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Salt-and-Pepper Noise Removal by Median-Type
Noise Detectors and Detail-Preserving Regularization

Raymond H. Chan, Chung-Wa Ho, and Mila Nikolova

Abstract—This paper proposes a two-phase scheme for removing
salt-and-pepper impulse noise. In the first phase, an adaptive
median filter is used to identify pixels which are likely to be
contaminated by noise (noise candidates). In the second phase,
the image is restored using a specialized regularization method
that applies only to those selected noise candidates. In terms of
edge preservation and noise suppression, our restored images
show a significant improvement compared to those restored by
using just nonlinear filters or regularization methods only. Our
scheme can remove salt-and-pepper-noise with a noise level as
high as 90%.

Index Terms—Adaptive median filter, edge-preserving regular-
ization, impulse noise.

I. INTRODUCTION

IMPULSE noise is caused by malfunctioning pixels in
camera sensors, faulty memory locations in hardware,

or transmission in a noisy channel (see [1], for instance).
Two common types of impulse noise are the salt-and-pepper
noise and the random-valued noise. For images corrupted by
salt-and-pepper noise (respectively, random-valued noise), the
noisy pixels can take only the maximum and the minimum
values (respectively, any random value) in the dynamic range.
There are many works on the restoration of images corrupted
by impulse noise (see, for instance, the nonlinear digital filters
reviewed in [2]). The median filter was once the most popular
nonlinear filter for removing impulse noise because of its good
denoising power [1] and computational efficiency [3]. However,
when the noise level is over 50%, some details and edges of the
original image are smeared by the filter [4].

Different remedies of the median filter have been proposed,
e.g., the adaptive median filter [5], the multistate median filter
[6], or the median filter based on homogeneity information [7],
[8]. These so-called “decision-based” or “switching” filters first
identify possible noisy pixels and then replace them by using
the median filter or its variants, while leaving all other pixels
unchanged. These filters are good at detecting noise even at a
high noise level. Their main drawback is that the noisy pixels
are replaced by some median value in their vicinity without
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taking into account local features such as the possible presence
of edges. Hence, details and edges are not recovered satisfacto-
rily, especially when the noise level is high.

For images corrupted by Gaussian noise, least-squares
methods based on edge-preserving regularization functionals
[9]–[12] have been used successfully to preserve the edges and
the details in the images. These methods fail in the presence of
impulse noise because the noise is heavy tailed. Moreover the
restoration will alter basically all pixels in the image, including
those that are not corrupted by the impulse noise. Recently,
nonsmooth data-fidelity terms (e.g., ) have been used along
with edge-preserving regularization to deal with impulse noise
[13].

In this paper, we propose a powerful two-stage scheme which
combines the variational method proposed in [13] with the adap-
tive median filter [5]. More precisely, the noise candidates are
first identified by the adaptive median filter, and then these noise
candidates are selectively restored using an objective function
with an data-fidelity term and an edge-preserving regulariza-
tion term. Since the edges are preserved for the noise candidates,
and no changes are made to the other pixels, the performance of
our combined approach is much better than that of either one of
the methods. Salt-and-pepper noise with noise ratio as high as
90% can be cleaned quite efficiently.

The outline of the paper is as follows. The adaptive median
filter and the edge-preserving method are reviewed in Section II.
Our denoising scheme is presented in Section III. Experimental
results and conclusions are presented in Sections IV and V,
respectively.

II. ADAPTIVE MEDIAN FILTER AND EDGE-PRESERVING

REGULARIZATION

A. Review of the Adaptive Median Filter

Let , for , be the
gray level of a true -by- image at pixel location ,
and be the dynamic range of , i.e.,

for all . Denote by a noisy image. In the clas-
sical salt-and-pepper impulse noise model, the observed gray
level at pixel location is given by

with probability
with probability
with probability

where defines the noise level. Here we give a brief
review of the filter.

Let be a window of size centered at , i.e.,

and
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and let be the maximum window size. The algo-
rithm tries to identify the noise candidates , and then replace
each by the median of the pixels in .

Algorithm I (Adaptive Median Filter): For each pixel loca-
tion , do the following.

