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DENOISING OF FRAME COEFFICIENTS USING �1

DATA-FIDELITY TERM AND EDGE-PRESERVING
REGULARIZATION∗

SYLVAIN DURAND† AND MILA NIKOLOVA‡

Abstract. We consider the denoising of a function (an image or a signal) containing smooth
regions and edges. Classical ways to solve this problem are variational methods and shrinkage of a
representation of the data in a basis or a frame. We propose a method which combines the advantages
of both approaches. Following the wavelet shrinkage method of Donoho and Johnstone, we set to
zero all frame coefficients with respect to a reasonable threshold. The shrunk frame representation
involves both large coefficients corresponding to noise (outliers) and some coefficients, erroneously
set to zero, leading to Gibbs-like oscillations in the estimate. We design a specialized (nonsmooth)
objective function allowing all these coefficients to be selectively restored, without modifying the other
coefficients which are nearly faithful, using regularization in the domain of the restored function. We
analyze the well-posedness and the main properties of this objective function. We also propose
an approximation of this method which is accurate enough and very fast. We present numerical
experiments with signals and images corrupted with white Gaussian noise, which are decomposed
into a wavelet basis. The obtained results demonstrate the advantages of our approach over the main
alternative methods.
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1. Introduction. We consider the restoration of an original (unknown) function
uo(s) defined on a (possibly finite) domain Ω—an image or a signal containing smooth
zones and edges—from noisy data

v = uo + n,

where n represents a perturbation. Restoration has to recover the features of uo, lost
because of the noise, according to prior smoothness constraints. In the literature,
quite different approaches have been developed in order to deal with this classical
but yet unsolved problem. We will discuss only variational methods and shrinkage
estimators since they underlie the method we propose in this paper. In variational
methods, the restored function is defined as the minimizer of an objective function
Fv which balances trade-off between closeness to data and smoothness constraints,

(1) Fv(u) = μ

∫
Ω

|u(s) − v(s)|2 ds +

∫
Ω

ϕ(|∇u(s)|) ds,

where ∇ stands for gradient, ϕ : R+ → R+ is called a potential function, and μ > 0 is a
parameter. In their pioneering work, Tikhonov and Arsenin [46] considered ϕ(t) = t2.
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However, this choice for ϕ leads to smooth images with flattened edges. Under the
usual assumptions that Ω is discrete and the noise n is white and Gaussian, Bayesian
maximum a posteriori estimators amount to minimizing an objective function of the
same form as (1); see, e.g., [7, 21, 30]. Modeling u as a Markov random field gave rise
to many different convex and nonconvex functions ϕ [27, 8, 11, 31]. Even if nonconvex
potential functions can yield minimizers involving sharp edges and smooth regions,
there are no general methods to approximate a global minimizer of Fv. Instead, there
was an increasing interest in determining convex functions ϕ which allow edges to
be restored. Based on a fine analysis of the minimizers of Fv as solutions of PDEs
on a continuous domain Ω, Rudin, Osher, and Fatemi [42] exhibited that ϕ(t) = |t|
leads to images involving edges. Their method is at the origin of a large number of
papers dedicated to edge-preserving convex potential functions; see, e.g., [1, 16, 48].
A recent overview of variational methods can be found in [5]. A systematic default of
the images and signals restored using edge-preserving convex functions ϕ is that the
amplitude of edges is underestimated. This is particularly annoying if the sought-after
function has spiky areas since the latter are subjected to erosion; see, for instance,
Figure 4 in section 7.

Shrinkage estimators operate on a decomposition of data v into a frame of L2(Ω),
say {wi : i ∈ J}, where J is a set of indexes. Let W be the corresponding frame

operator, i.e., (Wv)[i] = 〈v, wi〉, for all i ∈ J , and W̃ be a left inverse of W , giving
rise to the dual frame {w̃i : i ∈ J}. The frame coefficients of v read y = Wv and
are contaminated with noise Wn. The idea is to denoise them by shrinkage using a
symmetric function τ : R → R satisfying 0 ≤ τ(t) ≤ t for all t ≥ 0 and to generate a
denoised function, denoted vτ , according to

(2) vτ =
∑
i∈J

τ((Wv)[i]) w̃i =
∑
i∈J

τ(y[i]) w̃i.

Since the inaugural work of Donoho and Johnstone in [22], shrinkage estimators are
a popular and fast tool for denoising images and signals. The latter paper addresses
orthogonal wavelets transforms for W and discrete domains Ω of finite cardinality #Ω
and considers two different choices for τ : given T > 0, hard thresholding corresponds
to

(3) τ(t) =

{
0 if |t| ≤ T,
t otherwise,

while soft-thresholding corresponds to

(4) τ(t) =

{
0 if |t| ≤ T,
t− T sign(t) otherwise.

Both soft and hard thresholding are asymptotically optimal in the minimax sense if
n is white Gaussian noise of standard deviation σ and

(5) T = σ
√

2 loge #Ω.

This threshold is difficult to use in practice because it increases with the size of #Ω.
Other limitations of these methods are discussed later. Refinements of these methods
have been proposed where an appropriate threshold T is used for each scale of the
coefficients [23]. Denoising of coefficients has also been considered using maximum
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a posteriori estimation [50, 44, 35, 6, 3]. The restored coefficients are set to minimize
an objective function similar to (1),

F (x) = ‖x− y‖2 +
∑
i

μiϕ(|xi|),

where ϕ : R → R is a potential function and {μi} are weights related to the scale so
that the second term in the above expression conveys a multiscale prior on x. The
restored coefficients can be put into the form x̂i = τ(yi), where τ : R → R is defined
by

(6) τ(yi) = arg min
t∈R

{
(t− yi)

2 + μiϕ(|t|)
}

for every yi ∈ R. This approach hence generalizes hard and soft thresholding, defined
in (3)–(4), and gives rise to many other shrinkage functions τ ; a review can be found
in [3]. A particular interest has been carried on priors defined by ϕ(t) = |t|α for
0 < α ≤ 2; see, e.g., [6, 4].

Typically, the functions denoised by variational methods (1), or by shrinkage esti-
mators as given in (2) and (6), exhibit quite a different appearance. For an illustration,
on can compare Figures 3 and 4 in section 7. Nevertheless, striking equivalences be-
tween these methods in the case of total-variation or Besov regularization, and soft
thresholding (4), has been exhibited in [14, 17] and investigated further in [45, 36].

The major problems with shrinkage methods is that shrinking large coefficients
can entail oversmoothing of edges, while shrinking small coefficients towards zero
yields Gibbs-type oscillations in the vicinity of edges. On the other hand, if shrinkage
is not sufficiently strong, some coefficients bearing mainly the noise will remain almost
unchanged—we call such coefficients outliers—and (2) suggests they generate artifacts
with the shape of the functions w̃i of the frame. This effect can be observed in Figure 1
in section 4. A lot of studies have been carried out in order to determine functions
ϕ in (6) which faithfully account for the statistical distribution of the coefficients xi.
An inherent difficulty comes from the fact that coefficients between different scales
are not independent, as assumed in (6). Another limitation comes from the necessity
to use in practical methods only a limited number of scales and coefficients. It turns
out that priors on the coefficients x cannot adequately address important features of
the restored function such as the presence of edges and smooth regions.

