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Abstract. This is a theoretical study on the minimizers of cost-functions
composed of an `2 data-fidelity term and a possibly nonsmooth or nonconvex
regularization term acting on the differences or the discrete gradients of the
image or the signal to restore. More precisely, we derive general nonasymptotic
analytical bounds characterizing the local and the global minimizers of these
cost-functions. We first derive bounds that compare the restored data with
the noisy data. For edge-preserving regularization, we exhibit a tight data-
independent bound on the `∞ norm of the residual (the estimate of the noise),
even if its `2 norm is being minimized. Then we focus on the smoothing
incurred by the (local) minimizers in terms of the differences or the discrete
gradient of the restored image (or signal).

1. Introduction. We consider the classical inverse problem of the finding of an
estimate x̂ ∈ Rp of an unknown image or signal x ∈ Rp based on data y ∈ Rq

corresponding to y = Ax + n, where A ∈ Rq×p models the data-acquisition system
and n accounts for the noise. For instance, A can be a point spread function
accounting for optical blurring, a distortion wavelet in seismic imaging and non-
destructive evaluation, a Radon transform in X-ray tomography, a Fourier transform
in diffraction tomography, or it can be the identity in denoising and segmentation
problems. Such problems are customarily solved using regularized least-squares
methods: the solution x̂ ∈ Rp minimizes a cost-function Fy : Rp → R of the form

(1) Fy(x) = ‖Ax− y‖2 + βΦ(x)

where Φ is the regularization term and β > 0 is a parameter which controls the
trade-off between the fidelity to data and the regularization [3, 7, 2]. The role of
Φ is to push x̂ to exhibit some a priori expected features, such as the presence of
edges and smooth regions. Since [3, 9], a useful class of regularization functions is

(2) Φ(x) =
∑

i∈I

ϕ(‖Gix‖), I = {1, . . . , r},

where Gi ∈ Rs×p, i ∈ I, are linear operators with s ≥ 1, ‖.‖ is the `2 norm and
ϕ : R+ → R is called a potential function. When x is an image, the usual choices for
{Gi : i ∈ I} are either that {Gi} correspond to the discrete approximation of the
gradient operator with s = 2, or that {Gix} are the first-order differences between
each pixel and its 4 or 8 nearest neighbors along with s = 1. In the following, the
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Convex PFs

ϕ(|t|) is smooth at zero ϕ(|t|) is nonsmooth at zero

(f1) ϕ(t) = tα, 1<α≤2 [5] (f3) ϕ(t) = t [3, 22]

(f2) ϕ(t) =
√

α + t2 [25]

Nonconvex PFs

ϕ(|t|) is smooth at zero ϕ(|t|) is nonsmooth at zero

(f4) ϕ(t) = min{αt2, 1} [17, 4] (f8) ϕ(t) = tα, 0 < α < 1 [23]

(f5) ϕ(t) =
αt2

1 + αt2
[11] (f9) ϕ(t) =

αt

1 + αt
[10]

(f6) ϕ(t) = log(αt2 + 1) [12] (f10) ϕ(t) = log (αt + 1)
(f7) ϕ(t) = 1− exp (−αt2) [14, 21] (f11) ϕ(0)=0, ϕ(t)=1 if t 6=0 [14]

Table 1. Commonly used PFs ϕ where α > 0 is a parameter.

letter G will denote the rs × p matrix obtained by vertical concatenation of the
matrices Gi for i ∈ I, i.e. G = [GT

1 , GT
2 , . . . , GT

r ]T where T means transposed. A
basic requirement to have regularization is

(3) ker(A) ∩ ker(G) = {0}.
Notice that (3) is trivially satisfied when AT A is invertible (i.e. rank(A) = p). In
most of the cases ker(G) = span{1l}, where 1l is the p-length vector composed of
ones, whereas usually A1l 6= 0, so (3) holds again. Many different potential functions
(PFs) have been used in the literature. The most popular PFs are given in Table
1. Although PFs differ in convexity, boundedness, differentiability, etc., they share
some common features. Based on them, we systematically assume the following:

H1. ϕ increases on R+ so that ϕ(0) = 0 and ϕ(t) > 0 for any t > 0.

According to the smoothness of t → ϕ(|t|) at zero, we will consider either H2 or
H3:

H2. ϕ is C1 on R+ \T where the set T = {t > 0 : ϕ′(t−) > ϕ′(t+)} is at most finite
and ϕ′(0) = 0.

The conditions on T in this assumption allows us to address the PF given in (f4)
which corresponds to the discrete version of the Mumford-Shah functional. The
alternative assumption is

H3. ϕ is C1 on R+ and ϕ′(0) > 0.

Notice that our assumptions address convex and nonconvex functions ϕ. A par-
ticular attention is devoted to edge-preserving functions ϕ because of their ability
to give rise to solutions x̂ involving sharp edges and homogeneous regions. Based
on various conditions for edge-preservation in the literature [10, 22, 5, 15, 2, 20],
a common requirement is that for t large, ϕ is upper bounded by a (nearly) affine
function.

The aim of this paper is to give nonasymptotic analytical bounds on the local
and the global minimizers x̂ of Fy in (1)-(2) that hold for all functions ϕ described
above. To our knowledge, related questions have mainly been considered in par-
ticular situations, such as A the identity, or a particular ϕ, or when y is a special
noise-free function, or in the context of the regularization of wavelet coefficients, or
in asymptotic conditions when one of the terms in (1) vanishes—let us cite among
others [24, 16, 1]. An outstanding paper [8] explores the mean and the variance
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of the minimizers x̂ for strictly convex and differentiable functions ϕ. When ϕ is
nonconvex, Fy may have numerous local minima and it is crucial to have reliable
bounds on its local and global minimizers. The bounds we provide can be of practi-
cal interest for the initialization and the convergence analysis of numerical schemes.
This paper constitutes a continuation of a previous work on the properties of the
minimizers relevant to non-convex regularization [20].

