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Blind Identification/Equalization Using Deterministic
Maximum Likelihood and a Partial Prior on the Input

Florence Alberge, Mila Nikolova, and Pierre Duhamel, Fellow, IEEE

Abstract—A (semi)deterministic maximum likelihood (DML)
approach is presented to solve the joint blind channel identi-
fication and blind symbol estimation problem for single-input
multiple-output systems. A partial prior on the symbols is incor-
porated into the criterion which improves the estimation accuracy
and brings robustness toward poor channel diversity conditions.
At the same time, this method introduces fewer local minima than
the use of a full prior (statistical) ML. In the absence of noise,
the proposed batch algorithm estimates perfectly the channel and
symbols with a finite number of samples.

Based on these considerations, an adaptive implementation of
this algorithm is proposed. It presents some desirable properties in-
cluding low complexity, robustness to channel overestimation, and
high convergence rate.

Index Terms—Adaptive algorithm, blind equalization, deter-
ministic maximum likelihood method, joint estimation, prior
knowledge.

I. INTRODUCTION

B LIND identification is an important problem in many
areas and especially in wireless communications. Blind

techniques present some advantages compared to the traditional
training methods [1], [2]. First, the reduced need for overhead
information increases the bandwidth efficiency. Furthermore, in
certain communication systems, the synchronization between
the receiver and the transmitter is not possible; thus training
sequences are not exploitable. Finally, even if some training
sequence exists, the combination of trained and blind tech-
niques can often lead to improved performances, allowing fast
tracking of time-varying channels, for example.

Early approaches to blind equalization were based on higher
order statistics of the received signal [3] since the second-order
statistics of a scalar system output do not contain enough in-
formation to identify a nonminimum phase system. Although
these algorithms are robust and reliable in many cases, esti-
mating high-order statistics usually requires a large number of
data samples. Hence, their application in fast varying environ-
ment is intrinsically limited. Tong et al. suggested a different
option [4]. They proposed to introduce time or spatial diversity
at the output. Then, the system considered is a single-input mul-
tiple-output (SIMO) system. The SIMO equalization problem
can be solved using second-order statistics only, as long as the
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subchannels do not share common zeros. In a fast fading envi-
ronment, the statistical model of the input may not be available,
or there may not be enough samples to find a reliable estimate
of the statistics. In this kind of scenario, the problem may be
solved by treating the input as a deterministic variable. Gener-
ally, the resulting methods have the finite sample convergence
property (i.e., the channel can be perfectly estimated using a fi-
nite number of samples in noiseless situations). This is a desir-
able property especially in packet transmission systems.

In this paper, we focus on deterministic maximum likelihood
(DML) methods since they have the additional advantage of
being high signal-to-noise ratio (SNR) efficient [5]. Among
the major contributions to DML methods, we can cite the
two-step maximum likelihood (TSML) [6] and the iterative
quadratic maximum likelihood (IQML) [7], both concentrating
on channel estimation. Feder et al. proposed in [8] a dual
algorithm to IQML which aims at estimating the symbols at
each step. Unfortunately, the adaptive implementation of these
methods is often cumbersome. Another DML method, the max-
imum likelihood block algorithm (MLBA), has been proposed
in [9]. The MLBA performs least squares estimation both in
the channels and in the symbols in an alternating manner. This
formulation permits to derive easily an adaptive algorithm
(MLAA) as shown by the authors in [10]. The MLAA presents
some nice properties including low-complexity in computation.
However, it is not robust to the overestimation of the channel
order and it has a limited ability to track time-varying channels.

In this paper, we present a new algorithm that meets the fol-
lowing four characteristics: adaptivity, low complexity, good
speed of convergence, and robustness to the overestimation of
the channel order. The proposed method consists of incorpo-
rating prior information (related to the input signal) into the
DML criterion. The two first properties follow from the MLAA-
like structure of the algorithm and the last characteristics are a
consequence of the use of the prior. Seshadri [11] and Gosh and
Weber [12] first proposed to incorporate the finite alphabet prop-
erties into DML to improve the accuracy of the estimates. Later,
Talwar proposed the iterative least square with projection (ISLP)
[13], which estimates the symbols first without taking the finite
alphabet property into account and then projects the estimates
onto the alphabet. The problem with these methods is that their
convergence is not guaranteed in general and that the incorpora-
tion of the finite alphabet property often increases the number of
local minima. This is partially solved here by considering only
a partial prior on the symbols in order to limit the number of ad-
ditional spurious local minima (different from the global one).
In the proposed approach, a continuous probability distribution
function is used which reflects our prior knowledge on the input.
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Using Bayesian theory and the classical likelihood function, we
are able to derive a new criterion. Such a criterion has also been
used in [14] for the purpose of binary images reconstruction.
The proposed relaxation technique can also be found in [15]
and [16] for application to multiuser detection in CDMA sys-
tems. However, channel estimation is not involved in these two
contributions. The new algorithm, called conditional maximum
likelihood batch algorithm (CMLBA), is then obtained in the
same way as the MLBA (alternating minimization) and the cor-
responding adaptive version is derived.

