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Abstract. We consider the reconstruction of a piecewise smooth signal, observed through an attenuating
operator, such as an incomplete Laplace transform. This inverse problem is very ill-posed, so a regularisation

must be applied. The key question 1s the recovery of the breakpoints between smooth parts. The weak

string nicely models this class of signals. But it happens that in presence of altenuation the relevant MAP

estimator fails. Physically, the discontinuity recovery is only limited by the noise. We propose a reconstruction

technique which works just at this limit and so exploits data very efliciently.

1 Introduction

Attenuation occurs in various applications: it may
model the loss inside a medium while a wave propagates,
or the signals received {rom an object moving away., efc...
In this paper, we are concerned with models, which may
be considered as being composed of a pure attenuation,
applied on the signal of interest, and some subsequent
non-attenuating, generaly non-injective, linear transfor-
mation (Section 23. Note that generally it is the coniri-
bution of samples to the data which is decaying, rather
than the data. The noisy Laplace transform observed
on a sparse seb is a typical example.

The inverse problem is “doubly” ill-posed: {a}it is un-
derdetermined, and (5} the attenuation, although math-
emaltically invertible, has a too large condition number.
So, a regularisation must be applied. The reconstructed
signals (chains} are known @ priord to be only pilecewise
smooth, and the regularisation should take this into ac-
count. A pertinent model is the weak siring, introduced
by Blake & Zisserman [11. Tt turns out that the relevant
MAP solution fails in presence of attenuation {Section
43, We derived an attenuation-adapted reconstruction
technique, which in the nolseless case completely com-
pensates for attenuation:; in presence of noise, il may
happen that the adaptation can only be introduced up
to some level. This technique exploits data much better
than the MAP estimator (Sections 5, 6).

The solution calculation involves oplimising an energy
function, which presents many local minima; finding the
global one is non-trivial. In a recent paper [3] the au-
thors extended the Blake & Zisserman’s graduated non
convexity (GNC} — a very effective in practice, though
not theoretically convergent, deterministic global opti-

misatlon technique — in order to use 1t for ill-posed prob-
lems. The attenuation requires an adaptation of the
GNC parameters as well {Section 7).

Simulation results are presented in Section 8 and con-
cluding remarks in Section 9.

2 Attenuating models

The observation model is given by a linear integral equa-
tion whose discrete form relates noisy data y € C'V to
the original chain x € B by:

y=Ax +mn, (1)
where A 18 a known linecar attenuating operator, which
does not suppress the mean of @, and » is the observation
noise, assumed additive, white and Gaussian A'{0, &%),
The observation operator A can be [actorised into

A — Bif, (2)
where B is non-attenuating and its columns b; verify
16:lle = 1 ¥4, and i = diag(uy, ..., uar) is purely atten-
uabing: uy > #g > ... > uzr. The contributions to y of

the samples z[7] along the chain are highly decreasing.
The likelihood is £{x) = ;L;||Bi{x — y||*. Note that
the Laplace transform on a regular set can be simpli-
fied to a purely attenuating observation: B is the DFT
operator, and as B! = B!, the likelihood is simply
£(x) = 5=z |ltdw — Bly||*; 1 means transposed conjugate.

3 The weak-string model

The weak siring corresponds o a locally Gaussian, non-
stationnary first-order Markov chain with a Boolean line
process. 1t models piecewise continuous signals and its
regularisation role is to locally smooth the signal while
preserving abrupl transitions.
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The relevant MAT energy is:

E(w, ) = || Az — y|]F + Oz, 1), (3
M1

Z N (wli 4+ 1) = 2[)*(L = [E]) + ol[4], brnap

()
where { = {{[1].. {[M — 1]} € {0, 1} M-1 is the line

process and (o, A} are positive constants. Let ¢[7] be the
transition: 1[f] = @[+ 1] — 2[{]. Conditionally to z, the
optlimal line estimate { is

W=0 i W<T v
(o) o e 7= @

T is the prior discontinuity detection threshold. The
prior energy & is then a sum of interaction terms &z} —
ST o(t[d]) with

([} = min{{(M[]}2, a}. (6)
v 18 the cost of introducing a discontinuity; A determines
the local smoothing degree and typically A 3 202,

The solution #, minimising the energy £, shall be ref-
fered to as the MAT solution. In presence of attenuation
it Is quite unsatisfactory and our ohjective is to find an
adaptation ol the model parameters (4, A4} as a func-
tion of the attenuation, leading a better reconstruction.