1. Initialize .
2. Compute , and , which are the min-
imum, median, and maximum of the pixel values in , re-
spectively.
3. If , then go to step 5. Otherwise,
set .
4. If , go to step 2. Otherwise, we replace by

.
5. If , then is not a noise candidate,
else we replace by .

The adaptive structure of the filter ensures that most of the
impulse noise are detected even at a high noise level provided
that the window size is large enough. Notice that the noise can-
didates are replaced by the median , while the remaining
pixels are left unaltered.

B. Variational Method for Impulse Noise Cleaning

In [13], images corrupted by impulse noise are restored by
minimizing a convex objective function of
the form

(1)

where is the set of the four closest neighbors of , not
including . It was shown in [13] and [14] that, under mild
assumptions and a pertinent choice of , the minimizer of

satisfies for most of the uncorrupted pixels .
Furthermore, all pixels such that are restored so
that edges and local features are well preserved, provided that

is an edge-preserving potential function. Examples of such
functions are

(see [9], [11], [15], and [16]). The minimization algorithm
works on the residuals . It is sketched below.

Algorithm II:

1. Initialize for each .
2. At each iteration , calculate, for each

where , for , are the latest updates and is
the derivative of .

TABLE I
MAXIMUM WINDOW SIZE w IN ALGORITHM I

3. If , set . Otherwise, solve for in the
nonlinear equation

(2)

The updating of can be done in a red-black fashion, and
it was shown in [13] that converges to , where the
restored image minimizes in (1). If we choose ,
the nonlinear equation (2) can be solved by Newton’s method
with quadratic convergence by using a suitable initial guess de-
rived in [17].

III. OUR METHOD

Many denoising schemes are “decision-based” median filters
(see, for example, [6], [7], and [18]). This means that the noise
candidates are first detected by some rules and are replaced by
the median output or its variants. For instance, in Algorithm
I, the noise candidate , , is replaced by .
These schemes are good because the uncorrupted pixels will
not be modified. However, the replacement methods in these
denoising schemes cannot preserve the features of the images,
in particular the edges are smeared.

In contrast, Algorithm II can preserve edges during denoising
but it has problem in detecting noisy patches, i.e., a connected
region containing many noisy pixels. If one wishes to smooth
out all the noisy patches, one has to increase (see [19] for the
role of ). As a result, the values of some pixels near edges will
be distorted.

Combining both methods will avoid the drawbacks of either
one of them. The aims of our method are to correct noisy pixels
and preserve edges in the image. In the following, we denote the
restored image by .

Algorithm III:

1. (Noise detection): Denote by the image obtained by ap-
plying an adaptive median filter to the noisy image . Noticing
that noisy pixels take their values in the set , we
define the noise candidate set as

and

The set of all uncorrupted pixels is .
2. (Replacement): Since all pixels in are detected as uncor-
rupted, we naturally keep their original values, i.e.,
for all . Let us now consider a noise candidate, say,
at . Each one of its neighbors is either
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Fig. 1. Results in PSNR and MAE for the Lena image at various noise levels for different algorithms.

Fig. 2. Results in PSNR and MAE for the Bridge image at various noise levels for different algorithms.

a correct pixel, i.e., and, hence, ; or
is another noise candidate, i.e., , in which case its
value must be restored. The neighborhood of is, thus,
split as . Noise candidates are re-
stored by minimizing a functional of the form (1), but restricted
to the noise candidate set

(3)

where

The restored image with indices is the minimizer of
(3) which can be obtained by using Algorithm II but restricted
onto instead of onto . As in (1), the data-fidelity term

discourages those wrongly detected uncorrupted

pixels in from being modified to other values. The regular-
ization term ( ) performs edge-preserving smoothing for
the pixels indexed by .

Let us emphasize that Step 1 of our method can be realized by
any reliable impulse noise detector, such as the multistate me-
dian filter [6] or the improved detector [18], etc. Our choice,
the adaptive median filter, was motivated by the fact that it pro-
vides a good compromise between simplicity and robust noise
detection, especially for high level noise ratios. The pertinence
of this choice can be seen from the experimental results in [20]
(where the noise level is 50%) or Figs. 3(h) and 4(h) (where the
noise level is 70%).