In order to introduce such information in the restoration, several authors [10, 19,
15, 25, 33, 32, 12, 24] investigated the idea of combining the information contained in
the large coefficients y[i] with pertinent priors directly on the sought-after function
u. Although based on different motives, these “hybrid” methods amount to defining
the restored function û as
(7)

minimize Φ(u) =

∫
Ω

ϕ(|∇u(s)|) ds subject to û ∈ {u : |(W (u−v)) [i]| ≤ μi ∀i ∈ J} ,

where, in a general way, {μi} are determined based on y. In the first such method,
introduced in [10], ϕ(t) = t2. General functions ϕ are considered in [19]. In order to
remove pseudo-Gibbs oscillations, the authors of [25, 33, 12, 24] focused on ϕ(t) = |t|
and used various choices for the operator W . In [10, 19, 25, 24], orthogonal bases have
been used for W , and [12] has focused on curvelets transform, while [33] has considered
unions of wavelet bases. These methods differ also in the choice of parameters {μi}i∈J .
In [33, 32], all μi are equal and determined by the level of the noise. In other methods,
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the choice of μi takes into account the magnitude of data coefficients y[i] as well. In
[19, 25], μi relevant to large data coefficients y[i] are set to 0, while those corresponding
to small coefficients are set to ∞ in [25]. If the use of an edge-preserving function for
ϕ is clearly a pertinent choice, the strategy for the selection of parameters {μi}i∈J

remains an open question.
In section 2 we provide a critical analysis of the strategies adopted by the authors

cited above. Our first conclusion is that the choice for each μi must take into account
the magnitude of the relevant data coefficient y[i], and it corroborates the approach
followed by [19, 25]. However, deciding on the value of μi based solely on y[i], as done
in these papers, is too rigid since there are either correct data coefficients that incur
smoothing (μi > 0) or noisy coefficients that are left unchanged (μi = 0). A way to
alleviate this situation is to determine {μi}i∈J based both on the data and on a prior
regularization term. This is precisely the project of this paper. It is carried out by
defining restored coefficients x̂ to minimize an objective function of the form

(8) Fy(x) = Ψ(x, y) + Φ(W̃x),

where Ψ is a specially designed data-fitting term and Φ is of the form (7). More
precisely, Fy is designed in such a way that its minimizer x̂ involves a classification
of the restored coefficients as faithful (x̂[i] = y[i]), essentially noise (x̂[i] = 0), and
coefficients restored by fitting to the regularization term. Following [39, 40], we focus
on a new family of objective functions where Ψ is nonsmooth. The design of Fy is
presented in section 2. Section 3 is dedicated to the existence of a minimizer x̂ of Fy

and to its uniqueness. To do this analysis, we essentially follow [47]. Our choice for
Fy is justified in section 4. In section 5 we study some properties of the minimizer x̂ of
Fy which give rise to practical bounds for the parameters. Experiments on denoising
a signal and an image, presented in section 7, demonstrate the effectiveness of our
method over existing denoising schemes.

2. Design of an objective function. We start this section with an analysis of
the information borne by the data coefficients

y[i] = 〈wi, u〉 ∀i ∈ J.

For normalized frame transforms, we can suppose that the noise on each coefficient

η[i] = 〈wi, n〉 ∀i ∈ J

is zero mean and has constant variance; let it be denoted σ2. However, visual degra-
dation induced by noisy coefficients in different frequency bands is ill-assorted. Noise
corresponding to a function w̃i is of the form η[i]w̃i, where η[i] is random, is zero-
mean, and has a fixed variance. When w̃i is low frequency, then it is nearly zero at
each point since the frame is normalized. Hence the noise component η[i]w̃i is nearly
invisible. This suggests we can take x̂[i] = y[i]. An additional argument for such a
choice is the following. In many frame transforms (e.g., wavelets) all functions wi

whose mean is nonzero are also low-frequency. Taking x̂[i] = y[i] then allows the
mean of the original uo to be preserved. Let I∗ ⊂ J denote the subset of all such
coefficients. If one restores all other coefficients, namely x̂[i] for i ∈ I = J \ I∗, the
sought-after function û reads

(9) û =
∑
i∈I

x̂[i] w̃i +
∑
i∈I∗

y[i] w̃i = W̃ x̂ + W̃∗ y.
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In order to simplify the notations, we will write W̃ for the restriction of the frame

operator to I, and W̃∗ for its restriction to I∗. Another important observation is that
for the classes of functions uo we consider—composed of homogeneous regions and
edges—the coefficients 〈wi, uo〉 corresponding to a low-pass function wi have a large
magnitude. In contrast, for the high-frequency functions wi we have

(10) 〈wi, uo〉 ≈ 0, for many indexes i,

whereas 〈wi, uo〉 has a significative magnitude only in connection with edges. In
particular, the data coefficients yi for all indexes i mentioned in (10) contain essentially
noise, yi ≈ η[i]. For example, the values of more than 95% of them are contained
in [−2σ, 2σ] if η is Gaussian noise. If there are other less noisy data coefficients
with values in the essential range of the noise, they cannot be distinguished from
the former coefficients. No reliable information on uo can be extracted from data
coefficients whose values are in the essential range of the noise. This suggests we split
the set I = J \ I∗ into I = I0 ∪ I1,

I0 = {i ∈ I : |y[i]| ≤ T},(11)

I1 = I \ I0,(12)

where T > 0 (e.g., of the order of 2σ), and consider the restoration of the coefficients
x̂[i] corresponding to each subset separately. Our discussion allows us to characterize
the goals of the restoration for each subset as presented below.

(G0) The coefficients y[i] for i ∈ I0 are usually high-frequency components which
can be of two types:

– Noise data coefficients if they correspond to (10). The best restoration
for these coefficients is certainly x̂[i] = 0.

– Coefficients y[i] which correspond to edges and other details in uo. Since
y[i] is difficult to distinguish from the noise, the relevant x̂[i] will be
restored based on the edge-preserving priors conveyed by Φ in (8). Notice
that a careful restoration certainly leads to a nonzero x̂[i], since otherwise
x̂[i] = 0 would generate Gibbs-like oscillations in û.

(G1) I1 addresses two types of coefficients y[i]:
– Large coefficients which bear the main features of the sought-after func-

tion. They verify y[i] ≈ 〈wi, uo〉 and must be kept intact, i.e., x̂[i] = y[i].
– Coefficients which are highly contaminated by noise, characterized by

|y[i]| � |〈wi, uo〉|. We call them outliers because if we had x̂[i] = y[i],
then û would contain an artifact with the shape of w̃i since

∑
j x̂[j]w̃j +

(y[i] − 〈wi, uo〉) w̃i. Instead, x̂[i] will be restored according to the prior
carried by Φ.

Observe that dropping all data coefficients y[i] for i ∈ I0 amounts to considering

(13) yT [i] =

{
0 if |y[i]| ≤ T,
y[i] otherwise.

In fact, yT is obtained from y by hard thresholding, yT [i] = τ(y[i]), where τ is the
function given in (3). We hence require that the minimizer x̂ of Fy achieves all the
goals stated in (G0)–(G1). In particular, x̂ must involve an implicit classification be-
tween coefficients that must fit to yT exactly and coefficients that must be restored.
For the latter, x̂ have to provide a pertinent restoration. Qualitatively speaking,
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restored coefficients have to fit yT exactly if they are in accordance with the regu-
larization term and have to be restored otherwise. In order to design an objective
function whose minimizer satisfies (G0)–(G1), we follow [39, 40], where objective func-
tions with Ψ nonsmooth at the origin are considered. These objective functions were
shown to have the property that a certain number of the restored coefficients satisfy
x̂[i] = yT [i] (in fact, if they are in accordance with the prior), whereas the other
coefficients are restored by fitting to the regularization term. Our attention being re-
stricted to convex objective functions, the most natural choice is Ψ(x, y) = ‖x−yT ‖1,
where ‖ . ‖1 denotes the �1 norm. So, Fy is of the form

Fy(x) =
∑
i∈I1

λi |(x− y)[i]| +
∑
i∈I0

λi |x[i]| + Φ(x),(14)

Φ(x) =

∫
Ω

ϕ(|∇W̃x|) ds,(15)

and the sought-after solution x̂ minimizes Fy over the subset {x ∈ J : x[i] = y[i]
for all i ∈ I∗}. The regularization Φ brings the priors about the local features of
the restored function. Its role is critical on the regions corresponding to wavelet
coefficients which are either outliers or are erroneously set to zero. The images and
signals we wish to restore are supposed to involve smooth regions and edges. To
this end, we focus on edge-preserving convex potential functions ϕ which have been
studied by many authors [42, 11, 31, 9, 16]. An essential distinction between these
potential functions is the differentiability of t → ϕ(|t|) at the origin. Since [38], it

is known that if t → ϕ(|t|) is nonsmooth at zero, restored images and signals W̃ x̂
involve constant regions. Such a property does not correspond to real-world images
and signals. In contrast, if Φ is smooth, they contain smoothly varying regions and
possibly edges. We hence focus on potential functions ϕ of the latter kind, which
means that ϕ′(0+) = 0. Examples of such functions are [28, 11, 9, 16, 49]

ϕ(t) = tα, 1 < α ≤ 2,(16)

ϕ(t) =
√

α + t2,(17)

ϕ(t) = log(cosh (αt)),(18)

ϕ(t) = |t| − α log

(
1 +

|t|
α

)
,(19)

ϕ(t) =

⎧⎪⎨
⎪⎩

t2

2
if |t| ≤ α,

α|t| − α2

2
if |t| > α,

(20)

where α > 0 is a parameter. Notice that α = 1 in (16) or α = 0 in (17) leads to
ϕ(t) = |t|, in which case ϕ′(0+) = 1.

