minimize (4), and we present a characterization
$(n—2M) $n—-2M-1) ... (n—-N-M+1)

of the possible stationary points of this algorithm and a strategy
Then, H2) implies rankiy(3n(n))) = 2M + L, that permits us to circumvent the local minima problem.
Hence, the sample covariance of the vector sequence . M L B A
Snpi(n) = [3(n),3n — 1),....8n — 2M)]T is full . MAXIMUM LIKELIHOOD BLOCK ALGORITHM

rank, and it is seen that the linear complexity property is In this section, we provide a block algorithm based on
strongly connected with the notion of persistent excitation [28]JML techniques. Usually, the local minima problem, which
of a sequence. We can remark that rank(sy(n))) = 2M+1 is frequently encountered with these methods, is solved by
implies that, necessarilyy > 3M + 1. initializing the procedure using less efficient (in terms of
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performance) techniques, which are not subject to these lovdlere X v(n) = 7Zn(h)sx(n) stands for the estimation of
minima problems. By doing so, it is hoped that even if locaX x(n), and Nul{ A) denotes the null space &f. In the noise-
minima occur, they will not be close to the optimal solutiofess case, the global minimum is obtained¥oe= 0y, ; other-

so that the iterative algorithm will converge to the globakise, (h,sy(n)) is a local minimum. Therefore, local minima
minimum. This has two drawbacks: i) It is not clear that suctho exist if NullZ/(sx(n))) N Null(Tx(h)?) # 0. We intro-
local minima close to the global one does not exist, and iiuce the matrixC = [Zx (h)2/(5x (n))]¥ . One can easily verify
such a procedure is usually computationally demanding. Agteat NulC) = Null(U/(sx(n))H) N Null(Zx (h)#). Matrix C
substitute to this procedure, we propose a test allowing to chexdanot be full column rank if it has more columns than rows, i.e.,
whether the obtained stationary point is the global minimum érLN > L(M +1)+ M + N. In Section I, we underlined that

a spurious local minimum. In the last case, the procedure mi) requires thatv > 3M +1. In general, both relations cannot
be reinitialized. Our test is also computationally demandingold simultaneously; then N@IC) is not an empty set, and the
but the objection pointed out in i) does not apply to our methoMLBA does present local minima. Experience shows that fortu-
Moreover, the test emphasizes why it is pertinent to derivately, local minima seldom happen, which is logical from their
a recursive algorithm in this context (besides the arithmetharacterization. The size of their “subspace” is small. We will
complexity problem). The proposed procedure is the first stgpovide a procedure allowing us to check whether the algorithm

toward a recursive algorithm. has converged toward a local minimum, as well as offering in-
sights into possible methods that would not be sensitive to this
A. Two-Step lterative Algorithm problem. The demonstration relies on the stability of the esti-

. . S ate of the channel in a recursive procedure.
Classical ways of solving the minimization problem of (45n P

consist in expressing the minimizer with respecsto(n) as

a function ofh and inserting this expression ifi. Then, an B. Solving the Local Minima Problem

iterative procedure is applied. Finally, the symbols are com- ) , ,
puted when the algorithm has converged. This formulation ig FOr @ slowly varying channel (with respect to the block-size
not appropriate for building recursive algorithms, and we follow? T, the true channdi may remain identical during several
the approach proposed by Gesbert [19], who derives a simB'_QCkS' This observation suggests that we initialize blogkl

iterative algorithm in two steps in which each step solves '4th the channeh of blocks. If h andh are proportional, the
least-squares problem alternatelyhirand ins. vectorsy in block ¢ 4+ 1 is computed in one iteration. Other-

1) Algorithm: After some initialization, one iterates the fol-WiS€: itis crucial to know whether a local minimumof block
lowing two steps until convergence: i may also be a local minimum of blogkt+ 1 since in the latter
case, initializing each block with the previolsmight propa-
gate an error from one block to another. We answer partially by

- —1
h® — |y (ng*l))HU (§<k1>)} providing a necessary and sufficient conditionlido be a local
N N .. . .. .
L minimum different from the global minimum. Based on it, we
=1\ H build a simple numerical test that combines the block algorithm
U8y XN 5 : : ) . )
% (SA‘ ) w(n) . ®) with a growing window technique (the BGWT, cf. Fig. 1).
(ke i Lo NH SN | Block Growing Window Technique (BGWT
W n) = |1 (89) " 75 (hmﬂ ng v que (BGWT)
L + Step Q Minimize 7 (h, s,y ) using the block algorithm (5)
N ~(0
 Tn (B(k)) i Xy (n). ©) and (6) to obtair(h(®, 5 (n)). .
e Stepk=1,...,K—1,where K = 3M +1: Attime k, a

new symbok(n + k) is transmitted. The vector of emitted

This is the MLBA. 7y (b®) andz/(8% (n)) are assumed to be symbols i$y 1 (n+k), and its length is\/ + N 4 k. The
full rank for all k. The desired solutioth, sy (n)) verifiesH1) minimizer of 7 (b, sy 41 is (h®), ég\klk(n + k)) (which
andH2"), which justifies this restriction. Each step decreases is obtained via MLBA).
the value of7, and the MLBA converges, possibly toward 8y the end of these iterations, eithBf*) — h for k = 0
local minimum. The corresponding stationary points are char- JK —1lor3ik e [1,...,K], such ash® % h). Thé
acterized below.

