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ANALYSIS OF THE RECOVERY OF EDGES IN IMAGES AND
SIGNALS BY MINIMIZING NONCONVEX REGULARIZED

LEAST-SQUARES∗
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Abstract. We consider the restoration of discrete signals and images using least-squares with
nonconvex regularization. Our goal is to find important features of the (local) minimizers of the
cost function in connection with the shape of the regularization term. This question is of paramount
importance for a relevant choice of regularization term. The main point of interest is the restoration
of edges. We show that the differences between neighboring pixels in homogeneous regions are smaller
than a small threshold, while they are larger than a large threshold at edges: we can say that the
former are shrunk, while the latter are enhanced. This naturally entails a neat classification of
differences as belonging to smooth regions or to edges. Furthermore, if the original signal or image is
a scaled characteristic function of a subset, we show that the global minimizer is smooth everywhere
if the contrast is low, whereas edges are correctly recovered at higher (finite) contrast. Explicit
expressions are derived for the truncated quadratic and the “0-1” regularization function. It is
seen that restoration using nonconvex regularization is fundamentally different from edge-preserving
convex regularization. Our theoretical results are illustrated using a numerical experiment.
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1. Introduction. We consider the classical inverse problem of the finding of an
estimate x̂ ∈ R

p of an unknown image or signal x ∈ R
p, based on data y = Ax+n ∈ R

q,
where A ∈ R

q×p accounts for the data-acquisition system and n for the noise. For
instance, A can be a point-spread function modelling optical blurring, a distortion
wavelet in seismic imaging and nondestructive evaluation, a Radon transform in X-ray
tomography, a Fourier transform in diffraction tomography, or the identity in denois-
ing and segmentation problems. To solve such a problem, we focus on regularized
least-squares methods where x̂ ∈ R

p minimizes a cost-function Fy : R
p → R of the

form

Fy(x) = ‖Ax− y‖2 + βΦ(x),(1.1)

where Φ is a regularization term and β > 0 is a parameter which controls the trade-
off between fidelity to data and regularization. Such cost-functions are classical in
variational methods and in Bayesian estimation; an overview of these approaches can
be found in [4, 10, 3]. In a statistical setting, the quadratic data-fidelity term above
supposes that the noise n is white and Gaussian. The role of Φ is to push x̂ to exhibit
some a priori expected features, such as the presence of edges and smooth regions. A
useful class of regularization functions is [4, 14, 9, 3]

Φ(x) =
∑
i∈J

ϕ(gTi x), J = {1, . . . , r},(1.2)
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Table 1.1

Commonly used PFs ϕ where α > 0 is a parameter.

Convex PFs
Smooth at zero PFs Nonsmooth at zero PFs

(f1) ϕ(t) = |t|α, 1 < α ≤ 2 [6] (f3) ϕ(t) = |t| [4, 36]

(f2) ϕ(t) =
√
α + t2 [41]

Nonconvex PFs
Smooth at zero PFs Nonsmooth at zero PFs

(f4) ϕ(t) = min{αt2, 1} [26, 5] (f8) ϕ(t) = |t|α, 0 < α < 1 [37]

(f5) ϕ(t) =
αt2

1 + αt2
[18] (f9) ϕ(t) =

α|t|
1 + α|t|

[15]

(f6) ϕ(t) = log(αt2 + 1) [20] (f10) ϕ(t) = log(α|t| + 1)
(f7) ϕ(t) = 1 − exp(−αt2) [22, 34] (f11) ϕ(0) = 0, ϕ(t) = 1 if t �= 0 [22]

where gi ∈ R
p, for i ∈ J , are difference operators and ϕ : R → R is called a potential

function (PF). In the following, the letter G will denote the r× p matrix whose rows
are gTi for i ∈ J . A basic requirement to have regularization is

ker(A) ∩ ker(G) = {0}.(1.3)

Many different PFs have been used in the literature; some relevant examples are
given in Table 1.1. Although PFs differ in convexity, boundedness, differentiability,
etc., they share some common features. A general assumption is the following.

H1. ϕ(t) = ϕ(−t), ϕ is C2 on (0,+∞), and ϕ′(t) ≥ 0, for all t > 0, and ϕ(0) = 0
is a strict minimum.

Edges in images and breaking points in signals concentrate critically important
information. Hence we have the requirement that ϕ leads to minimizers x̂ involv-
ing large differences |gTi x̂| at the location of edges in the original signal or image
and smooth differences elsewhere. The very first regularized cost-function was in-
troduced in [40] and corresponds to ϕ(t) = t2; it is well known that this PF entails
oversmoothing of edges. Since the pioneering work of Geman and Geman [17], differ-
ent nonconvex functions ϕ have been considered in either a statistical or variational
framework [26, 18, 4, 34, 15, 16, 23, 3]. The relevant minimizers provide solutions
with neat edges and well-smoothed homogeneous regions. However, they are awk-
ward to compute, to control, and to analyze. In order to alleviate these intricacies, a
considerable effort has been made to derive convex edge-preserving functions ϕ; see,
for instance, [39, 19, 21, 36, 6, 9]. These PFs have an almost linear growth beyond an
interval surrounding the origin—see (f1), (f2), and (f3) in Table 1.1—and they realize
a considerable improvement with respect to ϕ(t) = t2. Nevertheless, possibilities are
limited with respect to nonconvex PFs. Research on nonconvex PFs is mainly dedi-
cated to the Mumford–Shah model for signals and images defined on R and R

2; see,
e.g., [27, 25, 24]; its discrete equivalent is (f4). For general nonconvex PFs, various
necessary conditions and heuristics have been formulated; let us cite [15, 23, 9]. In
this paper we derive formal results characterizing the (local) minimizers x̂ of Fy when
ϕ is nonconvex according to the assumptions listed below.

H2. There is θ > 0 such that ϕ′′(θ) < 0 and limt→∞ ϕ′′(t) = 0.
A critical distinction between PFs is their smoothness at zero since ϕ′(0+) > 0

gives rise to (local) minimizers x̂ such that gTi x̂ = 0 for some indexes i ∈ J [30, 32].
For smooth regularization we assume the following.
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Table 1.2

Second derivatives ϕ′′ for the nonconvex PFs in Table 1.1.

ϕ′′ on R
∗ for nonconvex PFs

Smooth at zero PFs Nonsmooth at zero PFs

(f4) ϕ′′(t) =

{
2α if |t| < 1/

√
α

0 if |t| > 1/
√
α

}
(f8) ϕ′′(t) = α(α− 1)|t|α−2, 0 < α < 1

(f5) ϕ′′(t) =
2α(1 − 3αt2)

(1 + αt2)3
(f9) ϕ′′(t) =

−2α2

(1 + α|t|)3

(f6) ϕ′′(t) =
1 − 2α2t2

(1 + αt2)2
(f10) ϕ′′(t) =

−α2

(1 + α|t|)2
(f7) ϕ′′(t) = 2α(1 − 2αt2) exp(−αt2) (f11) ϕ′′(t) = 0

H3. ϕ′′ is C2, and there are τ > 0 and T ∈ (τ,∞) such that ϕ′′(t) ≥ 0 if t ∈ [0, τ ]
and ϕ′′(t) ≤ 0 if t ≥ τ , where ϕ′′ is decreasing on (τ, T ) and increasing on (T ,∞).

For nonsmooth regularization, the equivalent counterpart of H3 is the following.

H4. ϕ′(0+) > 0 and ϕ′′ is increasing on (0,∞) with ϕ′′(t) ≤ 0 for all t > 0.

As seen from Tables 1.1 and 1.2, these assumptions are satisfied for almost all
nonconvex PFs used in practice. They can be extended to other classes of functions,
too. However, all of them fail to hold for the truncated quadratic PF (f4) and the
“0-1” PF (f11); these PFs are considered in separate statements.

The objective of this paper is to exhibit important properties of the minimizers x̂
of cost-functions Fy of the form (1.1)–(1.2) when ϕ is nonconvex as specified above.
Let us notice that although solutions to various applied problems are usually defined
as the minimizers of cost-functions, the features of the minimizers have seldom been
the focus of systematic analysis. And yet, this question is of critical importance for
a pertinent choice of cost-function. Generic stability of the (local) minimizers of Fy,
when ϕ is nonconvex as specified above, has been studied in [12, 13]. The question
of the properties of minimizers for some convex cost-functions has been addressed by
[1, 11, 2, 7, 35, 38, 8]. For more general cost-functions, it has been considered by the
author in [28, 30, 31, 33].

Outline of the paper. The simple case when Fy is a scalar function, studied in
section 2, gives an instructive insight into the features of the minimizers relevant to
nonconvex PFs as specified above. In section 3 we analyze how differences gTi x̂ at a
(local) minimizer x̂ of Fy either are enhanced and form edges or are shrunk and form
homogeneous regions. More precisely, we show that there are two thresholds, θ0 ≥ 0
and θ1 > θ0, such that shrunk differences satisfy |gTi x̂| ≤ θ0, while enhanced edges
satisfy |gTi x̂| ≥ θ1. Equivalently, this result says that |gTi x̂| /∈ (θ0, θ1) for all i ∈ J .

Given a (local) minimizer x̂ of Fy, the subsets Ĵ0 and Ĵ1,

Ĵ0 =
{
i ∈ J :

∣∣gTi x̂∣∣ ≤ θ0

}
and Ĵ1 =

{
i ∈ J :

∣∣gTi x̂∣∣ ≥ θ1

}
,(1.4)

satisfy J = Ĵ0 ∪ Ĵ1, and they address the homogeneous regions and the edges in x̂,
respectively. It turns out that if ϕ is smooth at zero, we have θ0 > 0, so homogeneous
regions are smoothly varying. If ϕ is nonsmooth at zero, we find θ0 = 0, which means
that differences satisfy either gTi x̂ = 0 or |gTi x̂| ≥ θ1, where θ1 > 0. In such a case,

Ĵ0 =
{
i ∈ J : gTi x̂ = 0

}
and Ĵ1 =

{
i ∈ J :

∣∣gTi x̂∣∣ ≥ θ1

}
= J \ Ĵ0.(1.5)
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If {gi : i ∈ J} are first-order differences between neighboring samples, homogeneous
regions are constant: regularization using nonsmooth nonconvex PFs entails an en-
hanced stair-casing effect!

Let us denote

Ω = {1, . . . , p},

which is the domain of the signal or the image x. In section 4 we study how an original
image or signal of the form h1lΣ, where h > 0, the sets Σ ⊂ Ω and Σc = Ω \ Σ are
nonempty, and 1lΣ ∈ R

p reads

1lΣ[i] =

{
1 if i ∈ Σ,

0 if i ∈ Ω \ Σ,
(1.6)

is recovered at the global minimizer x̂ of Fy when y = A h1lΣ and {gi : i ∈ J}
correspond to first-order difference operators. We show that there is h0 > 0 such that
if h ∈ (0, h0), we have |gTi x̂| ≤ θ0 for all i ∈ Ω, so the global minimizer x̂ of Fy does
not involve edges and is constant if ϕ is nonsmooth at zero. Furthermore, there is
h1 ≥ h0 such that if h > h1, the global minimizer x̂ is a good approximation of the
original h1lΣ since |gTi x̂| ≥ θ1 for all i such that |gTi h1lΣ| = h, whereas |gTi x̂| ≤ θ0 for
all i such that |gTi h1lΣ| = 0.