Concerning the local minima problem, we prove that for a
“weak” prior (to be defined later), the stationary points of the
CMLBA are also stationary points of the MLBA. And, for each
stationary point of the MLBA, there exists a scale factor

such that is also a stationary point of the CMLBA.
Thus, the use of such a prior does not increase the number of
local minima and, at the same time, it brings robustness to poor
channel diversity conditions, as shown in the experimental re-
sults. For a stronger prior, the number of local minima is likely
to increase. However, we show below that a local minimum is
not stable through a recursive procedure, as already shown in
[10]. As a result, the proposed recursive algorithm is unlikely to
converge toward a local minimum.

This paper is organized as follows. Section II presents the
general setup and some properties about the DML criterion.
For noise-free data, we recall that the global minimum of the
DML criterion is unique. The derivation of the CMLBA is avail-
able in Section III. The local minima problem is analyzed in
Section IV. In Section V, we explain how to improve the quality
of the estimators in the particular case of an ill-conditioned
channel matrix. An adaptive version of the CMLBA is proposed
in Section VI. The performance of the algorithms and compar-
ison with existing approaches are provided in Section VII.

II. PROBLEM FORMULATION

This paper addresses SIMO systems (see Fig. 1). Let
denote the symbol sequence at the input of the system and

, the th output. The output may be the
signal picked on the th sensor of an array (spatial diversity); or
may be obtained by oversampling of a factor the continuous
time signal received on a single sensor (time diversity); or may
follow from the combination of both spatial and time diversity.
Such a system is described as

where is the channel impulse
response, is the maximum order of any channel, and

is a Gaussian independent identically
distributed (i.i.d.) additive noise. Sequences and

are assumed uncorrelated. For convenience, we
adopt the following notations throughout this paper.

• are variables denoting any channel and any symbol
sequence, respectively.

Fig. 1. Single-input/multiple-output system.

• are the true channels and the true symbols, respec-
tively, and stands for the corresponding observation
at time .

• are the estimates of and .
• and

is the time index.
•

is a vector of length containing symbols
estimated at iteration .

The channel impulse responses
are assumed to have a finite length and stands for
the maximum order of any channel. Let

denote the vector obtained by interleaving the outputs of the
different channels and . Then, the
output reads

(1)

where stands for the noise vector. In (1), op-
erator transforms the set of channel coefficients

into the fol-
lowing generalized Sylvester matrix:

. . .
. . .

. . .
...

...
. . .

. . .
. . .

Let be the operator that transforms a vector into an
matrix , in such a way that

(2)

It can be shown that this matrix reads

...

where stands for the Kronecker product and is the
identity matrix. The results displayed in the paper rely on the
following assumptions.

H1) is full column rank.
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H2) The symbol sequence has linear complexity
2 1 or greater [17]. The linear complexity of the
sequence is defined as the
smallest value of for which there exists
such as

The linear complexity measures the predictability of a
finite length deterministic sequence.

H2’) When H2) is met, it can be shown that is full
column rank.

H3) (maximum order of the channels) is known or cor-
rectly estimated.

H4) The emitted symbols belong to a phase-shift keying
(PSK) modulation.

Assumption H1) ensures that (1) is an overdetermined system
for fixed. This assumption is most often met. However,
situations with poor channel diversity conditions may occur.
So, it is important to develop methods that are robust to
this situation. Similarly, H2’) ensures that (1) is an overde-
termined system for fixed. Denote as
the matrix defined by the equation at the bottom of the
page. Then, H2) implies rank .
Hence, the sample covariance of the vector sequence

is full rank
[18]. We can remark that rank implies
that, necessarily, .

The problem considered in this paper is to identify both and
based on only.