2) Characterization of the Stationary Point&et
(h,8x(n)) denote a stationary point of the MLBA; then

consequences of these issues are formalized below.
1) Noiseless CaseThe following theorem gives a rule to
distinguish the global minimum from the local ones.
Theorem 2:Assume that there is no noise and
= UGN TUGEN )] UBEN)TXN(n) (7) that the channelh is constant over the windown —
éj\(n):[TA(fl)HZ\(ﬁ)]_lﬂ}\(ﬁ)HXA(n) (8) N - M + 1,....n + 3M + 1]. Assume also that

~

Tnn(h), Tnin (), UBN1a(n + k) UBNi(n + K)
are full column rank matrices for arly = 0,..., K — 1 and

The two equations above are equivalent to that ranKvas (3x(n + K)) = 2M + 1.

) ) " o If, all along the BGW procedurdy® = h andsy), (n +
K =Xn(n)=Xn(n) ENull@(sx (n))")NONU(Zy (B)™) k) = 8 yi(n+k) # Oprynv4x foranyk =0,..., K — 1, then
(9) handsyyx(n+K)arethe global minimizers of (h, sy x).
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X;(-N+D| o X, (n) X, (n+1) X (k) |

------------------- 1

~{(0),(0)

(h,s N (n))=arg min IIX(n)-TN (h).sN mll ?

Step 1

A (1) . l 2
(h ,sNH(n+1))=arg min IIX(n+1)-TN+1(h).s NH(n+l)l!

Step k=2,....K-1 K=3M+1

A k), (k) . l
(08 (n+K))=arg min IX(n+k)-Ty, (1) 8 o (0HON

Fig. 1. Procedure BGWT: Block algorithm combined with a growing window technique.

Proof: Assume that'k € [0; K — 1], (]f1, Syir(n+k))is 2) Case of Noisy Dataln the noisy case and if a large

a stationary point of/ (h, sy4). Then, for anyk € [0; K — number of data is considerdd,ands can be read as
1], ((8J(h,sn+x))/0h) computed in(h,8y1x(n + k)) is .

zero: (h,8y) = arg %lnin L(h,sy)

UGN 1x(n + ) UGN11(n + k)h = arg min | 7v (h)sy — T (h)sw|?

—U(Enr(n+E))h] =0. (10)
where L(h,sy) is the noiseless DML criterion (the proof is
By comparing the expression in (10) correspondingtd with  outlined in Appendix ). Thus, for a number of symbols large
the expression relevant fg we see that the latter is satisfiedenough, the proof for the noisy case is similar to the proof pre-
whenever sented for noise-free data, and Theorem 2 holds.
R . The BGW procedure is not suited for working with large data
UB1(n + k)T UG (n + k))h —U(S1(n +k))h] = 0. (11)  sequences. On the other hand, the test provides a solution to the
A ) _ local minima problem that is one of the main difficulties with
U(S1(n + k) isaL(M +1) x L matrix that has full column these methods. These remarks justify our choice to develop a
rank, provided thad, (n+ k) # Or11. Then, (11) is equivalent 5_cost recursive version of the BGWT, paying attention that
to the property established in this section is maintained.
Usi(n+k)h = U0 +k)h =0. (12) IV. MAXIMUM LIKELIHOOD RECURSIVEALGORITHM (MLRA)
Equation (12) holds for ak € [0; K — 1], and stacking the

° : The above result strongly suggests that the local minima
obtained equations, we get

problem could be easily solved in a recursive growing window

R . . - procedure. Such a recursive algorithm can be derived from
UBk(n + K))h — Uk (n+ K)h =0. the BGWT of Section Il by applying some approximations
to the BGWT, which leads to a lower complexity algorithm.
Moreover, we show that in the digital communication context,
j(ﬁ’ék’(nJrK)) = X x(n+K) _u(ék’(nJrK))mP —¢. theupdate of the f||ter§ in the proposed algorithm is eqqulent

to a stochastic gradient-based method. The computational

UnderH1) andH2) (which requiresk’ > 3M + 1), the con- complexity of the resulting algorithm is reasonably small for
ditions of theorem [27] are satisfied, and hence, there existdeing used in practical implementation. At the same time,
suchah = ah andsy (n+K) = $x (n+K)/a. Then, at step We prove, under some classical assumptions, that when the
zeroh(©® = oh;therefores n4 x (n+K) = Sy4x(n+K)/a, Proposed algorithm converges, then it converges toward the
which completes the proof. m global minimum.

As a consequence, the only stationary point such that the filter o
and the symbol estimate remain unchanged duling 33/ +1 A Derivation of the MLRA
consecutive steps is the global minimum. The proof above isHere, we modify the BGWT for obtaining a recursive algo-
based on the unrealistic assumption of noiseless data. In the m#ghin such that, given the least-squares estimates of the symbols
section, an extension to the case of noisy data is provided wéhd of the filters at iteration— 1, we may update the estimates
the restriction that a large amount of symbols is considered. of these vectors at iterationon the arrival of a new symbol.