Our theoretical results are illustrated using a numerical experiment in section 5.
By way of conclusion, in section 6 we provide a further interpretation of the obtained
results. We also compare the minimizers relevant to nonconvex PFs ϕ with those
corresponding to convex edge-preserving PFs. The proofs of all propositions and
lemmas are outlined in the appendix.

Notation. The components of a vector x ∈ R
p read x[i], for i ∈ Ω, and its

support is supp(x) = {i ∈ Ω : x[i] �= 0}. We denote by ‖.‖ the �2-norm; so ‖x‖ =

(
∑p

i=1 x[i]2)
1
2 for x ∈ R

p. If A is a real-valued matrix, AT is its transpose, and
we recall that the largest eigenvalue of ATA is ‖ATA‖; the smallest eigenvalue of
ATA will be denoted by αmin. The letter I will stand for identity matrix. If K is a
vector (sub)space, we write K⊥ for its orthogonal complement and define B(x̃, ρ) =
{x ∈ K : ‖x− x̃‖ < ρ}. The cardinality of a discrete set L is denoted 	L. We write ei
for the ith vector of the canonical basis of R

p, that is, ei[j] = 1 if j = i and ei[j] = 0
if j �= i. To simplify the notation, we set 1l = 1lΩ, i.e., 1l[i] = 1, for all i ∈ Ω.

2. Illustration using a cost-function on R. Let us consider the simple case
when y ∈ R+ and Fy : R → R reads

Fy(x) = (x− y)2 + βϕ(x),(2.1)

where ϕ satisfies H1 and H2, along with one of the assumptions H3 (if ϕ is smooth)
or H4 (if ϕ is nonsmooth at zero). Consider that

β > − 2

ϕ′′(T )
under H3 or β > − 2

ϕ′′(0+)
under H4,(2.2)

where ϕ′′(0+) = limt↘0 ϕ
′′(t); if ϕ′′(0+) = −∞, we find β > 0. Define

θ0 = inf Cβ and θ1 = supCβ ,
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h1

h0

x

θ0 θ1

x + β
2
ϕ′(x)

h1

h0

x
θ0 θ1

x + β
2
ϕ′(x)

ϕ(t) = αt2

(1+αt2)
ϕ(t) = α|t|

(1+α|t|)

Fig. 2.1. Plots of 1
2
F ′

y(x) − y = x + β
2
ϕ′(x) on R \ {0} for a PF satisfying H1, H2, and H3

on the left and a PF satisfying H1, H2, and H4 on the right. These plots suggest how to solve (2.6)
graphically.

where

Cβ =

{
t ∈ (0,∞) : ϕ′′(t) < − 2

β

}
.(2.3)

Notice that θ0 = 0 if H4 holds and that T ∈ (θ0, θ1) under H3. In both cases,

F ′′
y (x) = 2 + βϕ′′(x) < 0 if θ0 < |x| < θ1.(2.4)

It follows that for any y ∈ R+, no local minimizer x̂ of Fy lies in (−θ1,−θ0)∪(θ0, θ1).
Conversely, minimizers x̂ satisfy either |x̂| ∈ [0, θ0] or |x̂| ∈ [θ1,∞). This observation
underlies the property of recovering either shrunk or enhanced differences at the (local)
minimizers of Fy, developed in section 3. It is worth noticing that θ0 decreases with β,
while θ1 increases with β.

Let us now focus on the global minimization of Fy. Without loss of generality,
suppose that {

t > 0 : ϕ′′(t) = − 2

β

}
=

{
{θ0} ∪ {θ1} under H3,

{θ1} under H4.
(2.5)

This assumption is satisfied by all PFs used in practice; see, e.g., Table 1.2. By the
first-order necessary condition for a minimum,

x̂ +
β

2
ϕ′(x̂) = y if x̂ �= 0 or ϕ is C2 on R,(2.6)

β

2
ϕ′(0+) ≥ |y| if x̂ = 0 and ϕ satisfies H4.(2.7)

Since y ≥ 0, if we had x̂ < 0, then ϕ′(x̂) ≤ 0, and (2.6) cannot hold. By (2.6) yet
again, y − x̂ = β

2ϕ
′(x̂) ≥ 0. It follows that for any y ≥ 0, any (local) minimizer x̂

of Fy satisfies

0 ≤ x̂ ≤ y.(2.8)

The analysis presented below is illustrated in Figure 2.1. Define h1 and h0 by

h1 = θ1 +
β

2
ϕ′(θ1) and h0 =

⎧⎪⎨⎪⎩
θ0 +

β

2
ϕ′(θ0) under H3,

β

2
ϕ′(0+) under H4.

(2.9)
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Using (2.4), x → x + β
2ϕ

′(x) is C1 and strictly decreasing on (θ0, θ1); thus 0 <
h1 < h0 ≤ ∞. If y ∈ [0, h0), the function Fy admits a strict (local) minimizer x̂0 that
satisfies either 0 ≤ x̂0 < θ0 under H3 or x̂0 = θ0 = 0 under H4. If y > h1, (2.6) defines
a strict (local) minimizer x̂1 satisfying x̂1 > θ1. These two statements are developed
in the appendix. They show that if y ∈ (h1, h0), there are two strict local minimizers,
x̂0 ∈ [0, θ0] and x̂1 > θ1. Let χ0 : [0, h0) → [0, θ0] and χ1 : (h1,∞) → (θ1,∞) denote
the minimizer functions corresponding to x̂0 and x̂1, respectively.1 Notice that these
functions are C1, that χ0 = 0 if H4 holds, and that

χ1(y) − χ0(y) > θ1 − θ0 > 0 ∀y ∈ (h1, h0).

Combining this with (2.8) allows us to write that

|y − χ0(y)| > |y − χ1(y)| + (θ1 − θ0) ∀y ∈ (h1, h0).

We can say that x̂0 = χ0(y) incurs strong smoothing, while smoothing for x̂1 = χ1(y)
is weak.

Assume that in addition limt→∞ ϕ′(t) = 0, since this holds for all nonconvex PFs
used in practice (e.g., see Table 1.1). Using that x → x+ β

2ϕ
′(x) defines a one-to-one

mapping of (θ1,∞) onto (h1,∞), (2.6) shows that limy→∞ χ1(y) = ∞. This entails
that limy→∞ ϕ′(χ1(y)) = 0, and then

lim
y→∞

|y − χ1(y)| = 0.

We can say that smoothing for x̂1 = χ1(y) is vanishing.
Under H3, constant h0 in (2.9) is finite. For definiteness, assume that h0 < ∞

under H4 as well. Put χ0(h0) = limy↗h0 χ0(y) and χ1(h1) = limy↘h1 χ1(y); then
χ0(h0) = θ0 and χ1(h1) = θ1. Define Δ by

Δ(y) = Fy(χ0(y)) −Fy(χ1(y)) for h1 ≤ y ≤ h0.

It is shown in the appendix that Fh1 (respectively, Fh0) does not have any (local)
minimum at χ1(h1) = θ1 (respectively, at χ0(h0) = θ0). Combining this with the fact
that lim|x|→∞ Fy(x) = +∞ allows us to write that

Δ(h1) < 0 and Δ(h0) > 0.(2.10)

Furthermore, for any y ∈ (h1, h0) we can write that (cf. the appendix)

dFy(χ(y))

dy
= 2(y − χ(y)), where χ = χ0 or χ = χ1.(2.11)

Using this expression, it is seen that if y ∈ (h1, h0), then

Δ′(y) =
dFy(χ0(y))

dy
− dFy(χ1(y))

dy
= 2(χ1(y) − χ0(y)) > 2(θ1 − θ0).(2.12)

Hence Δ is strictly increasing on (h1, h0). If h0 = +∞ under H4, (2.12) shows that
Δ(y) → +∞ as y → h0. This, combined with (2.10), shows that there is a unique
h ∈ (h1, h0) such that Δ(y) < 0 if y ∈ (h1, h) and Δ(y) > 0 if y ∈ (h, h1), with
Δ(h) = 0. Consequently,

1Minimizer functions χ0 and χ0 are defined next. For every y ∈ [0, h0), Fy has a strict local
minimum at χ0(y) such that χ0(y) ∈ [0, θ0) under H3 and χ0(y) = 0 under H4. Furthermore, for
every y > h1, Fy has a strict local minimum at χ1(y) > θ1.
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Fy(x)

xθ0 θ1

Fy(x)

xθ0 = 0 θ1

ϕ(x) = αx2

(1+αx2)
ϕ(x) = α|x|

(1+α|x|)

Fig. 2.2. Each curve represents Fy(x) = (x − y)2 + βϕ(x) for a different y in (h1, h0). The
global minimizer of each Fy is marked with a “ •.” Observe also that no local minimizer belongs to
(θ0, θ1).

• if y ∈ [0, h), the global minimizer is x̂ = χ0(y) ∈ [0, θ0] because Fy(χ0(y)) <
Fy(χ1(y)),

• if y > h, the global minimizer is x̂ = χ1(y) > θ1 because Fy(χ0(y)) >
Fy(χ1(y)),

whereas Fh has two global minimizers, χ0(h) and χ1(h). This behavior is illustrated
in Figure 2.2. Clearly, the global minimizer function is discontinuous at y = h. The
critical value y = h can be seen as a threshold to deciding whether or not the global
minimizer x̂ of Fy incurs strong smoothing. In the context of signals and images, this
amounts to deciding whether a difference belongs to a homogeneous region or to an
edge. These ideas are pursued in section 4.

3. Either shrinkage or enhancement of the differences. In this section we
show that nonconvex PFs give rise to (local) minimizers x̂ whose differences gTi x̂ have
magnitudes which are either smaller than a (small) threshold θ0 ≥ 0 or larger than
a larger threshold θ1 > θ0. The cases when ϕ is smooth or nonsmooth at zero are
analyzed separately.

3.1. Smooth at zero potential functions. The theorem below involves two
statements. First, if β is not too small, there are θ0 and θ1 as mentioned above.
Reciprocally, if we fix either θ0 or θ1, we can find a suitable β such that the property
holds for an appropriate θ1 or θ0, respectively.

Theorem 3.1. Let Fy : R
p → R be of the form (1.1)–(1.2), where ϕ satisfies

H1, H2, and H3. Assume that the set {gi : i ∈ J} is linearly independent, and put
μ = maxi∈J ‖GT (GGT )−1ei‖.

(i) If β > β0 for

β0 =
2μ2 ‖ATA‖
|ϕ′′(T )| ,(3.1)

there exist θ0 ∈ (τ, T ) and θ1 ∈ (T ,∞) such that for every y ∈ R
q, every local

minimizer x̂ of Fy satisfies

either |gTi x̂| ≤ θ0 or |gTi x̂| ≥ θ1 ∀i ∈ J.(3.2)

(ii) Let θ1 > T (respectively, θ0 ∈ (τ, T )) be such that ϕ′′(θ1) < 0 (respec-
tively, ϕ′′(θ0) < 0) and ϕ′′ is strictly monotonous near θ1 (respectively, θ0).
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Consider that β ≥ β1 for

β1 =
2μ2 ‖ATA‖
|ϕ′′(θ1)|

(
respectively, β1 =

2μ2 ‖ATA‖
|ϕ′′(θ0)|

)
.(3.3)

Then there is θ0 ∈ (τ, T ) (respectively, θ1 > T ) such that for every y ∈ R
q,

every local minimizer x̂ of Fy satisfies (3.2).
Remark 1. Clearly, θ0 and θ1 depend on the shape of ϕ and are controlled by β.