The blind equalization problem is viewed as a joint channel
and symbol estimation problem. The criterion used is the DML
criterion. Following [6], [9], and [7], are estimated
through the minimization of the DML criterion with respect to
the joint variable

(3)

Hence, the estimated channel and symbols read

(4)

In the noiseless case, the global minimum is obtained only for
the true channel and symbols (up to a scale factor) [9], [19].

III. CONDITIONAL MAXIMUM LIKELIHOOD TECHNIQUE

In a fast fading environment, building reliable statistical esti-
mates is a problem: data related to a given channel are not nu-
merous. In such a situation, the symbols are assumed arbitrary
and a deterministic method is used. But, if the system is not
time-varying and if the data sequence is long enough so that the
statistical estimates are reliable, then a statistical method should
be used, since in that case the statistical method outperforms the
deterministic one in terms of estimation accuracy. The approach
proposed in this section is a tradeoff between DML and SML
with the additional advantage that it can be used either when the
channel is time-varying or not. In this approach, we consider the
transmitted symbols to be no longer deterministic quantities but
random variables that obey to an arbitrary (different from the
true) statistical distribution. As a result, the obtained algorithm
involves a lower computational cost than the statistical method
and provides a better estimation accuracy than a DML method.

A. Derivation of the Constrained Criterion

A full use of the knowledge on the emitted symbols (their al-
phabet) usually introduces many local minima. Instead, we pro-
pose to consider only a partial prior. Assume that the emitted
symbols belong to a PSK modulation, and consider the proba-
bility density function (pdf) shown at the bottom of the page,
where is a normalization term, is a positive scalar, and
is the th component of . The shape of the distribution function
corresponding to and is plotted in Fig. 2, where
real data are considered. When is outside the unit circle, the
probability is zero, whereas for symbols inside the unit circle,
the probability increases with . When tends to zero, the
shape tends to be uniform within the unit circle and zero
outside. Even if this special case corresponds to a very “weak”
prior, it is of interest, since some properties of the convergence
points of the algorithm can be demonstrated under this assump-
tion. This will help in understanding the local minima problem.

Let denote the likelihood function condi-
tioned on both the channels and the symbols. The conditional
likelihood function reads

(6)

...
...

...
...

if
if

(5)
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Fig. 2. Probability distribution function for � = 1; � = 10. The symbols are
assumed to have real values.

is assumed Gaussian, hence satisfies
the following relation:

(7)

Inserting (5) and (7) into (6), we obtain the conditional likeli-
hood function shown at the bottom of the page, where
and stands for the unit disk

. The maximization of
is equivalent to the minimization of the following

criterion on :

(9)

where . Note that a somewhat similar idea has already
been exploited by Papadias in [20], where the transmitted sym-
bols are considered as random variables that obey to a zero-
mean Gaussian distribution leading to the criterion

(10)

with . The same class of criteria is exploited in [15] ex-
cept that the criterion is minimized with respect to the symbols
only. The Gaussian assumption leading to (10) is unrealistic: the
symbols close to zero have the highest probability. At the oppo-
site, the pdf in (5) reflects the prior knowledge on the input.

The criterion is a convex criterion with respect to
each variable separately as long as , where stands

for the smallest eigenvalue of . In the nonconvex
case, the quadratic programming problem subject to linear con-
straints is NP-complete [21]. Moreover, checking only local
optimality in constrained nonconvex programming is NP-hard
[22]. This means that the computing time to obtain a solution
will grow exponentially with the number of variables. Such a
computational cost is unaffordable in the context under study.
From now on, we shall only consider the case where .
The readers interested by the nonconvex quadratic program-
ming problem can refer to [23]–[25].

B. Implementation of the Method

Many solutions can be proposed to solve the constrained opti-
mization problem in (9). Here, we follow the approach proposed
by Gesbert [9] for solving the unconstrained criterion in (3). It
presents two major advantages: 1) this formulation is well suited
for deriving recursive solutions and 2) the prior information can
be incorporated easily, which is not the case with IQML-like
approaches. In this approach, a least squares estimation is per-
formed successively in the channel and in the symbols, in an
alternating manner. At each step of the iterative procedure, the
channels and symbols estimates read

(11)

(12)

where matrix is assumed to be full rank . This
class of algorithm will be referred to as CMLBA . Each step
diminishes the value of the criterion and thus the algorithm con-
verges, however possibly toward a spurious local minima. The
optimization problem in (12) is solved by a relaxation method
as detailed below.

