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An Iterative Procedure for Removing
Random-Valued Impulse Noise

Raymond H. Chan, Chen Hu, and Mila Nikolova

Abstract—This paper proposes a two-stage iterative method for
removing random-valued impulse noise. In the first phase, we use
the adaptive center-weighted median filter to identify pixels which
are likely to be corrupted by noise (noise candidates). In the second
phase, these noise candidates are restored using a detail-preserving
regularization method which allows edges and noise-free pixels to
be preserved. These two phases are applied alternatively. Simula-
tion results indicate that the proposed method is significantly better
than those using just nonlinear filters or regularization only.

Index Terms—Adaptive center-weighted median filter, impulse
noise, regularization methods.

I. INTRODUCTION

IMAGES are frequently corrupted by impulse noise due to
noisy sensors or channel transmission errors [10]. There are

many types of impulse noise. Let be the gray level of a true
image at pixel location and be the dynamic
range of . Let be the gray level of the noisy image at
pixel , then

where are random numbers and is the
noise ratio. For example, for fixed-valued (salt-and-pepper) im-
pulse noise, noisy pixels take either or , see
[14]. In this paper, we focus on general random-valued impulse
noise, where can be any numbers between and
(see [8]). Cleaning such noise is far more difficult than cleaning
fixed-valued impulse noise, since for the latter, the differences
in gray levels between a noisy pixel and its noise-free neighbors
are significant most of the times.

The main approach for removing impulse noise is to use me-
dian-based filters (see, e.g., [1], [13], and [16]). However, since
filters typically are implemented invariantly across the images,
they also tend to modify pixels that are not affected by noise.
In addition, when the noise ratio is high, they are prone to edge
jitter, and that the details and edges of the original image are
usually blurred by the filters [18].
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To improve performance, various decision-based filters have
been proposed where possible noise pixels are first identified
and then replaced by using the median filter. Examples of de-
cision-based filters are the center-weighted median filter [15],
the adaptive center-weighted median filter (ACWMF) [9], the
adaptive median filter [14] and the median filter based on ho-
mogeneity information [19]. These filters are good in locating
the noise, even in a high noise ratio. However, the main draw-
back is that the replacement of the noisy pixels by the median
filter entails blurring of details and edges, especially when the
noise ratio is high.

Recently, a detail-preserving variational method (DPVM)
has been proposed to restore impulse noise [17]. It uses a non-
smooth data-fitting term (e.g., ) along with edge-preserving
regularization. In this paper, we propose to combine ACWMF
with DPVM for restoring images that are highly corrupted by
random-valued impulse noise. Our method involves two steps
which are applied alternatively. First, noisy pixels are detected
using ACWMF; then these pixels are selectively restored
by DPVM. Since in each iteration the edges and the details
are preserved for the noise candidates by the regularization
method, and no changes are made to the signal candidates, the
performance of this combined method is much better than just
using either ACWMF or DPVM, especially when the noise
ratio is high. Our method can restore large patches of noisy
pixels because it introduces pertinent prior information via the
regularization term. It is most efficient to deal with high noise
ratio, e.g., ratio as high as 50%.

The outline of the paper is as follows. In Section II, we review
ACWMF. Our denoising scheme is given in Section III. In Sec-
tion IV, we demonstrate the effectiveness of our method using
various images.

II. REVIEW OF ACWMF

ACWMF is a good method for removing random-valued im-
pulse noise when the noise ratio is not high—see [9] or Figs. 1(b)
and 2(b) in Section IV. Here, we give a brief review of the filter.

Let the window size be and . Denote
by the gray level of the noisy image at pixel location .
Let

where is the weight given to pixel , and represents the
repetition operation. Clearly, is the output of the standard
median filter, whereas is the output of the identity filter
when . We define the differences
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Fig. 1. (a) Image with 30% noise. Restored images by (b) ACWMF with s =

0:6, (c) DPVM with � = 0:19, and (d) our method with � = 2; s = 0:6 and
four iterations.

where . It is readily seen that for
(see [7]).