Since θ1 > T and |ϕ′′| is decreasing on (T ,∞), (3.3) shows that β1 is increasing
with θ1. Since θ0 ∈ (τ, T ) and |ϕ′′| increases on (τ, T ), then θ0 decreases with β1. It
is worth emphasizing that β0, β1, θ0, and θ1 are independent of y.

Proof. Since Fy has a minimum at x̂, then DFy(x̂) = 0 and

D2Fy(x̂)(v, v) ≥ 0 ∀v ∈ R
p,(3.4)

where the second derivative of Fy at x̂ in the direction of v reads

D2Fy(x)(v, v) = 2‖Av‖2 + β
∑
i∈J

ϕ′′(gTi x)(gTi v)
2.

Statement (i). For β > β0, H3 shows that ϕ′′(T )β0

β ∈ {ϕ′′(t) : t ≥ τ}. Then the
constants θ0 and θ1,

θ0 = sup

{
t ∈ (τ, T ) : ϕ′′(t) = ϕ′′(T )

β0

β

}
,

θ1 = inf

{
t ∈ (T ,∞) : ϕ′′(t) = ϕ′′(T )

β0

β

}
,

(3.5)

are well defined and satisfy τ < θ0 < T < θ1 < ∞. Consequently,

t ∈ (θ0, θ1) ⇒ ϕ′′(t) < ϕ′′(T )
β0

β
.(3.6)

The proof of the statement consists in showing that no difference of x̂ has its magnitude
in (θ0, θ1). So, suppose that there is j ∈ J such that |gTj x̂| ∈ (θ0, θ1). Let us choose

v = GT (GGT )−1ej ; then

gTj v = 1,

gTi v = 0 ∀i ∈ J \ {j},

and ‖v‖2 ≤ μ2. Using successively (3.6) and (3.1) we find that

D2Fy(x̂)(v, v) = 2‖Av‖2 + βϕ′′(gTj x̂)(gTj v)
2

< 2‖ATA‖μ2 + β ϕ′′(T )
β0

β
= 0,

which contradicts (3.4). Consequently, |gTj x̂| /∈ (θ0, θ1). The same result holds for
every j ∈ J .

Statement (ii). Let θ1 > T be as specified in (ii). We can define θ0 by

θ0 = sup {t ∈ (τ, T ) : ϕ′′(t) = ϕ′′(θ1)} .
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Combining H2, H3, and the assumption that ϕ′′ is strictly monotonous near θ1 entails
that

ϕ′′(t) < ϕ′′(θ1) ∀t ∈ (θ0, θ1).

If there was j ∈ J such that |gTj x̂| ∈ (θ0, θ1), then for v = GT (GGT )−1ej we would
find

D2Fy(x̂)(v, v) < 2‖ATA‖μ2 + β ϕ′′(θ1) ≤ 2‖ATA‖μ2 + β1 ϕ′′(θ1) = 0.

It follows that |gTj x̂| /∈ (θ0, θ1). This conclusion clearly holds for every j ∈ J .
The proof of the statement when θ0 is fixed follows the same lines and is omit-

ted.
From Table 1.2 it is seen that ϕ′′ is strictly monotonous at every θ such that

ϕ′′(θ) < 0; hence the assumption involved in statement (ii) is not restrictive. This as-
sumption can be omitted if we systematically consider inf{t ∈ (τ, T ) : ϕ′′(t) = ϕ′′(θ1)}
in place of θ1 and sup{t ∈ (τ, T ) : ϕ′′(t) = ϕ′′(θ0)} in place of θ0.

The thresholds θ0 and θ1 exhibited in the theorem delimit only the regions in R
p

where D2Fy(x) is not nonnegative definite. They do not account for the fact that
minimizers x̂ satisfy DFy(x̂) = 0 as well. We can expect that the bounds exhibited
here are pessimistic.

The assumption that {gi : i ∈ J} is linearly independent fails in usual image
restoration problems where for each pixel we consider the difference with several
neighbors; hence 	J > p. Nevertheless, the analysis above is easy to extend to all
situations where a (local) minimizer x̂ is homogeneous on some connected regions.
Let us examine this question in more detail. Trivial assumptions on {gi : i ∈ J} are
that 1l ∈ kerG and that

Σ ⊂ Ω such that supp(gi) ∩ Σ �= ∅ and supp(gi) ∩ Σc �= ∅ ⇒ gTi 1lΣ �= 0.

Given Σ ⊂ Ω such that Σ �= ∅ and Σc �= ∅, the constant

γΣ = min
{
|gTi 1lΣ| : i ∈ J such that supp(gi) ∩ Σ �= ∅ and supp(gi) ∩ Σc �= ∅

}
is strictly positive. Put μ =

√
p(min{γΣ : Σ ⊂ Ω, Σ �= ∅, and Σc �= ∅})−1; then

μ ∈ (0,∞). For example, in the most usual case when {gi : i ∈ J} yield the first-order
differences between each pixel and its nearest neighbors we find γΣ = 1 and μ =

√
p.

Consider that β > β0, where β0 is of the form (3.1) for μ defined above. Define θ0

and θ1 > θ0 according to (3.5). Suppose now that Fy has a (local) minimizer x̂ that
is homogeneous with respect to {gi : i ∈ J} on a nonempty subset Σ ⊂ Ω, Σ �= Ω,
i.e., that

|gTi x̂| ≤ θ0 ∀i ∈ {j ∈ J : supp(gj) ⊂ Σ} ⊂ Ĵ0,(3.7)

|gTi x̂| > θ0 ∀i ∈ IΣ,(3.8)

where IΣ �= ∅ corresponds to the boundary of Σ, namely

IΣ = {j ∈ J : supp(gj) ∩ Σ �= ∅ and supp(gj) ∩ Σc �= ∅}.

Using the reasoning of Theorem 3.1, one can see that in fact

|gTi x̂| ≥ θ1 for every i ∈ IΣ.(3.9)
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On the contrary, suppose that there is j ∈ IΣ such that |gTj x̂| ∈ (θ0, θ1). Let us

choose v = 1lΣ
gT
j 1lΣ

; noticing that ‖1lΣ‖ <
√
p and that |gTj 1lΣ| ≥ γΣ, we find ‖v‖ < μ.

On the other hand, gTi v = 0 if supp(gi) ⊂ Σ or if supp(gi) ⊂ Σc. Combining these
observations with the fact that

ϕ′′(gTi x̂) ≤ ϕ′′(θ0) < 0 for every i ∈ IΣ

leads to the following:

D2Fy(x̂)(v, v) = 2‖Av‖2 + β
∑
i∈IΣ

ϕ′′(gTi x̂)(gTi v)
2

≤ 2‖ATA‖ ‖v‖2 + βϕ′′(gTj x̂)

< 2‖ATA‖ μ2 + β0ϕ
′′(T ) < 0.

Such an x̂ cannot be a local minimizer. Hence (3.9) is true, and we can then write

that IΣ ⊂ Ĵ1.
This analysis is hard to extend to an arbitrary x̂ ∈ R

p, as far as there is no
guarantee2 to have a subset Σ ⊂ Ω such that (3.7)–(3.8) hold. Without such a Σ,
there is no general way to find a direction v ∈ R

p such that D2Φ(x̂)(v, v) < 0 in case
there is j ∈ J such that |gTj x̂| ∈ (θ0, θ1). Let us emphasize that D2Φ(x̂)(v, v) < 0 is
a strong sufficient condition for “nonminimum.” It is reasonable to expect that at a
minimizer x̂, differences |gTi x̂| “avoid” the vicinity of T since ϕ is very concave there.

Truncated quadratic PF. This important PF, given in (f4) in Table 1.1, fails
to satisfy H1, H2, and H3. Because of its nonsmoothness at ±1/

√
α, there is no

guarantee that its local minimizers satisfy a property of the form (3.2); however,
its global minimizers do so. Before examining this question in detail, we need some
additional notation. We consider that {gi : i ∈ J} is linearly independent, in which
case r = 	J ≤ p. If r < p, by the assumption in (1.3), we can take a p − r × p
matrix Gb for which there are H ∈ R

p×r and Hb ∈ R
p×(p−r) such that3

z = Gx,

zb = Gbx
⇔ x = Hz + Hbzb(3.10)

and that rank(AHb) = p− r. Then we introduce the matrices

B = AH, Bb = AHb,(3.11)

P = I −Bb

(
BT

b Bb

)−1
BT

b .(3.12)

If r = p, we have H = G−1, and hence P = I.

2For instance, consider x̂ as given below for {gi} the differences of each pixel with its adjacent
neighbors and θ0 = 1:

x̂ =

⎡⎣ 0 1 1 2
0 0 2 2
0 1 1 2

⎤⎦.
We have |x̂[2, 3] − x̂[2, 2]| = 2 > θ0, while all other differences are ≤ θ0.

3Consider that the rows of G read gi[i] = −1, gi[i + 1] = 1, and gi[j] = 0 otherwise for i =
1, . . . , p − 1 = r. Then Gb ∈ R

1×p, and we can choose Gb[i] = 0 if i < p and Gb[p] = −1. Then
[H,Hb]—the matrix whose first p−1 columns are those of H and whose pth is Hb—is upper triangular
composed of −1; then Hb = −1l. Using (1.3), we have AHb = −A1l �= 0. Furthermore, P = I− 1

p
1l1lT .
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Proposition 3.2. Given y ∈ R
q, let Fy read as in (1.1)–(1.2), where {gi : i ∈ J}

is linearly independent and

ϕ(t) =

{
αt2 if |t| ≤ 1/

√
α,

1 if |t| > 1/
√
α.

(3.13)

If Fy reaches its global minimum at x̂, then for every i ∈ J the following holds:
(i) if PAHei = 0, then gTi x̂ = 0;
(ii) if PAHei �= 0, then

either |gTi x̂| ≤
1√
α

Γi or |gTi x̂| ≥
1√
α Γi

,(3.14)

where

Γi =

√
‖PAHei‖2

‖PAHei‖2 + αβ
< 1.

Moreover, the inequalities in (3.14) are strict if Fy has a unique global minimizer.
Proposition 3.2 furnishes a useful necessary condition for a global minimum of Fy.

It provides quite a fine result since thresholds are adapted to each difference individ-
ually. In particular, (3.2) holds for

θ0 =
γ√
α

and θ1 =
1√
αγ

, where γ = max
i∈J

Γi < 1.

Clearly, θ0 < θ1 as stated in Theorem 3.1.

3.2. Nonsmooth at zero potential functions. Let us introduce the set J1

as

J1 =

{
J1 ⊆ J : ∃v ∈ R

p such that

[
gTi v = 0 if i ∈ J0

def
= J \ J1,

gTi v �= 0 if i ∈ J1.