Content of the paper. The focus in section (2) is on restored data Ax̂ in com-
parison with noisy data y. More precisely, their norms are compared as well as their
means. The cases of smooth and nonsmooth regularization are analyzed separately.
Section 3 is devoted to the residual Ax̂ − y which can be seen as an estimate of
the noise. Tight upper bounds on the `∞ norm that are independent of the data
are derived in the wide context of edge-preserving regularization. Restored differ-
ences or gradients are compared to those of the least-squares solution in section 4.
Concluding remarks are given in section 5.

2. Bounds on the restored data. In this section we compare the restored data
Ax̂ with the noisy data y. Even though the statements corresponding to ϕ′(0) = 0
(H2) and to ϕ′(0) > 0 (H3) are similar, the proofs in the latter case are quite
different and more intricate. These cases are considered separately.

2.1. Smooth regularization. Before to get into the heart of the matter, we re-
state below a result from [19] saying that even if ϕ is non-smooth in the sense
specified in H2, the function Fy is smooth at every one of its local minimizers.

Proposition 1. Let ϕ satisfy H1 and H2 where T 6= ∅. If x̂ is a (local) minimizer
of Fy, we have ‖Gix̂‖ 6= τ , for all i ∈ I, for every τ ∈ T . Moreover, x̂ satisfies
∇Fy(x̂) = 0.

The first statement below corroborates quite an intuitive result. The second
statement provides a strict inequality and addresses first-order difference opera-
tors or gradients {Gi, i ∈ I} in which case ker(G) = span(1l). For simplicity, we
systematically write ‖.‖ in place of ‖.‖2 for the `2 norm of vectors.

Theorem 2.1. Let Fy : Rp → R be of the form (1)-(2) where ϕ satisfy H1 and H2.

(i) Suppose that rank(A) = p or
{

ϕ is strictly increasing on R+

and (3) holds.
For every y ∈ Rq, if Fy reaches a (local) minimum at x̂ ∈ Rp, then

(4) ‖Ax̂‖ ≤ ‖y‖ .

(ii) Assume that rank(A) = p ≥ 2, ker(G) = span(1l) and ϕ is strictly increasing
on R+.

There is a closed subset of Lebesgue measure zero in Rq, denoted N , such
that for every y ∈ Rq \N , if Fy has a (local) minimum at x̂ ∈ Rp, then

(5) ‖Ax̂‖ < ‖y‖ .

Hence (5) is satisfied for almost every y ∈ Rq.

If A is orthonormal (e.g. A is the identity), (4) leads to ‖x̂‖ ≤ ‖y‖. When A
is the identity and x is defined on a convex subset of Rd, d ≥ 1, it is shown in [2]
that ‖x̂‖ ≤ √

2‖y‖. So (4) provides a bound which is sharper for images on discrete
grids and holds for general regularized cost-functions.
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The proof of the theorem relies on the lemma stated below whose proof is outlined
in the appendix. Given θ ∈ Rr, we write diag(θ) to denote the diagonal matrix
whose main diagonal is θ.

Lemma 2.2. Let A ∈ Rq×p, G ∈ Rr×p and θ ∈ Rr
+. Assume that if rank(A) < p,

then (3) holds and that θ[i] > 0, for all 1 ≤ i ≤ r. Consider the q × q matrix C
below

(6) C = A
(
AT A + GT diag(θ)G

)−1

AT .

(i) The matrix C is well defined and its spectral norm satisfies |||C|||2 ≤ 1.
(ii) Suppose that rank(A) = p, that ker(G) = span(h) for a nonzero h ∈ Rp and

that θ[i] > 0 for all i ∈ {1, . . . , r}. Then

(7) ‖Cy‖ < ‖y‖, ∀y ∈ {
ker(AT ) ∪ Vh

}
,

where Vh is a vector subspace of Rq of dimension q − p + 1 and reads

(8) Vh =
{

y ∈ Rq : AT y ∝ AT Ah
}

.

Let us remind |||C|||2 = max{
√

λ : λ is an eigenvalue of CT C} = sup‖u‖=1

∥∥Cu
∥∥.

Since C in (6) is symmetric and positive semi-definite, all its eigenvalues are hence
contained in [0, 1].

Remark 1. With the notations of Lemma 2.2, the set N in Theorem 2.1 (ii) reads

N = {V1l ∪ ker(AT )}
since ker(G) = span(1l).

Proof of Theorem 2.1. If the set T in H2 is nonempty, Proposition 1 tells us that
any minimizer x̂ of Fy satisfies ‖Gix̂‖ 6∈ T , 1 ≤ i ≤ r, in which case ∇Φ is well
defined at x̂. In all cases addressed by H1 and H2, any minimizer x̂ of Fy satisfies
∇Fy(x̂) = 0 where

(9) ∇Fy(x) = 2AT Ax + β∇Φ(x)− 2AT y.

For every i ∈ I, the entries of Gi ∈ Rs×p are Gi[j, n], for 1 ≤ j ≤ s and 1 ≤ n ≤ p,
so its nth column is Gi[·, n] and its jth row is Gi[j, ·]. The ith component of a given
vector x is denoted x[i].