Remark 1. In (13), we would not recommend the use of another shrinkage func-
tion τ to construct yT since it will alter all the data coefficients without restoring
them faithfully. In contrast, we base our restoration on data preserving all the initial
information on the sought-after image or signal. To this end, we choose a threshold
T considerably smaller than (5).

The considerations on the information content of noisy coefficients y provide a tool
for making a critical analysis of the hybrid methods mentioned in the introduction,
namely [10, 19, 25, 33, 12, 24]. Let us come back to the formulation given in (8). If
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the use of an edge-preserving function for ϕ is clearly a pertinent choice, the strategy
for the selection of parameters {μi}i∈J remains an open question. In order to enable
noise removal, all μi corresponding to coefficients degraded by the noise must be
large enough to allow the noise to be smoothed by the regularization term. Then
the residual |(Wv) [i] − (Wû) [i]| between data and restored coefficients is nonzero
and increases with the magnitude of the coefficients. Hence, large μi for large data
coefficients (Wv) [i] entail oversmoothing of important features in the restored image
or signal, as can be observed in Figure 11. This can be seen as a weakness of the
method of [33]. A further observation, exploited in [19, 25], is that for each data
coefficient, its signal-to-noise ratio is better (i.e., higher) if its magnitude is larger,
and vice versa. The μi for data coefficients which are likely to have a large signal-to-
noise ratio can be small, or null. The question of how to decide which coefficient is
large and less degraded, and which is small and highly degraded, is difficult to solve
by thresholding. An optimistic (i.e., low) thresholding rule gives μi = 0 for a large
number of data coefficients; it is very likely that some of them—typically those of
medium magnitude—are highly corrupted, thus leading to “outliers” in the restored
coefficients. A pessimistic (i.e., high) thresholding rule gives μi > 0 for a large amount
of data coefficients, thus leading to oversmoothing in the restored û. More flexibility is
hence necessary in the restoration of these coefficients. Furthermore, the restoration
of small coefficients is important to avoid Gibbs-type oscillations in the vicinity of
edges and to obtain smooth regions between the edges; the latter may need that some
of these coefficients remain nearly null, or null.

3. Well-posedness of the minimization problem. In this section we focus on
the existence and the uniqueness of the minimization problem formulated in (14)–(15).

3.1. Existence. It is clear that Fy does have a minimizer when #Ω is finite.
This question requires more investigation when Ω is an open subset of R

d. For all
u ∈ BV(Ω), denote by Du its weak derivative and recall the Lebesgue decomposition

Du = ∇uLd + Dsu,

where Ld is the Lebesgue measure on R
d, ∇u ∈ (L1(Ω))d is the Radon–Nikodym

derivative of Du, and Dsu is singular with respect to Ld. In order to ensure the
existence of a minimizer, we must change the objective function in its relaxation on
BV − w∗,

Fy(x) =
∑
i∈I1

λi |(x− y)[i]| +
∑
i∈I0

λi |x[i]|(21)

+ ϕ(|DW̃x|)(Ω),

where ϕ(|DW̃x|)(Ω) =
∫
Ω
ϕ(|∇W̃x|) ds + |DsW̃x|(Ω). We consider Fy as a function

on �2(J), although ϕ(|DW̃x|)(Ω) is not finite for all x ∈ �2(J). Hence the so defined
Fy is R valued.

Theorem 1. For y ∈ �2(J) and T > 0 given, consider Fy as defined in (21),
where Ω ∈ R

d is open and bounded, its boundary ∂Ω is Lipschitz, ϕ is convex, and
there is a constant a > 0 such that

(22) t− a ≤ ϕ(t) ≤ t + a ∀t ∈ R+.

Furthermore, we suppose that

(23) wi ∈ L1(Ω) and

∫
Ω

wi(s) ds = 0 ∀i ∈ I.
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Suppose that either the assumptions in (B) or those in (F) are satisfied:
(B) 1. {wi}i∈J is a Riesz basis of L2(Ω);

2. we have d = 1 or d = 2;
(F) 1. {wi}i∈J is a frame of L2(Ω) and the operator W̃ is the pseudoinverse

of W ;
2. if d ≥ 2, wi ∈ Ld(Ω) for all i ∈ J ;
3. λmin = mini∈I λi > 0.

Then Fy has a minimizer in {x ∈ �2(J) : x[i] = y[i] for all i ∈ I∗}.
Recall that the pseudoinverse of W reads W̃ = (W ∗W )−1W ∗, where W ∗ is the

adjoint operator. More details can be found in [34]. The assumption (22) is general
enough for edge-preserving regularization. It holds for all functions given in (17)–(20),
as well as for (16) if α = 1.

Proof. Our proof is essentially inspired by [47]. For simplicity, we denote by K a
positive constant whose value can change from one equation to another.

Let {xn}n≥1 be a minimizing sequence for (21). Then

(24) |Fy(xn)| ≤ K ∀n ≥ 1,

and using (22),

K ≥
∫

Ω

ϕ(|∇W̃xn| ds) ≥
∫

Ω

|∇W̃xn| ds− a|Ω| ∀n ≥ 1.

Combining this with the fact that Ω is bounded shows that

(25)

∫
Ω

|∇W̃xn| ds ≤ K ∀n ≥ 1.

From (24) yet again,
∣∣DsW̃xn

∣∣ (Ω) ≤ K, for all n ≥ 1, which combined with (25)
shows that

(26)
∣∣∣DW̃xn

∣∣∣ (Ω) ≤ K ∀n ≥ 1.

Let χΩ denote the characteristic function of Ω. Put

c =
1

|Ω|

(∫
Ω

W̃xn

)
χΩ.

Notice that c is independent of n since the mean of W̃xn is fixed by the model (wi

has zero mean for all i ∈ I∗). Using the Poincaré–Wirtinger inequality,

‖W̃xn − c‖Lp(Ω) ≤ K where p = 2 if d = 1 and p =
d

d− 1
if d ≥ 2.

Since Ω is bounded, we have ‖W̃xn‖Lp(Ω) ≤ K, and hence

‖W̃xn‖L1(Ω) ≤ K.

It follows from (26) and the latter equation that W̃xn ∈ BV and that

(27) ‖W̃xn‖BV ≤ K ∀n ≥ 1.
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Then there exist u ∈ BV and a subsequence, denoted {xn} again, such that

W̃xn ⇀ u in Lp,(28)

DW̃xn ⇀ Du in w ∗M(Ω),(29)

where M(Ω) is the set of signed measures on Ω with bounded total variation. Since
ϕ(| . |)(Ω) is weak∗ lower semicontinuous on M(Ω), we have

(30) ϕ(|Du|)(Ω) ≤ lim
n→∞

inf ϕ(|DW̃xn|)(Ω).

Suppose that there exists x̂ ∈ {x ∈ �2(J) : x[i] = y[i] for all i ∈ I∗} such that

(31)

{
u = W̃ x̂,
xn[i] → x̂[i] ∀i ∈ I.

By Fatou’s lemma,∑
i∈I

λi |x̂[i] − yT [i]| ≤ lim
n→∞

inf
∑
i∈I

λi |xn[i] − yT [i]| .

Combining this result with (30) shows that

Fy(x̂) ≤ lim
n→∞

inf Fy(xn).

In the following we will show that if either (B) or (F) holds, there is an x̂ and a
subsequence of {xn} such that (31) is satisfied.

• Consider that (B) holds. Using (28) for p = 2, we can write that

〈W̃xn, wi〉 → 〈u,wi〉 ∀i ∈ I.

From (B)-1, 〈W̃xn, wi〉 = xn[i] for all i ∈ J . If we put x̂[i] = 〈u,wi〉, for every
i ∈ J , the above expression yields that

(32) xn[i] → x̂[i] ∀i ∈ I.