}
.(3.15)

Notice that {∅} ∈ J1 and J ∈ J1. Let K denote the application which for every
J1 ⊂ J1 yields the subspace K(J1) defined by

K(J1) = {u ∈ R
p : gTi u = 0 ∀i ∈ J0} for J0 = J \ J1.(3.16)

Given J1 ∈ J1, for every j ∈ J1, let vj(J1) ∈ R
p be the solution to the problem

minimize ‖v‖2 subject to v ∈ K(J1) and gTj v = 1.(3.17)

Because of the last constraint, vj(J1) �= 0. Then define μ > 0 by

μ = max

{
max
j∈J1

‖vj(J1)‖ : J1 ∈ J1

}
.(3.18)

In general, it is difficult to get an explicit solution for μ. Notice that no assumptions
on {gi : i ∈ J} are made in Theorem 3.3. Its first statement says that if β is not too
small, there is θ1 > 0 such that nonzero differences have a magnitude larger than θ1.
Reciprocally, if we fix θ1 > 0, we can find β such that this property holds for our θ1.

Theorem 3.3. Let Fy be of the form (1.1)–(1.2), where ϕ satisfies H1, H2,
and H4. Let μ read as in (3.18).
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(i) If β > β0 for

β0 =
2μ2 ‖ATA‖
|ϕ′′(0+)| ,(3.19)

then there exists θ1 > 0 such that for every y ∈ R
q, every (local) minimizer x̂

of Fy satisfies

either |gTi x̂| = 0 or |gTi x̂| ≥ θ1 ∀i ∈ J.(3.20)

(ii) Given θ1 > 0 such that ϕ′′(θ1) < 0 and ϕ′′ is strictly monotonous near θ1, if
β ≥ β1 for

β1 =
2μ2 ‖ATA‖
|ϕ′′(θ1)|

,(3.21)

then for every y ∈ R
q, every (local) minimizer x̂ of Fy satisfies (3.20).

In particular, if |ϕ′′(0+)| = ∞, we find β0 = 0 in (3.19).
Remark 2. The magnitude of θ1 depends on ϕ and is controlled by β. Indeed,

since |ϕ′′| is decreasing on (0,+∞), (3.21) shows that β1 is increasing with θ1.

Given a (local) minimizer x̂ of Fy, let us define Ĵ0 and Ĵ1 by

Ĵ0 =
{
i ∈ J : gTi x̂ = 0

}
and Ĵ1 = J \ Ĵ0.(3.22)

Clearly, Ĵ1 ∈ J1. Since ϕ is nonsmooth at zero, Ĵ0 is usually nonempty [30, 33].

Theorem 3.3 says that the sets Ĵ0 and Ĵ1 above are equivalent to (1.5).

Proof. Consider that Fy has a (local) minimum at x̂. Let Ĵ0 and Ĵ1 be defined

by (3.22). If Ĵ1 = ∅, then gTi x̂ = 0 for all i ∈ J = Ĵ0, so statement (3.20) holds. Next,

consider that Ĵ1 is nonempty. Put

ρ = min
i∈Ĵ1

|gTi x̂|
1

max
j∈J

‖gi‖
;

then ρ > 0 according to (3.22). For every v ∈ B(0, ρ) we have

|gTi (x̂ + v)| ≥ |gTi x̂| − |gTi v| ≥ (ρ− ‖v‖) max
j∈J

‖gi‖ > 0 ∀i ∈ Ĵ1.

Then the function F̂y,

F̂y(x) = ‖Ax− y‖2 + β
∑
i∈Ĵ1

ϕ(gTi x),

is C2 on B(x̂, ρ). Moreover, using that ϕ(0) = 0 by H1, we have

v ∈ K(Ĵ1) ∩B(x̂, ρ) ⇒ F̂y(x̂ + v) = Fy(x̂ + v),(3.23)

where K is as introduced in (3.16). Since Fy has a (local) minimum at x̂, (3.23) shows

that x̂ is a (local) minimizer of F̂y over K(Ĵ1) ∩B(x̂, ρ). Consequently,

D2F̂y(x̂)(v, v) = 2‖Av‖2 + β
∑
i∈Ĵ1

ϕ′′(gTi x̂)(gTi v)
2 ≥ 0 ∀v ∈ K(Ĵ1).(3.24)
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Statement (i). Since β > β0, we have 2μ2 ‖ATA‖
β < |ϕ′′(0+)|. Then the constant θ1

given by

θ1 = inf

{
t > 0 : ϕ′′(t) = −2μ2 ‖ATA‖

β

}
(3.25)

is well defined and finite. Using H4,

0 < t < θ1 ⇒ ϕ′′(t) < ϕ′′(θ1).(3.26)

Our reasoning is conducted by contradiction. So suppose that there is j ∈ Ĵ1 such
that

0 < |gTj x̂| < θ1.(3.27)

Combining H2, H4, and (3.26) shows that

ϕ′′(gTj x̂) < ϕ′′(θ1).(3.28)

Let us consider D2Fy(x̂) in the direction of the vector v = vj(Ĵ1) defined by (3.17).
Using successively (3.24), H4, (3.17), (3.28), and (3.25), we find the following:

D2F̂y(x̂)(v, v) ≤ 2‖Av‖2 + β(gTj v)
2ϕ′′(gTj x̂)

≤ 2‖ATA‖‖v‖2 + βϕ′′(gTj x̂)

< 2‖ATA‖ μ2 + β ϕ′′(θ1) = 0.

This result contradicts (3.24). It follows that (3.27) cannot be true. This conclusion

holds for every j ∈ Ĵ1; hence |gTi x̂| ≥ θ1 for all i ∈ Ĵ1. Since θ1 in (3.25) is independent

of Ĵ1, the same holds for every Ĵ1 ∈ J1.
Statement (ii). Assume that there is j ∈ Ĵ1 such that (3.27) holds. Since ϕ′′

is strictly monotonous near θ1, (3.26) is satisfied, and hence (3.28) holds too. For

v = vj(Ĵ1) defined by (3.17), we get

D2F̂y(x̂)(v, v) ≤ 2‖ATA‖μ2 + βϕ′′(gTj x̂)

< 2‖ATA‖ μ2 + β ϕ′′(θ1)

≤ 2‖ATA‖ μ2 + β1 ϕ′′(θ1) = 0.

The obtained inequality shows that (3.27) cannot be true for any j ∈ Ĵ1. The same

result holds for every minimizer x̂ of Fy, for any y ∈ R
q, since the relevant Ĵ1 belongs

to J1.
Table 1.2 shows that in practice, nonconvex, nonsmooth at zero PFs have ϕ′′

strictly increasing on {t > 0 : ϕ′′(t) �= 0}. So, the assumption in (ii) on the strict
increase of ϕ′′ near θ1 is reasonable. It can be avoided if in (3.21) we replace θ1 by

inf{t > 0 : ϕ′′(t) = − 2μ2 ‖ATA‖
β + ε} for ε � 0.

Here again, θ1 delimits only the regions in R
p where Fy does not satisfy the second-

order necessary condition for a local minimum. The first-order necessary condition
for a (local) minimum is not taken into consideration. This suggests that our bounds
may be pessimistic.
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“0-1” PF. This function, given in (f11) in Table 1.1, is discontinuous at 0 and
does not satisfy H1, H2, and H4. It can also be seen that the relevant local minimizers
of Fy can fail to satisfy a property of the form (3.20). However, such a property takes
place for the global minimizers of Fy.

Proposition 3.4. Given y ∈ R
q, let Fy be defined by (1.1)–(1.2), where {gi :

i ∈ J} is linearly independent and

ϕ(t) =

{
0 if t = 0,
1 if t �= 0.

(3.29)

If Fy has a global minimum at x̂, then for every i ∈ J ,
(i) if PAHei = 0, then gTi x̂ = 0;
(ii) if PAHei �= 0, then

either gTi x̂ = 0 or |gTi x̂| ≥
√
β

‖PAHei‖
,(3.30)

where H and P are given in (3.10) and (3.12). The last inequality is strict if Fy has
a unique global minimizer.

This proposition provides a simple necessary condition for a global minimum
of Fy. We can notice that (3.30) is finely adapted to each difference gTi x̂ for i ∈ J . It
is readily seen that (3.20) is true if we put

θ1 = min
i∈J

√
β

‖PAHei‖
.

4. Selection for the global minimizer. We can observe in Table 1.1 that
most of the nonconvex PFs used in practice are bounded on R by a constant. In this
section, we will consider the following.

H5. ϕ(t) ≤ 1 for all t ∈ R.
Notice that4 then limt→∞ ϕ′(t) = 0. We will often use the fact that by H1,

ϕ(t) ≥ 0 on R, and that ϕ is increasing on R+. Furthermore, we will consider that
{gi : i ∈ J} yields first-order differences.

H6. With every i ∈ J there are associated Ni = (i1, i2) ⊂ Ω and γi > 0 so that
gTi x = γi(xi1 − xi2), for all x ∈ R

p, and the null space of G is spanned by 1l. We will
denote γmin = mini∈J γi.

Usually γi = 1 for all i ∈ J ; in some models, γi = 1/
√

2 if gTi x corresponds to
differences between diagonal pixels in an image. An additional assumption taken in
this section is that ATA is invertible. Then αmin—the smallest eigenvalue of ATA—
satisfies αmin > 0.

Remark 3 (existence of a global minimizer). When ATA is invertible, for every
y ∈ R

q, the function Fy defined by (1.1)–(1.2) and H1 is bounded below by 0 and
coercive; hence it admits a global minimizer, and the latter is bounded.

Our goal now is to study how an original image or signal of the form h1lΣ, where

Σ ⊂ Ω, with Σ �= ∅ and Σc = Ω \ Σ �= ∅,

4Since limt→∞ ϕ′′(t) = 0 and ϕ′′(t) ≥ 0 for all t > 0, there is c ≥ 0 such that limt→∞ ϕ′(t) = c.
Consider that c > 0. By the mean-value theorem, ϕ(t+ 2

c
)−ϕ(t) = ϕ′(μ(t)) 2

c
, where μ(t) ∈ (t, t+ 2

c
).

Noticing that limt→∞ μ(t) = +∞, we find that limt→∞(ϕ(t + 2
c
) − ϕ(t)) = limt→∞ ϕ′(μ(t)) 2

c
= 2,

which is impossible because by H5, ϕ(t + 2
c
) − ϕ(t) ≤ 1. It follows that c = 0.
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is recovered at the global minimizer x̂ of Fy when y ∈ R
q is of the form

y = hA1lΣ for h ∈ R+.(4.1)

From now on, we systematically denote

J0 = {i ∈ J : gTi 1lΣ = 0} and J1 = J \ J0.(4.2)

It will be convenient to put Fh = Fh1lΣ for every h ∈ R+, i.e.,

Fh(x) = ‖A(x− h1lΣ)‖2 + β
∑
i∈J

ϕ(gTi x),(4.3)

and to denote by x̂h a global minimizer of the latter function,

Fh(x̂h) ≤ Fh(x) ∀x ∈ R
p.

Remark 4 (upper bound on the global minimum). If y is given by (4.1), we have

Fh(h1lΣ) = β
∑
i∈J1

ϕ(γih) ≤ β	J1,(4.4)

where the inequality comes from the assumption that ϕ(t) ≤ 1 on R. Since x̂h is a
global minimizer,

Fh(x̂h) ≤ β	J1 ∀h ∈ R+.

This constitutes a simple necessary condition for a global minimum.
The cases when ϕ is smooth at zero, and when it is nonsmooth at zero, are

analyzed separately.

4.1. Smooth at zero potential functions. The next theorem addresses func-
tions Fh of the form (4.3) which corroborate the conclusions of Theorem 3.1.