Since ‖Gix‖ =
√∑s

j=1(Gi[j, ·]x)2, the entries ∂nΦ(x) = ∂Φ(x)/∂x[n] of ∇Φ(x)
read
(10)

∂nΦ(x) =
∑

i∈I

ϕ′(‖Gix‖)
‖Gix‖

s∑

j=1

Gi[j, ·]x Gi[j, n] =
∑

i∈I

(
Gi[·, n]

)T ϕ′(‖Gix‖)
‖Gix‖ Gix.

In the case when s = 1, we have G1
i = Gi and (10) is simplified to

∂nΦ(x) =
∑

i∈I

ϕ′(|Gix|)sign(Gix) Gi[1, n]

where we can set sign(0) arbitrarily. Let θ ∈ Rrs be defined as a function of x̂ as

∀i = 1, . . . , r,

θ
[
(i− 1)s + 1

]
= · · · = θ

[
is

]
=





ϕ′(‖Gix̂‖)
‖Gix̂‖ if ‖Gix̂‖ 6= 0,

1 if ‖Gix̂‖ = 0.
(11)
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Since ϕ is increasing on R+, (11) shows that θ[i] ≥ 0 for every 1 ≤ i ≤ rs. Intro-
ducing θ into (10) leads to

(12) ∇Φ(x̂) = GT diag(θ)Gx̂.

Introducing the latter expression into (9) yields

(13)
(
AT A +

β

2
GT diag(θ)G

)
x̂ = AT y.

Noticing that the requirements for Lemma 2.2(i) are satisfied, we can write that

(14) Ax̂ = Cy,

where C is the matrix given in (6). By Lemma 2.2(i), ‖Ax̂‖ ≤ |||C|||2 ‖y‖ ≤ ‖y‖.
Applying Lemma 2.2(ii) with h = 1l, we find that the inequality is strict if y 6∈ N

where N = {V1l ∪ ker(AT )}. Hence statement (ii) of the theorem.

2.2. Nonsmooth regularization. Now we focus on functions ϕ such that t →
ϕ(|t|) is nonsmooth at t = 0. It is well known that if ϕ′(0) > 0 in (2), the minimizers
x̂ of Fy typically satisfy Gix̂ = 0 for a certain (possibly large) subset of indexes
i ∈ I [18, 19].

Theorem 2.3. Let Fy : Rp → R be of the form (1)-(2) where ϕ satisfy H1 and H3.

(i) Suppose that rank(A) = p or
{

ϕ is strictly increasing on R+

and (3) holds.
For every y ∈ Rq, if Fy reaches a (local) minimum at x̂ ∈ Rp, then

(15) ‖Ax̂‖ ≤ ‖y‖ .

(ii) Assume that rank(A) = p ≥ 2, that ker(G) = span(1l) and that ϕ is strictly
increasing on R+.

There is a closed subset of Lebesgue measure zero in Rq, denoted N , such
that for every y ∈ Rq \N , if Fy has a (local) minimum at x̂ ∈ Rp, then

(16) ‖Ax̂‖ < ‖y‖ .

Hence (16) holds for almost every y ∈ Rq.
Proof.
Statement (i). Given x̂, let us introduce the subsets

(17) J = {i ∈ I : ‖Gix̂‖ = 0} and Jc = I \ J,

where I was introduced in (2). Since Fy has a (local) minimum at x̂, for every
v ∈ Rp, the one-sided derivative of Fy at x̂ in the direction of v,

(18) δFy(x̂)(v)=2vT AT (Ax̂−y)+β
∑

i∈Jc

ϕ′(‖Gix̂‖)
‖Gix̂‖ (Gix̂)T Giv+βϕ′(0)

∑

i∈J

‖Giv‖,

satisfies δFy(x̂)(v) ≥ 0. Let KJ ⊂ Rp be the subspace given below

(19) KJ = {v ∈ Rp : Giv = 0, ∀i ∈ J}.
In particular, if J is empty then KJ = Rp and the sums over J are absent, while if
J = I, we have KJ = ker(G) and the sums over Jc are absent. Notice also that if
ker(G) = {0}, having a minimizer x̂ such that J = I in (17) means that x̂ = 0 in
which case (15) is trivially satisfied while (16) holds for N = {0}. In the following,

Inverse Problems and Imaging Volume 1, No. 4 (2007), 1–677



666 Mila Nikolova

consider that the dimension dJ of KJ satisfies 1 ≤ dJ ≤ p. Since the last term on
the right side of (18) vanishes if v ∈ KJ , we can write that

(20) ∀v ∈ KJ , vT

(
AT Ax̂ +

β

2

∑

i∈Jc

GT
i

ϕ′(‖Gix̂‖)
‖Gix̂‖ Gix̂−AT y

)
= 0.

Let BJ be a p× dJ matrix whose columns form an orthonormal basis of KJ . Then
(20) is equivalent to

(21) BT
J

(
AT Ax̂ +

β

2

∑

i∈Jc

GT
i

ϕ′(‖Gix̂‖)
‖Gix̂‖ Gix̂

)
= BT

J AT y.

Let θ ∈ Rrs be defined as in (11). Using that ‖Gix̂‖ = 0 for all i ∈ J we can write
that

∑

i∈Jc

GT
i

ϕ′(‖Gix̂‖)
‖Gix̂‖ Gix̂ =

∑

i∈Jc

GT
i θ[is]Gix̂ +

∑

i∈J

GT
i θ[is]Gix̂ = GT diag(θ)Gx̂.

Then (21) is equivalent to

(22) BT
J

(
AT A +

β

2
GT diag(θ)G

)
x̂ = BT

J AT y.

Since x̂ ∈ KJ , there is a unique x̃ ∈ RdJ such that

(23) x̂ = BJ x̃.

Define

(24) AJ = ABJ ∈ Rq×dJ and GJ = GBJ ∈ Rr×dJ .