Let denote the th component of . The partial criterion
reads

with

if

elsewhere
(8)
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Fig. 3. Histogram of the estimated symbols computed with (a) CMLBA
and (b) CMLBA . SNR = 10 dB, 600 input symbols.

where is the th column of . The derivative of

with respect to can be written as

where and and
stand, respectively, for the real and imaginary part of

[26]. Then at each iteration of the relaxation method, is
computed by the following expression:

where is the projection operator of onto . The
relaxation method converges as long as

is positive definite [27]. The role played by parameter
is illustrated in Fig. 3, where we plot the histograms of the

symbols estimated via the CMLBA when (denoted as
CMLBA and when (denoted as CMLBA ).
A mixed-phase channel is considered and the modulation is a

binary PSK (BPSK). It is clear in Fig. 3 that a large value of
prioritizes the extreme values of the set.

IV. THE LOCAL MINIMA PROBLEM

In this section, the local minima problem is investigated. First,
we prove that the global minimum of is obtained for the true
parameters only. Then, a characterization of the local minima is
given. The general case is first considered, and
finally, we concentrate on a special case: the uniform prior on
the unit disk , which was denoted “weak” prior in the
introduction.

A. Uniqueness of the Global Minimum

The following theorem proves the identifiability property for
the class of criteria .

Theorem 1: In the noiseless case and under H1) and
H2), is the global minimum of on

iff such that
. If , then .

Proof: Stating that is the global minimum of
on is equivalent to the fol-

lowing set of equations:

(13)

if (14)

In the noiseless case and under H1) and H2), the global min-
imum is unique up to a scalar factor. Thus, (13) implies that

such that [9], [19].
The estimated symbols belong to . Thanks to (14) we

conclude that, if , then .
Thus, the global minimum of on the set

is obtained only for the true values of
the parameters up to a phase displacement (for ) which
ensures that the true parameters can be identified.

B. General Case

We first investigate the characterization of the stationary
points of the CMLBA when . Let
denote a stationary point; then it is solution of the following set
of equations:

where (15)

(16)

Equation (16) is a minimization problem subject to inequality
constraints. Moreover, is a convex function of

as long as and is a convex set. Thus,
the Kuhn and Tucker [27] relations provide a necessary and suf-
ficient condition for to be a solution of (16). As a result,
a stationary point of the CMLBA is such that

where (17)

where (18)
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diag

and

(19)

where stands for the th component of . The dif-
ference between the stationary points of the MLBA and of the
CMLBA is due to the term appearing in the
expression of . Then, the value of the taps of is of
major importance. They are further characterized in the fol-
lowing proposition.

Proposition 1: Let be a stationary point of the
CMLBA and the matrix defined in (17)–(19). Then the fol-
lowing relation holds:

trace (20)

Proof: is a stationary point of the CMLBA.
Then (17)–(19) imply that the following two relations are met:

(21)

(22)

The left terms of the two equations above are strictly equivalent.
Thus (21) and (22) boil down to

Let be the set defined as
. The conditions in (19) imply that for

. Thus

trace

This result illustrates the role of the term in the cri-
terion. Actually, for , the relation trace
leads to trace is not an acceptable solution).
Since, by definition , then it exists
such that and consequently . So, when

, there is at least one component of the estimated symbol
vector that belongs to the unit circle. The parameter permits to
push the estimated symbols to the frontier of the set. The special
case is considered in the next paragraph.

C. Special Case: Uniform Prior on the Unit Disk

This case is of special interest, since it forces the symbols
to belong to the unit disk which brings robustness to poor
channel diversity conditions (see Section VII-A). Furthermore,
this so-called “weak” prior is shown below not to introduce
additional local minima compared to the unconstrained case.
When , (20) becomes trace . All the taps of
are nonnegative; then we get . Thus, the stationary
points of the CMLBA (CMLBA with )
are a solution of the following set of equations:

(23)

This means that, once the CMLBA has converged, the so-
lution defined above belongs to the set of local minima of the

MLBA, corresponding to a specific (scale factor), which re-
flects our prior knowledge up to some degree. On the other side,
the stationary points of the MLBA are a solution of the system
of (23) except that . If is a stationary
point of the MLBA with , then with

is a stationary point of the
CMLBA. Hence, the constraint given by the “weak” prior does
not add any local minima to the algorithm. The difference in the
set of local minima between the MLBA and the CMLBA lies in
the value of the scale factor.