• Consider that the assumptions (F) hold. Based on (24),

K ≥
∑
i∈I

λi |xn[i] − yT [i]|

≥ λmin

∑
i

|xn[i] − yT [i]|

= λmin ‖xn − yT ‖�1(I)
≥ λmin ‖xn − yT ‖�2(I)
≥ λmin ‖xn‖�2(I) − λmin ‖yT ‖�2(I) .

Using (F)-3, we deduce that ‖xn‖�2(I) ≤ K for all n ≥ 1. It follows that there

are x̂ ∈ {x ∈ �2(J) : x[i] = y[i] for all i ∈ I∗} and a subsequence, denoted
{xn} again, so that

(33) xn ⇀ x̂ in �2(J).
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In particular, we have

xn[i] → x̂[i] ∀i ∈ J,(34)

(WW̃xn)[i] → (WW̃x̂)[i] ∀i ∈ J,(35)

since WW̃ is the orthogonal projection onto ImW . Using that by (F)-2, we
have wi ∈ (Lp)

′
for every i, (28) leads to

(36) 〈W̃xn, wi〉 → 〈u,wi〉 ∀i ∈ J,

which is equivalent to

(WW̃xn)[i] → (Wu) [i] ∀i ∈ J.

From the last two results,

WW̃x̂ = Wu.

Then

W̃ x̂ = W̃WW̃ x̂ = W̃Wu = u.

Remark 2. In the case of a signal or an image (d = 1 or 2, respectively), assump-
tions (B)–(F) boil down to writing that either {wi}i∈J is a Riesz basis of L2(Ω) or
λmin > 0.

Remark 3. In the case of frames, assumption (F)-2 saying that wi ∈ Ld(Ω) is
usually satisfied since in practice wi ∈ L∞(Ω) ∪BV (Ω).

3.2. Uniqueness. The following theorem applies either when Ω is finite or when
Ω and Fy are as in Theorem 1.

Theorem 2. Suppose ϕ is convex. If x̂1 and x̂2 are two minimizers of Fy, then

(37) ∇W̃ x̂1 ∝ ∇W̃ x̂2 a.e. on Ω.

Moreover, if ϕ is strictly convex, then

(38) ∇W̃ x̂1 = ∇W̃ x̂2 a.e. on Ω.

Before proving the theorem, we comment on its meaning in the situations where

any solution û = W̃ x̂ is smooth (e.g., J is finite and W̃ is smooth). In these cases
Dû = ∇û, and so (37) or (38) holds everywhere on Ω. As the gradient of an image at
any point is orthogonal to the level line passing through this point, Theorem 2 means
that W̃ x̂1 and W̃ x̂2 have the same level lines. In other words, these two images are
obtained one from another by a local change of contrast. Noticing also that in practice∫
Ω
w̃i ds = 0, for all i ∈ I, choosing ϕ strictly convex ensures that there is a unique

smooth û = W̃ x̂.
Proof. Let us decompose Fy as follows:

Fy = G(x) + Hy(x),

where

G(x) =

∫
Ω

ϕ(|∇(W̃x)(s)|) ds,(39)

Hy(x) =
∑
i∈I1

λi |(x− y)[i]| +
∑
i∈I0

λi |x[i]| +
∣∣∣Ds(W̃x)

∣∣∣ (Ω).(40)
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Since Fy is convex, (x̂1 + x̂2)/2 is a minimizer of Fy as well. We can write that

(41) Fy

(
x̂1 + x̂2

2

)
=

Fy(x̂1) + Fy(x̂2)

2
.

From the convexity of G and Hy,

G

(
x̂1 + x̂2

2

)
≤ G(x̂1) + G(x̂2)

2
,

Hy

(
x̂1 + x̂2

2

)
≤ Hy(x̂1) + Hy(x̂2)

2
.

If one of these inequalities is strict, (41) shows that the other inequality cannot be
satisfied. It follows that both inequalities are, in fact, equalities. In particular,

(42)

∫
Ω

ϕ

(∣∣∣∣∇
(
W̃

x̂1 + x̂2

2

)
(s)

∣∣∣∣
)
ds =

∫
Ω

ϕ(|∇(W̃ x̂1)(s)|) + ϕ(|∇(W̃ x̂2)(s)|)
2

ds.

Using that ϕ is convex, the inequality below holds for almost every s ∈ Ω:

ϕ

(∣∣∣∣∇
(
W̃

x̂1 + x̂2

2

)
(s)

∣∣∣∣
)

≤ ϕ(|∇(W̃ x̂1)(s)|) + ϕ(|∇(W̃ x̂2)(s)|)
2

.

If the last inequality was strict on a subset of Ω of positive measure, we would find
that the left-hand side of (42) is strictly smaller than its right-hand side. We deduce
that for almost every s ∈ Ω,

ϕ

(∣∣∣∣∇
(
W̃

x̂1 + x̂2

2

)
(s)

∣∣∣∣
)

=
1

2
ϕ(|∇(W̃ x̂1)(s)|) +

1

2
ϕ(|∇(W̃ x̂2)(s)|).

Using a triangular inequality,

∣∣∣∣∇
(
W̃

x̂1 + x̂2

2

)
(s)

∣∣∣∣ ≤
∣∣∣∇(W̃ x̂1)(s)

∣∣∣ +
∣∣∣∇(W̃ x̂2)(s)

∣∣∣
2

.

Using that ϕ is increasing, this entails that

ϕ

(∣∣∣∣∇
(
W̃

x̂1 + x̂2

2

)
(s)

∣∣∣∣
)

≤ ϕ

(
1

2

∣∣∣∇(W̃ x̂1)(s)
∣∣∣ +

1

2

∣∣∣∇(W̃ x̂2)(s)
∣∣∣)

≤ 1

2
ϕ(|∇(W̃ x̂1)(s)|) +

1

2
ϕ(|∇(W̃ x̂2)(s)|)(43)

= ϕ

(∣∣∣∣∇
(
W̃

x̂1 + x̂2

2

)
(s)

∣∣∣∣
)
.

The above inequalities are therefore equalities. Using that ϕ is strictly increasing, it
follows that for almost every s ∈ Ω,∣∣∣∇(W̃ x̂1)(s) + ∇(W̃ x̂2)(s)

∣∣∣ =
∣∣∣∇(W̃ x̂1)(s)

∣∣∣ +
∣∣∣∇(W̃ x̂2)(s)

∣∣∣ .
We conclude that, for almost every s ∈ Ω,

∇(W̃ x̂1)(s) ∝ ∇(W̃ x̂2)(s).

If ϕ is strictly convex, (43) leads to the result in (38). The proof is complete.
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4. Rationale of the objective function. The function Fy in (21) belongs to
the family

Fy(x) =
∑
i∈I1

ψi(|(x− y)[i]|) +
∑
i∈I0

ψi(|x[i]|)(44)

+ ϕ(|DW̃x|)(Ω),

where ψi : R+ → R+, i ∈ I0 ∪ I1, are C1, convex, and increasing functions, and ϕ is
convex as well, as specified above. To simplify the presentation, we take ψi(0) = 0 for
all i. The justification of the choice we made in (21) relies on an analysis of the nec-
essary and sufficient conditions for a minimum of Fy as given in (44). Following [29],
Fy reaches its minimum at x̂ if and only if 0 ∈ ∂Fy(x̂), where the set ∂Fy(x̂) is the
subdifferential of Fy at x̂. In our case, this condition yields the following:

• For all i ∈ I1,

x̂[i] = y[i] ⇒ ∃g ∈ ∂iΦ(x̂) : |g| ≤ ψ′
i(0),(45)

x̂[i] �= y[i] ⇒ −ψ′
i

(
|(x̂− y)[i]|

)
sign

(
(x̂− y)[i]

)
∈ ∂iΦ(x̂).(46)

• For all i ∈ I0,

x̂[i] = 0 ⇒ ∃g ∈ ∂iΦ(x̂) : |g| ≤ ψ′
i(0),(47)

x̂[i] �= 0 ⇒ −ψ′
i(|x̂[i]|) sign

(
x̂[i]

)
∈ ∂iΦ(x̂),(48)

where ∂iΦ(x) is the subdifferential of Φ at x̂ on the subspace spanned by ei defined
by

ei[i] = 1 and ei[j] = 0 if j �= i.