Then (22) reads

(25)
(

AT
J AJ +

β

2
GT

J diag(θ)GJ

)
x̃ = AT

J y.

If AT A is invertible, AT
J AJ ∈ RdJ×dJ is invertible as well. Notice that by (3),

ker(AJ) ∩ ker(GJ) = {0}. Then the matrix between the parentheses of in (25) is
invertible. We can hence write down

AJ x̃ = CJy,

CJ = AJ

(
AT

J AJ +
β

2
GT

J diag(θ)GJ

)−1

AT
J .(26)

According to Lemma 2.2 (i) we have |||CJ ||| ≤ 1. Using (23), we deduce that ‖Ax̂‖ =
‖AJ x̃‖ ≤ ‖y‖.
Statement (ii). Define

V∞ =
{

y ∈ Rq : y ∝ A1l
}

.

Consider that for some y ∈ Rq \ V∞, there is a (local) minimizer x̂ of Fy such
that the subspace KJ defined by (17) and (19) is of dimension dJ = 1. Using that
ker(G) = 1l, this means that KJ = {λ1l : λ ∈ R} and hence x̂ = λ̂1l where λ̂ satisfies
‖Aλ̂1l− y‖2 = minλ∈R ‖Aλ1l− y‖2, since Φ(λ1l) = 0, ∀λ ∈ R. It is easy to find that
λ̂ = yT A1l

‖A1l‖2 and that

‖Ax̂‖ = λ̂‖A1l‖ =
|yT A1l|
‖A1l‖ .
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By Schwarz inequlity, |yT A1l| < ‖y‖ ‖A1l‖ since y 6∈ V∞. Hence

(27)
y ∈ Rq \ V∞

Fy has a (local) minimum at x̂ = λ̂1l

}
⇒ ‖Ax̂‖ < ‖y‖.

Let us next define the family of subsets of indexes J as

J = {J ⊂ I : dim(KJ) ≥ 2} ,

where for every J , the set KJ is defined by (19). For every J ∈ J , let us denote
dJ = dim(KJ) ∈ [2, p] and let the columns of BJ ∈ Rp×dJ form an orthonormal
basis of KJ . Let AJ , GJ and CJ be defined as in (24) and (26). Notice that {∅} ∈ J
and that dim(K{∅}) = p.

Since for every J ∈ J we have 1l ∈ KJ , there exists hJ ∈ RdJ such that

BJhJ = 1l ∈ Rp.

Using that rank(BJ) = dJ , this hJ is unique and then ker(GJ) = hJ . For every
J ∈ J define the subspaces

VJ =
{

y ∈ Rq : AT
J y ∝ AT

J AJhJ

}
,

WJ = ker(AT
J ).

Using Lemma 2.2 (ii), for every J ∈ J we can write that

(28)
y ∈ Rq \ (VJ ∪WJ )
Fy has a (local) minimum at x̂
such that {i ∈ I : Gix̂ = 0} = J



 ⇒ ‖Ax̂‖ < ‖y‖.

Since for every J ∈ J we have dim(VJ) ≤ q − 1 and dim(WJ ) ≤ q − 1, the subset
N ⊂ Rq defined by

N = V∞ ∪
⋃

J∈J

(
VJ ∪WJ

)

is closed and negligible in Rq as being a finite union of subspaces of Rq of dimension
strictly smaller than q. Using (27) and (28),

‖Ax̂‖ < ‖y‖, ∀y ∈ Rq \N.

The proof is complete.

2.3. The mean of restored data. Under the common assumption that the noise
corrupting the data is of mean zero, it is reasonable to require that the restored
data Ax̂ and the observed data y have the same mean. When x is an image defined
on a convex subset of R2 and ϕ is applied to ‖∇x‖, and when A is the identity, it
is well known that the solution x̂ and the data y have the same mean [2]. Below
we consider this question in our context where x is defined on a discrete grid and
A is a general linear operator. For the seek of clarity, the index in 1lp will specify
the dimension of 1lp.

Proposition 2. Let Fy : Rp → R read as in (1)-(2) where ϕ satisfy H1 combined
with one of the assumptions H2 or H3. Assume that 1lp ∈ ker(G) and that

(29) A1lp ∝ 1lq.

For every y ∈ Rq, if Fy has a (local) minimum at x̂, then

(30) 1lT Ax̂ = 1lT y.

Inverse Problems and Imaging Volume 1, No. 4 (2007), 1–677
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Proof. Consider first that ϕ satisfies H1-H2. Using that 1lTp∇Fy(x̂) = 0, where ∇Fy

is given in (9) and (12), we obtain

(A1lp)T Ax̂− (A1lp)T y = −1
2
(G1lp)T diag(θ)Gx̂

= 0

where the last equality comes from the assumption that 1lp ∈ ker(G). Using that
A1lp = c1lq for some c ∈ R leads to (30).

Consider now that ϕ satisfies H1-H3. From the necessary condition for a min-
imum, δFy(x̂)(1l) ≥ 0 and δFy(x̂)(−1l) ≥ 0, where δFy is given in (18). Noticing
that Gi1lp = 0 for all i ∈ I leads to (A1l)T (Ax̂ − y) = 0. Applying the assumption
(29) gives the result.

The assumption A1l ∝ 1l holds in the case of shift-invariant blurring under the
periodic boundary condition since then A is block-circulant. However, it does not
hold for general operators A. We do not claim that the condition (29) on A is
always necessary. Instead, we show next that (29) is necessary in a very simple but
important case.