V. CMLBA AND ILL-CONDITIONED FILTERING MATRIX

When some roots of the L subchannel impulse responses are
close to each other, the corresponding Sylvester matrix
is hardly full column rank. Thus, (smallest eigenvalue of

) is almost zero. In that case, CMLBA is
equivalent to CMLBA and is a uniform pdf. In this
section, we explain how we can introduce a strong prior infor-
mation even when the filtering matrix is badly conditioned. The
key point of the method is given by Theorem 2.

Theorem 2: Let and be two submatrices of a matrix

such that
... . Then

where (respectively, ) stands for the smallest eigen-
value of (respectively, ).

Proof: Proof is obvious.
If we consider, in the minimization problem, a partition

of instead of considering the whole matrix, then the
reduced minimization problem (in terms of number of vari-
ables) is at least as well conditioned as the initial problem.
Thus, the proposed method consists in partitioning the symbol
vector to be estimated and then estimating alternately each
part while the rest is fixed to the value obtained at the previous
iteration. For simplicity’s sake, we give the update equations
in the case where the symbol vector is split into two parts.
Generalization to others partitions is straightforward since the
subvectors have equal lengths (except for the last one if the
length of is not proportional to the number of partitions)
and consecutively ordered elements. Let
where the length of (respectively, ) is (respectively,

). The matrix is also split into two submatrices as:
( contains

the first columns of ). Then, at each step of the
iterative procedure, the channel and symbol estimates can be
read

(24)

(25)

(26)

(27)
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with and
. The relevance of

the method, in this context, is demonstrated in Section VII.

VI. ADAPTIVE ALGORITHMS

In wireless communication, the channel is time-varying. Thus
it is important to develop algorithms able to track those varia-
tions. This section is devoted to the derivation of an adaptive
algorithm based on CMLBA .

A. Weighted Criterion

The adaptivity property is obtained by introducing an expo-
nential weighting factor into the definition of the criterion .
Let denote the weighted criterion defined as

(28)

where is the forgetting factor, which ensures that old
data are forgotten. Using a matrix formulation, we obtain

(29)

where diag
...

...
... . Note

that the forgetting factor is not applied to since this term
is related to the prior knowledge which is not time-dependent.

B. Derivation of CMLAA

The proposed algorithm is such that the updated estimates
of channels and symbols at iteration are calculated based on
both their estimates at iteration 1 and newly arrived data.
The proposed approach was first presented by the authors in
[10], where the recursive and adaptive versions of the MLBA
are derived. The outlines of the method are recalled below, and
the update equations for the CMLAA are then presented.

Let and denote, respectively, the channel
and the 1 symbol vector estimated at iteration

. The adaptive algorithm is obtained from a growing window
procedure after the following simplifications.

S1) The iterative minimization with respect to the joint vari-
able is replaced by a minimization with respect to each
variable separately. So, at step , we compute

(30)

(31)

S2) At iteration , (30) updates symbols. Hence,
the computational complexity involved in (31) grows
with . Here, we propose to compute, at iteration , the
new emitted symbol, and we also update the next (in-
dependent of ) symbols in the delay line where is a
crucial parameter to be determined. Implicitly, the pre-
vious symbols are supposed correctly estimated, which

is often met since no decision device is introduced. Then
(30) is replaced by

(32)

(33)

Note that for the minimization problem in (33),
the maximum value of is the minimum eigen-
value of , where
is the submatrix of containing its P 1 first
columns. Remember that, according to Theorem 2,

.
Then, even if is badly conditioned, is not nec-
essarily close to zero.

S3) The estimated channel is updated recursively from
, which is done without any approximation.

In the following, we derive the update equations for
CMLAA (CML adaptive algorithm). We consider sep-
arately the minimization with respect to the symbols and
the minimization with respect to the channel.

1) Minimization With Respect to the Symbols: The opti-
mization problem in (33) is solved by a relaxation method. Let

denote the th component of , where is
the iteration number of CMLAA and is the iteration number
of the relaxation method; and let denote the th column

of . Then is the stationary
point obtained through the following iterative algorithm:

While

For

end

end

2) Minimization With Respect to the Channel: The update
of the filter for CMLAA can be performed using (34) shown at
the bottom of the next page (for more details, see [10]), where

. Simplifica-
tions of these equations are provided in [10], where the recur-
sive least squares (RLS)-like algorithm above is turned into a
least mean square (LMS)-like algorithm with almost no loss in
performance.

C. Initialization

CMLAA needs of course a reliable initialization. A similar
problem is encountered in TSML [6] or IQML [28]. Generally,
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the problem is solved by the use of an initialization procedure
such as the subspace algorithm for example. Here, we propose
to initialize the CMLAA with the solution given by the cor-
responding batch algorithm to a minimization problem over a
block of size . In any case, we take to ensure
that is the only global minimum of the considered cri-
terion [see H2)].

