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This paper addresses the problems of disparity and optical flow partitioning based on the brightness
invariance assumption. We investigate new variational approaches to these problems with Potts priors
and possibly box constraints. For the optical flow partitioning, our model includes vector-valued data and
an adapted Potts regularizer. Using the notion of asymptotically level stable (als) functions, we prove the
existence of global minimizers of our functionals. We propose a modified alternating direction method of
multipliers. This iterative algorithm requires the computation of global minimizers of classical univariate
Potts problems which can be done efficiently by dynamic programming. We prove that the algorithm
converges both for the constrained and unconstrained problems. Numerical examples demonstrate the
very good performance of our partitioning method.

Keywords: potts priors; optical flow partitioning; disparity partitioning; �0 minimization; jump sparsity;
ADMM-like algorithm.

1. Introduction

An important task in computer vision is the reconstruction of three-dimensional (3D) scenes from stereo
images. Taking a photo, 3D objects are projected onto a 2D image and the depth information gets lost.
If a stereo camera is used, two images are obtained. Owing to the different perspectives, there is a
displacement between corresponding points in the images, which depends on the distance of the points
from the camera. This displacement is called disparity and turns out to be inversely proportional to the
distances of the objects, see Fig. 1 for an illustration. Therefore, disparity estimation has constituted an
active research area in recent years.

c© The authors 2014. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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Fig. 1. Left and middle: Two images taken by a stereo camera. The shift between the images is clearly visible. Right:
True disparity encoded by different gray values which shows the depth of the different objects in the scene (source:
http://vision.middlebury.edu/stereo/. Last accessed December 12, 2014).

Global combinatorial optimization methods such as graph-cuts [11,39] which rely on a discrete
label space of the disparity map and belief propagation [38,68] were developed as well as variational
approaches [16,22,26,34,42,43,64,67]. In particular, in [34] the global energy function was also made
convex by quantizing the disparity map and converting it into a set of binary fields. Illumination vari-
ations were additionally taken into account, e.g. in [16,19]. A stereo matching algorithm based on the
curvelet decomposition was developed in [45]. With the aim of reducing the computational redundancy,
a histogram-based disparity estimation method was proposed in [44]. Further, methods based on non-
parametric local transforms followed by normalized cross correlation (NCC) [60] and rank-transforms
[72] have been used. In this paper, we are interested in the direct disparity partitioning without a pre-
liminary separate estimation of the disparity. Moreover, we want to avoid an initial quantization of
the disparity map as necessary in graph-cut methods or in [34]. We focus on a variational approach
with a linearized brightness invariance assumption to constitute the data fidelity term. The Potts prior
described below will serve as a regularizing term which forces the minimizer of our functional to show
a good partitioning. The partitions of a disparity map correspond typically to contiguous objects in an
observed scene. The Potts model has shown to be a suitable partitioning model for disparity maps,
where popular segmentation algorithms are based on graph cuts [11] and semi-global matching [36]
so far.

Optical flow estimation is closely related to disparity estimation, where the horizontal displacement
direction has to be completed by the vertical one. In other words, we are searching for vector fields
now and have to deal with vector-valued data. Variational approaches to optical flow estimation were
pioneered by Horn and Schunck [37] followed by a vast number of refinements and extensions, includ-
ing sophisticated data fidelity terms going beyond the brightness [8,13,33] and non-smooth regulariz-
ers, e.g. TV-like ones [2,35] including also higher-order derivatives [69–71] and non-local regularizers
[66], to mention only a few of them. In general, multi-scale approaches have to be taken into account
to correctly determine larger and smaller flow vectors [1,12,25]. A good overview is given in [8].
Recent comprehensive empirical evaluations [6,31] show that variational algorithms yield a very good
performance.

Optical flow segmentation can be done by using the estimated motion vectors in a clustering
algorithm to obtain regions with similar motion vectors, see, e.g. [63]. Then regions can be grouped
together for several purposes in various ways [62,75]. In this paper, we consider a model which par-
titions the optical flow without previous flow estimation using a vector-valued Potts model. A main
advantage of our method is that it does not require a discrete label space and the number of labels
needs not be chosen a priori. Since the data term is just based on the brightness invariance assumption,

http://vision.middlebury.edu/stereo/
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various flow fields (not only affine ones) can be partitioned. If the object motion is not approximately
piecewise constant, the motion field may consist of several subregions which makes a subsequent merg-
ing step necessary. Concerning an object respecting flow segmentation model, we refer to [61]. Based on
[20,21,55], the authors of [61] propose a biconvex segmentation model that segments affine motions of
objects. Their model merges a weighted TV-prior, where the weights correspond to edges of one image
frame, and an �∞ prior to handle the number of segments, with a data term which includes matrices for
the piecewise affine motion. The proposed alternating algorithm uses an additional splitting and merging
strategy in the matrix parameter minimization step. The model is not suited for non-rigid motion or for
situations, where objects are merged or separated over time. For more complex methods incorporating
camera motion, optical flow, depth ordering and occlusions, we also refer to [58,74].