Theorem 4.1. Let Fh : R
p → R be of the form (4.3), where {gi : i ∈ J}

satisfies H6 and ATA is invertible. Let ϕ satisfy H1, H2, H3, and H5. For every
h ≥ 0, suppose that every (local) minimizer x̂ of Fh satisfies (3.2), where 0 < θ0 < θ1,
and denote by x̂h a global minimizer of Fh. Then we have the following:

(i) There is a constant h0 > 0 such that

h ∈ [0, h0) ⇒ |gTi x̂h| ≤ θ0 ∀i ∈ J.(4.5)

(ii) Assume in addition that θ1 is such that �J1

�J1+1 ≤ ϕ(θ1) < 1. Then there is
h1 > 0 such that

h ≥ h1 ⇒
|gTi x̂h| ≤ θ0 ∀i ∈ J0,

|gTi x̂h| ≥ θ1 ∀i ∈ J1.

This theorem corroborates the interpretation of θ0 and θ1 as thresholds for the
detection of smooth differences and edges, respectively. Equivalently, the sets Ĵ0

and Ĵ1 in (1.4) address the homogeneous regions and the edges in x̂, respectively.
Proof. The first and second differentials of Fh at any x ∈ R

p are well defined and
read

DFh(x) = 2ATA(x− h1lΣ) + βGT
[
ϕ′(gTi x)

]
i∈J

,(4.6)

D2Fh(x) = 2ATA + βGT diag
([

ϕ′′(gTi x)
]
i∈J

)
G.(4.7)
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Statement (i). For h = 0, the function F0 reaches its global minimum at x̂0 = 0.
Hence DF0(x̂0) = 0 and D2F0(x̂0) is positive definite because ϕ′′(0) ≥ 0 by H1 and
ATA is invertible. By the implicit function theorem, there are ρ0 > 0 and a unique
C1-function χ : [0, ρ0) → R

p such that

DFh(χ(h)) = 0 ∀h ∈ [0, ρ0)

and that χ(0) = 0. By the continuity of D2Fh and χ, there is ρ ∈ (0, ρ0] such that

h ∈ [0, ρ) ⇒ D2Fh(χ(h)) is positive definite.

Consequently, if h ∈ [0, ρ), the function Fh has a strict (local) minimum at χ(h).
Using that χ(0) = 0, that h → Fh(χ(h)) is continuous, and that F0(χ(0)) = 0, there
is h0 ∈ (0, ρ] such that

h ∈ [0, h0) ⇒ Fh(χ(h)) < βϕ(θ1) and |gTi χ(h)| ≤ θ0 ∀i ∈ J.

Suppose that for h ∈ (0, h0) there is another (local) minimizer x̃ �= x̂ such that
|gTi x̃| ≥ θ1 for some i ∈ J . Then ϕ(gTi x̃) ≥ ϕ(θ1), and we can write that

Fh(x̃) ≥ βϕ(θ1) > Fh(χ(h)).

This shows that for any h ∈ [0, h0), the function Fh reaches its global minimum at an
x̂h satisfying (4.5).

Statement (ii). We will consider that h ≥ h1 for

h1 =
θ0

γmin
+

√
2β	J1

αmin
.(4.8)

To simplify, we will write x̂ for x̂h to denote a global minimizer of Fh. For x̂, let the
sets Ĵ0 and Ĵ1 be defined by (1.4); since (3.2) holds, Ĵ0 ∪ Ĵ1 = J . Let us examine

the possibility that Ĵ1 �= J1. Two cases arise according to the relationship between
Ĵ1 and J1.

(C1) Ĵ0 ∩ J1 is nonempty. Let i ∈ Ĵ0 ∩ J1 and Ni = {i1, i2}, according to H6. For
definiteness, assume that 1lΣ[i1] = 1 and 1lΣ[i2] = 0. It is easy to see that5

x̂ �= c1l for any c ∈ R. Then Φ(x̂) > 0, and we have

Fh(x̂) > αmin ‖x̂− h1lΣ‖2

≥ αmin

(
(x̂[i1] − h)2 + (x̂[i2])

2
)
.

Noticing that

γi | x̂[i1] − x̂[i2] | =
∣∣gTi x̂∣∣ ≤ θ0,

we find that6

(x̂[i1] − h)2 + (x̂[i2])
2 ≥ 1

2

(
h− θ0

γi

)2

.

5Suppose that for h > 0, Fh has a (local) minimizer of the form x̂ = c1l for c ∈ R. Using that
DFh(x̂) = 0, (4.6) leads to ATA(c1l−h1lΣ) = 0. Since ATA is invertible and Σ and Σc are nonempty,
there is no c ∈ R satisfying this equation.

6Here we consider the following problem:

minimize f(t, s) subject to γi|t− s| ≤ θ0,

where f : R
2 → R reads f(t, s) = (t − h)2 + s2 for h > θ0/γi. Using Kuhn–Tucker conditions, the

minimum is reached for t̂ = 1
2
(h + θ0

γi
) and ŝ = 1

2
(h− θ0

γi
), and its value is f(t̂, ŝ) = 1

2
(h− θ0

γi
)2.
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Using that h ≥ h1, (4.4) shows that

Fh(x̂) >
αmin

2

(
h− θ0

γmin

)2

≥ β	J1 ≥ Fh(h1lΣ).

Since x̂ is a global minimizer, it follows that Ĵ0 ∩ J1 is empty.
(C2) Ĵ1 ⊃ J1 and Ĵ1 �= J1; hence 	Ĵ1 ≥ 	J1 + 1. Since x̂ �= h1lΣ and ATA is

invertible, we have ‖A(x̂ − h1lΣ)‖ > 0. On the other hand, ϕ(gTi x̂) ≥ ϕ(θ1)

for every i ∈ Ĵ1. Then

Fh(x̂) > β (	J1 + 1)ϕ(θ1).

Combining this with the assumption on ϕ(θ1) in (ii) and with (4.4) shows
that

Fh(x̂) > β	J1 ≥ Fh(h1lΣ).(4.9)

Since x̂ is global minimizer, J1 cannot be strictly included in Ĵ1.
The conclusions of (C1) and (C2) show that the global minimizer x̂ is such that

Ĵ1 = J1 and Ĵ0 = J0. Hence we have proved the statement.
This theorem focuses on functions ϕ satisfying limt→∞ ϕ(t) = 1. This, combined

with H1, H2, and H3, shows that if ϕ(θ1) < 1, then ϕ′′(θ1) < 0. Under the conditions
of Theorem 3.1, its statement (ii) says that there are β and θ0 such that all minimizers
of Fh satisfy (3.2).

The values of h0, θ1, and h1 used in the proof of the theorem correspond to
strong sufficient conditions for a global minimum. We can suppose that in practice
statements (i) and (ii) hold for a larger h0 and for smaller θ1 and h1, respectively.

Truncated quadratic PF. As in section 3, this function—see (f4) in Table 1.1—
needs a separate analysis. In this case, the global minimizer x̂h of Fh can be derived
explicitly.

Proposition 4.2 (truncated quadratic PF). Let Fh be of the form (4.3), where
ATA is invertible, H6 holds, and ϕ is given by (3.13). Define χ

Σ
∈ R

p by

χΣ =
(
ATA + βαGTG

)−1
ATA1lΣ.(4.10)

For every h ∈ R+ let x̂h denote a global minimizer of Fh. Then there are h0 > 0 and
h1 > h0 such that

h ∈ [0, h0) ⇒ x̂h = h χΣ ,(4.11)

h ≥ h1 ⇒ x̂h = h 1lΣ.(4.12)

Moreover, x̂h in (4.11) and (4.12) is the unique global minimizer of the relevant Fh.
Observe that hχΣ is the regularized least-squares solution, i.e., the minimizer

of Fh corresponding to ϕ(t) = t2. So, the global minimizer in (4.11) does not involve
edges.

4.2. Nonsmooth at zero potential function. Since now θ0 = 0 and {gi} sat-
isfies H6, we have to deal with images and signals which are constant on some regions.
To this end, we introduce the following definition.

Definition 4.3. A subset Σ ⊂ Ω is connected with respect to {gi : i ∈ J} either
if Σ is a singleton or if for every i, j ∈ Σ there is a sequence k1, . . . , kn with elements
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of J such that i ∈ Nk1
and j ∈ Nkn

, Nk�
⊂ Σ, for all � = 1, . . . , n and Nk�

∩Nk�+1
�= ∅,

for all � = 1, . . . , n− 1.
Theorem 4.4. Let Fh : R

p → R be of the form (4.3), where {gi : i ∈ J}
satisfies H6 and ATA is invertible. Let ϕ satisfy H1, H2, H4, and H5. For every
h ≥ 0, suppose that every minimizer x̂ of Fh satisfies (3.20), where θ1 > 0, and denote
by x̂h a global minimizer of Fh. Then we have the following:

(i) There is a constant h0 > 0 such that

h ∈ [0, h0) ⇒ x̂h = hζ 1l,

where

ζ =
(A1l)TA1lΣ
‖A1l‖2

.(4.13)

(ii) Assume in addition that θ1 is such that �J1

�J1+1 ≤ ϕ(θ1) < 1. Then there is
h1 > 0 such that

h > h1 ⇒
gTi x̂h = 0 ∀i ∈ J0,

|gTi x̂h| ≥ θ1 ∀i ∈ J1.

(iii) For θ1 as in (ii), let h > h1. If Σ and Σc are connected with respect to
{gi : i ∈ J}, there are ŝh ∈ (0, h] and ĉh ∈ R such that

x̂h = ŝh1lΣ + ĉh1l.(4.14)

Moreover, ŝh → h and ĉh → 0 as h → ∞.
If A = I, we have ζ = �Σ

p in (i). Statement (ii) shows that for h large enough,

the global minimizer x̂h of Fh has the same edges and the same constant regions as
the original h1lΣ. Furthermore, (iii) indicates that x̂h provides a faithful restoration
of the original h1lΣ.

Remark 5. Statement (iii) can be extended to arbitrary subsets Σ ⊂ Ω in the
following way. Let us represent Σ and Σc as unions of subsets which are connected
with respect to {gi : i ∈ J}, say Σi, 1 ≤ i ≤ m, and Σc

i , 1 ≤ i ≤ n, respectively. In
such a case, we will find that there are reals ŝi, 1 ≤ i ≤ m, and ĉi, 1 ≤ i ≤ n, such
that for h > 0 large enough, x̂h =

∑m
i=1 ŝi1lΣi +

∑n
i=1 ĉi1lΣc

i
.

Proof. The constant below will be used several times in what follows:

ξ = (A1lΣ)T
(
I − (A1l)(A1l)T

‖A1l‖2

)
A1lΣ = ‖A1lΣ‖2 − ζ2‖A1l‖2.(4.15)

Clearly, ξ ≥ 0. Furthermore, the null space of I − 1
‖A1l‖2 (A1l)(A1l)T being spanned

by A1l, it does not contain A1lΣ since ATA is invertible, and 1lΣ �= 1l and 1lΣ �= 0.
Hence ξ > 0.

Statement (i). We will consider that h ∈ (0, h0), where

h0 =

√
βϕ(θ1)

ξ
.

If there is ĉ ∈ R such that Fh has a (local) minimum at x̂ = ĉ1l, then ĉ minimizes the
function c → Fh(c1l),

Fh(c1l) = ‖A(c1l − h1lΣ)‖2 = c2‖A1l‖2 − 2ch(A1lΣ)TA1l + h2‖A1lΣ‖2.
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This function has a unique minimizer. It is easy to calculate that ĉ = hζ for ζ as in
(4.13) and that

Fh(ĉ1l) = h2 ξ.

