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Abstract

Reconstructing binary images is a problem which
arises in various application fields. In our paper, this
problem is considered in a reqularization framework:
the sought solution minimizes an objective function
(a criterion). Criteria defined over the set of the bi-
nary tmages are nonconvez and there are no general
methods permitting to calculate the global minimum,
while approzimate solutions are very often of limited
interest.  On the other hand, general-purpose recon-
struction techniques, based on convex criteria, yield
continuous-valued smooth estimates which are far from
binarity.

In this paper, we propose two methods which are
based on convex criteria and introduce binarity only
partially. More precisely, we construct objective func-
tions whose minimizers are continuous-valued but have
a quasi-binary shape. In other words, these estimates
are composed essentially of binary-valued pizels while
nonbinary pirels are rare. According to our approach,
the construction of these objective functions is based
on analytical considerations. The resultant methods
are stable and numerically attractive.

1 Problem formulation
In various application fields, an unknown binary
immage ® (its pixels are either 0 or 1) has to be re-
covered from noisy data y = Az + n obtained at
the output of a linear observation system .4, while
n accounts for uncertainties. In this work, we focus
on well-determined observation systems—where A is
well-conditioned. Typical situations are character and
text denoising (then A = I is identity), restauration
of binary images degraded by channel noise in com-
munications, etc. A popular approach to solve such
an inverse problem is regularization [1, 8, 3, 6]: esti-
mate Z is the minimizer of an objective function F,
which combines fidelity to data and closeness to priors,

expressed through regularizer ®:
T =

1)
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Fle) = |z —yl*+ d(=). (2)

In our context, ® should account for both, the binarity
of the image and its correlated structure.

2 Usual approaches
2.1 Binary Markov models

A natural way to model the sought image is to de-
fine @ as the energy of a binary Markov random field:

b(z) = Zwm%—Zﬂi,jl’iiL‘j (3)
; imj

subject to z; € {0,1} forany i € §

where S is the lattice of the sites of the image, ¢ ~ j
means that 7 and j are neighbours, while g; ; and o;
are parameters. Under this form can be written the
classical Ising model, the auto-logistic model, the spin-
glass etc. [1, 4, 6]. An estimate (2-1), involving a
prior (3), is conceptually satisfying since it accounts
properly for the both, binarity and correlations.

Direct calculation of Z is computationally pro-
hibitive since it needs to compare 2#15} possible im-
ages (# denotes cardinality). Exact calculation of Z is
possible only for a special form of F [7] but it is cum-
bersome to be used in practice. In general, # cannot
be found exactly. This estimate can be approximated
using simulated annealing [6, 5], which calculation is
quite costly. The Iterated conditional modes (ICM)
algorithm [1] provides a local minimum of F which is
often a very poor estimate.
2.2 Surrogate methods

These numerical intricacies discourage practical use
of binary priors. Instead, general image reconstruction
techniques, based on convex criteria, are preferred.
However, the resultant solutions are far from being
binary. In many situations, subsequent thresholding
cannot provide a meaningful (binary) estimate.

Generalized Gaussian energies [2] constitute an im-
portant class of efficient convex regularizers:

®(z) = Zﬁz’,ﬂxi — ;P where 1<p<2

i~
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The case p = 2 is the popular quadratic regularization
which is well-known to “oversmooth” abrupt transi-

tions. Regularizers corresponding to p % 1 are bet-
ter adapted to binary images since they favour local
smoothing while preserving large transitions [2].

3 Quasi-binary estimates

The set of the binary images being discrete (hence
nonconvex) any criterion defined over this set is non-
convex. Instead, we explore the possibility to define
continuous-valued estimates, which minimize convex
criteria but which estimates have a “quite binary”
shape. These minimizers should be composed essen-
tually of binary-valued pixels while nonbinary pixels
should be rare.

3.1

Since the sought image is binary, it must satisfy « €
[0,1]#{5}. The latter constraint is convex and easy
to implement. On the contrary, no convex constraint
defends the recovery of pixels inside ]0, 1[. Subtracting
(zi — 3)? from F will only inhibit such a recovery,
while it does not introduce correlations throughout the
image. We hence formulate a criterion of the form:

Discouraging nonbinary values

1
F@) = Mz =yl —a)d (2~ 5)* + ¥(=) (5)
subject to z; € [0,1] forany i € S

where ¥ will account for the correlations and will be
chosen convex. The second term in (5) is concave. But
A is well-conditioned, so F will be convex if

O X Amin, where Apin = min{eig (AT A)}

(6)

Thanks to both, the constraint and the concave
term, pixels of # are “pushed” to take a value on the
boundary of [0, 1], namely 0 or 1.