The classical (discrete) Potts model, named after Potts [49], has the form

min
u

1

2
‖f − u‖2

2 + λ‖∇u‖0, (1.1)

where the discrete gradient consists of directional difference operators and ‖x‖0 denotes the number of
non-zero entries of x. Computing a global minimizer of the multivariate Potts model appears to be NP
hard [11,23,59]. For univariate data, this problem can be solved efficiently using dynamic programming
[14,29,46,65]. In the context of Markov random fields, the computation of the global minimizers of
this kind of functionals was inaugurated by Geman and Geman [32] using simulated annealing. In [40],
a deterministic continuation method to restore piecewise constant images was proposed. A stochastic
continuation approach was introduced and successfully used for the reconstruction of 3D tomographic
images in [50]. The method and the theory were refined in [51]. Recently, theoretical results relating the
probability for global convergence and the computation speed were given in [52].

There is also a rich literature on �0-regularized methods (without additional difference operator), in
particular in the context of sparsity and on various (convex) relaxation methods (also for data fidelity
terms with linear operators). Here, we refer to the overview in [28]. Various approximations of the �0

‘norm’ were used in order to guarantee that the objective function has global minimizers; see, e.g. [17],
among others. Note that the local and the global minimizers of least squares regularized with the �0

‘norm’ were described in [47].
In this paper, we concentrate ourselves on the (non-relaxed) Potts functional. We apply the following

model:

min
u∈S

1

2
‖f − Au‖2

2 + λ‖∇u‖0, (1.2)

where S is a certain compact set, A a linear operator and ‖∇u‖0 a ‘grouped’ or vector-valued prior now.
We prove the existence of a global minimizer of the functional using the notion of asymptotically level
stable functions [3]. For single-valued data, a completely different existence proof was given in [57]. We
apply an alternating direction method of multiplier(ADMM)-like algorithm to the general Potts model
(1.2). Such algorithm was proposed for the partitioning of vector-valued images for the Potts model
(1.1) in [56]. It appears to be faster than current methods based on graph cuts and convex relaxations of
the Potts model. In particular, the number of values of the sought-after image u is not a priori restricted.
Our algorithm is designed for the model (1.2) which includes non-invertible linear operators in the data
fidelity term as well as constraints. In the context of wavelet frame operators (instead of gradients),
another minimization method for single-valued �0-regularized, constrained problems was suggested in
[41,73]. It is based on a penalty decomposition and reduces the problem mainly to the iterative solution
of �2 − �0 problems via hard thresholding. Convergence to a local minimizer is shown in case of an
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invertible operator A. However, note that in our applications the linear operators have usually a non-
trivial kernel. To the best of our knowledge, this is the first time that this kind of direct partitioning
model was applied for disparity and optical flow estimation.

The remaining part of the paper is organized as follows: Our disparity and optical flow partition-
ing models are presented in Section 2. Section 3 provides the proof that the (vector-valued) general
Potts model has a global minimizer. Then, in Section 4 an ADMM-like algorithm is suggested together
with the convergence proofs for the constrained and unconstrained models. Numerical experiments are
shown in Section 5. Finally, Section 6 gives points for future work.

2. Disparity and optical flow partitioning models

In this paper, we deal with gray-value images f : G → R defined on the grid G := {1, . . . , M } ×
{1, . . . , N} and vector fields u = (u1, . . . , ud) : G → R

d , where d = 1 in the disparity partitioning prob-
lem and d = 2 in the optical flow partitioning problem. Note that

u(i, j) = (u1(i, j), . . . , ud(i, j)) ∈ R
d , (i, j) ∈ G.

By ∇1, ∇2, we denote derivative operators in vertical and horizontal directions, respectively. More pre-
cisely, we will use their discrete counterparts. Among the various possible discretizations of derivative
operators, we focus on forward differences

∇1u(i, j) := u(i + 1, j) − u(i, j), ∇2u(i, j) := u(i, j + 1) − u(i, j)

and assume mirror boundary conditions. Further, we will need the ‘grouped’ �0 ‘norm’ for vector-valued
data defined by

‖u‖0 :=
n∑

i,j=1

‖u(i, j)‖0, ‖u(i, j)‖0 :=
{

0 if u(i, j) = 0d ,
1 otherwise.

(2.1)

Here, 0d denotes the null vector in R
d . If d = 1 then ‖u‖0 is the usual �0 ‘componentwise norm’ for

vectors. For the disparity and optical flow partitioning, we will apply the �0 ‘norm’ not directly to the
vectors, but rather to ∇νu1 and ∇νu, ν = 1, 2, respectively, to penalize their spatial differences. In the
disparity problem, we consider ‖∇u1‖0 := ‖∇1u1‖0 + ‖∇2u1‖0 and the optical flow problem ‖∇u‖0 :=
‖∇1u‖0 + ‖∇2u‖0. For the later one, ‖∇νu‖0 = ‖(∇νu1(i, j), ∇νu2(i, j))(i,j)‖0 uses indeed the ‘grouped’
version of the �0 ‘norm’.

Remark 2.1 To have a convenient vector-matrix notation, we reorder images f and ul, l = 1, . . . , d
columnwise into vectors vec f and vec ul of length n := NM . We address the pixels by the index set
In := {1, . . . , n}. If the meaning is clear from the context we keep the notation f instead of vec f . In
particular, we will have ul ∈ R

n and u = (u�
1 , . . . , u�

d )� ∈ R
nd . After columnwise reordering the forward

difference operators (with mirror boundary conditions) can be written as matrices

∇1 := Id ⊗ IM ⊗ DN , ∇2 := Id ⊗ D�
M ⊗ IN ,
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where IN denotes the N × N identity matrix

DN :=

⎛
⎜⎜⎜⎜⎜⎝

−1 1
−1 1

. . .
−1 1

0

⎞
⎟⎟⎟⎟⎟⎠ ∈ R

N ,N

and ⊗ is the tensor (Kronecker) product of matrices.