4 Behaviour 1n attenuation

A magnitude of crucial importance is the threshold am-
plitude H of a jump at position 2 in the orignal signal
r* above which the optimal solution @ will have a dis-
continuity at m. H is in fact the posterior discontinuity
detection threshold. Assuring a good thresholding as-
sures a good estimation of the line process.

This threshold has heen studied analytically and nu-
merically in the case A = 7 [1], [3]. ete... Bub the role
of B and especially of I{ is really determinant.

In order to avoid any possible interferences, in this
section we treated the simplest noiseless atienuating
model: 4 = #Hz*. For the simulations u,, = ¢~ 0027,

We established an expression for H as a [unc.tlon of
the solution energies. Even when the solution can be
written analytically, the energy expression is too com-
plicated, so we computed thresholds numerically.

In the figures the exact optima are shown, which have
been calculated using the Viterbi algorithm [ 4] lor a very
linely discretised state space.

The obtained results on the threshold behaviour in
presence of attenuation remain true when B is an ill-
conditioned non-attenuating operator.

4.1 The isolated step response
Let the original chain be

01 1<m

ey =AYy, Yl = { Lif > 'm: e RO

The optimal MAP solution is either &.(m; i} — the
minimiser of [|Az — y||% + [|]ADz|]?, where D is the first-
order difference operator, or @4(m; h}:

Fe = RURBIBWL + N2DT D)y URBN Y lsole
z4 = hY, !
| | ®)
o stands for real part and T - for transposed. . cor-
responds to l,; — 0 and &4 — to { — 1.
E(2.) is easy to compute and £(24) = o. Finally, the
optlimal solution 2 is determined by:
E(@) < Elzgy = T— 2. (9)
E@e) =2 E(Rgy = =y )

fu1s the scale of the original chain; it is straightforward
that @* (k) = ha™(my 1} leads to @ (m by = he(m 1)
and hence £(2.(m; )} = /zzg(;i‘c(m; 13). The quantity
of interest is Hy(m) — the critical value of &, such that:

[ < Ho(m) = &= a.(mh) 10)
[h] > Ho(m) = 2 — hY), ' (
Ho(m) verifies h2€(2.(m; 1)) = E(zg(mi b)), so
o -
II{}(W?} s m (ll)

For a non-attenuating operator, Hy(w} is indepenclant
of the position i of the jump along the chain {if w» is
not close to the ends} [1]. For an abtenuating opera-
tor, £(2(rm, 1)} decreases when the step is shifted to
the right and the detection threshold Hg(m) increases

jointly with the attenuation [see Fig. 1}. That’s why

the MATP solution fails. In order to set Hyp(vn) constant
we shall substitute o4 for o

ag[m] = HEE(#.(m, 1)),

The role of this nwadaptatlon can be seen in Fig. 4.

Iy = Ho(1). (12)
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Figure 1: The isolated step response in attenuation. Original
chain (...}, reconstruction (). (a) The attenuationfunction wm =
e0:02m () The detection threshold Ho{m). (e} The step is
perfectly reconstructed when m < 42. (d) The same step but

shifted cannot be detected any more.

4.2 Interacting discontinuities
Let the original chain be an a-width gate:
v* = AV = Yoga-1). ¢ €N, h € R (13
In a basically similar way we studied the detection
threshold H) (+n;a) in z*, leading to a discontinuity at



e 1n the solution . In order to determine the global
minimum, we compared the potential optima: 2, — con-
tinuocus, £ — 2* — discontinuous, and #; — discontinuous
ab rir, continuous at {rn-+a—1). The threshold Hy(m;a)
is the critical value of h such that the global minimum
n . switches Lo either z; or #,.