Remark 2. Let ϕ(t) = t2, kerG = span(1l) and A be square and invertible. We will
see that in this case (29) is a necessary and sufficient condition to have (30). Indeed,
the minimizer x̂ of Fy reads x̂ = (AT A + β

2 GT G)−1AT y. Taking (30) as a require-
ment is equivalent to 1lT A(AT A+β

2 GT G)−1AT y = 1lT y, for all y ∈ Rq. Equivalently,
A(AT A + β

2 GT G)−1AT 1l = 1l, and also AT 1l = AT 1l + β
2 GT G(AT A)−1AT 1l. Since

kerG = span(1l), we get AT 1l ∝ AT A1l. Using that A is invertible, the latter is
equivalent to A1l ∝ 1l.

Finding general necessary and sufficient conditions for (30) means ensuring that
for every y ∈ Rq, for every minimizer x̂ of Fy, we have Ax̂−y ∈ {A1lp}⊥. This may
be tricky while the expected result seems of limited interest. Based on the remarks
given above, we can expect that (30) fails for general operators A.

3. The residuals for edge-preserving regularization. In this section we give
bounds that characterize the data term at a local minimizer x̂ of Fy. More precisely
we focus on edge-preserving functions ϕ which are currently characterized by

(31) ‖ϕ′‖∞ = sup
0≤t<∞

∣∣ϕ′(t)∣∣ < ∞.

A look at Table 1 shows that this condition is satisfied by all the PFs there except
for (f1). Let us notice that under H1-H3 we usually have ‖ϕ′‖∞ = ϕ′(0).

Theorem 3.1. Let Fy : Rp → R read as in (1)-(2) where rank(A) = q ≤ p and (3)
holds. Let ϕ satisfy H1 combined with one of the assumptions H2 or H3. Assume
also that ‖ϕ′‖∞ is finite.

For every y ∈ Rq, if Fy reaches a (local) minimum at x̂ then

(32) ‖y −Ax̂‖∞ ≤ β

2
‖ϕ′‖∞

∣∣∣∣∣∣(AAT )−1A
∣∣∣∣∣∣
∞|||G|||1.

Remark 3. Notice that (32) and (33) provide tight bounds that are independent
of y and hold for any local or global minimizer x̂ of Fy.
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Let us remind that for any matrix C, we have |||C|||1 = maxj

∑
i |C[i, j]| and

|||C|||∞ = maxi

∑
j |C[i, j]|, see e.g. [13, 6]. Two important consequences of Theorem

3.1 are stated next.

Remark 4 (Signal denoising or segmentation). If x is a signal and G corresponds
to the differences between consecutive samples, it is easy to see that |||G|||1 = 2. If
A is the identity operator,

∣∣∣∣∣∣(AAT )−1AT
∣∣∣∣∣∣
∞ = 1, so (32) yields

‖y −Ax̂‖∞ ≤ β‖ϕ′‖∞.

Remark 5 (Image denoising or segmentation). Let the pixels of an image with m
rows be ordered column by column in x. For definiteness, let us consider a forward
discretization. If {Gi : i ∈ I} corresponds to the first-order differences between
each pixel and its 4 adjacent neighbors (s = 1), or to the discrete approximation of
the gradient operator (s = 2), the matrix G is obtained by translating column by
column and row by row, the following 2×m submatrix:

[
1 −1 0 · · · 0
1 0 0 · · · −1

]
,

all other entries being null. Whatever the boundary conditions, each column of G
has at most 4 non-zero entries with values in {−1, 1}, hence

|||G|||1 = 4.

If in addition A is the identity,

(33) ‖y − x̂‖∞ ≤ 2β‖ϕ′‖∞.

Proof of Theorem 3.1. The cases relevant to H2 and H3 are analyzed separately.
Case H1-H2. From the first-order necessary condition for a minimum ∇Fy(x̂) = 0,

2AT (y −Ax̂) = β∇Φ(x̂).

By assumption, AAT is invertible. Multiplying both sides of the above equation by
1
2 (AAT )−1A yields

y −Ax̂ =
β

2
(AAT )−1A ∇Φ(x̂)

and then

(34) ‖y −Ax̂‖∞ ≤ β

2

∣∣∣∣∣∣(AAT )−1A
∣∣∣∣∣∣
∞ ‖∇Φ(x̂)‖∞.

The entries of ∇Φ(x̂) are given in (10). Introducing into (10) the assumption (31)

and the observation that
∣∣Gi[j,·]x

∣∣
‖Gix‖ ≤ 1, ∀j, ∀i, leads to

∣∣∂nΦ(x)
∣∣ ≤

∑

i∈I

∣∣ϕ′(‖Gix‖)
∣∣

s∑

j=1

∣∣Gi[j, ·]x
∣∣

‖Gix‖
∣∣Gi[j, n]

∣∣ ≤ ‖ϕ′‖∞
∑

i∈I

s∑

j=1

∣∣Gi[j, n]
∣∣.

Observe that the double sum on the right is the `1 norm (denoted ‖.‖1) of the
nth column of G. Using the expression for `∞ matrix norm mentioned just before
Remark 4, it is found that

‖∇Φ(x̂)‖∞ = max
n∈I

∣∣∂nΦ(x)
∣∣ ≤ ‖ϕ′‖∞max

n∈I

∑

i∈I

s∑

j=1

∣∣Gi[j, n]
∣∣ = ‖ϕ′‖∞|||G|||1.