Using the indicator function of a set S defined by

ιS(t) =
{

0 for t ∈ S,

∞ otherwise,

we can address box constraints on u by adding the regularizing term ιSBox(u), where

SBox := {u ∈ R
dn : umin � u � umax}.

Both in the disparity and optical flow partitioning problems, we are given a sequence of images.
In this paper, we focus on two images f1 and f2 coming from (i) the appropriate left and right images
taken, e.g. by a stereo camera (disparity problem), and (ii) two image frames at different times arising,
e.g. from a video (optical flow problem). Then the models rely on an invariance requirement between
these images. Various invariance assumptions were considered in the literature and we refer to [8] for
a comprehensive overview. Here, we focus on the brightness invariance assumption. In the disparity
model, we address only horizontal displacements and consider in a continuous setting

f1(x, y) − f2(x − u1(x, y), y) ≈ 0. (2.2)

For the optical flow model, we assume

f1(x, y) − f2((x, y) − u(x, y)) ≈ 0, u := (u1, u2). (2.3)

Using first-order Taylor expansions around an initial disparity ū1, respectively, an initial optical flow
estimate ū = (ū1, ū2), gives

disp. : f2(x − u1, y) ≈ f2(x − ū1, y) − ∇1f2(x − ū1, y)(u1(x, y) − ū1(x, y)),

flow : f2((x, y) − u) ≈ f2((x, y) − ū) − (∇1f2((x, y) − ū), ∇2f2((x, y) − ū))(u(x, y) − ū(x, y)).

To get an initial disparity, we will use a simple block-matching approach with NCC as measure for the
block similarity, following the ideas in [16,60]. Then the linearized invariance requirements (2.3) and
(2.2) become

disp. : 0 ≈ f1(x, y) − f2(x − ū1, y) + ∇1f2(x − ū1, y)(u1(x, y) − ū1(x, y)),

flow : 0 ≈ f1(x, y) − f2((x, y) − ū) + (∇1f2((x, y) − ū), ∇2f2((x, y) − ū))(u(x, y) − ū(x, y)).

Note that f2((x, y) − ū) is only well defined in the discrete setting if (i, j) − ū is in G. Later we will
see that our method to compute ū really fulfills this condition, thus we can carry over the continuous
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model to the discrete setting without any modifications. Using a non-negative increasing function ϕ :
R → R�0, and considering only grid points (x, y) = (i, j) ∈ G the data term for the disparity partitioning
model becomes∑

(i,j)∈G
ϕ(∇1f2(i − ū1, j)u1(i, j) − (∇1f2(i − ū1, j)ū1(i, j) + f2(i − ū1, j) − f1(i, j))).

In this paper, we will deal with quadratic functions ϕ(t) := 1
2 t2. Using the notation in Remark 2.1, our

partitioning models become

disp. : Edisp(u1) := 1
2‖A1u1 − b1‖2

2 + μ ιSBox(u1) + λ(‖∇1u1‖0 + ‖∇2u1‖0), (2.4)

flow : Eflow(u) := 1
2‖Au − b‖2

2 + μ ιSBox(u) + λ(‖∇1u‖0 + ‖∇2u‖0), (2.5)

where μ ∈ {0, 1}, λ > 0, ‖ · ‖0 stands for the ‘group norm’ in (2.1) and

A1 := diag(vec(∇1f2(i − ū1, j))), (2.6)

A := (diag(vec(∇1f2((i, j) − ū))), diag(vec(∇2f2((i, j) − ū)))), (2.7)

b1 := vec(∇1f2(i − ū1, j)ū1(i, j) + f2(i − ū1, j) − f1(i, j)),

b := vec((∇1f2((i, j) − ū), ∇2f2((i, j) − ū))ū(i, j) + f2((i, j) − ū) − f1(i, j)). (2.8)

We are looking for minimizers of these functionals.

3. Global minimizers for Potts regularized functionals

We want to know if the functionals in (2.4) and (2.5) have global minimizers. Both Edisp and Eflow are
lower semi-continuous (l.s.c.) and proper functionals. When μ = 1, the minimization of Edisp and Eflow

is constrained to the compact set SBox in which case (2.4) and (2.5) have global minimizers; see, e.g. [4,
Proposition 3.1.1, p. 82].

Next we focus on the case μ = 0. More generally, we consider for arbitrary given A ∈ R
n,dn, b ∈ R

n

and p � 1 functionals E : R
dn → R of the form

E(u) := 1

p
‖Au − b‖p

p + λ(‖∇1u‖0 + ‖∇2u‖0), λ > 0. (3.1)

The existence of a global minimizer was proved in the case d = 1 in [57]. Here, we give a shorter
and more general proof that holds for any d � 1 using the notion of als functions. This wide class of
functions was introduced by Auslender [3] in 2000, and since then it appeared that many problems on
the existence of optimal solutions are easily solved for these functions. As usual,

lev (E, λ) := {u ∈ R
dn : E(u) � λ} for λ > inf

u
E(u);

by E∞ we denote the asymptotic (or recession) function of E and

ker(E∞) := {u ∈ R
dn : E∞(u) = 0}.