IV. SIMULATIONS

A. Configuration

Among the commonly tested 512 512 8-bit grayscale im-
ages, the one with homogeneous region (Lena) and the one with
high activity (Bridge) will be selected for our simulations. Their
dynamic ranges are [0, 255]. In the simulations, images will be
corrupted by “salt” (with value 255) and “pepper” (with value 0)
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Fig. 3. Restoration results of different filters. (a) Corrupted Lena image with 70% salt-and-pepper noise (6.7 dB). (b) MED filer (23.2 dB). (c) PSM filter (19.5 dB).
(d) MSM filter (19.0 dB). (e) DDBSM filter (17.5 dB). (f) NASM filter (21.8 dB). (g) ISM filter (23.4 dB). (h) Algorithm I (25.8 dB). (i) Algorithm II (24.6 dB).
(j) Our proposed algorithm (29.3 dB). (k) Original image.

noise with equal probability. Also a wide range of noise levels
varied from 10% to 70% with increments of 10% will be tested.
Restoration performances are quantitatively measured by the
peak signal-to-noise ratio (PSNR) and the mean absolute error
(MAE) defined in [1, p. 327]

where and denote the pixel values of the restored image
and the original image, respectively.

For Algorithm I (the adaptive median filter), the maximum
window size should be chosen such that it increases with
the noise level in order to filter out the noise. Since it is not
known a priori, we tried different for any given noise
level, and found that given in Table I are sufficient for
the filtering. We, therefore, set in all our tests. We
remark that with such choice of , almost all the salt-and-
pepper noise are detected in the filtered images.

For Algorithm II (the variational method in [13]), we choose
as the edge-preserving function. We observe that if

is small ( ), most of the noise is suppressed but
staircases appear. If is large ( ), the fine details are not
distorted seriously but the noise cannot be fully suppressed. The
selection of is a tradeoff between noise suppression and detail
preservation [13]. In the tests, the best restoration results are not
sensitive to when it is between 1.2 and 1.4. We, therefore,
choose , and is tuned to give the best result in
terms of PSNR.

For our proposed Algorithm III, the noise candidate set
should be obtained such that most of the noise are detected. This,
again, amounts to the selection of . As mentioned,

can be fixed for most purposes. Then, we can restore those
noise pixels with . As in Algorithm II, the edge-
preserving function will be used. That leaves only
the parameter to be determined. Later, we will demonstrate
that our proposed algorithm is very robust with respect to ,
and, thus, we fix in all the tests.

For comparison purpose, Algorithm I, Algorithm II, the
standard median (MED) filter, and, also, recently proposed
filters like the progressive switching median (PSM) filter [21],
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Fig. 4. Restoration results of different filters: (a) Corrupted Bridge image with 70% salt-and-pepper noise (6.8 dB). (b) MED filer (19.8 dB). (c) PSM filter
(17.0 dB). (d) MSM filter (16.4 dB). (e) DDBSM filter (15.9 dB). (f) NASM filter (19.9 dB). (g) ISM filter (20.1 dB). (h) Algorithm I (21.8 dB). (i) Algorithm II
(21.1 dB). (j) Our proposed algorithm (25.0 dB). (k) Original image.

the multistate median (MSM) filter [6], the noise adaptive
soft-switching median (NASM) filter [7], the directional dif-
ference-based switching median (DDBSM) filter [22], and the
improved switching median (ISM) filter [18] are also tested.
For the MED filter, the window sizes are chosen for each noise
level to achieve its best performance. For the MSM filter, the
maximum center weights of 7, 5, and 3 are tested for each noise
level. For the ISM filter, the convolution kernels , and

and filtering window sizes of 9 9 and 11 11 are used.
The decision thresholds in the PSM, MSM, DDBSM, ISM
filters are also tuned to give the best performance in terms of
PSNR.

B. Denoising Performance

We summarize the performance of different methods in
Figs. 1 and 2. From the plots, we see that all the methods have
similar performance when the noise level is low. This is because
those recently proposed methods focus on the noise detection.
However, when the noise level increases, noise patches will be
formed and they may be considered as noise free pixels. This

causes difficulties in the noise detection algorithm. With erro-
neous noise detection, no further modifications will be made to
the noise patches, and, hence, their results are not satisfactory.