To determine whether the current pixel is corrupted,
a set of thresholds are employed, where for

. If any one of the inequalities
is true, then is regarded as a noise candidate

and replaced by the median, i.e., . Otherwise, is regarded
as a signal candidate and will not be changed.

If 3 3 windows are used (i.e., and ), four
thresholds , are needed. The median of the
absolute deviations from the median (MAD), which is defined
as

(1)

is a robust estimate of dispersion [12], [2] and its scaled forms
are used as the thresholds. Specifically, one sets

(2)

with

(3)

and (see [9]). This choice yields satisfactory results
in filtering random-valued impulse noise when the noise ratio is
not high [see Fig. 1(b)]. However, for a high-level noise ratio,
the filter cannot preserve the fine features in the images [see
Fig. 2(b)].

III. OUR METHOD

When the noise ratio is high, ACWMF may falsely detect
some noise-free pixels as noisy pixels. If these erroneous noise
candidates form patches, and are located near to edges, DPVM

Fig. 2. (a) Image with 50% noise. Restored images by (b) ACWMF with s =

0:3, (c) DPVM with � = 0:19, and (d) our method with � = 2:3; s = 0:1 and
four iterations.

will distort them. To alleviate the problem, we apply our method
iteratively with different thresholds. More precisely, at the early
iterations, we take large thresholds in ACWMF so that it will
only select pixels that are most likely to be noisy. Then we re-
store them by DPVM. In the subsequent iterations, we decrease
the thresholds to include more noise candidates. Since the edges
and the details are preserved by the regularization successfully
in each iteration, the restored image will not be distorted by the
method.

In the following we give our algorithm. Let be the set of
the four closest neighbors of , not including .

Algorithm

1) Set . Initialize to be the observed image.
2) Apply ACWMF with the thresholds , to

the image to get the noise candidate set .
3) Let .
4) For all , take .

Restore all pixels in by minimizing the following
functional over

(4)

where is an edge-preserving potential function. Notice
that is composed of those neighbors of
which at step have been detected as signal candidates.
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TABLE I
ERRORS OF RESTORED IMAGES AT 30% NOISE

The minimizer of (4) is obtained by using the algorithm
presented in [17], but restricted to .

5) Set .
6) If , set and go back to Step 2.

Possible choices for in Step 4 are

(see [11], [5], [4], and [6]). In Step 2, we use 3 3 windows and
thresholds of the form

for , and , cf. (1)–(3).
In practice, four iterations are enough, i.e., and the
output is .

IV. SIMULATIONS

In this section, we compare our method with ACWMF [9]
and DPVM [17]. The 256-by-256 picture of Lena is used as
the true image. Then 30% and 50% of the pixels are corrupted
by random noise uniformly distributed on its dynamic range

[see Figs. 1(a) and 2(a)]. Henceforth, we use the
potential function . In the simulations, for each
noise level, the parameters in (2) and in (4) are chosen to
give the best restoration in terms of peak-to-noise-ratio (PSNR)
(see [3, p. 556]).

From Figs. 1–2, we see that there are noticeable noise patches
in the images restored by either ACWMF or DPVM, especially
when the noise ratio is 50%. In contrast, our method has success-
fully suppressed the noise while preserving most of the details
and the edges in both cases.

To assess the effectiveness of our method in processing var-
ious images, we tried four other 256-by-256 gray scale images.
The parameters and were chosen to be the same as in the pre-
vious simulations. The results in terms of PSNR and the mean

TABLE II
ERRORS OF RESTORED IMAGES AT 50% NOISE

absolute error (MAE) (see [3, p. 556]), are summarized in Ta-
bles I and II. From the tables, we see that our method are signif-
icantly better than the other two methods.1 Overall, our restored
images are significantly better than those restored by the other
two methods.

We end by considering the complexity of our algorithm. Since
, the algorithm requires four applications of ACWMF

and four applications of DPVM restricted to the set of the noisy
pixels . Like other medium-type filters, ACWMF can be
done very fast. The application of DPVM is the most time-con-
suming part as it requires the minimization of the functional
in (4). For example, for 30% noise, our method takes 30 times
more CPU time than ACWMF. The timing can be improved by
better implementations of minimization routines for solving (4).
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