Let x̃ �= x̂ be a (local) minimizer of Fh. Then H6 shows that there is j ∈ J such
that gTj x̃ �= 0, in which case (3.20) entails that |gTj x̃| ≥ θ1. Using that h ∈ (0, h0), we
obtain

Fh(x̃) ≥ βϕ(gTj x̃) ≥ βϕ(θ1) = h2
0 ξ > Fh(ĉ1l).

It follows that for every h ∈ (0, h0), the function Fh reaches its global minimum at x̂h

as given in (i).
Statement (ii). Next we consider that h > h1, where

h1 =

√
2β	J1

αmin
.(4.16)

Let x̂ denote a global minimizer of Fh. With x̂, we associate the subsets Ĵ0 and Ĵ1

as given in (1.5). Since (3.20) holds, Ĵ0 ∪ Ĵ1 = J . Let us analyze the possibility that

Ĵ1 �= J1. Two cases can then arise.
(C1) J1 ∩ Ĵ0 is nonempty. For i ∈ J1 ∩ Ĵ0, let Ni = (i1, i2), according to H6.

Since gTi x̂ = 0, there is c ∈ R such that x̂[i1] = x̂[i2] = c. Using that
|gTi 1lΣ| = γi|1lΣ[i1] − 1lΣ[i2]| = γi, we find

Fh(x̂) ≥ αmin‖x̂− h1lΣ‖2 + β
∑
j∈J

ϕ(gTj x̂)

≥ αmin

(
(x̂[i1] − h1lΣ[i1])

2 + (x̂[i2] − h1lΣ[i2])
2
)

= αmin

(
(c− h)2 + c2

)
≥ αmin

h2

2
,

because the function c → (c−h)2+c2 reaches its minimum for c = h/2. Since
h > h1, Remark 4 shows that

Fh(x̂) > αmin
h2

1

2
= β	J1 ≥ Fh(h1lΣ).(4.17)

It follows that J1 ∩ Ĵ0 is empty.
(C2) J1 ⊂ Ĵ1 with J1 �= Ĵ1. Applying the reasoning behind item (C2) in the proof

of Theorem 4.1(ii) shows that J1 cannot be strictly included in Ĵ1.

It follows that any global minimizer x̂h of Fh is such that Ĵ0 = J0 and, equiva-
lently, Ĵ1 = J1.

Statement (iii). Since Σ and Σc are connected, (ii) and H6 show that7 there are
ŝh ∈ R and ĉh ∈ R such that x̂h is of the form (4.14). Moreover, ŝh �= 0 because

7For i, j ∈ Σ, let {k� : � = 1, . . . , n} be as in the definition for connectedness; then k� ∈ J0 for all
� = 1, . . . , n. Hence, x̂[i] = x̂[j] for all j ∈ Nk�

, for all � = 1, . . . , n. It follows that x̂[i] = x̂[j] for all
i, j ∈ Σ.

In a similar way it is found that x̂[i] = x̂[j] for all i, j ∈ Σc.
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ŝh = 0 would entail Ĵ0 = J �= J0. Furthermore, (ŝh, ĉh) minimizes on R \ {0}×R the
function (s, c) → Fh(s1lΣ + c1l), namely

Fh(s1lΣ + c1l) = ‖A(s1lΣ + c1l) − hA1lΣ‖2 + β
∑
i∈J

ϕ(gTi (s1lΣ + c1l)).

Using that ϕ(gTi (s1lΣ + c1l)) = ϕ(s|gTi 1lΣ|) = ϕ(γis) for all i ∈ J1,

Fh(s1lΣ + c1l) = ‖(s− h)A1lΣ + cA1l‖2 + β
∑
i∈J1

ϕ(sγi).

Noticing that (s, c) → Fh(s1lΣ + c1l) is C2 on R \ {0}×R, if this function has a (local)
minimum at (ŝh, ĉh), then

∂Fh

∂c
(ŝh1lΣ + c1l)

∣∣∣∣
c=ĉh

= 0.

Hence ĉh = σ(ŝh), where

σ(s) = −(s− h)ζ(4.18)

for ζ as in (4.13). Then ŝh minimizes the function f(s) = Fh(s1lΣ + σ(s)1l) which
reads

f(s) = (s− h)2ξ + β
∑
i∈J1

ϕ(sγi),

where ξ > 0 is given in (4.15). Noticing that ŝhγi �= 0 for all i ∈ J , we have f ′(ŝh) = 0,
that is,

ŝh +
β

2ξ

∑
i∈J1

γiϕ
′(ŝhγi) = h.

Using that ϕ is symmetric, this equation equivalently reads

sign(ŝh)

(
|ŝh| +

β

2ξ

∑
i∈J1

γiϕ
′(|ŝh|γi)

)
= h > 0.

It follows that 0 < ŝh ≤ h for every h ≥ h1 and that ŝh → ∞ as h → ∞. Noticing
that limt→∞ ϕ′(t) = 0, it is seen that ŝh → h as h → ∞. Inserting this into (4.18)
shows that ĉh → 0 as h → ∞.

Recall that (3.20) holds for θ1 > 0 if β > β0, where β0 is given in (3.19). The
assumption in (ii) was used in Theorem 4.1 and discussed after the end of the proof.
Using those same arguments, we arrive at ϕ′′(θ1) < 0. Then Theorem 3.3(ii) indicates
how to choose β. The magnitudes of h0, h1, and θ1 used in this proof guarantee
strong sufficient conditions for global minimum. It is reasonable to suppose that the
statements remain true for a larger h0 and for smaller h1 and θ1.

“0-1” PF. This PF, given in (f11) in Table 1.1, is discontinuous at zero. First,
we derive a necessary and sufficient condition for a local minimum of Fy as defined
by (1.1)–(1.2) with ϕ the “0-1” PF. Lemma 4.5 does not involve any assumptions on
y ∈ R

q, A, or {gi : i ∈ J}.
Lemma 4.5. For y ∈ R

q, let Fy be of the form (1.1)–(1.2), where ϕ is defined in
(3.29).
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(i) We have the following equivalence:

x̂ ∈ R
p is a local minimizer of Fy ⇔

⎡⎢⎢⎣
x̂ is a solution to the
following problem:
minimize ‖Ax− y‖2

subject to x ∈ K(Ĵ1),

where K(Ĵ1) is defined according to (3.16) for Ĵ1 = {i ∈ J : gTi x̂ �= 0}.
(ii) Given y ∈ R

q, if x̂ is a (local) minimizer of Fy, then for every h ∈ R, the
function Fhy has a (local) minimum at hx̂.

Notice that by (i), if ATA is invertible, every local minimizer of Fy is strict.
When ϕ in (4.3) is the “0-1” PF, the global minimizer x̂h of Fh can be determined

explicitly.
Proposition 4.6 (“0-1” PF). Let Fh be of the form (4.3), where ATA is in-

vertible, {gi : i ∈ J} satisfies H6, and ϕ reads as in (3.29). For every h ∈ R+ let x̂h

denote a global minimizer of Fh. Then there are h0 > 0 and h1 > h0 such that the
global minimizer x̂h of Fh reads

h ∈ [0, h0) ⇒ x̂h = hζ 1l,(4.19)

h > h1 ⇒ x̂h = h 1lΣ,(4.20)

where ζ is defined in (4.13). Moreover, x̂h in (4.19) and (4.20) is the unique global
minimizer of Fh.

Observe that x̂h in (4.19) is the same as in Theorem 4.4(i).

5. Experiments. First, we present the restoration of a blurred, noisy 128× 128
synthetic image using both convex and nonconvex PFs ϕ. The original image in
Figure 5.1(a) presents smoothly varying regions, constant regions, and sharp edges.
Data in Figure 5.1(b) correspond to y = a ∗ x + n, where a is a blur with entries
ai,j = exp(−(i2 + j2)/12.5) for −4 ≤ i, j ≤ 4, and n is white Gaussian noise yielding
20 dB of SNR. All restored images are obtained by minimizing a cost-function Fy

of the form (1.1)–(1.2), where {gi : i ∈ J} correspond to the first-order differences of
each pixel with its eight nearest neighbors (then γi = 1 in H6) for different functions

(a) Original image (b) Data y = blur + noise

Fig. 5.1. Data y = a 	 x + n, where a is a blur and n is white Gaussian noise, with 20 dB of
SNR.



RECOVERY OF EDGES USING NONCONVEX REGULARIZATION 981

Row 54 Row 54

Row 90 Row 90

(a) ϕ(t) = tα (b) ϕ(t) = |t|

Fig. 5.2. Restoration using convex PFs. Left: smooth at zero PF. Right: nonsmooth at zero PF.

ϕ. In all figures, the obtained minimizers are displayed on the top. Below we give two
sections of the restored images, corresponding to rows 54 and 90, where the relevant
sections of the original image are plotted with a dotted line. The minimizers corre-
sponding to nonconvex PFs are calculated using a generalized graduated nonconvexity
method [29].

The restorations in Figure 5.2(a) and (b) correspond to convex PFs, namely
ϕ(t) = |t|α for α = 1.4, β = 40 and α = 1, β = 100, respectively. In (a), edges
are slightly blurred and underestimated. In (b), the stair-caising effect is very visible:
there are numerous spurious edges, whereas important edges are underestimated. The
restorations in Figure 5.3 are calculated using nonconvex PFs. The restorations in the
first row correspond to smooth at zero PFs, while those in the second row correspond
to nonsmooth at zero PFs. On the average, the important edges are very neat, and
their amplitude is correct. The image in (a) corresponds to PF (f5) (see Table 1.1) for
α = 25, β = 35. The image in (b) is obtained using the PF (f4) for α = 60, β = 10.
Both images have neat edges and smoothly varying homogeneous regions. Some fine
features in (a) are underestimated, and others are skipped. The image in (b) provides
a faithful restoration. The image in (c) corresponds to the PF (f9) for α = 20,
β = 100, while the one in (d) corresponds to the PF (f11) for β = 25. These PFs are
nonsmooth at zero, and the restored images are piecewise constant: planar-shaped
features are fitted using several constant patches, and some fine features are skipped.
The results in Figure 5.2(b) and Figure 5.3(c) and (d) clearly show that nonsmooth
at zero PFs are not adapted to the restoration of smoothly varying regions.
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Row 54 Row 54

Row 90 Row 90

(a) ϕ(t) = αt2/(1 + αt2) (b) ϕ(t) = min{αt2, 1}

Row 54 Row 54

Row 90 Row 90

(c) ϕ(t) = α|t|/(1 + α|t|) (d) ϕ(t) = 1 − 1l(t=0)

Fig. 5.3. Restoration using nonconvex PFs. First row ( (a) and (b)): smooth at zero PFs.
Second row ( (c) and (d)): nonsmooth at zero PFs.
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6. Conclusion: Further interpretation of the results. Each local mini-
mizer x̂ of Fy can be seen as resulting from a local minimizer function y → χ(y)
defined on a subset of U ⊂ R

q, i.e., x̂ = χ(y). It has been established in [12] that
when ATA is invertible, local minimizer functions are C1-continuous on their domains.
Consequently, a local minimizer function χ : U → R

p produces minimizers x̂ = χ(y),

for y ∈ U , that have the same set of edges Ĵ1, that is, {i ∈ J : gTi χ(y) ≥ θ1} = Ĵ1, for
all y ∈ U . (To prove it, notice that the converse would contradict the continuity of χ
on U .)