Thus, the noiseless DML criterion is zero(in, 8 (n + K)):
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The filters and the symbols are still computed alternately. Ldtagonal covariance matrix of the estimated symbols. Then, the
h® andsgf, ,(n + 1) denote, respectively, the channel and thepdate o is performed thanks to
N 4+ M + i x 1 symbol vector estimated at iteratienThe
first simplification consists of replacing the minimizationinstep ~ » ) _ ri—1) ®]7* (@) PN
i(Vi) of the BGWT by the two relations b =h + [R } XU (SP“(H + L))
ég\ﬁ)_i_z(n—i—i) = arg m(ln I X v (n+-4) |:XP+1 n+14) (SP+1 — ) NG 1)}

S N+t

— T (h@—l)) S ns (n+9)|1? (13) ~Uu ( 3D 4 i — 1)) [Xp(n +i—1)
h® :arglrtinHXN_H(n—i—i) U (SE\ZL(TL—FL)) h|%. L{( sli= 1)(71 +i— 1)) h- 1)}} (18)

(14)
ore details on the derivation of this equation is given in

The equations above are quite similar to the equations in the
ppendlx B. The MLRA consists of (17) and (18). Matrix
first iteration of stepi of the BGWT. Equation (13) solves ARG turns out to be a block diagonal matrix with diag-

least-squares problemfr.rngr (n+t), whose length i&v +M +i. :

nal N C N +1)C and C the
Hence, the computational complexity of (13) increases qwck?y +)Cxi1 - (V4 0)C] M+l
with ¢. Considering that it is unlikely that the most recent re Aéj

-~

+1xM+1 empmcal covariance matrix of the estimated
mbols. Hence, fol®? = 0, (18) reduces to the classical
quations ofZ recursive least-squares (RLS) algorithms (each
ubchannel being updated separately).

3) Comparison Between the MLRA and the BGWTe
mputational complexity of the MLRA is largely reduced
compared to the BGWT for the following reasons.

1) The minimization with respect to the joint variable in step

ceived samples have a strong impact on the estimate of symbS
that have been emitted long ago, we update only thetastm-
bols. Hence P is a fundamental parameter to be determine
which will drive a complexity/efficiency tradeoff. Implicitly, the
other symbols are thus supposed to be correctly estimated. AE 5
erations, s§\)+z(n + ¢) is split into two parts:

2(i) N L a@ i p_ (Vi) of the BGWT (iterative procedure) is replaced by
w BNAG il i l(n:r i-P-Yy ' tr(le Zninimization of a criterion with respect to each vari-
Updated at iteration Not updated at and after iteratio able separately, which coincides with the first iteration of
Now, we consider separately the minimization w.r.t. the symbols ~ stepé in the BGWT.
and the filter. 2) Atiterationi, the BGWT compute®/ +¢ symbols whose
1) Minimization With Respect to the SymboBince onlyP length increases with, whereas only a fixed numbét
symbols are updated at iteratigrthe minimization with respect (independent of) symbols are computed in the MLRA.
to the symbols in (13) reduces to 3) In the MLRA, h@ is updated recursively frorh (=1,
‘ which is done without any approximation, whereas, in the
égi)ﬂfM(” +1) = argmin || X py1(n + 1) BGWT, the whole channel computation is performed in a
zecr , single step without having any benefit from the channel
T (fl(i—l)) {A(i_l) Z‘ } (15) computations_done_in the previous steps.
(n+i—P—1) Unfortunately, possible divergence problems may occur. These
Matrix 7p, 1 (h INGS 1) can be split into two submatrices: diverging situations are essentially due to the choic®,afhich

should be greater thali (order of the channel). This point is

Trir (fl(v‘,—l)) = |7t (fl(v‘,—l)) ; T]{:i_glht (B(i—1)> illustrated in Figs. 7 and 8.

- ~ B. Initialization
P41 M

(16) In recursive implementations, the computation usually starts
with known initial conditions and makes use of the information
@bntained in the new data samples to update the previous esti-
. mates. Here, neither the symbols nor the channel are known.
A (n-+i) = HTLeft (fl(i—l)):|HTLeft (fl(i—l)):| Hence, we need to find a reliable initial estimate. A similar
PH=M P Pt problem is encountered in TSML [11] or IQML [12]. Gener-
Teft (1 (i—1 . ally, the problem is solved by making use of an initialization
[T ( bt ))} [Xpﬂ(nﬂ) procedure such as the subspace algorithm, for example. Here,
— T gkt (h(i—1)> % é(()i_l)(n+i_P_1):| we propose to initialize the MLRA witkih®, 5% (n)) defined
as the stationary point of the MLBA (5) and (6) over a block
(17) of size N + M. The MLBA starts with a randomly chosen ini-
wherex stands for the multiplication operator. . tialization point. The choice ol reflects a tradeoff between
2) Minimization With Respect to the FiltefThe fiIterAh(i) is the accuracy of the estimates and the involved computational
obtained using (14). It can be computed recursively figfm).  cost. Experience shows that choosiNgabout10M leads to
LetR® = u(sgf,gz(nﬂ))”u(sgf)ﬂ(n + 1)) denote the block a reasonable tradeoff. In any case, this always corresponds to

By combining (15) and (16), the estimated symbol vector
iteration¢ can be calculated as
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N > 3M + 1, which ensures the(ﬂr],éN) is the unique global D. Simplified Recursive Algorithm

minimum of 7 (h, sx) (cf. Theorem 1). In the recursive algorithm, the channels are updated thanks to

C. Convergence of the Recursive Algorithm (18), which is equivalent to

Our main result concerning the convergence of the MLRA is
as follows.