The following definition is taken from [4, p. 94]: an l.s.c. and proper function E : R
dn → R ∪ {+∞} is

said to be asymptotically level stable (als) if for each ρ > 0, each real-valued, bounded sequence {λk}k
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and each sequence {uk} ∈ R
dn satisfying

uk ∈ lev (E, λk), ‖uk‖ → +∞,
uk

‖uk‖ → ũ ∈ ker(E∞), (3.2)

there exists k0 such that
uk − ρũ ∈ lev (E, λk) ∀k � k0.

If for each real-valued, bounded sequence {λk}k there exists no sequence {uk}k satisfying (3.2), then E
is automatically als.

In particular, coercive functions are als. It was originally exhibited in [5] (without the notion of als
functions) that any als function E with inf E > −∞ has a global minimizer. The proof is also given in
[4, Corollary 3.4.2]. We show that the discontinuous non-coercive objective E in (3.1) is als and has
thus a global minimizer.

Theorem 3.1 Let E : R
dn → R be of the form (3.1) with p � 1. Then the following relations hold true:

(i) ker(E∞) = ker(A).

(ii) E is als.

(iii) E has a global minimizer.

Proof. (i) The asymptotic function E∞ of E can be calculated according to [24], see also [4, Theorem
2.5.1], as

E∞(u) = lim inf
u′→u
t→∞

E(tu′)
t

.

Then

E∞(u) = lim inf
u′→u
t→∞

(1/p)‖Atu′ − b‖p
p + ‖∇1(tu′)‖0 + ‖∇2(tu′)‖0

t

= lim inf
u′→u
t→∞

(
1

p
tp−1

∥∥∥∥Au′ − 1

t
b

∥∥∥∥
p

p

+ ‖∇1(tu′)‖0 + ‖∇2(tu′)‖0

t

)

=
⎧⎨
⎩

0 if u ∈ ker(A),
+∞ if u �∈ ker(A) and p > 1,
‖Au‖1 if u �∈ ker(A) and p = 1,

and consequently ker(E∞) = ker(A).

(ii) Let {uk}k satisfy (3.2) with uk ‖uk‖−1 → ũ ∈ ker(A) and let ρ > 0 be arbitrarily fixed. Below we
compare the numbers ‖∇νuk‖0 and ‖∇ν(uk − ρũ)‖0, ν = 1, 2. There are two options.

If (i, j) ∈ supp(∇1ũ) := {(i, j) ∈ G : ũ(i + 1, j) − ũ(i, j) �= 0d}, then

ũ(i, j) − ũ(i + 1, j) = lim
k→∞

uk(i, j) − uk(i + 1, j)

‖uk‖ |= 0d

and ‖uk(i, j) − uk(i + 1, j)‖ > 0 for all but finitely many k. Therefore, there exists k1(i, j) such that

‖uk(i, j) − uk(i + 1, j) − ρ(ũ(i, j) − ũ(i + 1, j))‖0 � ‖uk(i, j) − uk(i + 1, j)‖0 ∀k � k1(i, j). (3.3)
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If (i, j) ∈ G\supp(∇1ũ), i.e. ũ(i, j) − ũ(i + 1, j) = 0d , then clearly

uk(i, j) − uk(i + 1, j) − ρ(ũ(i, j) − ũ(i + 1, j)) = uk(i, j) − uk(i + 1, j). (3.4)

Combining (3.3) and (3.4) shows that

‖uk(i, j) − uk(i + 1, j) − ρ(ũ(i, j) − ũ(i + 1, j))‖0 � ‖uk(i, j) − uk(i + 1, j)‖0 ∀k � k1(i, j)

and hence

‖∇1(uk − ρũ)‖0 � ‖∇1 uk‖0 ∀k � k1 := max{k1(i, j) : (i, j) ∈ G}. (3.5)

In the same way, there is k2 so that

‖∇2(uk − ρũ)‖0 � ‖∇2uk‖0 ∀k � k2. (3.6)

By part (i) of the proof we know that Aũ = 0n, which jointly with (3.5) and (3.6) implies for all k �
k0 := max{k1, k2} that

E(uk − ρũ) = 1

p
‖A(uk − ρũ) − b‖p

p + λ(‖∇1(uk − ρũ)‖0 + ‖∇2(uk − ρũ)‖0)

= 1

p
‖Auk − b‖p

p + λ(‖∇1(uk − ρũ)‖0 + ‖∇2(uk − ρũ)‖0)

� 1

p
‖Auk − b‖p

p + λ(‖∇1uk‖0 + ‖∇2(uk)‖0) = E(uk).

Hence, it follows by uk ∈ lev (E, λk) that uk − ρũ ∈ lev (E, λk) for any k � k0. Consequently, E is als.
Finally, (iii) follows directly from [4, Corollary 3.4.2]. �

4. ADMM-like algorithm

In this section, we follow an idea in [56] to approximate minimizers of our more general functionals Edisp

and Eflow. Basically, the problem is reduced to the iterative computation of minimizers of the univariate
classical Potts problem for which there exist efficient solvers based on dynamic programming [29].
Here, we apply the method proposed in [57,65]. We consider

min
u∈Rnd

{F(u) + λ(‖∇1u‖0 + ‖∇2u‖0)}.