3.2 Correlations
We consider two different choices for ¥ in (5).

Quadratic regularization An usual, pertinent
choice is to take

U(x) =Y Bijle: — ;)

i~

(™

The resultant F is a quadratic criterion constrained
on the convex set [0, 1]#15}. Fast algorithmms for the
calculation of Z can then be implemented [10].
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Nonsmooth regularization Recently we have es-
tablished that regularization using nonsmooth poten-
tial functions yields estimates containing large regions
where the differences between neighbouring pixels are
null [9]. This is a precious property which suggest
that the introduction of a modulus potential function
|.]in ¥ will generate estimates which are constant over
large zones. So we take

U(z) = Bijle -z

i~j

(8)

Recall that (5) favours (up to some degree) the recov-
ery of binary pixels. This trend, joined to the trend of
(8) to yield locally constant regions, will result in the
reconstruction of large 0-valued and 1-valued regions
in #. Thus (8) enforces the binarity constraint.

Notice that the recent advances in nonsmooth con-
vex optimization [11] provide efficient algorithms for
the calculation of .

4 Illustrations

The examples below concern the denoising of an im-
age, since A = I is identity (in this case, Apin = 1).
Regularizer ¥ is defined using the 8 nearest neigh-
bours, while 8; ; = § for any 7,7 € S.

4.1

The original phantom is given in Fig.1(left); it is
composed of large constant (0-1) pathces. Data, pre-
sented in Fig. 1{right), are corrupted by white Gaus-
sian noise with variance 1. Neither thresholding with
respect to 1/2, Fig.2(left), nor ICM, Fig.2(right), pro-
vide a meaningful estimate. Quadratic regularization
yields a very smooth estimate (Fig.3). A better de-
noising is obtained using a generalized Gaussian model
(4) with p = 1.2—see Fig.4. Since A = I, median fil-
tering can be applied as well; the obtained solution
(Fig.5) is comparable with Fig.4.

Denoising of a phantom

Fig. 1 Original phantom (left). Data corrupted by
white Gaussian noise (right).
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Fig. 2 Solutions ob
and by ICM (right).

1
Histogram of

Fig. 3 Quadratic regularization (left).
the solution (right).

Fig. 4 Generalized Gaussian model.

Fig. 5 Solution obtained using median filtering.

The first of the proposed methods (5,7), where ¥
is quadratic, permits to obtain a solution having only
a small number of nonbinary pixels—see Fig.6. The
second one—which involves nonsmooth regularization
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(8) in (5)—leads to an almost binary solution (Fig.7).

Fig. 6 First proposed method involving a quadratic
regularization term (5,7).

Fig. 7 Second proposed method involving nonsmooth
regularization (5,8).

Data in Fig.8(left) are contaminated by a “salt
and pepper” noise. These data are binary, hence
bounded on [0, 1]#{5} so regularized solutions belong
to [0, 1]#1) as well. ICM does not permit to ob-
tain a pertinent solution, as seen in Fig.8(right). The
estimate obtained using quadratic regularization in-
volves an important oversmoothing (Fig.9). General-
ized Gaussian model {p = 1.2) lead to an estimate with
proper homogeneous zones (Fig.10), although these
are highly underestimated. In the context of “salt and
pepper” noise, median filtering yields a solution where
many pixels are binary (Fig.11).

Fig. 8 Data degraded by a
(left). Solution obtained by ICM (right).



Fig. 9 Quadratic regularization.

e 0 1
Fig. 10 Generalized Gaussian model.

Fig. 11 Median filtering.

The first proposed method (5, 7) permits to find
a better solution containing a few nonbinary pixels
(Fig.12). The second method (5, 8) is more efficient
again and yields a nice reconstruction (Fig.13).

: : ; 0 1
Fig. 12 First proposed method (with ¥ quadratic).

¢ 0 1
Fig. 13 Second proposed method (with ¥ nons-
mooth).

4.2 Denoising of a word

The word to reconstruct is given in Fig.14(left).
Data in Fig.14(right) contain white Gaussian noise
with variance 0.8. The results obtained using the two
proposed methods are presented in Figs.15 and 16.

i

Fig. 14 Original word (left). Data degraded by white
Gaussian noise (right).

0

Fig. 15 First proposed method (¥ is quadratic).

. A 0 1
Fig. 16 Second proposed method (¥ is nonsmooth).

A second set of data, Fig.17, contain binary “salt-
and-pepper” noise. The two proposed methods, (5,7)
and (5,8), yield the solutions given in Fig.18 and in



Fig.19, respectively.

Fig. 18 First proposed method (¥ is quadratic).

0 1
Fig. 19 Second proposed method (¥ is nonsmooth).

In these reconstrutions, ¥ is defined over the 8
nearest neighbours again. However, it is seen in
Fig.14(left) that the constant regions, corresponding
to characters, are very tiny and have an elongated
smooth shape. This fact suggests that special neigh-
bourhood systems should be constructed, in order to
express the main features of a character. We expect
that the use of such properly adapted neighbourhoods
will permit to improve the quality of the reconstruc-
tions obtainable using the proposed methods.

5 Conclusions

In this work, we propose a new approach for the
reconstruction of binary images. Its main ambition
is to conceive stable and numerically attractive meth-
ods, based on the use of convex criteria. Although
strictly binary images cannot be estimated any more,
our criteria yield quasi-binary continuous-valued im-
ages. The resultant methods allow the development
of efficient implementations based on recent advances
in smooth and nonsmooth optimization.
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