Theorem 3: In the noiseless case, if the MLRA converges, if
H(:’E; andH?2) are met, and i¥k situated after the convergence
S (n + k) # Op41, then the MLRA converges toward the A (i—1)
glotfal mln?mum. " LI( (n+i- 1)) [Xp(n +i-1)

Proof: If the MLRA converges, the@ng such asvk > Ll( 34D 44— 1)) NG 1)}} (24)
no, h® = p(o) andsg\,zrk(n + k) = §n44. Atiterationk, the
estimated filter satisfies the following relation:

~ e —1 H
h® = h0=D 4, s@ {u §?+1n+L))

|:XP+1 n+14) —U ( (n+i ) fl(ifl):|

wherey; = 1/(N + i), and where

h™ = arg 1n111j (h sNi_k(n + k)) . (29)
: : _ ‘ 1 i 1 i
Equation (19) is equivalent to S® = diag | —— Si...—— S,
- N+i l:;]\" l N+i l:;]\" l
k " - o - .
U (ngzrk(” + k)) U (nglk(” + k)) h® £ blocks

H
- (k)
=u (SN+k(n + k)) Xn4r(n+k). (20)  Each blocks; is aM +1x M +1 matrix. LetSl“"’ denote the el-
ement ofS; atlinea and columrb; then S = §*(n+1—a+
We split the previous expression into two terms, and we obtalrjs(z n+I1—b+1). We assume that the sequed6ék)} is er-

godic; thenlim; ..o(1/N +4)Yi_, St = Covpry1(8©),

H N .
u (§§k>(n+k)) U (§§k>(n+k)) ) whereCov 41 (3() is theM +1 x M + 1 covariance matrix
I of the estimated symbols. We proved (in Section IV-C) that, in
U ( (k)(n—l—k)) Xi(n+k) the noiseless case, if the recursive algorithm converges, then it
. H converges toward the global minimum. Therefore ;fafter the
=U (sg\ik 1(71+/€—1)) X (n+k—1) convergenceég\%ﬂ(nﬁ) = Sn4i(n+i)/canda € C*, which
o H oo o leads to
—U (8 1 (n+k=1)) U (85 1 (nth—1) ) B,
(1) Covyri (g@) Tl ||2 Covr41(3).

Sincevk > ng,h® = h) ands{) , (n + k) = x4 and
using (19) taken attimk—1, we conclude that the right member
of (21) is zero. Then, (21) reduces to

It is generally assumed th@k(%)} is a sequence of i.i.d., com-
plex, circular, random variables with zero mean [16]

. E[E(K)] =0 E[3(k)*35(5)] = o28(k —j) E[3(k)3()] = 0.
U(él(ﬂ—i-/{}))H |:Z/{(§1(7’L+/€))h(n0) —Xl(ﬂ+/€):| _ [ ( )] [ ( ) ( )] ( ) [ ( ) ( )]

) (%) (2 ) Note that in the digital communication context, these hy-
Matrix 4(8{" (n+ k))* is full column rank as long a&" (n+ potheses are most often met [26], [28]. Consequently,
k) # Onr41. Then, we get Cov41(8®) is a diagonal matrix, namely

UG (n + k)L — X (n+ k) = 0. (23) X o2
Covpr41(8) = WIJW-H-

Equation (23) holds'k > ny. We stack the equations obtained

fork,k+1,...k+ K with K > 3M + 1, and we obtain Therefore, for a time index large enoughCov ;41 (8%) ~
X . @2/l arg1, and S~ (o2 /||c]|*) I (a141)- Replacing
UKk (n+ K)h") —Xg(n+ K) =0. the new expression f&( in (24), we obtain

UnderH1) andH4), the conditions of Theorem 1 are satisfied; @) _ 761 ) NH .

henceh(") ands (n+K) are the true values of the paramete =h + pi {U (Sp+1(” + 'L)) [XP+1(” +1)

up to a scalar factor. | . ‘ "
Once again, the theorem above, which has been established —f ( (,3)+1 (n+ i)) h(z_l)} -Uu (é(,?fl)(n +i— 1))

for noiseless data, can be extended to noisy data with the re- . (i—1) . S (i-1)

striction that a large amount of data are considered (see Ap-  * [XP(” +ti-1)-U (SP (n+i- 1)) h } }

pendix A). (25)
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wherep; = ((||«||?)/((N +i)a2)). Equation (25) is a member As to the update of the filter, we obtain a set of equations that
of the stochastic gradient-based algorithms with decreasiage similar to (18):

step-size parameter (inversely proportionak}@nd does not

require any longer the inversion of the covariance matrix. In R ‘ -

practical situations, this decreasing step strategy should noth(® = hG—1 4 [R(j)} {Z/{ (égilrl(nJri)) Api1

be used, but the connection with LMS-like algorithms was

worth pointing out. It is clear, after these considerations, that X [Xpﬂ(n +i)—-U (ggizrl(n + i)) fl(z‘—l)}