D. Properties of CMLAA

CMLAA exhibits some desirable properties for tracking the
channel parameters in practical contexts, such as GSM, for ex-
ample. This properties are summarized below.

• The introduction of the a priori knowledge into the crite-
rion improves the convergence speed (see Section VII-B)
of the algorithm as well as its tracking capabilities.

• The computational cost is moderate. Indeed, the most de-
manding part is the minimization with respect to the sym-
bols. In CMLAA , the length of the symbol vector to be
estimated is at each iteration (against in the
CMLBA). We will see in the simulation part that a good
choice for is the channel order . The estimation of
the channel is performed by an LMS-like algorithm.

• CMLAA appears to be robust to the overestimation
of the channel (see Section VII-B). This property is
mandatory for using the proposed algorithm in practical
applications.

E. Convergence of CMLAA

In this section, we point out a result concerning the conver-
gence of the CMLAA established for (which means
that the adaptivity property is lost). The main result is formal-
ized below.

Theorem 3: In the noiseless case, if CMLAA con-
verges, if the assumptions H1) and H2) are met, and if for all

situated after the convergence , then
CMLAA converges toward the global minimum.

Proof: The proof is identical to that of [10, Theorem 3].
This result is the consequence of the stability of the global

minimum (instability of a local minimum) during a recur-
sive procedure proved in [10, Theorem 2]. This result has
first been established in the noiseless case. However, if we
express the DML criterion as a function of the channel only

( where is the
projection matrix on the range of ), it can be proved that
when tends to infinity, the noisy DML criterion tends to the
noiseless one [29]. Then, the proof is also relevant in the noisy
case as far as the number of data is large enough. In
other words, the theorem states that the global minimum is the
only stationary point in a recursive procedure.

VII. SIMULATION

To gain more insights about the results obtained in the pre-
vious sections, we present some numerical evaluations. The per-
formance of the algorithms is measured by the normalized root
mean square error in decibels

NRMSE

where stands for the estimated channel from the th trial,
is the true channel, and . de-
notes the number of Monte Carlo runs. Noise samples are gen-
erated from i.i.d. zero-mean Gaussian random sequences with
variance . The symbols belong either to a PSK modulation
or to a 8-quadrature amplitude modulation (QAM). Figs. 4–7
concern the batch algorithm, whereas Figs. 8–10 concern the
adaptive algorithms.

A. Batch Algorithms

In this section, we present some simulation studies of the
MLBA and of CMLBA where only the extreme values of are
considered (i.e., ). These two
algorithms will be referred to as CMLBA and CMLBA ,
respectively. The performance of these algorithms is compared
against those of TSML [6], the multistep linear prediction
algorithm (MLPA) [30], and the (joint order detection and
channel estimation via least squares smoothing (J-LSS) [31].
We also consider the method described in Section V. We call
it CMLBA , where stands for the number of sub-
vectors of updated separately [for example, the algorithm
in (25) and (26) is CMLBA (2)].

1) Description of the Multipath Channels: In our simula-
tions, we considered the following channels commonly used in
the literature.

(34)
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Fig. 4. Performance comparison versus � (100 Monte Carlo runs,M +N =

32 BPSK input symbols).

Fig. 5. Performance comparison. (a) h , 100 Monte Carlo runs,M+N =

58 BPSK input symbols. (b) h , 100 Monte Carlo runs,M +N = 50 QPSK
input symbols.

Fig. 6. Performance comparison. h , 100 Monte Carlo runs, M + N =

100 QPSK input symbols.

Fig. 7. Performance comparison. h , 100 Monte Carlo runs,M+N = 58

8-QAM input symbols.

• : This two-channel system was first used by Hua [6].
The corresponding channel response is given by

(35)

where and represent the angular position of
zeros on the unit circle and is the distance between the
zeros of the two channels. We choose to use this channel
since it permits to evaluate the influence of the channel
diversity. Secondly, Hua also used this channel to com-
pare the performance of the TSML against the perfor-
mance of the cross-relation algorithm [32] and of the sub-
space algorithm [33], and he compared both algorithms
to the Cramer–Rao bound. Moreover, Zhao also used this
channel to evaluate the performance of the adaptive least
squares smoothing algorithm [34]. Then, by using the ex-
perimental conditions in [34], we make a fair comparison
with existing approaches.
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Fig. 8. NRMSE(h) versus SNR obtained with (a) CMLAA and with
(b) CMLAA for various values of P (� = 1); N = 50.