Notice that these conditions for a minimum hold both for Fy smooth and nonsmooth.
If Φ is differentiable on a neighborhood of x in the direction of ei, then g = ∂iΦ(x) is
the ith partial derivative, namely

(49) ∂iΦ(x) = ∂Φ/∂x[i] (x) =

∫
Ω

ϕ′(|∇W̃x|) (∇w̃i)
T ∇W̃x∣∣∣∇W̃x

∣∣∣ ds.
For simplicity, in the expression above we consider that w̃i is differentiable. If t →
ψi(|t|) are smooth functions, we have ψ′

i(0) = 0 for all i, in which case (45) and (47)
become equalities. Let us emphasize that the classical choice for ψi is ψi(t) = t2 for
all i. The clue of our method concerns the choice of ψi in (44). Below we derive a set
of necessary conditions for ψi enabling the basic desiderata (G0)–(G1) in section 2 to
be satisfied.

4.1. Restoration of large noisy coefficients (I1). First, we consider all co-
efficients y[i] for i ∈ I1, where I1 is defined by (11)–(12). Let us recall that

|y[i]| > T ⇔ i ∈ I1.

• Preservation of significant coefficients. Consider that for some i ∈ I1 we have

y[i] ≈ (W̃uo)[i].
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In order to prevent û from erosion, a good choice for x̂[i] is certainly x̂[i] = y[i].
In other words, x̂[i] is required to satisfy (45), where we have ψ′

i(0) ≥ 0
because ψi is increasing on R+. If it happens that y[i] fits the prior in such a
way that 0 ∈ ∂iΦ(x̂), then (45) holds for any ψi. However, having 0 ∈ ∂iΦ(x̂)
along with x̂[i] = y[i] is a highly special case. It is enough to see this in
the scalar case when Fy : R → R+ reads Fy(x) = ψ(|x − y|) + ϕ(|wx|). If
y �= 0, the function x → ϕ(|wx|) is differentiable on a neighborhood of y, and
the above requirement, namely 0 = ϕ′(|wy|), cannot be satisfied when ϕ is
convex and increasing on R+. We can have x̂ = y only for y = 0. The general
situation corresponds to 0 /∈ ∂iΦ(x̂) if x̂[i] = y[i], and hence a necessary
condition enabling (45) to hold is that the constant λi below,

(50) λi = ψ′
i(0),

satisfies λi > 0. Since all ψi are convex and ψi(0) = 0, this implies that

(51) ψi(t) ≥ λit ∀t > 0.

• Suppression of outliers. The noise n being unbounded, for any choice of T
in (13) we can have highly corrupted coefficients y[i] for i ∈ I1 corresponding
to ∣∣(Wuo)[i]

∣∣ � T.

Any such y[i] bears no information on the true (Wuo)[i], and so the best
choice is that x̂[i] fits the prior as well as possible. By (44) this will occur if
the contribution of ψi to Fy is as small as possible. Given that ψi satisfies (51),
we are induced to choose

(52) ψi(t) = λit ∀t ≥ 0,

where λi > 0.

4.2. Restoration of coefficients in I0. Now we focus on all coefficients y[i]
for i ∈ I0, where I0 is defined by (11). As a reminder,∣∣y[i]∣∣ ≤ T ⇔ i ∈ I0.

These coefficients usually correspond to high-frequency components in the restored
signal or image.

• Suppression of noise coefficients in I0. A pertinent choice of a frame means
that we have a sparse representation, that is,

|(Wuo)[i]| ≈ 0,

for many coefficients i. Most of the relevant coefficients y[i] are likely to
satisfy

∣∣y[i]∣∣ ≤ T . For all these coefficients, we claim that the most reasonable
choice is x̂[i] = 0. If ψi = 0 on R+ for all i ∈ I0, these coefficients will be
restored according to the prior Φ, but then there is no guarantee they are close
to zero. The argument is that Φ promotes signals and arguments that are
locally homogeneous (or even locally constant in the case of total-variation
regularization), separated by edges. Unconstrained coefficients can hence
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0 50 100
0

100

(a) Noisy data (....) corresponding to an original
slope (- - -) and the solution WyT (—) obtained
by hard thresholding.

0 50 100
0

100

(b) Solution for λi = 0 for all i ∈ I0 (- · -) and
the solution for λi = const for all i ∈ I0∪I1 (—).

Fig. 1. Data in (a) and restorations using (14) in (b).

yield spurious edges in regions where the gradient is important, in order to
break them into regions with a smaller gradient.
The above reasoning is illustrated in Figure 1. The ramp-shaped data in (a)
contain many coefficients indexed by I0 (i.e., smaller than T ) as well as one
outlier that gives rise to a wavelet-shaped artifact in WyT . Both solutions
in (b) correspond to the minimization of an F as given in (44), where for
all i ∈ I1 we take ψi(t) = λit with λi > 0, as proposed in section 4.1.
Furthermore, the solution plotted with a dashed line corresponds to ψi(t) = 0
on R for all i ∈ I0, while the solution plotted with a solid line corresponds to
ψi(t) = λit with λi = const > 0 for all i ∈ I0∪I1. As explained in section 4.1,
this outlier is restored in both solutions. However, the solution corresponding
to ψi = 0 for all i ∈ I0 exhibits a spurious edge near the restored outlier, and
several coefficients indexed by I0 have large values. In contrast, the solution
corresponding to λi > 0 for all i ∈ I0 pushes these coefficients to zero, and
thus the continuity of the restored ramp is preserved.
Trivial necessary conditions enabling us to keep null the noise coefficients in
I0 are that for every i ∈ I0 we have

ψi(0) < ψi(t) ∀t > 0.

This, combined with the convexity of ψi, yields

(53) ψ′
i(t) > 0 ∀t > 0, ∀i ∈ I0.

• Suppression of Gibbs-like effect. Even if T in (13) is small compared to the
optimal (5), we can have coefficients y[i] for i ∈ I0 corresponding to large
(Wuo)[i] whose magnitude is just below T , i.e.,∣∣∣(Wuo)[i]

∣∣∣ <≈ T.

As mentioned in section 2, keeping x̂[i] = 0 would entail Gibbs-like oscillations
in the restored û. A reasonable choice for x̂[i] is certainly nonzero, in which
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case x̂[i] should be restored with the aid of (48) and realize a good fit to the
prior, in spite of the fact that ψ′

i(|x̂[i]|) > 0 according to (53). Hence the
requirements that (48) holds, namely −ψ′

i(|x̂[i]|) sign(x̂[i]) ∈ ∂iΦ(x̂), where
ψ′
i(|x̂[i]|) > 0, remains close to zero even if x̂[i] has a large value. The latter

requirement suggests we fix ψ′
i(t) = λi > 0 for all t > 0 and, finally,

ψi(t) = λit ∀t ≥ 0, ∀i ∈ I0.

4.3. On the choice of ϕ. We have already explained in section 2 why ϕ must
be a convex edge-preserving function as those given in (16)–(20). For all of them, the
function t → ϕ(|t|) is smooth (i.e., ϕ′(0) = 0), except for ϕ(t) = t, which corresponds
to the total-variation regularization. The smoothness of t → ϕ(|t|) at the origin has
important consequences on the solution. Since [37, 38, 41], it is well known why the
minimizers corresponding to a nonsmooth at zero t → ϕ(|t|) tend to be constant
on some regions. Such a staircasing effect is undesirable in our context. This effect
is weakened by our �1 data-fidelity term since it constrains many coefficients to fit
exactly the data rather than the regularization term. Nevertheless, each time we have
“neighboring” outliers, corresponding to functions w̃i that address the same region
of u (i.e., whose supports overlap), the solution is again prone to exhibit staircasing,
especially in the case of signals. This argument suggests a preference for functions ϕ
satisfying ϕ′(0) = 0—for instance (17), in which case t → ϕ(|t|) can also be seen as a
smooth approximation of |t|.