LMS-based algorithms will perform very much like RLS-like ‘ "

algorithms. Yy (gg?,—”(n rio 1)) Ap [Xp(n ti—1)
U (8§ +i-1))ht]} (29)

V. MAXIMUM LIKELIHOOD ADAPTIVE ALGORITHM (MLAA)

Adaptivity is an important feature for tracking the variations ‘ ‘ ‘
of time-varying channels, as well as for providing current opNhereRE\Z) = (é§\i>+i(n + i))HAArJriZ/{(é%)Jri(n + 1)) will
timal solutions, without introducing a large delay due to blocke obtained recursively fro;ﬁg\i_l)_ This algorithm will be
processing. The MLAA is obtained by introducing an expaeferred to as the maximum likelihood adaptive algorithm
nential weighting factor into the DML criterion and by writing(MLAA). The MLAA also needs a good initialization that is
the corresponding recursions. Under the same assumptiongasily obtained by running a block algorithm on a very short
for the MLRA, it converges toward the global minimum. Thevindow in a manner very similar to the block algorithm of
MLAA is closely connected with a soft decision feedback equagection I1l. Arguments very similar to those of Section IV-C
izer (SDFE). This link is emphasized at the end of the sectioan be applied to the MLAA, which prove the following.

L i) In the noiseless case and asymptotically in the noisy
A. Denvatloh _Of the MLAA _ _ _ case, ifH1) and H4) are met, if the channel is slowly
The adaptivity feature can be obtained by introducing an ex-  varying, and if the MLAA converges, then it converges

ponential weighting factor into the definition of the criterion toward the global minimum of the weighted criterion
J(h,syy.). Thus, the new criterion can be written T = lim, .o, arg ming, sy A}\{ii[XN-i'i(n + i) —
Tn+4i(h)s]||?. To the best of our knowledge, this is the
ntt 4 first time that we can distinguish the local minima from
Tabsny) = > XX (4) - Ti(h)s|® (26) the global one in that kind of algorithm.
t=n—N+1 i) Moreover, Ay4; is a diagonal matrix, and its diagonal

o o elements are all nonzero. Thefi® = 0 is equivalent to
whereX € [0; 1]. The use of the weighting factor is intended to J> = 0. Therefore, if the previous assumptions are met,

ensure that data in the distant past is forgotten. Such an algo-  the MLAA converges toward the global minimum@?e.
rithm is able to track the variations of the channel in a nonsta-

tionary environment. Using a matrix formulatiaffy(h, s ;) Inthe case of the MLAA, we do not knoliin; .. R(). The
can be read as consequence is that we cannot prove that the MLAA is equiv-

alent to a stochastic gradient method. This question will be ad-

. 2 dressed through simulation in Section VI.
Tb,sya) = |AXE K aain+ ) = Togi()s] ’

(27)
B. Link With an SDFE
where
Here, we emphasize that the structure of the MLAA is very
i ity vl AN+l N4l close to the structure of an SDFE. In [19], Gesbert has proposed
Ani = d""‘g(“\,i'u' R ~ A - an adaptive algorithm [the channel symbol algorithm (CSA)],

I I I based on least-squares techniques that aims at minimizing the

. . _ criterion Jx(h 27). We first recall some properties of the
We replace7 (h, syy:) with 7a(h, syy;) in Section IV-A, and Ja(h.s) (27) prop

the MLAA is obtained in the same way as the MLRA. The up-

3 . 1) Link Between the CSA and a DFEor each iteration of
date of the symbols for the MLAA is given by the expression ) L W I I

the CSA, we have

é%:—l—]\l(n +4) ' _ '
5(n+1) = arg min [IX1(n + 1)
zZe

1
= [t ()] i (3) 0
7 (V) [éo(n fio 1)}

7t (p-\]" A, [x

% € — + q

[ P41 ( )} Pl [ rea(n ) 3(n+1) = g(s(n + 1)) (31)
ight (1 (i— a(i—1 ; (i i

—TE (60) x s Vi P- 1) (28) h® updated via RLS (32)

2
(30)
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Fig. 2. Decision feedback update of the symbols in the CSA.

/ S(n+i) /
] 172, Right A (-1)
12 Left Ag-1_ | A i—P4M-1 Tl,ﬂ(h )
X(n+) O AL (h) S(HTI M=
- A(n+i=P

Fig. 3. Decision feedback update of the symbols in the MLAA.