• : The channel responses values are given in Table I.
This set of channels was first used in [35]. It considers
a two-ray multipath model with delay at 0 and 1.1 baud
periods. The channel model simulates a wireless en-
vironment with long delay multipath.

• : The channel response values are given in Table II.
The channel was first used in [31]. This channel
has severe intersymbol interference. It is also close to vi-
olate the identifiability condition. Moreover, has
small head and tails taps. This channel is used to test the
robustness of our algorithms against the overestimation of
the channel order.

2) Comments and Observations:

• Fig. 4 plots the against (relative posi-
tions of the zeros), the SNR is set to 45 dB. This SNR is
quite unrealistic; however, this choice permits a fair com-
parison between our algorithms and TSML since TSML
is biased at low SNR whereas MLBA-like algorithms are

Fig. 9. NRMSE(h) versus the iteration number. SNR = 10 dB. Channel order
(a) correctly estimated and (b) overestimated.

not. We also compare these methods with the MLPA [30].
We observe the following.
— The TSML and the MLBA have comparable perfor-

mance (NRMSE dB when and poor
performance when ).

— The MLPA is a generalization of the linear prediction
algorithm. The MLPA exploits the channel structure
completely and provides more statistical efficiency
in channel identification (compared to classical LPA
[28], [36]). This method has also been developed as the
outer-product decomposition algorithm [37], [38]. It
was also extended by Tugnait et al. for multiple-input
multiple-output [39]. The MLPA presents poor results
compared to the other methods. Actually, the sim-
ulation was run with input symbols,
whereas the MLPA exhibits good results with hun-
dreds of input symbols. For short-burst applications,
LPA-like algorithms cannot be used.

— The CMLBA outperforms TSML and MLBA for
poor diversity conditions. Remember that CMLBA
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TABLE I
CHANNEL RESPONSE OF h

TABLE II
CHANNEL RESPONSE OF h

Fig. 10. Channel tracking performance (SNR = 30 dB, 20 Monte Carlo runs).

has the same local minima as MLBA. Thus this im-
provement (in terms of estimation accuracy) is not
counterbalanced by extra local minima.

— The NRMSE of CMLBA is about 5 dB less than
the NRMSE of CMLBA , of MLBA, and of TSML
when is large enough (thanks to the prior introduced
by ). When , then and
CMLBA CMLBA . We are not surprised to
see that the NRMSE of CMLBA gets closer to the
NRMSE of CMLBA when tends toward zero.

— CMLBA (5) was built to achieve good performance
even when the channels share common zeros. We ob-
serve that the NRMSE of the CMLBA (5) is about

55 dB whatever may be.
• Fig. 5 shows a comparison of the methods in various en-

vironments. In (a), is considered with
and . For such a channel the smallest eigenvalue
of is close to zero; then CMLBA and
CMLBA are identical and the prior knowledge is lost
(we do not plot the curve corresponding to CMLBA ).
First, we can remark that the constraint of CMLBA
yields robustness to the lack of channel diversity. It is in-
teresting to note that this improvement arises without in-
creasing the number of local minima (see Proposition 1).
The minimal eigenvalue is likely to increase when the par-
tition grows. As expected, CMLBA (20) outperforms
CMLBA (5) and CMLBA even at low SNR.

We repeat the above simulation using the set of
channels . This time, the smallest eigenvalue of

is 0.2737. Thus, in CMLBA (1), the
value of is no longer negligible, which leads to very
good estimates of the channel. In such an environment,
the partitions do not bring improvements.

• Fig. 6 shows robustness to the overestimation of the
channel order and to severe intersymbol interference.
The channel used for this simulation is ; it presents
severe interference intersymbol. Moreover, the first and
last taps of each subchannel have very small amplitude.
We choose to run the CMLBA with to test the
robustness of the method toward an overestimation of the
channel order. The experimental conditions are identical
to those in [31]. As can be seen, the method presents
good results and outperforms J-LSS. The channel



ALBERGE et al.: BLIND IDENTIFICATION/EQUALIZATION USING DETERMINISTIC MAXIMUM LIKELIHOOD 735

TABLE III
PATH PROFILE FOR CHANNEL EQUALIZATION TESTS (COST-GSM MODEL)

is ill conditioned; thus the quality of the estimation is
improved by the partitions.