Inserting this into (34) leads to the result.
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Case H1-H3. Using that δFy(x̂)(v) ≥ 0 and δFy(x̂)(−v) ≥ 0 for every v ∈ Rp,
where δFy(x̂)(v) is given in (18), we obtain that

∣∣∣2(Ax̂− y)T Av + β
∑

i∈Jc

ϕ′(‖Gix̂‖)
‖Gix̂‖ (Gix̂)T Giv

∣∣∣ ≤ βϕ′(0)
∑

i∈J

‖Giv‖,

where J and Jc are defined in (17). Then we have the following inequality chain:
∣∣∣2(Ax̂− y)T Av

∣∣∣ ≤ β
∑

i∈Jc

ϕ′(‖Gix̂‖)
s∑

j=1

∣∣Gi[j, ·]x̂
∣∣

‖Gix̂‖
∣∣∣Gi[j, ·]v

∣∣∣ + βϕ′(0)
∑

i∈J

‖Giv‖

≤ β‖ϕ′‖∞


∑

i∈Jc

s∑

j=1

∣∣∣Gi[j, ·]v
∣∣∣ +

∑

i∈J

‖Giv‖



= β‖ϕ′‖∞
(∑

i∈Jc

‖Giv‖1 +
∑

i∈J

‖Giv‖
)

.

Since ‖u‖2 ≤ ‖u‖1 for every u, we can write that for every v ∈ Rp,

(35)
∣∣∣(Ax̂− y)T Av

∣∣∣ ≤ β

2
‖ϕ′‖∞

∑

i∈I

‖Giv‖1 =
β

2
‖ϕ′‖∞‖Gv‖1.

Let {en, 1 ≤ n ≤ q} denote the canonical basis of Rq. For any n = 1, . . . , q, we
apply (35) with

v = AT (AAT )−1en.

Then for any n = 1, · · · , q, we have
∣∣∣(Ax̂− y)T Av

∣∣∣ =
∣∣∣(Ax̂− y)[n]

∣∣∣ and (35) yields

∣∣∣(Ax̂− y)[n]
∣∣∣ ≤ β

2
‖ϕ′‖∞‖GAT (AAT )−1en‖1 ≤ β

2
‖ϕ′‖∞|||G|||1

∥∥AT (AAT )−1en

∥∥
1
.

It follows that

|||Ax̂− y|||∞ ≤ β

2
‖ϕ′‖∞ |||G|||1 max

1≤n≤q

∥∥AT (AAT )−1en

∥∥
1
.

Since
∥∥AT (AAT )−1en

∥∥
1

is the `1 norm of the nth column of AT (AAT )−1, we find

that
∥∥∥AT (AAT )−1

∥∥∥
∞

= max1≤n≤q

∥∥AT (AAT )−1en

∥∥
1
. Hence (32).

Remark 6. In a statistical setting, the quadratic data-fidelity term ‖Ax − y‖2
in (1) corresponds to white Gaussian noise on the data [3, 7, 2]. Such a noise is
unbounded, even if its `2 norm is finite. It may seem surprising to realize that
whenever ϕ is edge-preserving, i.e. when ‖ϕ′‖∞ is bounded, the minimizers x̂ of
Fy give rise to noise estimates (y − Ax̂)[i], 1 ≤ i ≤ q that are tightly bounded as
stated in (32). So the assumption for Gaussian noise is distorted by the solution.
The proof of the theorem reveals that this behavior is due to the boundedness of
the gradient of the regularization term.

4. Bounds on the reconstructed differences. The regularization term Φ being
defined on the discrete gradients or differences Gx, we wish to find bounds charac-
terizing how they behave in the solution x̂. This problem is intricate even when A is
the identity. In this section we systematically suppose that AT A is invertible. The
considerations are quite different according to the smoothness at zero of t → ϕ(|t|).
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4.1. Smooth regularization. When the data y involve a linear transform A from
the original x, it does not make sense to consider the (discrete) gradient of differences
of y. Instead, we can compare Gx̂—which combines information from the data and
from the prior—with a solution that is built based only on the data, without any
prior. We will compare Gx̂ with Gẑ where ẑ is the least-squares solution, i.e. the
minimizer of ‖Ax− y‖2:
(36) ẑ = (AT A)−1AT y.

Theorem 4.1. Let Fy : Rp → R be of the form (1)-(2) where rank(A) = p and ϕ
satisfy H1-H2. For every y ∈ Rq, if Fy has a (local) minimum at x̂, then

(i) there is a linear operator Hy : Rr → Rr such that

Gx̂ = Hy G ẑ,(37)
Spectral Radius(Hy) ≤ 1;(38)

(ii) if ϕ′(t) > 0 on (0,+∞) and {Gi : i ∈ I} is a set of linearly independent
vectors of Rq, then the linear operator Hy in (37) satisfies

Spectral Radius(Hy) < 1;

(iii) if A is orthonormal, then ‖Gx̂‖ ≤ |||G||| ‖AT y‖.
It can be useful to remind that for any ε > 0 there exists a matrix norm |||.||| such

that |||Hy||| ≤ Spectral Radius(Hy) + ε—see e.g. [6]—and hence |||Hy||| ≤ 1 + ε.

Proof of Theorem 4.1. Multiplying both sides of (13) by G(AT A)−1 yields

Gx̂ +
β

2
G(AT A)−1GT diag(θ)Gx̂ = Gẑ.

Then the operator Hy introduced in (37) reads

(39) Hy =
(

I +
β

2
G(AT A)−1GT diag(θ)

)−1

.

Let λ and u with ‖u‖ = 1 be an eigenvalue and the relevant eigenvector of Hy,
respectively. Starting with Hyu = λu we derive

u = λu + λ
β

2
G(AT A)−1GT diag(θ)u.

If diag(θ)u = 0, we have λ = 1, hence (38) holds. Consider now that diag(θ)u 6= 0,
then uT diag(θ)u > 0. Multiplying both sides of the above equation from the left
by uT diag(θ) leads to

λ =
uT diag(θ)u

uT diag(θ)u + β
2 uT diag(θ)G(AT A)−1GT diag(θ)u

.