The operatoy(-) in (31) is a decision device. The link betweerThe difference between the criterioffpp and 7, lies

the CSA and the DFE structure is shown in [19]. It is summanly in the presence of the tern((Z.Left(h(=1D))H)/

rized below. An explicit expression fan + ) is obtained as  (||Z,%*"* (h(*~1))||2)). This so-called CSA is thus very similar
to the kind of algorithm one would obtain by implementing the

[TlLeft (fl(i—l)):| " equivalent of a DFE in a SIMO context: The adaptive algorithm
5(n+1) = = is driven by the decision device. The additional properties of
(TlLert (fl(i—l))) Jlett (fl(i—l)) the SIMO system make such an algorithm more useful than in

) . the SISO situation, as explained in [19].
x (Xl(n +4) — ;s (h@—l)) So(n+i— 1)) . (33)  2) Link Between the MLAA and a Soft DFEn the MLAA,

we do not have exactly the same structure as in the CSA: Both
The decision feedback structure of (33) and (31) is shown tihe number of symbols computed at each iteration and the deci-
Fig. 2. The main difference between the structure of the CS#on function are different. Actually, the CSA computes, at each
and of a DFE is the following: the presence of a feedforwaitkration, one and only one symbol, whereas the MLAA updates
filter in the DFE and the presence, in the CSA, of a “spatiathe P + 1 first symbols in the delay line. Therefore, possible er-
filter (7<% (b~ 1)) which combines the signals before theors made during the first estimation can be corrected, and the
decision. Gesbert has also underlined the similarities betwesmor propagation phenomenon frequently observed in the DFE
our criterion 7x(h,sy4;) and a decision-directed criterionis limited. The absence of hard decision device in the MLAA
Jpp [29] defined as permits us to preserve a linear estimation of the data, which can
thus be considered a “soft decision device,” the estimate being

_ it 2\ =\ (|2 refined during the time the symbol is seen in the delay line (or
Jpp = _ E;H A 1) — (I even less if the arithmetic complexity is of major importance).

The corresponding scheme is outlined in Fig. 3.

Replacing (30) in the previous relation, we obtain
VI. SIMULATIONS

n—+i . .
Top = Z it To gain more insights about the results obtained in the pre-
N1 vious sections, we present evaluations and simulations.
2
(rTlLeft (fl(i—l)))H A. Block Algorithm
X

A‘ > (Xi(t) = Ti(0)31()|| - We first evaluate the performance (in terms of MSE) of the
H71Left (h(z_l))H MLBA, and we compare them with the performance of the
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Fig.4. MSE for the channels verstigdiversity indicator)—Block algorithms. Fig. 5. MSE for the channels versus the iteration number. (1) MURRA 4.
(2) MLRA P = 10. (3) MLRA P = 25. (4) MLAA P = 10 andA =
1 —1/(6L(M + 1)). (5) The BGWT.

TSML. For both algorithms, we investigate the influence of

the channel diversity. We consider a chanhéhvolving two

subchannels of orde¥/ = 2 associated with the following

transfer function: S

Hi(z) =1—2cos(f)z" + 277 s ]

Hy(z) =1 —2cos(f + &)z~ + 272, L ™ : : ’ : ' : :
The parametes is the distance between the zeros of the sut& ™ B e PR s (1]
channels. Thereforé, is an indicator of the channel diversity. § -s| .. " A N iz
The additive noise is assumed Gaussian with zero mean ¢ | TR MG L g, T e oming
variances7. Each simulation is driven by one symbol sequenc ' ; : ; : i @
belonging to the binary alphabé;t—l; +1}_ The performance 4 i WAL R R S ORI L PPN NN N
are measured in terms of mean-square error defined as : ‘ ' j : : ’ ’

A48k T ......... N L SR, Mo, AN (5) ]

) 1 1
100 200 300 400 500 600 700 800 900 1000
iteration number

Ny
MSEan(h) = 20log, | ——| = 3 ||k — k]
||h|| N; i=1 Fig. 6. MSE for the symbols versus the iteration number. (1) MLRA= 4.
(2) MLRA P = 10. (3) MLRA P = 25. (4) MLAA P = 10 and\ =
1—1/(6L(M + 1)). (5) The BGWT.
whereh stands for theth run estimate oh. N, denotes the
number of Monte Carlo runs. Herd&],, = 500. The CRB has
been computed thanks to the formulae presented in [11].

e Fig. 4 shows the MSk(h) againsi (relative positions of  In this section, we first check the relevance of the approxima-
the zeros), and the SNR is set to 45 dB. This SNR is quite uifiens used to derive the MLRA, the MLAA, and their simplified
realistic; however, this choice combines two advantages. Firggrsions. First of all, we compare the performance of the MLRA
it permits a meaningful comparison between MLBA and TSMind of the MLAA to the ones of the BGWT (Figs. 5 and 6).
with the CRB since the DML methods are known to be noneffifhen, the choice of the best value #iis analyzed (Figs. 7 and
cient at low SNR [30]. Second, it also permits a fair comparisd®. Fig. 9 suggests that the MLAA can be turned into a LMS-like
between MLBA and TSML since TSML is biased at low SNRalgorithm without loss of performance.
whereas MLBA is not. The simulation shows that the TSML e Figs. 5 and 6 compare the MLAA and the MLRA for dif-
and the MLRA are close to the Cramér-Rao bound for goderent values o’ with the BGWT. The true channel tajpsare
channel diversity conditions. The TSML offers more robustnesown in Table |. The SNR was set to 10 dB, and all algorithms
to the diversity conditions, but this drawback of the MLBA camave been initialized witkh(®), é(,\?)) obtained from the MLBA
be overcome thanks to the introduction of a convex constraiain for N = 50. The BGWT is optimal since at each iteration,
like in [31]. The resulting algorithm is able to estimate the truthe criterion is minimized, whereas only the first step of the min-
channels and symbols, even when the subchannels are notigization process is performed inthe MLRA. This remark, com-
prime. A full paper is in preparation. bined with the fact that the MLRA is almost equivalent to the