Clearly, we have

disp. (d = 1) : F(u) := 1
2‖A1u − b1‖2

2 + μ ιSBox(u), u = u1, (4.1)

flow (d = 2) : F(u) := 1
2‖Au − b‖2

2 + μ ιSBox(u), u = (u�
1 , u�

2 )�. (4.2)

For μ = 1 we have a (box) constrained problem; for μ = 0 an unconstrained one. In [56], partitioning
problems of vector-valued images with F(u) := 1

2‖u − b‖2
2 were considered. In our setting, a linear

operator is involved in the data term which is not a diagonal operator in the optical flow problem, see
(2.6), and in both cases (2.6) and (2.7) it has a non-trivial kernel. Further, we may have box constraints
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in addition. The minimization problem can be rewritten as

min
u,v,w∈Rnd

{F(u) + λ(‖∇1v‖0 + ‖∇2w‖0) subject to v = u, w = u}.

To find an approximate (local) minimizer, we suggest the following algorithm that resembles the basic
structure of an ADMM [10,30], but with inner parameters η(k) which has to go to infinity.

Algorithm 1 ADMM-like Algorithm

Initialization: v(0), w(0), q(0)
1 , q(0)

2 , η(0) and σ > 1
Iteration: For k = 0, 1, . . . iterate

u(k+1) ∈ argmin
u

{
F(u) + η(k)

2
(‖u − v(k) + q(k)

1 ‖2
2 + ‖u − w(k) + q(k)

2 ‖2
2)

}
, (4.3)

v(k+1) ∈ argmin
v

{
λ‖∇1v‖0 + η(k)

2
‖u(k+1) − v + q(k)

1 ‖2
2

}
, (4.4)

w(k+1) ∈ argmin
w

{
λ‖∇2w‖0 + η(k)

2
‖u(k+1) − w + q(k)

2 ‖2
2

}
, (4.5)

q(k+1)
1 = q(k)

1 + u(k+1) − v(k+1), (4.6)

q(k+1)
2 = q(k)

2 + u(k+1) − w(k+1), (4.7)

η(k+1) = η(k)σ . (4.8)

Step 1 of the algorithm in (4.3) can be computed for our optical flow term F in (4.2) and μ = 0 by
setting the gradient of the respective function to zero. Then u(k+1) is the solution of the linear system of
equations

(A�A + 2η(k)Idn)u = A�b + η(k)(v(k) − q(k)
1 + w(k) − q(k)

2 ).

For disparity problem (4.1), we have just to replace A by A1, which is a simple diagonal matrix and b
by b1. For μ = 1 and the disparity problem, u(k+1) can be computed componentwise by straightforward
computation as

u(k+1) = max{min{u(k+1/2), umax}, umin},
where

u(k+1/2) := (A�
1 A1 + 2η(k)In)

−1(A�
1 b1 + η(k)(v(k) − q(k)

1 + w(k) − q(k)
2 )). (4.9)

For the optical flow problem and μ = 1, we have to minimize a box constrained quadratic problem for
which there exist efficient algorithms, see, e.g. [9]. In our numerical part, the optical flow problem is
handled without constraints, i.e. for μ = 0. In this case, only the linear system of equations (4.9) has to
be solved.

The Steps 2 and 3 in (4.4) and (4.5) are univariate Potts problems which can be solved efficiently
using the method proposed in [56,65]. As shown in [56], the vector-valued univariate Potts problem
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can be tackled nearly in the same way as in the scalar-valued case. The arithmetic complexity is
O(MN2 + NM 2).

Next, we prove the convergence of Algorithm 1. Owing to the NP hardness of the problem, we can
in general not expect that the limit point is a (global) minimizer of the cost function. First, we deal with
a general situation that involves our unconstrained problems (μ = 0). We assume that any vector in the
subdifferential ∂F of F fulfills the growth constraint

u∗ ∈ ∂F(u) ⇒ ‖u∗‖2 � C(‖u‖2 + 1). (4.10)

It can be easily checked that F : R
dn → R

n with F(u) := (1/p)‖Mu − m‖p
p, p ∈ [1, 2] fulfills (4.10) for

any matrix M ∈ R
n,dn and m ∈ R

n. Note that the variable C stands for any constant in the remainder of
the paper.

Theorem 4.1 Let F : R
dn → R ∪ {+∞} be a proper, closed, convex function which fulfills (4.10).

Then Algorithm 1 converges in the sense that (u(k), v(k), w(k)) → (û, v̂, ŵ) as k → ∞ with û = v̂ = ŵ and
(q(k)

1 , q(k)
2 ) → (0, 0) as k → ∞.

Proof. By (4.6), we have

η(k)

2
‖q(k+1)

1 ‖2
2 = η(k)

2
‖u(k+1) − v(k+1) + q(k)

1 ‖2
2

� λ‖∇1v(k+1)‖0 + η(k)

2
‖u(k+1) − v(k+1) + q(k)

1 ‖2
2

and by (4.4) further

η(k)

2
‖q(k+1)

1 ‖2
2 � λ‖∇1(u

(k+1) + q(k)
1 )‖0 + η(k)

2
‖u(k+1) − (u(k+1) + q(k)

1 ) + q(k)
1 ‖2

2

� λ‖∇1(u
(k+1) + q(k)

1 )‖0

� λn.