Given y ∈ R
q, let Fy reach its global minimum at x̂ = χ(y) with edges indexed

by Ĵ1 and homogeneous regions indexed by Ĵ0. When data vary in a neighborhood
of y in such a way that noticeable edges either appear or disappear in the original
signal or image, the global minimum will jump from the (local) minimizer function χ

with edges Ĵ1 to another (local) minimizer function χ′ whose edges are Ĵ ′
1 �= Ĵ1. This

discontinuity of the global minimizer function is the property that allows edges to be
detected or removed at the global minimum of Fy. Using the results of [13], such
discontinuities occur only at data points included in a negligible subset of R

q.
In contrast, if Fy is strictly convex, there is a unique minimizer function χ :

R
q → R

p, and the latter is continuous. In particular, differences gTi x̂ can take any
value on R. The edge-preservation properties of ϕ(t) = |t|—the famous total-variation
regularization—have been extensively discussed in the literature. We should empha-
size that they are based on a totally different property. As explained in [30, 33],
the relevant minimizers x̂ exhibit stair-casing : for many differences, gTi x̂ = 0, so x̂
contains constant regions. The nonzero differences that separate the constant regions
in x̂ then naturally appear as edges. This effect is observed in Figure 5.2(b), where
numerous spurious edges appear on planar-shaped regions.

Thus, image and signal restoration using nonconvex regularization is fundamen-
tally different from restoration using convex regularization. The main difference is
related to the (dis)continuity of the global minimizers with respect to the data.

7. Appendix.

A cost-function on R (section 2)—details. The considerations below are
nicely illustrated in Figure 2.1, on the left for H3 and on the right for H4.

Local minimizer x̂0 ∈ [0, θ0] for y ∈ [0, h0). Consider that H3 holds. Using (2.9),
the equation in (2.6) has a solution x̂0 ∈ [0, θ0]. However, for no y ∈ [0, h0) it can be
satisfied by x̂0 = θ0. Hence x̂0 < θ0. Combining this with (2.5) and H3 shows that
ϕ′′(x̂0) > − 2

β , and hence F ′′
y (x̂0) > 0. Hence Fy has a strict minimum at x̂0.

Now let H4 hold. By (2.7) and (2.9), Fy may have a (local) minimum at x̂0 = 0.
In order to check this possibility, let us consider

K(u) = Fy(u) −Fy(0) = u2 − 2uy + βϕ(u).

Suppose ϕ′(0+) < +∞. Since 2y
β ∈ [0, ϕ′(0+)), by the definition of ϕ′(0+), there is

ε > 0 such that

u ∈ (0, ε) ⇒ ϕ(u) ≥ 2y

β
u.

Then for every u ∈ (0, ε) we find that K(u) ≥ u2 > 0.

If ϕ′(0+) = +∞, there is ε > 0 such that ϕ(u)
u ≥ 2

β y for all u ∈ (0, ε). Then

K(u) = u2 + β(ϕ(u)
u − 2

β y)u > 0 for all u ∈ (0, ε). Combining these results with the
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observation that K(u) > 0 for all u < 0 shows that Fy has a strict (local) minimum
at x̂0 = 0.

Local minimizer x̂1 > θ1 for y > h1. Now the equation in (2.6) admits a solution
x̂1 ∈ [θ1,∞). Since (2.6) cannot be satisfied for θ1, we have x̂1 > θ1. This, combined
with (2.5) and with either H3 or H4, shows that ϕ′′(x̂1) > − 2

β , and hence F ′′
y (x̂1) > 0.

Thus Fy admits a strict local minimum at x̂1.
Proof of (2.10). We first consider the possibility that Fh1 has a local minimum at

χ1(h1) = θ1. Noticing that for any u > 0, ϕ′′ is continuous and satisfies ϕ′′(θ1 + u) >
ϕ′′(θ1), we can write that

ϕ(θ1 + u) − ϕ(θ1) − uϕ′(θ1) = u2

∫ 1

0

(1 − t)ϕ′′(θ1 + tu)dt

<
u2

2
ϕ′′(θ1) = −u2

β
,

where the last equality comes from (2.5). It follows that for any u > 0 we have

Fh1(θ1 + u) −Fh1
(θ1) = u2 + β (ϕ(θ1 + u) − ϕ(θ1) − uϕ′(θ1)) < 0.

Hence Fh1 does not have any local minimum at θ1.
Now we focus on the possibility that Fh0 has a local minimum at χ0(h0) = θ0.

When H3 holds, similar reasoning shows that Fh0
does not have any local minimum

at χ0(h0) = θ0.
Consider next that H4 holds. Let us consider the function K : [0, ε) → R,

K(u) = Fh0
(u) −Fh0

(0) = u2 + β(ϕ(u) − uϕ′(0+)),

where the second equality comes from (2.9). Using (2.2), − 2
βϕ′′(0+) ∈ (0, 1). Let us

choose η ∈ (− 2
βϕ′′(0+) , 1). Then there is ε > 0 such that

0 < u < ε ⇒ ϕ′′(u) ≤ ηϕ′′(0+).

Using that βηϕ′′(0+) < −2, for any u ∈ (0, ε) we have

K′′(u) = 2 + βϕ′′(u) ≤ 2 + βηϕ′′(0+) < 0.

Hence K′ is strictly decreasing on (0, ε). Combining the latter with K′(0+) = 0
shows that K′(u) < 0 if 0 < u < ε. Hence K is strictly decreasing on (0, ε) as well.
Combining this with K(0) = 0 shows that K(u) < 0 if 0 < u < ε. The latter shows
that Fh0

does not have any local minimum at χ0(h0) = 0.
Proof of (2.11). For either χ = χ1 or χ = χ0 if H3 holds, we can write that

Fy(χ(y)) = (χ(y) − y)2 + βϕ(χ(y)).

Using that χ(y) satisfies (2.6), we get

dFy

dy
(χ(y)) = 2(χ(y) − y)(χ′(y) − 1) + βϕ′(χ(y))χ′(y) = 2(y − χ(y)).

For χ = χ0 = 0 under H4 we find Fy(χ(y)) = y2 for all y ∈ [0, h0); hence (2.11) holds
again.
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Proof of Proposition 3.2. Consider first that r < p. Using the change of
variables x → (z, zb) given in (3.10), we consider F̂y(z, zb) = Fy(Hz + Hbzb), namely

F̂y(z, zb) = ‖Bz + Bbzb − y‖2 + β
∑
i∈J

ϕ(z[i]),(7.1)

where B and Bb are given in (3.11). Let x̂ be a minimizer of Fy. Equivalently, (ẑ, ẑb),
where ẑ = Gx̂ and ẑb = Gbx̂, is a minimizer of Fy. Using that in particular the

derivative of F̂y with respect to zb is zero, we have ẑb = σy(ẑ), where σy : R
r → R

p−r

reads

σy(z) = −
(
BT

b Bb

)−1
BT

b (Bz − y).

Put Fy(z) = F̂y(z, σy(z)), i.e.,

Fy(z) = ‖P (Bz − y)‖2 + β

r∑
i=1

ϕ(z[i]),(7.2)

where P is as given in (3.12). If p = r, then zb is empty, and (7.2) holds with P = I.
Clearly, x̂ is a global minimizer of Fy if and only if ẑ = Gx̂ is a global minimizer
of Fy. In the following we focus on Fy. Our reasoning relies on the observation that
if ẑ is a global minimizer of Fy, then for any i ∈ J , the function fi : R → R,

fi(t) = Fy (ẑ + (t− ẑ[i])ei) ,

has a global minimum at t̂ = ẑ[i]. After some elementary calculations, we can write
that

fi(t) = t2 ‖Pbi‖2 + 2t wT
i Pbi + βϕ(t) + κi,(7.3)

where bj = Bej , j = 1, . . . , r,

wi =
∑

j∈J\{i}
bj ẑ[j] − y,

κi = ‖Pwi‖2 + β
∑

j∈J\{i}
ϕ(ẑ[j]).

If Pbi = 0, the function fi has a unique minimum at t̂ = 0, which entails that gTi x̂ = 0.
Hence we have proved (i).

Next, we consider that Pbi �= 0. Put

χ0 = − wT
i Pbi

‖Pbi‖2 + αβ
and χ1 = −wT

i Pbi
‖Pbi‖2

.(7.4)

If |wT
i Pbi| < ‖Pbi‖2

√
α

, then fi has a unique minimizer which reads t̂ = χ0 and satisfies

|t̂| < ‖Pbi‖2

√
α (‖Pbi‖2 + αβ)

<
1√
α

Γi.

If |wT
i Pbi| > ‖Pbi‖2+αβ√

α
, then fi has a unique minimizer which reads t̂ = χ1 and

satisfies

|t̂| > ‖Pbi‖2 + αβ√
α (‖Pbi‖2)

>
1√
α Γi

.
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If ‖Pbi‖2

√
α

≤ |wT
i Pbi| ≤ ‖Pbi‖2+αβ√

α
, then fi has two local minimizers reached for

χ0 and χ1. So, the global minimizer ẑ of Fy is either ẑ = ẑ0 or ẑ = ẑ1, where

ẑ0 = ẑ + (χ0 − ẑ[i])ei and ẑ1 = ẑ + (χ1 − ẑ[i])ei.(7.5)

Let us denote Δ = Fy(ẑ0) − Fy(ẑ1). We have ẑ = ẑ0 if Δ ≤ 0 and ẑ = ẑ1 if Δ ≥ 0.
Using that

fi(χ0) = − (wT
i Pbi)

2

‖Pbi‖2 + αβ
+ κi and fi(χ1) = − (wT

i Pbi)
2

‖Pbi‖2
+ β + κi,

it is easily found that

Δ = fi(χ0) − fi(χ1) =
αβ(wT

i Pbi)
2

‖Pbi‖2(‖Pbi‖2 + αβ)
− β.

Consequently,

Δ ≤ 0 ⇒ |ẑ[i]| = χ0 ≤

√
‖Pbi‖2

α(‖Pbi‖2 + αβ)
=

1√
α

Γi,

Δ ≥ 0 ⇒ |ẑ[i]| = χ1 ≥

√
‖Pbi‖2 + αβ

α‖Pbi‖2
=

1√
α Γi

.

Hence we have proved (3.14). If Fy has a unique global minimizer, we have either
Δ < 0 or Δ > 0, which implies that the inequalities in (3.14) are strict.

Proof of Proposition 3.4. The reasoning here is similar to the proof of Propo-
sition 3.2. We first obtain the equivalent cost-function given in (7.2) and then check
the minimizers of fi : R → R as introduced in (7.3). Define now χ0 and χ1 by

χ0 = 0 and χ1 = −wT
i Pbi

‖Pbi‖2
�= 0.