B. Adaptive/Recursive Algorithm
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ig. 9. MSE for the channels versus the iteration number obtained for the

Fig. 7. MSE for the channels versus SNR obtained with the MLRA for vario LAA and with the simplified MLAA.

values ofP.
-5 ; T . . : ; . . TABLE | )
: IMPULSE RESPONSE OFCHANNEL h
~-10
h; [ -0.45+0.93i | -0.46-0.74i | 0.84-0.97i | -1.19-1.08i
- hy | -1.22-0.02i | 0.43-1.23i | -0.2-0.30i | 0.85+1.36i
£ 20 h3 | -0.16-+1.66i | -0.6-0.27i | 0.68-0.05i | 0.58-0.53i
E
E—ZS
g_w When divergence occurs, the algorithm can be reinitialized
o by an appropriate procedure, which has not been done in the
= s simulation. Note also that the reason for divergence is strongly
» linked to a true growing window procedure, which is known to
be very sensitive to this kind of problems. Adaptive versions
-45 are less sensitive to this phenomenon, as explained below. For
. P > 3 and for any SNR, the value of the MSE remains very
; ; ; close to the value obtained whéh= 3. Here, the order of the
-85, T e 5 = 5 = &5 & s ChannelisM = 3. Therefore, the update of the filters seems
SNR(dB) to be influenced only by the symbols in the delay line of the
channels.

5;%35 0;\;IDS.Eforthe symbols versus SNR obtained with the MLRA for various e Fig. 9 compares the MLAA and the simplified MLAA
(SMLAA—LMS-like algorithm) for P = 3 andSNR = 10
. . _ _ _ dB. The SMLAA is obtained by replacin®(® in (29) with
L_MSfaIg(r)]rlthm Wlth decriasmg SteESIZI\j,SErO\f/IdheSI\jrlilsz\pla e diagonal matrix(1 — )‘)/||ai||QIL(M+1)v where a; is a
t'?nh orist(;\e;vgrrowijng fgf;l]p N?E\gielt € I ho l\t/ILeRA h aNcale factor at iterationbetween the true parameters and their
ofthe and of the - Actually, the as no estimates, and stands for the forgetting factor. The scale factor

practical interest, but it was an essential step toward the MLAA. . . e 1120 )
Figs. 5 and 6 show that the MLAA is able to improve the estqé%IS obta|_ned thanks || = M.+ N +ifllsSyyi(n+ L)“' .
. ) o e MSE is averaged over 25 realizations. For each realization,
mates with the arrival of new data. Moreover, the S|mpI|f|cat|on[§l . L
involved in the MLAA lead to small degradations on the perfor- e channel, the symbol sequence, and th_e noise reqllzanon
mance. change. I_n our conte>§t, the covariance matrix of the gsnn_"n_ated
e Figs. 7 and 8 confirm the assumption of Section IV-@QTym.bo.IS 'ﬁf.”fjathf"‘ ghagonﬁl ".‘at:;x: Tge pgroposed simplifica-
dealing with the influence of old symbols on the update oo 1S Justified. This Is emphasized in Fg. .
the filters. In this simulation, we compute the MSE on the
channels and on the symbols for the MLRA ran for various
pairs(P,SNR). We consider the channel described in Table I. In this paper, three algorithms are proposed to implement
The MSE is averaged over 50 Monte Carlo runs (each ridML methods. The MLBA has several desirable properties,
corresponds to an independent realization of noise) andinsluding high-SNR consistency, high-SNR efficiency, and a
computed at the 1000th iteration. At low SNR and fér= 1  structure suitable for deriving a recursive algorithm. Moreover,
or P = 2, the MLRA diverges for some realizations, whicha test that permits us to circumvent the local minima problem
is why the corresponding lines on the figures are incompleis. provided. A recursive (MLRA) and an adaptive (MLAA)