5. Some practical properties of the solution. Let us focus on Fy as given
in (14), where t → ϕ(|t|) can be either smooth or nonsmooth at zero. The conditions
for a minimum presented in section 4 now have a simpler form:

• For all i ∈ I1

x̂[i] = y[i] ⇒ ∃g ∈ ∂iΦ(x̂) : |g| ≤ λi,(54)

x̂[i] �= y[i] ⇒ −λi sign
(
(x̂− y)[i]

)
∈ ∂iΦ(x̂).(55)

• For all i ∈ I0

x̂[i] = 0 ⇒ ∃g ∈ ∂iΦ(x̂) : |g| ≤ λi,(56)

x̂[i] �= 0 ⇒ −λi sign
(
x̂[i]

)
∈ ∂iΦ(x̂),(57)

where ∂iΦ(x)—the subdifferential of Φ at x̂ on the subspace spanned by ei—reads

(58) ∂iΦ(x) =

∫
Ω

ϕ′(|∇W̃x|) (∇w̃i)
T ∇W̃x∣∣∣∇W̃x

∣∣∣ ds + ϕ′(0)

∫
Ωx

|∇w̃i| ds× [−1, 1],

where Ωx is the complement of the support of ∇W̃x and we systematically define

∇u

|∇u| = 0 if ∇u = 0.

A detailed analysis of these formulas is contained in [2]. Notice that the second term
in the expression for ∂iΦ(x) is null if t → ϕ(|t|) is smooth since then ϕ′(0) = 0.

5.1. Bounds for λi. Some orientations for the choice of λi can be derived from
the conditions for minimum (54)–(57). The next proposition gives a bound for λi over
which the method boils down to a hard thresholding of the coefficients.



562 SYLVAIN DURAND AND MILA NIKOLOVA

Proposition 1. Let ϕ : R+ → R+ be convex and differentiable and satisfy (22).
If λi >

∫
Ω
|∇w̃i| ds, then for every y we have

x̂[i] =

{
y[i] if i ∈ I1,
0 if i ∈ I0.

Proof. From the assumptions on ϕ,

(59) ϕ′(t) ≤ 1 ∀t ≥ 0.

Hence the first term in (58) satisfies∣∣∣∣∣∣
∫

Ω

ϕ′(|∇W̃x|) (∇w̃i)
T ∇W̃x∣∣∣∇W̃x

∣∣∣ ds
∣∣∣∣∣∣ ≤

∫
Ω

∣∣∇w̃i

∣∣ ds ∀x.

Using (58) yet again,

sup
{
|g| : g ∈ ∂iΦ(x) ∀x

}
≤

∫
Ω

∣∣∇w̃i

∣∣ ds.
It then follows that for every x,

g ∈ ∂iΦ(x) ⇒ |g| < λi.

The conclusion is obtained with the aid of (54)–(57).
Conversely, if we wish that the coefficient x̂[i] can be restored at least for some

noisy data, it is necessary that

(60) λi ≤
∫

Ω

|∇w̃i| ds ∀i ∈ I0 ∪ I1.

A qualitative argument explained next gives rise to a lower bound for λi. The
minimizer x̂ of Fy can also be expressed as

x̂ = lim
t→∞

xt,

where for every t > 0,

(61)
dxt

dt
∈ −∂Fy(xt)

and x0 =
∑

i∈I1
y[i]ei. We focus on a restricted region of the signal or the image∑

i∈I1
y[i]w̃i such that there is an isolated outlier, say y[k] = δ0 > T . Locally, we can

then assume that ∇W̃x0 ≈ δ0∇w̃k. By the continuity of the evolution scheme (61),
x0[k] = δ0 and xt[k] will be progressively smoothed as far as t increases. It is rea-
sonable to require that this evolution does not affect the neighboring coefficients xt[i]
(where i is such that supp w̃i ∩ supp w̃k is significant) since they are not outliers: we
simply wish to avoid the situation seen in Figure 1(a). This means that 0 ∈ ∂iFy(xt),
so that

λi + ϕ′(0)

∫
Ωx

|∇w̃i| ds ≥

∣∣∣∣∣∣
∫

Ω

ϕ′(∇W̃xt) (∇w̃i)
T ∇W̃xt∣∣∣∇W̃xt

∣∣∣ ds
∣∣∣∣∣∣

≈
∣∣∣∣
∫

Ω

ϕ′(δt|∇w̃k|) (∇w̃i)
T ∇w̃k

|∇w̃k|
ds

∣∣∣∣ .
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While δt is large enough, we can say that ϕ′(δt|∇w̃k|) ≈ 1. This suggests it is
reasonable to require that

(62)

∣∣∣∣
∫

Ω

(∇w̃i)
T ∇w̃k

|∇w̃k|
ds

∣∣∣∣ ≤ λi.

Based on (60) and (62), parameters λi will be chosen in such a way that

(63)

∣∣∣∣
∫

Ω

∇w̃T
i

∇w̃k

|∇w̃k|
ds

∣∣∣∣ ≤ λi ≤
∫

Ω

|∇w̃i| ds ∀k ∈ I \ {i}.

Parameters when {wk} is a wavelet basis. We consider henceforth a wavelet
basis generated by 2d − 1 mother wavelets wm, for m ∈ {1, . . . , 2d − 1}, with dual
wavelets w̃m and defined on Ω ⊂ R

d. Let j and κ denote the scale and the space
(or time) parameters, respectively. In such a case, I is an arrangement of all indexes
(j, κ,m), and w̃k is of the form

w̃m
j,κ(s) = 2−

dj
2 w̃m(2−js− κ).

Using a change of variables, the upper bound in (63) is∫
Ω

|∇(w̃m
j,κ)| ds = 2( d

2−1)j
∫

Ω

|∇w̃m| ds.

This suggests we take, for i ∈ {0, 1},

λm
j,κ = 2( d

2−1)jλm
i ∀(j, κ,m) ∈ Ii,

where∣∣∣∣
∫

Ω

(∇(w̃m′

k,j))
T ∇w̃m

|∇w̃m| ds
∣∣∣∣ ≤ λm

i ≤
∫

Ω

|∇w̃m(s)| ds ∀(j, κ,m′) �= (0, 0,m).

More generally, for any frame {w̃i}i∈J , the parameters {λi} can be chosen propor-
tionally to

∫
Ω
|∇w̃i(s)| ds.

We have observed that the minimizers x̂ of Fy are very stable with respect to
the choice of the parameters {λi}. This can be explained by the fact that since Fy

is nonsmooth, minimizers x̂ are located at “kinks” which are stable with respect to
parameters and data.

5.2. An analytical example. Let 1l be a constant vector. Suppose that on a
neighborhood of the index k, our input data yT , obtained by (13), are of the form

(64) yT = W1l + δek,

where y[k] = δ > T is an outlier. The function denoised by hard thresholding is

(65) W̃yT = W̃W1l + δW̃ ek = 1l + δw̃k.

Clearly, it contains an artifact with the shape of w̃k. This artifact can be suppressed
if we choose the total-variation regularization, as seen below.

Proposition 2. Let Fy be as in (14), where ϕ(t) = t and for every i ∈ I, (60) is
satisfied. Consider that yT reads as in (64). Then Fy reaches its minimum at

(66) x̂ = W1l.
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Proof. For every i ∈ I we have

∂iΦ(x̂) =

∫
Ω

|∇w̃i| ds× [−1, 1].

For every i �= k we can choose g = 0, then g ∈ ∂iΦ(x̂) and |g| ≤ λi, which show
that (54) and (56) hold. Applying (60) for λk shows that (55) holds as well. Hence
0 ∈ ∂iFy(x̂) for all i ∈ I. Then Fy reaches its minimum at x̂.

When ϕ′(0) = 0 it is easy to see that ∂iΦ(W1l) = 0 for all i ∈ I, which shows
that ∂kΦ(W1l) �= λk and hence x̂ �= W1l. Nevertheless, the artifact in (65) can be
smoothed arbitrarily well if ϕ is a good edge-preserving function. We will show that
under mild conditions, the minimizer x̂ of Fy reads

(67) x̂ = W1l + εw̃k,

where ε satisfies

(68)

∫
Ω

ϕ′(|ε∇w̃k|) |∇w̃k| ds = λk.

It is important to notice that we have ε ≈ 0 if ϕ has a steep increase close to zero,
which is the case for edge-preserving functions ϕ. For example, when ϕ is of the
form (17), we have ε =

√
α/C, where C is the unique solution of the equation∫

Ω

|∇w̃k|2√
|∇w̃k|2 + C

ds = λk.

Clearly, ε decreases to zero when α ↘ 0. For ϕ of the form (16), the equation in (68)
yields

αεα−1

∫
Ω

|∇w̃k|α = λk.