Using that uT diag(θ)G(AT A)−1GT diag(θ)u ≥ 0 shows that λ ≤ 1 which proves
(38).

Under the conditions of (ii), θ[i] > 0 for all i, then GT diag(θ)u 6= 0 since the rows
of GT are linearly independent. It follows that β

2 uT diag(θ)G(AT A)−1GT diag(θ)u >
0, hence the result stated in (ii).

In the case when A is orthonormal we have AT A = I so (13) yields

Gx̂ = G
(
I +

β

2
GT diag(θ)G

)−1
AT y
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and hence

‖Gx̂‖ ≤ |||G|||2
∥∥(

I +
β

2
GT diag(θ)G

)−1
AT y

∥∥

≤ |||G|||2 ‖AT y‖
where the last inequality is obtained by applying Lemma 2.2(i).

The condition on {Gi : i ∈ I} required in (ii) holds for instance if x is a p-length
signal and Gix = xi − xi+1 for all i = 1, . . . , p− 1.

4.2. Nonsmooth regularization. With any local minimizer x̂ of Fy we associate
the subsets J and Jc defined in (17) as well as the subspace KJ given in (19),
along with its orthonormal basis given by the columns of BJ ∈ Rp×dJ where dJ =
dim(KJ).

Theorem 4.2. Let Fy : Rp → R be of the form (1)-(2) where rank(A) = p and ϕ
satisfy H1-H3. For every y ∈ Rq, if Fy has a (local) minimum at x̂, then

(i) there is a linear operator Hy : Rr → Rr such that

Gx̂ = Hy GẑJ ,(40)
Spectral Radius(Hy) ≤ 1,(41)

where ẑJ is the least-squares solution constrained to KJ , i.e. the point yielding

(42) min
x∈KJ

‖Ax− y‖2;

(ii) if ϕ′(t) > 0 on R+ and {Gi : i ∈ I} is a set of linearly independent vectors of
Rp, then the linear operator in (40) satisfies

Spectral Radius(Hy) < 1;

(iii) if in particular A is orthonormal then ‖Gx̂‖ ≤ |||G|||2 ‖AT y‖.
Proof. We adopt the notations introduced in (24). The least-squares solution con-
strained to KJ is of the form ẑJ = BJ z̃ where z̃ ∈ RdJ yields the minimum of
‖ABJz − y‖2. Then we can write that

(43) z̃ = (AT
J AJ)−1AT

J y

and hence
ẑJ = BJ(AT

J AJ)−1AT
J y.

Let x̃ ∈ RdJ be the unique element such that x̂ = BJ x̃. Multiplying both sides
of (25) on the left by (AT

J AJ )−1 and using the expression for z̃ yields

(44) x̃ +
β

2
(AT

J AJ)−1GT
J diag(θ)GJ x̃ = z̃.

Multiplying both sides of the last equation on the left by GBJ , then using the
expression for ẑJ and reminding that GBJ x̃ = Gx̂ shows that

(
I +

β

2
GJ(AT

J AJ)−1GT
J diag(θ)

)
Gx̂ = GẑJ .

The operator Hy evoked in (40) reads Hy =
(
I + β

2 GJ(AT
J AJ)−1GT

J diag(θ)
)−1. It

has the same structure as the operator in (39). By the same arguments, it is found
that (41) holds.

The case (ii) is similar to Theorem 4.1(ii) and its proof uses the same arguments.
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When A is orthonormal, AT
J AJ = BT

J AT ABJ = BT
J BJ = I with I the identity

on RdJ . Using (43) and (44) we obtain
(
I +

β

2
GT

J diag(θ)GJ

)
x̃ = AT

J y

and then x̃ =
(
I + β

2 GT
J diag(θ)GJ

)−1

AT
J y. Multiplying the latter equality on the

left by GBJ and using (23) yields

Gx̂ = GBJ

(
I +

β

2
GT

J diag(θ)GJ

)−1

BT
J AT y.

Since BJ is an orthonormal basis of KJ , the latter is equivalent to

Gx̂ = GBJ

(
BT

J BJ +
β

2
GT

J diag(θ)GJ

)−1

BT
J AT y.

By using Lemma 2.2(i), we find the following:

‖Gx̂‖ ≤ |||G|||2
∥∥∥BJ

(
BT

J BJ +
β

2
GT

J diag(θ)GJ

)−1

BT
J AT y

∥∥∥
≤ |||G|||2 ‖AT y‖.

5. Conclusion. We provide simple bounds characterizing the minimizers of regu-
larized least-squares. These bounds are for arbitrary signals and images of a finite
size and they hold for possibly nonsmooth or nonconvex regularization terms and
hold for local and global minimizers. They do not involve asymptotic assumptions
nor simplifications and address practical situations.

6. Appendix.
Proof of Lemma 2.2.

Statement (i). Denote M = GT diag(θ)G and observe that M is positive semi-
definite. Using (3), the matrix AT A + M is positive definite so C is well defined.
Let the scalar λ and v ∈ Rq be such that ‖v‖ = 1 and

(45) A
(
AT A + M

)−1
AT v = λv.

Since A
(
AT A + M

)−1
AT is positive semi-definite and symmetric, λ ≥ 0. We

clearly have λ = 0 if and only if A
(
AT A + M

)−1
AT v = 0. In the following,

consider that A
(
AT A + M

)−1
AT v 6= 0 in which case AT v 6= 0 and λ > 0.