By (4.7) and (4.5), we conclude similarly

η(k)

2
‖q(k+1)

2 ‖2
2 � λn.

Hence, it follows

‖q(k+1)
1 ‖2

2 � 2λn

η(k)
and ‖q(k+1)

2 ‖2
2 � 2λn

η(k)
, (4.11)

which implies q(k+1)
1 → 0 and q(k+1)

2 → 0 as k → ∞. Further, we obtain by u(k) − v(k) = q(k)
1 − q(k−1)

1
that

‖v(k) − u(k)‖2 � ‖q(k)
1 ‖2 + ‖q(k−1)

1 ‖2 �
√

2λn

η(k−1)
+
√

2λn

η(k−2)
� 2

√
2λn

η(k−2)

and analogously

‖w(k) − u(k)‖2 � 2

√
2λn

η(k−2)
. (4.12)
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For ε(k) := v(k) − u(k) − q(k)
1 + w(k) − u(k) − q(k)

2 , we get by (4.11–4.12) that

‖ε(k)‖2 � ‖q(k)
1 ‖2 + ‖q(k)

2 ‖2 + ‖v(k) − u(k)‖2 + ‖w(k) − u(k)‖2

�
√

2λn

η(k−1)
+
√

2λn

η(k−1)
+ 2

√
2λn

η(k−2)
+ 2

√
2λn

η(k−2)
� 6

√
2λn

η(k−2)
, (4.13)

i.e. ‖ε(k)‖2 decreases exponentially. By Fermat’s theorem, the proximum u(k+1) in (4.3) has
to fulfill

0 ∈ ∂F(u(k+1)) + η(k)(u(k+1) − v(k) + q(k)
1 + u(k+1) − w(k) + q(k)

2 )

so that there exists p(k+1) ∈ ∂F(u(k+1)), satisfying

0 = p(k+1) + η(k)(u(k+1) − v(k) + q(k)
1 + u(k+1) − w(k) + q(k)

2 )

= p(k+1) + η(k)(u(k) − v(k) + q(k)
1 + u(k) − w(k) + q(k)

2 ) + 2η(k)(u(k+1) − u(k))

= p(k+1) − η(k)ε(k) + 2η(k)(u(k+1) − u(k)).

Rearranging terms, taking the norm and applying the triangle inequality leads to

‖u(k+1) − u(k)‖2 � ‖p(k+1)‖2

2η(k)
+ 1

2
‖ε(k)‖2. (4.14)

Since ‖x − y‖ � ‖x‖ − ‖y‖ and by assumption (4.10), it follows

‖u(k+1)‖2 � ‖p(k+1)‖2

2η(k)
+ 1

2
‖ε(k)‖2 + ‖u(k)‖2

� C‖u(k+1)‖2

2η(k)
+ C

2η(k)
+ 1

2
‖ε(k)‖2 + ‖u(k)‖2. (4.15)

Since C/2η(k) → 0 as k → ∞, there exists a K such that 1 < 1/(1 − C/2η(k)) � τ := √
σ for all k > K.

Now (4.15) implies

‖u(k+1)‖2

(
1 − C

2η(k)

)
� C

2η(k)
+ 1

2
‖ε(k)‖2 + ‖u(k)‖2
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which gives for k > K the estimates

‖u(k+1)‖2 � τ
C

2η(k)
+ τ

1

2
‖ε(k)‖2 + τ‖u(k)‖2

� τ
C

2η(k)
+ τ

1

2
‖ε(k)‖2 + τ 2 C

2η(k−1)
+ τ 2 1

2
‖ε(k − 1)‖2 + τ 2‖u(k−1)‖2

� τ k+1−K‖u(K)‖2 +
k+1−K∑

j=1

Cτ j

2η(k+1−j)
+

k+1−K∑
j=1

τ j

2
‖ε(k + 1 − j)‖2

� τ k+1

⎛
⎝‖u(K)‖2 +

k+1−K∑
j=1

C

2η(k+1−j)
+

k+1−K∑
j=1

1

2
‖ε(k + 1 − j)‖2

⎞
⎠

and by the exponential decay of ‖ε(k)‖2 with η(k) further

‖u(k+1)‖2 � Cτ k+1.

Using this relation together with (4.10) and (4.8) in (4.14), we conclude

‖u(k+1) − u(k)‖2 � ‖p(k+1)‖2

2η(k)
+ 1

2
‖ε(k)‖2

� C‖u(k+1)‖2

2η(k)
+ C

2η(k)
+ 1

2
‖ε(k)‖2

� C2τ k+1

2η(k)
+ C

2η(k)
+ 1

2
‖ε(k)‖2

� C2

2η(0)σ
k−1

2

+ C

2η(k)
+ 3

√
2λn

η(k−2)
.

Thus, ‖u(k+1) − u(k)‖2 decreases exponentially. Therefore, it is a Cauchy sequence and {u(k)}k converges
to some û as k → ∞. Since q(k)

1 → 0 and q(k)
2 → 0 as k → ∞, we obtain by (4.6) and (4.7) that {v(k)}k

and {w(k)}k also converge to û. This finishes the proof. �

The assumptions in the next theorem fit to our constrained models (μ = 1), but are more general.