Then

ε =

(
λk

α
∫
Ω
|∇w̃k|α

) 1
α−1

.

If we choose that the inequality in (60) is strict, then the term between the parentheses
is strictly smaller than 1. Then ε ↘ 0 if α ↘ 1.

The assumption mentioned above is that

(69)

∣∣∣∣
∫

Ω

ϕ′(|ε∇w̃k|) (∇w̃i)
T ∇w̃k

|∇w̃k|
ds

∣∣∣∣ <≈
∣∣∣∣
∫

Ω

(∇w̃i)
T ∇w̃k

|∇w̃k|
ds

∣∣∣∣ ∀i �= k,

which is realistic since ϕ′(t)
<≈ 1 when t is beyond a restricted neighborhood of zero.

Let us now verify that x̂ as given in (67) does indeed minimize Fy. We have

∂iΦ(x̂) =

∫
Ω

ϕ′(|ε∇w̃k|) (∇w̃i)
T ∇w̃k

|∇w̃k|
ds.

Combining (69) and (63) shows that

|∂iΦ(x̂)| ≤ λi ∀i �= k,

so that (54) and (56) hold. The kth entry of x̂ is x̂[k] = ε since (68) is in fact the
condition given in (55). Hence Fy reaches its minimum at x̂ as given in (67).



DENOISING OF FRAME COEFFICIENTS 565

6. Minimization schemes. For practical calculation, the signal or image u is
defined on a discrete finite grid, and so we can consider that u ∈ R

p. The discrete
equivalent of the regularization term ϕ in (15) reads

(70) Φ(x) =

p∑
i=1

ϕ
(
|∇iW̃x|

)
,

where for every u ∈ R
p, ∇iu ∈ R

2 is a discrete approximation of the gradient of u at
i if

(
∇iu

)
[1] is the difference between the pixel u[i] and its north adjacent neighbor

and
(
∇iu

)
[2] is the difference between u[i] and its left adjacent neighbor. When u is

a signal, we can formally write that
(
∇iu

)
[2] = 0 for all i. Let us also mention that

the norm | . | in (70) is defined as

(71) |z| =
√
z[1]2 + z[2]2 ∀z ∈ R

2.

Then the discrete equivalent of (58) is

∂iΦ(x) =
∑
j

ϕ′(|∇jW̃x|)
(
∇jw̃i

)T ∇jW̃x

|∇jW̃x|
.

The function Fy in (14) is nonsmooth, and several approaches can be envisaged for
its minimization. The subgradient descent scheme is quite easy to implement. Put
x0 = yT and, for all k ∈ N, compute

xk+1 = xk − tkgk,

where gk is a subgradient of Fy at xk and tk > 0. Using classical results on mini-
mization methods (see [43]), we can prove that if limk→∞ tk = 0 and

∑∞
k=0 tk = ∞,

then

lim
k→∞

xk = x̂.

A better alternative is the adaptive level-set method proposed in [20].
Instead, we focus on a relaxation-based method, proposed in [40], which is prop-

erly adapted to �1 data-fidelity terms as those involved in (14), even if it requires that
the regularization Φ is smooth. The main interest of this method is the facility to
recover the components i of I1 such that x̂i = yi and the components i of I0 satisfying
x̂[i] = 0, as well as the relative easiness of implementation.

Let x0 = yT be the starting point. As each iteration k = 1, 2, . . . , the new
iterate xk is obtained from xk−1 by updating successively each one of its components
xk[i] using one-dimensional minimization. Let the solution obtained at step i − 1 of
iteration k read

(xk[1], . . . , xk[i− 1], xk−1[i], . . . , xk−1[p]).

The new entry xk[i] is determined according to the following rule:
• if i ∈ I1, compute

(72) K = ∂iΦ
(
xk[1], . . . , xk[i− 1], y[i], xk−1[i + 1], . . . , xk−1[p]

)
;

– if |K| < λi, then xk[i] = y[i];
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– else xk[i] is the unique solution of the equation in t:

(73) ∂iΦ
(
xk[1], . . . , xk[i− 1], t, xk−1[i+ 1], . . . , xk−1[p]

)
= λi sign(K),

where we know that sign(xk[i] − y[i]) = − sign(K);
• if i ∈ I0, compute

(74) K = ∂iΦ
(
xk[1], . . . , xk[i− 1], 0, xk−1[i + 1], . . . , xk−1[p]

)
;

– if |K| < λi, then xk[i] = 0;
– else xk[i] is the unique solution of the equation

(75) ∂iΦ
(
xk[1], . . . , xk[i− 1], t, xk−1[i+ 1], . . . , xk−1[p]

)
= λi sign(K),

where it is known that sign(xk[i]) = − sign(K).
Observe that the components x[i]k that fit exactly the data (i.e., x[i]k = y[i] for
i ∈ I1 and x[i]k = 0 for i ∈ I0) are easily found by checking only the sign of an
inequality. Their computation is hence very accurate. Moreover, in practice most
of the components of the solution fit exactly the data-fidelity term. Conversely, at
each iteration, most of the components are easily and accurately found. The other
components, corresponding to (73) and (75), are obtained using one-dimensional line-
search. Here knowing the sign of sign(xk[i] − y[i]) and sign(xk[i]) constitutes an
important simplification. The finding of these signs uses the fact that since Φ is
convex, the function Si given below,

Si(t) = ∂iΦ
(
xk[1], . . . , xk[i− 1], t, xk−1[i + 1], . . . , xk−1[p]

)
∀t ∈ R,

is monotone increasing on R. Consider that xk[i], i ∈ I1, has to satisfy (46). Then
x̂[i] �= y[i]. Consider first that

xk[i] > y[i],

in which case Si(x
k[i]) ≥ Si(y[i]). The equation in (46) now reads λi + Si(x

k[i]) = 0,
and hence we can write

Si(y[i]) ≤ Si(x
k[i]) < 0.

The result follows from the observation that K in (72) satisfies K = Si(y[i]). The
case when xk[i] < y[i] is established in a symmetric way. The reasoning in the case
when xk[i], i ∈ I0, has to satisfy (75) is basically the same, and so we skip it. The
convergence of xk towards x̂ has been established in [40].

If Φ corresponds to a total-variation regularization, we have to take a smooth

approximation of it—for instance ϕ(t) =
√
t2 + α for α

>≈ 0—in order to apply the
method above. An alternative that allows us to use total-variation regularization
without smooth approximation is the method proposed in [26, 13]. Let us notice that
the implementation of the last method is tricky.

7. Experiments.

7.1. Denoising of a signal. We consider the restoration of the 512-length orig-
inal signal in Figure 2 from the data shown there, contaminated with white Gaussian
noise with standard deviation σ = 10. The restoration in Figure 3 is obtained using
the sure-shrink method [23] and the toolbox WaveLab. The result displayed in Fig-
ure 4 is the minimizer of a function Fv of the form (1), where ϕ is as given in (17),



DENOISING OF FRAME COEFFICIENTS 567
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100

0

Fig. 2. Original signal (dotted line) and noisy data (solid line).

1 250 500

0

100

Fig. 3. Denoising using the Donoho–Johnstone sure-shrink method.

for α = 0.1 and λ = 0.01. Smooth zones are rough, edges are slightly smoothed, and
spikes are eroded, while some diffused noise is still visible on the signal.

The restorations presented next are based on wavelet coefficients where W is an
orthogonal basis of Daubechies wavelets with eight vanishing moments and thresh-
olded data yT are obtained according to (13). The optimal T , as given in (5), reads

T = 35. The wavelet-thresholding estimate W̃yT is shown in Figure 5. It involves
important Gibbs artifacts, as well as wavelet-shaped oscillations due to aberrant coef-
ficients. Using the same coefficients yT , we calculated the minimizer x̂ of Fy as given
in (14), where ϕ is as given in (17), α = 0.05, λj,κ = 0.5 × 2−j/2 if (j, κ) ∈ I0, and

λj,κ = 1.5×2−j/2 if (j, κ) ∈ I1. The resultant restoration û = W̃ x̂, shown in Figure 6,
involves sharp edges and well-denoised smooth pieces.