1. Case rank(A) = p ≤ q. Using that AT A is invertible, we deduce that
(
AT A + M

)−1
AT v = λ(AT A)−1AT v.

Multiplying both sides of this equation by vT A(AT A)−1
(
AT A + M

)
yields

vT A(AT A)−1AT v = λvT A(AT A)−1
(
AT A + M

)
(AT A)−1AT v

= λvT A(AT A)−1AT v + λvT A(AT A)−1M(AT A)−1AT v.

The latter equation also reads

(1− λ)c1 = λc2
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for

c1 = vT A(AT A)−1AT v,

c2 = vT A(AT A)−1M(AT A)−1AT v.

Notice that c1 > 0 because AT v 6= 0 and that c2 ≥ 0. Combining this with
the fact that λ ≥ 0 shows that 1− λ ≥ 0.

2. Case rank(A) = p′ < p. Consider the singular value decomposition of A

A = USV T

where U ∈ Rq×q and V ∈ Rp×p are unitary, and S ∈ Rq×p is diagonal with

(46) S[i, i] > 0, 1 ≤ i ≤ p′,

since rank(A) = p′. Using that U−1 = UT and V −1 = V T , we can write that
(
AT A + M

)−1
= V

(
ST S + V T MV

)−1

V T

and then the equation in (45) becomes

(47) US
(
ST S + V T MV

)−1

ST UT v = λv.

Define u = UT v. Then u 6= 0 because Av 6= 0 and moreover ‖u‖ = 1 because
U is unitary. Multiplying on the left the two sides of (47) by UT yields

(48) S
(
ST S + V T MV

)−1

ST u = λu.

Based on (46), the q × p diagonal matrix S can be put into the form

S =




S1

... O
· · · · · ·
O

... O




where S1 is diagonal of size p′× p′ with S1[i, i] > 0, 1 ≤ i ≤ p′ while the other
submatrices are null. If p′ = q < p, then the matrices on the second row are

void, i.e. S =
[
S1

... O
]
. Accordingly, let us consider the partitioning

(
ST S + V T MV

)−1

=




L11

... L12

· · · · · ·
L21

... L22




where L11 is p′ × p′ and L22 is p− p′ × p− p′. Then (48) reads

(49)




S1L11S1

... O
· · · · · ·
O

... O


 u = λu

where the null matrices are absent if p′ = q < p. If p′ < q, then u[i] = 0 for
all i = p′ + 1, . . . , q. Define u1 ∈ Rp′ by

u1[i] = u[i], 1 ≤ i ≤ p′

and notice that ‖u1‖ = ‖u‖ = 1. Then (49) leads to

(50) S1L11S1u1 = λu1.
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In order to compute L11 we partition V as

V =
[
V1

... V0

]

where V1 is p× p′ and V0 has p× p− p′. Furthermore,

ST S + V T MV =




S2
1 + V T

1 MV1

... V T
1 MV0

· · · · · ·
V T

0 MV1

... V T
0 MV0




where we denote

S2
1 = ST

1 S1 = diag
(
(S1[1, 1])2, . . . , (S1[p′, p′])2

)
.

Noticing that the columns of V0 yield ker(AT A), the assumption (3) ensures
that V T

0 MV0 is invertible. By the formula for partitioned matrices [13] we get

L11 =
(
S2

1 + V T
1 MV1 − V T

1 MV0

(
V T

0 MV0

)−1
V T

0 MV1

)−1

.

Using that θ ∈ Rr
+, we can define θ

1
2 ∈ Rr by θ

1
2 [i] =

√
θ[i] for all 1 ≤ i ≤ r.

Observe that then M =
(
diag(θ

1
2 )G

)T

diag(θ
1
2 )G. Define

H1 = diag(θ
1
2 )G V1

H0 = diag(θ
1
2 )G V0.

Then

L11 =
(
S2

1 + HT
1 H1 −HT

1 H0

(
HT

0 H0

)−1
HT

0 H1

)−1

=
(
S2

1 + HT
1

(
I −H0

(
HT

0 H0

)−1
HT

0

)
H1

)−1

= S−1
1

(
I + P

)−1
S−1

1

where P reads

P = S−1
1 HT

1

(
I −H0

(
HT

0 H0

)−1
HT

0

)
H1S

−1
1 .

Notice that P is symmetric and positive semi-definite since the matrix between
the large parentheses is an orthogonal projector. With this notation, the
equation in (50) reads (I + P )−1u1 = λu1 and hence

u1 = λ
(
I + P

)
u1.

Multiplying the two sides of this equation by uT
1 on the left, and recalling that

‖u1‖ = 1 and that λ ≥ 0, leads to

1− λ = λ uT Pu ≥ 0.

It follows that λ ∈ [0, 1].
Statement (ii). Using that AT A is invertible and that ker(GT diag(θ)G) = span(h)
because θ[i] > 0, 1 ≤ i ≤ r, we have the following chain of implications:

Cy = y ⇔ A(AT A + GT diag(θ)G)−1AT y = y

⇒ AT y = AT y + GT diag(θ)G(AT A)−1AT y(51)

⇒ GT diag(θ)G(AT A)−1AT y = 0

⇔ y ∈ ker(AT ) or (AT A)−1AT y ∝ h.
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It follows that Cy 6= y for all y ∈ R \ {ker(AT ) ∪ Vh} where Vh is defined in (8).
Combining this with the result in statement (i) above leads to (7).

Remark 7. Notice that if A is invertible (i.e. rank(A) = p = q), Vh is of dimension
1 and is spanned by the eigenvector of C corresponding to the unique eigenvalue
equal to 1. This comes from the facts that in this case the implication in (51) is an
equivalence and that ker(AT ) = {0}.
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