If PBei = 0, (7.3) shows that fi(t) = βϕ(t) + κi: the global minimum is reached for
t̂ = 0, which entails that gTi x̂ = 0, as stated in (i). Consider next that PBei �= 0.
In all cases, fi has a local minimum at t̂ = 0; notice that if wT

i Pbi = 0, this is the
unique minimizer of fi. If wT

i Pbi �= 0, there is another local minimum at t̂ = χ1. So,
the global minimizer of Fy is either ẑ = ẑ0 or ẑ = ẑ1, where ẑ0 and ẑ1 read as in (7.5).
Using that

fi(0) = κi and fi(χ1) = − (wT
i Pbi)

2

‖Pbi‖2
+ β + κi,

it is found that

Δ = Fy(z1) − Fy(z2) = fi(0) − fi(χ1) =
(wT

i Pbi)
2

‖Pbi‖2
− β.

It follows that

Δ ≤ 0 ⇒ |ẑ[i]| = χ0 = 0,

Δ ≥ 0 ⇒ |ẑ[i]| = χ1 ≥
√
β

‖Pbi‖
.

Hence we have proved (3.30). If Fy has a unique global minimizer, we have either
Δ < 0 or Δ > 0; hence the inequalities in (3.30) are strict.
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Proof of Proposition 4.2. For any x ∈ R
p satisfying |gTi x| �= 1√

α
for all i ∈ J ,

the function Fh is C2. Its second differential D2Fh(x) is of the form (4.7), where

ϕ′′(gTi x) =

{
2α if |gTi x| < 1√

α
,

0 if |gTi x| > 1√
α
.

This, combined with the invertibility of ATA, entails that D2Fh(x) is positive definite.
It has been shown in [33] that if x̂ is a (local) minimizer of Fh, then

|gTi x̂| �=
1√
α

∀i ∈ J.(7.6)

Hence x̂ satisfies DFh(x̂) = 0, and the minimum of Fh at x̂ is strict.
Implication (4.11). We start with analyzing the sign of the constant κ,

κ = (A1lΣ)TA (1lΣ − χ
Σ
) = (A1lΣ)T

(
I −A(ATA + βαGTG)−1AT

)
A1lΣ,(7.7)

where χ
Σ is given in (4.10). Let us notice first8 that all the eigenvalues of A(ATA +

βαGTG)−1AT are in [0, 1]. Then it follows that κ ≥ 0. If κ = 0, then

A(ATA + βαGTG)−1ATA1lΣ = A1lΣ.

Since ATA is invertible, this is equivalent to (ATA + βαGTG)−1ATA1lΣ = 1lΣ. Con-
sequently, GTG1lΣ = 0. By H6, this is impossible unless Σ is empty. It follows that
κ > 0.

We will consider that h ∈ (0, h0), where

h0 = min

{(√
α max

i∈J

∣∣gTi χΣ

∣∣)−1

,

√
β

κ

}
.(7.8)

Let us examine the possibility that Fh has a (local) minimizer x̂ satisfying

|gTi x̂| <
1√
α

∀i ∈ J.(7.9)

8Denote M = βαGTG. Let λ and v be such that A(ATA+M)−1AT v = λv; then clearly λ ≥ 0.
If AT v = 0, then λ = 0. In the following, consider that AT v �= 0. Using that ATA is invertible, we
deduce that (

ATA + M
)−1

AT v = λ(ATA)−1AT v.

Multiplying both sides of this equation by vTA(ATA)−1(ATA + M) yields

vTA(ATA)−1AT v = λvTA(ATA)−1
(
ATA + M

)
(ATA)−1AT v

= λvTA(ATA)−1AT v + λvTA(ATA)−1M(ATA)−1AT v.

If we denote c1 = vTA(ATA)−1AT v and c2 = vTA(ATA)−1M(ATA)−1AT v, the latter equation
becomes

(1 − λ)c1 = λc2.

Since AT v �= 0, we have c1 > 0. Combining this with the facts that c2 ≥ 0 and λ ≥ 0 shows that
1 − λ ≥ 0.
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In such a case, ϕ′(gTi x̂) = 2α gTi x̂ for all i ∈ J . Introducing this into (4.6) shows
that the equation DFh(x̂) = 0 has a unique solution which reads x̂ = hχΣ . Since
h ∈ (0, h0), it is easy to check that (7.9) is satisfied and that

Fh(x̂) = h2(A1lΣ)TA (1lΣ − χ
Σ
) = h2κ < β.

If x̃ �= x̂ is another (local) minimizer, there is i ∈ J such that |gTi x̃| > 1√
α
; hence

Fh(x̃) ≥ β > Fh(x̂).

It follows that if h ∈ [0, h0), then Fh reaches its global minimum at x̂h = hχ
Σ
.

Implication (4.12). In the following, suppose that h ≥ h1, where

h1 =
1√

α γmin
+

√
2β	J1

αmin
.(7.10)

Let x̂ be a global minimizer of Fh. With x̂ we associate the subsets Ĵ0 and Ĵ1 defined
by

Ĵ0 =

{
i ∈ J :

∣∣gTi x̂∣∣ < 1√
α

}
and Ĵ1 =

{
i ∈ J :

∣∣gTi x̂∣∣ > 1√
α

}
.

Using (7.6), J = Ĵ0 ∪ Ĵ1. Then we apply the reasoning behind the proof of Theorem
4.1(ii) with the modifications explained next. In item (C1) we take θ0 = 1√

α
. In

item (C2) we consider ϕ(gTi x̂) = 1 for all i ∈ Ĵ1, which leads directly to (4.9). In this

way we find that Ĵ0 = J0 and Ĵ1 = J1.
If x̂ �= h1lΣ, using that ATA is invertible we find ‖A(x̂ − h1lΣ)‖ > 0, and hence

Fh(x̂) > Fh(h1lΣ). It follows that the global minimum is reached for x̂ = h1lΣ.

Proof of Lemma 4.5.
Statement (i). Let us define ρ by

ρ = min

⎧⎨⎩min
i∈Ĵ1

∣∣gTi x̂∣∣ 1

max
i∈J

‖gi‖
,

β

2‖AT (Ax̂− y)‖ + 1

⎫⎬⎭ .

For any u ∈ R
p such that 0 < ‖u‖ < ρ, define Δ(u) by

Δ(u) = Fy(x̂ + u) −Fy(x̂)

= ‖A(x̂ + u) − y‖2 − ‖Ax̂− y‖2

+ β
∑
i∈Ĵ1

ϕ(gTi (x̂ + u)) − β
∑
i∈Ĵ1

ϕ(gTi x̂) + β
∑
i∈Ĵ0

ϕ(gTi (x̂ + u)) − β
∑
i∈Ĵ0

ϕ(gTi x̂).

Since gTi x̂ = 0 for all i ∈ Ĵ0, the last term in the expression above vanishes. Further-
more,

0 ≤ ‖u‖ < ρ ⇒
∣∣gTi (x̂ + u)

∣∣ > 0 ∀i ∈ Ĵ1,

⇒ ϕ
(
gTi (x̂ + u)

)
= 1 = ϕ

(
gTi x̂

)
∀i ∈ Ĵ1.

It follows that

Δ(u) = ‖A(x̂ + u) − y‖2 − ‖Ax̂− y‖2 + β
∑
i∈Ĵ0

ϕ(gTi u).(7.11)
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(⇒) Since x̂ is a (local) minimizer of Fy, there is ρ0 ∈ (0, ρ) such that Δ(u) ≥ 0

for all u ∈ B(0, ρ0). Noticing that x̂ ∈ K(Ĵ1) and that the last term in (7.11)

vanishes if u ∈ K(Ĵ1), it is seen that

‖A(x̂ + u) − y‖2 − ‖Ax̂− y‖2 ≥ 0 ∀u ∈ K(Ĵ1) ∩B(0, ρ0).(7.12)

Clearly, the inequality above holds for every u ∈ K(Ĵ1).
(⇐) Let u ∈ R

p be such that 0 < ‖u‖ < ρ. We can decompose u into

u = u0 + u1, where u0 ∈ K(Ĵ1) and u1 ∈
(
K(Ĵ1)

)⊥
.

Consider first that u1 �= 0. Then there is j ∈ Ĵ0 such that gTi u1 �= 0, and
hence ϕ(gTi u) = 1. It follows that

Δ(u) ≥ ‖Au‖2 + 2(Ax̂− y)TAu + β ≥ −2‖AT (Ax̂− y)‖ ‖u‖ + β > 0.

(7.13)

If u1 = 0, then u ∈ K(Ĵ1)∩B(0, ρ0), in which case Δ(u) = ‖A(x̂+u)−y‖2 −
‖Ax̂− y‖2 ≥ 0 since (7.12) holds by assumption. It follows that Δ(u) ≥ 0 for
all u ∈ B(0, ρ0).

Statement (ii). The case when h = 0 is trivial. Consider next that h �= 0. Since

x̂ ∈ K(Ĵ1), then hx̂ ∈ K(Ĵ1) as well. Using (i), we have to show that hx̂ minimizes

x → ‖Ax− hy‖2 on K(Ĵ1). For any u ∈ K(Ĵ1), we have

‖A(hx̂ + u) − hy‖2 − ‖Ax̂− hy‖2 = h2

(∥∥∥A(x̂ +
u

h

)
− y
∥∥∥2

− ‖Ax̂− y‖2

)
≥ 0,

where the inequality comes from the observation that x̂ minimizes x → ‖Ax− y‖2 on

K(Ĵ1).

Proof of Proposition 4.6.
Implication (4.19). We will show the statement for h0 given by

h0 =

√
β

ξ
,(7.14)

where ξ > 0 is defined in (4.15). Using Lemma 4.5, Fh has a minimizer x̂ ∈ K(∅);
using H6, it reads x̂ = ĉ 1l, where ĉ minimizes the function

c → ‖A(c1l − h1lΣ)‖2
;

hence ĉ = hζ and Fh(ĉ1l) = h2ξ. This is the unique minimizer of Fh belonging to
K(∅).

Let x̃ �= x̂ be another (local) minimizer of Fh. Then x̃ /∈ K(∅). Using H6, there
is j ∈ J such that gTj x̃ �= 0, and hence ϕ(gTj x̃) = 1. It follows that for h ∈ (0, h0),

Fh(x̃) ≥ β = h2
0ξ > Fh(ĉ1l).

Implication (4.20). Given J1 ⊂ J1, let u(J1) ∈ R
p be the unique solution to

minimize ‖A(x− 1lΣ)‖2 subject to x ∈ K(J1).(7.15)
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Then define

κ = min
{
‖A (u(J1) − 1lΣ)‖2

: J1 ⊂ J1 \ {J1}
}
.

Since ATA is invertible, ‖A(u(J1) − 1lΣ)‖2 > 0 if J1 �= J1; hence κ > 0. We will
consider that h > h1 for

h1 =

√
β	J1

κ
.

Let x̂ be a (local) minimizer of Fh, and let Ĵ0 and Ĵ1 be defined according to (3.22).

Consider first the possibility that Ĵ1 �= J1. Using Lemma 4.5(ii),

x̂ = h u(Ĵ1),

where u(Ĵ1) is the solution to (7.15). Since h > h1,

Fh(x̂) = h2
∥∥∥A(u(Ĵ1) − 1lΣ

)∥∥∥2

+ β	Ĵ1 ≥ h2κ > β	J1 = Fh(h1lΣ).

It follows that no x̂ such that Ĵ1 �= J1 is a global minimizer of Fh. Reciprocally, if Fh

reaches its global minimum at x̂, then Ĵ1 = J1 (and, equivalently, Ĵ0 = J0). Using
Lemma 4.5, we find that x̂ = h1lΣ.
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