Theorem 4.2 Let F : R
dn → R ∪ {+∞} be any function that is bounded on its domain. Further assume

that (4.3) has a global minimizer. Then Algorithm 1 converges in the sense that (u(k), v(k), w(k)) →
(û, v̂, ŵ) as k → ∞ with û = v̂ = ŵ and (q(k)

1 , q(k)
2 ) → (0, 0) as k → ∞.

Proof. As in the proof of Theorem 4.1, we can show that (4.13) holds true for ε(k) := v(k) − u(k) −
q(k)

1 + w(k) − u(k) − q(k)
2 . The quadratic term in (4.3) can be rewritten as

‖u − v(k) + q(k)
1 ‖2

2 + ‖u − w(k) + q(k)
2 ‖2

2 = 2〈u, u〉 + 2〈u, q(k)
1 − v(k) + q(k)

2 − w(k)〉 + C

= 2‖u − u(k)‖2
2 − 2〈u, ε(k)〉 + C.
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Thus, the first step of Algorithm 1 is equivalent to

u(k+1) ∈ argmin
u

{F(u) + η(k)‖u − u(k)‖2
2 − η(k)〈ε(k), u〉}.

This implies

F(u(k+1)) + η(k)‖u(k+1) − u(k)‖2
2 − η(k)〈ε(k), u(k+1)〉 � F(u(k)) − η(k)〈ε(k), u(k)〉

and further

‖u(k+1) − u(k)‖2
2 � F(u(k)) − F(u(k+1))

η(k)
− 〈ε(k), u(k) − u(k+1)〉.

Using the boundedness of F and the Cauchy–Schwarz inequality leads to

‖u(k+1) − u(k)‖2
2 � C

η(k)
+ ‖ε(k)‖2‖u(k) − u(k+1)‖2.

Since ε(k) → 0 as k → ∞, we conclude that ‖u(k) − u(k+1)‖2 is bounded so that

‖u(k+1) − u(k)‖2
2 � C

η(k)
+ C‖ε(k)‖2.

Thus, ‖u(k) − u(k+1)‖2 is decreasing exponentially and {u(k)}k converges to some û as k → ∞. �

5. Numerical results

In this section, we present numerical results obtained by our partitioning approaches. All examples were
executed on a computer with an Intel Core i7-870 Processor (8M Cache, 2.93 GHz) and 8 GB physical
memory, 64 Bit Linux. Further, we have incorporated additional diagonal directions in our implemen-
tation to get a better ‘rotation invariance’, see [56]. More precisely, we have used the discretization

‖∇isou‖0 := (
√

2 − 1)(‖∇1u‖0 + ‖∇2u‖0) +
√

2 − 1√
2

(‖∇1,2u‖0 + ‖∇2,1u‖0), (5.1)

where ∇1,2u(i, j) := u(i + 1, j + 1) − u(i, j), and ∇2,1u(i, j) := u(i + 1, j − 1) − u(i, j). We compare our
direct partitioning methods (2.4) and (2.5) via Algorithm 1 with a two-stage approach consisting of
(i) disparity, respectively, optical flow estimation, and (ii) partitioning of the estimated values. More
precisely, the two-stage algorithm performs as follows:

(i) In the first step, the disparity is estimated using the TV regularized model

min
u1∈SBox

{
1

2
‖A1u1 − b1‖2

2 + ιSBox(u1) + α1‖ |∇u1| ‖1

}
, (5.2)

with A1 and b1 defined by (2.6) and (4.6), respectively. Here, |∇u1| stands for the discrete ver-
sion of (((∂u1/∂x)(x, y))2 + ((∂u1/∂y)(x, y))2)1/2, i.e. we use the isotropic (‘rotationally invari-
ant’) TV version. Such model was proposed for the disparity estimation in [16] and can be found
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with, e.g. shearlet regularized �1 norm in [27]. For estimating the optical flow, we minimize

min
u

{
1

2
‖Au − b‖2

2 + α1‖
√

|∇u1|2 + |∇u2|2‖1

}
, (5.3)

with A and b defined by (2.7) and (2.8), respectively. The global minimizers of the con-
vex functionals (5.2) and (5.3) were computed via the primal-dual hybrid gradient method
proposed in [15,48]. Clearly, one could use other iterative first-order (primal-dual) methods,
see, e.g. [18].

(ii) In the second step, the estimated disparity, respectively, optical flow is partitioned by the method
in [56] which minimizes, e.g. for the disparity the functional

min
u1

{
1

2
‖u1 − u1,est‖2

2 + α2‖∇isou1‖0

}
,

where u1,est is the disparity estimated in the first step. For the approximation of a minimizer,
we use the software package Pottslab http://pottslab.de. Last accessed December 12, 2014 with
default parameters.

Next we comment on the direct partitioning implementation. Our partitioning models (2.4) and (2.5)
are based on the knowledge of initial values ū1 and ū for the disparity, respectively, the optical flow.
Here, we use a simple block-matching-based algorithm, see [16]. This method consists basically of a
search within a given range. For each pixel in the first image, we compare its surrounding block with
surrounding blocks of pixels in the search range of the second image. The chosen block size is 7 × 7. As
a similarity measure, we use the NCC [60]. Finally, we apply a median filter to the initial guess to reduce
the influence of outliers. Since (i − ū1, j), respectively (i, j) − ū(i, j) are the grid coordinates of the pixel
in the second image corresponding to pixel (i, j) in the first image, we see that f2(i − ū1, j), respectively,
f2((i, j) − ū) are really well-defined grid functions. The algorithm is initialized with v(0) = w(0) = ū1

for the disparity partitioning and v(0) = w(0) = ū for the flow partitioning; further q(0)
i , i = 1, 2 are zero

matrices and η(0) = 0.01.