The noisy signal v is also restored by translation invariant wavelet thresholding
with optimal threshold T = 35. The obtained result is displayed in Figure 7. Com-
paring to the signal restored with decimated wavelets shown in Figure 5, we observe
that wavelet-shaped artifacts and Gibbs oscillations are reduced, but they still remain
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Fig. 4. Denoising by minimizing Fv as given in (1), where ϕ(t) =
√

0.05 + t2 and λ = 0.01.

1 250 500

0

100

Fig. 5. Denoising using wavelet thresholding with Donoho–Johnstone optimal threshold T = 35.

well visible.
We show in Figure 8 the minimizer obtained with the model given in (7) for

μi = 30 for all i ∈ J . Recall that for large μi, spikes are oversmoothed, while if μi

is too small, aberrant coefficients are not properly restored. Both artifacts are visible
on the displayed signal which corresponds to an intermediate choice for μi.

Next we consider yT , obtained by (13) for T = 23. These coefficients have a richer

information content, but the relevant estimate W̃yT , seen in Figure 9, manifests Gibbs
artifacts and many wavelet-shaped artifacts. Below we compare restorations where Fy

is of the form (44) for different choices of ψi. In spite of the considerations developed
in section 4, it seems intuitive to take ψj,κ(t) = λj,κt

2 in (44). Such a restoration is
displayed in Figure 10, where α = 0.05, λj,κ = 0.1 if (j, κ) ∈ I0, and λj,κ = 0.2 if
(j, κ) ∈ I1. The Gibbs oscillations are well removed, but, because of the quadratic
form of ψj,κ for (j, κ) ∈ I1, outliers overcontribute to Fy and bias the estimate.
Another possibility which may seem reasonable is to cancel the term indexed by I0,
i.e., to consider ψj,κ(t) = 0 for (j, κ) ∈ I0. The result can be seen in Figure 11,
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1 250 500

0

100

Fig. 6. Denoising by restoration of the wavelet coefficients relevant to Figure 5 using Fy in (14)

with ϕ(t) =
√

0.05 + t2, λj,κ = 0.5 × 2−j/2 if (j, κ) ∈ I0, and λj,κ = 1.5 × 2−j/2 if (j, κ) ∈ I1.

1 200 500

−50

0

100

Fig. 7. Denoising by translation invariant wavelet thresholding with Donoho–Johnstone optimal
threshold T = 35.

where ψj,κ(t) = 0.2t for all (j, κ) ∈ I1 and α = 0.05. Once again, the thresholded
coefficients are well restored, but we observe that leaving too much freedom to these
coefficients prevents the method from removing the outliers efficiently. Figure 12
illustrates the proposed method: Fy is of the form (14) with ϕ as given in (17) and
the same parameters as in Figure 6, namely α = 0.05, λj,κ = 0.5×2−j/2 if (j, κ) ∈ I0,
and λj,κ = 1.5×2−j/2 if (j, κ) ∈ I1. In this restoration, edges are neat and polynomial
parts are well recovered. Figure 13 illustrates how restored coefficients x̂ are placed
with respect to yT and the coefficients of the original signal Wuo. In particular, we
observe how erroneously thresholded coefficients are restored and how outliers are
smoothed.

7.2. Denoising of an image. In this experiment we consider the denoising of
the 256 × 256 picture of Lena, Figure 14(a), from noisy data obtained by adding
white Gaussian noise with standard deviation 20. The restoration in Figure 15(a)
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Fig. 8. Denoising using (7) with ϕ(t) =
√

0.05 + t2 and μi = 30.
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Fig. 9. Denoising using wavelet thresholding with an underoptimal threshold T = 23.

is obtained by thresholding the wavelet coefficients, see (13), with respect to the
Donoho–Johnstone threshold, given in (5), which now reads T = 100. This image is
very smooth, a lot of details are lost, and Gibbs oscillations are visible near the edges.
In Figure 15(b) we show the result from total-variation restoration which corresponds
to Fv of the form (1) with ϕ(t) = t and λ = 0.03. As expected, this restoration exhibits
a staircasing effect since it is constant on many regions. The image in Figure 16(a)
is obtained by thresholding the wavelet coefficients with respect to T = 50. This
T is smaller than the Donoho–Johnstone threshold, and the image presents many
wavelet-shaped oscillations due to aberrant wavelet coefficients as well as some Gibbs
oscillations. It is used as input data for the specialized objective function Fy given
in (14), where ϕ is as given in (17). The restoration in Figure 16(b) is obtained for
λi = 0.5 if i ∈ I0 and λi = 1.5 if i ∈ I0. This image has a quite natural appearance,
and edges and texture are better preserved.

The numerical cost of variational methods become a real burden when images have
a large size. In order to circumvent this problem, we have tested an approximation
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Fig. 10. Restoration of the wavelet coefficients relevant to Figure 9 by minimizing Fy in (44)

with ϕ(t) =
√

0.05 + t2, ψi(t) = 0.1t2 if i ∈ I0, and ψi(t) = 0.2t2 if i ∈ I1.
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Fig. 11. Restoration of Figure 9 using Fy in (44), where ϕ(t) =
√

0.05 + t2, ψi(t) = 0 if i ∈ I0,
and ψi(t) = 0.2t if i ∈ I1.

of the proposed method. Let yT be the wavelet transform of the thresholded image.
According to (45), the minimizer x̂ of Fy satisfies

|∂iΦ(x̂)| ≤ λi ∀i ∈ I1.

The idea of this approximation is to test for every i ∈ I1 whether or not |∂iΦ(yT )| > λi.
If |∂iΦ(yT )| ≤ λi, we simply take x̂[i] = yT [i]. Otherwise, if |∂iΦ(yT )| > λi, we con-
sider that yT [i] is an outlier. To restore such an outlier, we can take for the relevant x̂[i]
either the median or the mean of the neighboring coefficients at the same scale. When
outliers arise in homogeneous regions, we can just set x̂[i] = 0. The Gibbs oscillations
are not considered in this approximated method, and so we have x̂[i] = yT [i] = 0 for
all i ∈ I0. The image obtained by this method for T = 50 and λi = 5, for all i ∈ I1,
is displayed in Figure 17(a). Let us emphasize that the image of the error vτ − û,
presented in Figure 17(b), exhibits the oscillations due to aberrant wavelet coefficients
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Fig. 12. The proposed method: restoration of Figure 9 using Fy in (14) with ϕ(t) =
√

0.05 + t2,
λj,κ = 0.5 × 2−j/2 if (j, κ) ∈ I0, and λj,κ = 1.5 × 2−j/2 if (j, κ) ∈ I1.

410 425

23

50

Fig. 13. Magnitude of wavelet coefficients: ∗ signal restored by the proposed method (Figure 9),
◦ original signal, × thresholded noisy signal (Figure 6).

and that it does not present any structural information. This approximated method
being computationally fast, it can be extended to translation invariant wavelets [18].
In Figure 18(a) we show the restoration obtained by the standard translation in-
variant wavelet thresholding, corresponding to T = 50 again. Although its quality is
improved with respect to the image in Figure 16(a), it involves a lot of wavelet-shaped
artifacts. This image is used as input data to our fast approximated method. The
obtained restoration, shown in Figure 18(b), is of high quality, since edges and details
are nicely recovered.

8. Conclusion. We proposed a method to denoise images and signals by restor-
ing the thresholded frame coefficients of the noisy data. The restored coefficients
minimize a specially designed objective function which allows the erroneously thresh-
olded coefficients to be restored and the outliers to be removed, without substantially
modifying the remaining coefficients. Our method is not sensitive to the probability
distribution of the noise. We present numerical experiments with orthogonal bases of
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(a) Original image (b) Noisy image

Fig. 14. Original and noisy images.

(a) Wavelet thresholding with (b) Total-variation restoration:
the optimal threshold T = 100 Fv as in (1) with ϕ(t) = t

Fig. 15. Classical denoising methods.

(a) Wavelet thresholding (b) Restoration of (a) by the
with T = 50 proposed method (ϕ(t) = t)

Fig. 16. The proposed method.
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(a) Restoration of Fig. 16(a) (b) Outliers detected
by the fast method by the fast method

Fig. 17. Fast approximation of the proposed method.

(a) Translation invariant (b) Fast method adapted to
wavelet thresholding (T = 50) translation invariant wavelets

Fig. 18. Translation invariant wavelets.

Daubechies wavelets. These experiments demonstrate the effectiveness of our method
over alternative denoising methods.
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