VII. CONCLUSION
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algorithm based on least-squares techniques are derived. The APPENDIX B
MLRA follows from various approximations applied to the RECURSIVE COMPUTATION
BGWT. We can remark that both algorithms are strongly con- OF THE FILTER

nected with a RLS. Therefore, fast versions could be obtalnedA
using techniques similar as for a fast RLS. Furthermore, the up-
date of the filters in the MLRA and the MLAA can be simplified

by stochastic gradient techniques. Derivation of the algorithru,s(sg\z)ﬂ(n + i)) U (Sg\) (n+ L)) h®
is straightforward. The MLAA combines several advantages, I

such as adaptivity, low arithmetic complexity (can be turned =U (sgf,)JrZ(n + L)) Xnti(n+14). (34)
into a LMS-like algorithm without loss in the performance),

and a DFE-like structure, where the soft decisions limits t . . . .
split the covariance matrix of the symbols into two terms

error propagation phenomenon, and the local minima can | ' ;
distinguished from the global minimum (which is unusual with]! (35), shown at the bottom of the page. The first term will be
dated at the next iteration, whereas the second will remain

this kind of algorithm). Moreover, the convergence speed 4P i) (1)
the MLAA can be improved by constraining the symbols into gnlck;angfedhl('\:)eplaﬁh bykht 3::_? (34) :10 obtain a recursive
convex set [31], which will be reported in another paper. solution for an anks to (35), we have

titerations, h(® verifies the stationary point condition

U (sg\zr) ;n+ L)) ( (n + L)) hi-b
APPENDIX A .y (Sgg)ﬂ " ) ( i) )y +i )B(Fl)
DML CRITERION FOR ALARGE AMOUNT OF DATA
~(i—1) ~(i—1) ;i
+ (U SN_HlTL—i-L 1) Z/I SN_HlTL—i-L 1)

In the noisy case, the channel and the symbols are estimated
through U (V=) U (35 i - 1))} ho=Y,
(36)

(h,8y) = argmin || Xn(n) — Ta(h)sy|?

h,sn

H

~ ~ At iteration — 1, the stationary point condition is
whereXy(n) = 7y (h)sy + By (n). Bothh andsy are de-

terministic parameters to be determined, whel®g$n) is sto- 1) 1) . - Gim1)
chastic. Actually;BN( ) is assumed zero-mean Gaussian withf (5N+7 (n+i- 1)) U (SN+7 ((n+i— 1)) h
covariancer;I. Asymptotically, in the number of data, we have (-1 ) )

=U (SN-H (n+i- 1)) XNtici(n+i—1). (37)

2=

Py X ()] 7= trace(Py E[Xn(n) Xy (n)"])

The producu(sNﬂ(n + 1)) X n1i(n + 4) can be expressed

: : . as
where E[z] is the mathematical expectation w.r.t. the
random variable x. Moreover, trace(E[(Xn(n)

H
Tn(sy)(Xn(n) — Tn(h)sy)H]) can be read U (SE\Z,)_H(H +i)) X npi(n -+ 1)
traCdTN( )éN 7}\’( )SN)(TN(h)éN—TN(h)SN)H—i-O'EI). () H
The term tracg;I) is independent ofh and sy, and —Z/l( PJrl(nJri)) Xpi1(n+1)
tracd Ty (h)sy — Tn(w)sy)(Tn(h)sy — Ty(h)sy)™) . H .
is the noiseless DML criterion. Then, asymptotically (in +U (SN+Z ((n+i— 1)) Xnyici(n+i—1)
the number of data), the DML criterion is equivalent to the (-1 H .
noiseless DML criterion. -U ( (n+i-— 1)) Xp(n+i—1). (38)

U (55\7’-1-12) (n+i— 1))HU (55\7’-1-11) ((n+i— 1))
L{( 3 1)(71—1— i — 1)) U (égi_l)(n—i—i - 1))

H
+U(S§\z’+t)1’ 1(”+i_P—1)) Z/[(SE\Z,_’_?P 1(”+i_P—1)) (35)

v

a( b 1(n-|-7‘,—P—1)) HM(A il 1(n-|-7‘,—P—1))
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Replacing the previous equations in (36) leads to
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‘ (=D
+ [Z/l ég\?r)+i(n + L)) Uu (sg\zr)_i_z(n + L)>:|
‘ H [1]
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U (30 (n+1)) RO 2
- H )
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H (4]
=U (sN ) (n+ i)) Xnpi(n + ).
(5]
Finally, comparing (39) with (34) leads to the update equation
for the filters 6]
n . L1(=1) H
h® —RG-D 4 [R@] {u (sgl(m)) (Xp+1(n +i)

X

U (sg-z_l(n + L)) fl(ifl)) -U (égi_l)(n +i— 1))H [

 (Xp(nti=1) = (87000 i - 1) )

[l
whereR () = 1(8),;(n + i))7U(8Y . (n +i)). RO is also [10]
updated recurswely
[11]
RO =R 4 (8, n+9) 24 (30, (n 1)) .
L (i—1) . H  (i-1) .
U (s n+i—1 Uls n+i—1)).
(357 ) (857 )

Then, applying twice the Woodbury’s identity, the recursive
equations for the update &) is [14

ae T O] )

[IL(”I) +U ( O n+ L)) |:R(i—1):| -1 [16]
) :

u (3% (n+i)) [RED]
z [Rgil]:l Z :—Ll) ) [19]
+ATUY ( (n +¢— 1))H [20]
[ILP U( 3 )(n—i—i—l)) [21]
XA~ 11/1( J 1)(n+i—1)>}1 - [22]
xu( gli— )(n+z‘—1)) AL [23]
[24]

whereA is an intermediary matrix.
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