Remark 5.1 The parameter σ should be chosen near to 1. In all our examples, σ = 1.05 appears to be
a good choice. Our examples show the results after 100 iterations, where no differences to subsequently
iterated images appear. If σ approaches 1, the convergence becomes very slow. No convergence was
observed for σ = 1, i.e. for constant η. If σ becomes larger, the algorithm converges faster, but the result
is very close to the initial values. A good compromise between convergence speed and a reasonable
result is given by the chosen parameter.

We start with the disparity partitioning results. Figures 2 and 3 show the results for the images
‘Venus’ and ‘Dolls’. Our direct partitioning algorithm can qualitatively compete with the two-stage
algorithm. In particular, Fig. 3 provides a nice partitioning of the scene into image planes that contain
objects of different distances from the camera.

Next, we present our results for the optical flow partitioning. The flow vectors are color coded with
color � direction, brightness � magnitude. Figures 4 and 5 confirm that our direct method can compete
with the more involved two-stage approach. Figure 6 shows the difference between the anisotropic
discretization with horizontal and vertical directions, and the discretization in (5.1) which also includes
the diagonal directions. We observe that the more isotropic discretization produces smoother boundaries.

http://pottslab.de
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Fig. 2. Results for the images ‘Venus’. Left to right: original left image, ground truth, partitioned disparity using the
two-stage algorithm (α1 = 0.005, α2 = 300), partitioned disparity using the direct algorithm (λ = 2.5) (source: http://vision.
middlebury.edu/stereo/. Last accessed December 12, 2014 [54]).

Fig. 3. Result for the images ‘Dolls’. Left to right: original left image, ground truth, partitioned disparity using the
two-stage algorithm (α1 = 0.01, α2 = 80), partitioned disparity using the direct algorithm (λ = 0.8) (source: http://vision.
middlebury.edu/stereo/. Last accessed December 12, 2014 [53]).

Fig. 4. Result for the images ‘Hydrangea’. Left to right: first test image, ground truth, partitioned optical flow by the two-
stage algorithm (α1 = 0.01, α2 = 35), partitioned optical flow by the direct algorithm (λ = 0.3) (source: http://vision.middlebury.
edu/flow/. Last accessed December 12, 2014 [6]).

Fig. 5. Result for the images ‘RubberWhale’. Left to right: first test image, ground truth, partitioned optical flow by the
two-stage algorithm (α1 = 0.005, α2 = 7), partitioned optical flow by the direct algorithm (λ = 0.12) (source: http://vision.
middlebury.edu/flow/. Last accessed December 12, 2014 [6]).

Figure 7 shows the applicability of the proposed method for traffic surveillance. For both images, the
algorithm was able to partition the main moving objects correctly. In the stroller image of Fig. 7 (right),
we can see a typical effect of optical flow estimation. Owing to a reflexion of the stroller on the car at
the bottom of the image, there is another partition for the motion of this reflexion.

http://vision.middlebury.edu/stereo/
http://vision.middlebury.edu/stereo/
http://vision.middlebury.edu/stereo/
http://vision.middlebury.edu/stereo/
http://vision.middlebury.edu/flow/
http://vision.middlebury.edu/flow/
http://vision.middlebury.edu/flow/
http://vision.middlebury.edu/flow/
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Fig. 6. Result for the images ‘Grove2’. Left to right: first test image, ground truth, partitioned flow with non-isotropic and
isotropic discretization (λ = 0.6) (source: http://vision.middlebury.edu/flow/. Last accessed December 12, 2014 [6]).

Fig. 7. Result for two traffic scenes. From left to right: image of the taxi scene (source: http://i21www.ira.uka.de/
image_sequences/. Last accessed December 12, 2014), partitioned optical flow by the direct algorithm (λ = 6) using frames
10 and 17, first image of the stroller scene (source: http://ccv.wordpress.fos.auckland.ac.nz/eisats/. Last accessed December 12,
2014 [7]), partitioned optical flow by the direct algorithm (λ = 2.5).

6. Conclusions

In this paper, we have proposed a new method for disparity and optical flow partitioning based on a
Potts regularized variational model together with an ADMM-like algorithm. In case of the optical flow,
it is adapted to vector-valued data. In this paper, we have only shown the basic approach and further
refinements are planned in the future. So we intend to incorporate more sophisticated data fidelity terms.
In particular, illumination changes should be handled. Towards an object-related flow, partitioning a
subsequent step will be added, which takes the image frame edges and specific motions of the objects
into account. This step will be adapted to the application at hand.

The crucial part for the run time of the proposed direct algorithm is the univariate Potts minimiza-
tion. However, since the single problems are independent of each other, they could be solved efficiently
in parallel on a GPU. Such parallel implementation is another point of future activities. Further, we want
to incorporate multiple frames instead of just two in our model. From the theoretical point of view, to
establish just the convergence of an algorithm to a local minimizer seems not to be enlightening, since
certain constant images are contained in the set of local minimizers and we are clearly not looking for
them. However, a better understanding of strict (local) minimizers and the choice of initial values for
the algorithm is interesting.
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