On the other hand, our proposed denoising scheme achieves
a significantly high PSNR and low MAE even when the noise
level is high. This is mainly based on the accurate noise detec-
tion by the adaptive median filter and the edge-preserving prop-
erty of the variational method of [13].

In Figs. 3 and 4, we present restoration results for the 70%
corrupted Lena and Bridge images. Among the restorations, ex-
cept for our proposed one, Algorithm I gives the best perfor-
mance in terms of noise suppression and detail preservation. As
mentioned before, it is because the algorithm locates the noise
accurately. In fact, about 70.2% and 70.4% pixels are detected
as noise candidates in Lena and Bridge, respectively, by Algo-
rithm I. However, the edges are jittered by the median filter. For
Algorithm II, much of the noise is suppressed but the blurring
and distortion are serious. This is because every pixel has to be
examined and may have been altered. Compared with all the al-
gorithms tested, our proposed Algorithm III is the best one. It
has successfully suppressed the noise with the details and the
edges of the images being preserved very accurately.
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Fig. 5. Restorations of 90% corrupted images: (a) Lena by Algorithm I (21.1 dB). (b) Lena by Algorithm III (25.4 dB). (c) Bridge by Algorithm I (18.1 dB).
(d)Bridge by Algorithm III (21.5 dB).

Fig. 6. PSNR of restored images by our Algorithm III for different �. (a) Lena image. (b) Bridge image.

Finally, to demonstrate the excellent performance of our pro-
posed filter, 90% corrupted Lena and Bridge are restored by
Algorithm I and by our Algorithm III (see Fig. 5). We can clearly
see the visual differences and also the improvement in PSNR by
using our algorithm.

C. Robustness With Respect to

For Algorithm II, the choice of is crucial in the restoration.
To show that our Algorithm III is robust with respect to ,

are tested for noise levels 30%, 50%, and 70% (see
Fig. 6). From the plots, we see that the PSNR is very stable
when . Hence, one can set for all denoising
problems in practice. If one further use as we
did in our tests, and set (which will be
able to detect all salt-and-pepper noise), then our algorithm is
parameter free.

D. Computational Complexity

We end this section by considering the complexity of our al-
gorithm. Our algorithm requires two phases: noise detection and
replacement. Noise detection is done by Algorithm I, the adap-
tive median filter. Like other median-type filters, it is relatively
fast. Although may be quite large, the loop in Algorithm
I is automatically stopped at step 3 when the noise level is not
high. The replacement step is the most time-consuming part of
our algorithm as it requires the minimization of the functional

TABLE II
COMPARISON OF CPU TIME IN SECONDS

in (3). It is equivalent to solving the nonlinear equation (2) for
each pixel in the noise candidate set (see [17]). In Table II, we
compare the CPU time needed for all three algorithms when
MATLAB 6.5 (R13) is used on a PC equipped with an AMD
1.8-GHz CPU and 224-MB RAM memory. We see that our
Algorithm III is about 20–90 times slower than Algorithm I.

We emphasize, however, that the main contribution of our
paper is a method that is capable of restoring images corrupted
by salt-and-pepper noise with extremely high noise ratio. Our
method can be used as a post-processing image enhancement
procedure that improves on the images obtained by fast algo-
rithms such as the adaptive median filter, or as a preprocessing
procedure that cleans up images before dimensionality reduc-
tion in data mining [24].

Our computational cost can be reduced further by better im-
plementations of minimization routines for solving (3) (see, for
example, the continuation method [10] and the primal-dual for-
mulation [23] for TV minimization).



CHAN et al.: SALT-AND-PEPPER NOISE REMOVAL BY MEDIAN-TYPE NOISE DETECTORS 1485

V. CONCLUSION

In this paper, we propose a decision-based, detail-preserving
restoration method. It is the ultimate filter for removing salt-
and-pepper noise. Experimental results show that our method
performs much better than median-based filters or the edge-
preserving regularization methods. Even at a very high noise
level ( ), the texture, details, and edges are preserved
accurately. One can further improve our results by using different
noise detectors and regularization functionals that are tailored
to different types of noises, such as the random-valued impulse
noise or impulse-plus-Gaussian noise. These extensions together
with fast solvers for (3) will be given in our forthcoming papers.
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