• Fig. 7 shows the behavior of the method with a non-PSK
constellation. Throughout this paper, we have supposed
that the emitted symbols belong to a PSK modulation
H4). This assumption was at the origin of the prior knowl-
edge introduced in the proposed criterion. The efficiency
of the prior (for PSK constellations) was exhibited in the
previous simulations, but what happens when a non-PSK
constellation is used? Here, the input symbols belong to
an 8-QAM constellation. We use with
and . Not surprisingly, it appears
that CMLBA is not convenient for 8-QAM constel-
lations. TSML and CMLBA present similar perfor-
mances. However, (4) suggests that CMLBA is better
to use especially for ill conditioned channels.

B. Adaptive Algorithms

In order to check the relevance of the approximations used to
derive the CMLAA, we analyze the choice of the parameter
(number of symbols updated at each iteration). Then, we focus
on the applicability of the proposed algorithm first by testing
its robustness to an overestimation of the channel order (Fig. 9)
and second by evaluating its parameter tracking performance
(Fig. 10).

Fig. 8 shows the choice of . In this simulation, the NRMSE
is computed for CMLAA and for CMLAA (with )
for various pairs ( , SNR). The NRMSE is averaged over 50
Monte Carlo runs and is computed at the one-thousandth itera-
tion. In (b), the value of the mean squared error obtained with

remains very close to the value obtained with .
In (a), we observe that replacing by leads to the
same improvement as replacing by . Therefore, the
accuracy of the channel estimate seems to be mainly influenced
by the symbols in the delay line of the channels. Moreover, the
computational cost of the method increases with . In our sim-
ulation, the order of the channel is . Choosing equal
to the channel order appears to be a good compromise.

Fig. 9 shows robustness to channel overestimation. A 12-path
propagation channel is considered, simulated according to the
model of Clarke [40]. The path profile is shown in Table III. For
this simulation, the channel order is set to , there are two
subchannels, and the modulation is BPSK. The SNR, this time,
is set to a more reasonable value of 10 dB.

We present the NRMSE versus the iteration number for
CMLAA , for CMLAA , and for trained RLS. Fig. 9(a)
shows the results obtained when the channel order is cor-
rectly estimated . From this figure, we can see that
CMLAA outperforms CMLAA even if the algorithm

does not perform a minimization with respect to the joint
variable in each iteration (see Section VI-B). We can notice that
the behavior of both algorithms could be improved by iterating
the minimization with respect to each variable. Fig. 9(b) shows
the results obtained when the channel order is overestimated

. Both CMLAA and CMLAA appear to be
robust to the overestimation of the channel order. This is due to
the constraint introduced into the criterion.

Fig. 10 shows tracking of the channel parameters. The
simulation presented here has first been experimented with
by Zhao in [34]. It concerns the case where the channel order
and the channel parameters have a sudden change. The initial
channel is the one used for testing the batch algorithms (35)
with and . The channel order and the channel
parameters change at time where we add zeros
and to the two subchannels, respectively. In the
simulation, the estimated channel order is fixed to .
The NRMSE convergence of CMLAA and of CMLAA
is shown in Fig. 10(b), where we can see the ability of both
algorithms to track the channel variations. In (a), the smallest
eigenvalues of the full matrix and of the
truncated matrix are plotted.
When , we try to estimate a channel of order 3, whereas
the order of the channel to be estimated is 2; that is the reason
why . In CMLAA is equal to

, which is not null. CMLAA
takes more advantage of the prior information than CMLAA
even when the subchannels share common zeros.

VIII. CONCLUSION

In this paper, a maximum likelihood approach to solve the
joint blind channel identification and blind symbol estimation
problem was presented. We demonstrated the improvement of
the estimation accuracy by the use of a prior knowledge. More-
over, the proposed batch algorithm presents the finite-sample
convergence property.

Based on this block algorithm, an adaptive version is derived
by exploiting the recursive procedure proposed for solving the
local minima problem. A nice advantage inherent to the use of
the prior is that it brings robustness to the overestimation of
the channel order thus our method does not require the channel
order to be known or well estimated. Thanks to the forgetting
factor, the algorithm is able to track efficiently the changes in the
channel parameters. At each iteration, the number of symbols
to be updated is limited to the length of the channel. Moreover,
the update of the filters can be performed by stochastic gradient
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techniques as shown in [10], which renders the CMLAA com-
putationally nonexpensive. Current work on the application of
these algorithms under practical situations is currently under-
taken, and will be reported.
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