When A — I, it 1s known that this threshold increases
when a decreases. On the other hand, for « fixed, this
increase is independant of the position v [1]. But in
presence of attenuation, for ecach a fixed, H;(m;a) in-
creases with the position . And the smaller a, the
stronger the effect 1s. It is produced for both models —
the non-adapted (Fig. 2 (a)) and the e-adapted (x4, A)
(Fig. 2 (h)}, weaker in the second case.
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Figure 2: Inleracting discontinuity detection threshold Hy (m, a)
for o = 1(_), s = 5 {_.) and & = 15 {...). {a} Non-adapted
model (v = CF 4 = (). (b) a-adapted model (a5, A = C*).

As a consequence, a gale and a shifted copy of it will
he reconstructed differently (Fig. 3). The consequences
for a more complicated chain can be seen in Tig. 4 (e}.
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Figure 3: Inadequacy of the c-adaptation (o4, A). Original chain
(..-), reconstruction (__). {a} The gate signal is well recovered.

{b) The same gate but delayed cannot be recovered.
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Figure 4: Discontinuity interaction. {(a) Original chain with non-
interacting discontinuities. {b} The MAP solution. {c)} The -
adaptation (a4, A = ') is sulficient. {d) Original chain with

interacting discontinuities. {e} The o-adaptation fails. ) Re-

construction with {(eva, Aa).
Inder the hypothesis that ¥m, (v — e} is small
enough, this effect can be suppressed by taking:
g = NA. (14)
The e-adaptation depends on A, so we must first com-
pute A4 and then compute the adaptation «4. The re-
sultant energy function, say £4, reads:

Ml
Ealz) = || Az~ y||* + Z eleli+ 1] —2[]),  (13)
#:(t[i]) = min{(Aa[Jt[)2, aali]}. (16)

{4, Aa) defines a non-homogeneous Markov chain,
which in the noiseless case positions the attenuated
problem solution on the solution of the equivalent non-
attenuated problem (see Fig. 4}.

5 The noise limit

This energy adaptation, aimed to lmprove recovery
ol discontinuities, reduces the regularisation parameter
values jointly with the rise in attenuation: in presence
ol noise 1t 1s limited then by the stabilily requirement.

We shall apply the adaptation only until a level de-
duced from the false alarm probability #¢,. As the noise
n is A0, 0%1), the requirement: Pr, < ¢ is equivalent
to P{|n] = §), where S may be obtained numerically.
The latter leads to H{m; 1) > S/up, m =1, ..., M~1.
Hy(m; 1) has been set constant and S/u, is increasing,
80 the adaptation can only be accomplished as long as
the inequality holds: {erq[1],. .. xa[K], a4[K]. ...} and
Dualll,. o Aa[K] K]
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Figure 5: The noise influence. {a} Original chain 2* (...}, noisy
observation with SNR 10 dB (). {b) Unlimited adaptation: fals
alarms appear with the attenuation rise. {¢) The minimum of £ 4

with limited adaptation. {d} Post-smoothed solution.

6 Local post-smoothing

As M gq[rn] decreases with m, the continuous parts of the
solution tend to be increasingly rough in presence of
noise (Fig. 5 {(b}). It is convenient to operate a local
post-smmoothing by computing the minimum of the true
energy &£ conditionally to the discontinuity set, obtained
via £4. Note that & is then convex in 2 and this calcu-
lation is very casy. The results in the Figs 5 (¢}, 7 (d)
and 8 (b} have been post-smoothed.



7 GNC optimisation

TFor a real-world problem we are no longer able to com-
pute the exact optunum: for a longer signal, or one
having a greater variation, or when B is not diagonal,
the Viterbi algorithm becomes numerically inapplica-
ble. We then focused on the graduated non-convexity
(GNC), which was developped hy Blake & Zisserman
[1] in order to compute the MAP estimate in the case
when 4 = 7. The basic idea is the following. A fam-
ily of continuously derivable functions {(Fy }ep+ is con-
structed, such that: fe} limy_. Fr — & (the F,'s are
approximations of £), and (b} for some »r4, Fr, is convex.
Let {rg,#1,...} be the relaxation sequence. F,, has an
unique minimum 2g; starting with i, a sequence of min-
ima &; {#; = arg min F, } is tracked by local descent in
the vicinity of the previously computed minimum #;_ .
Practical convergence of GNC is very satisfactory [2].

When A = T, the F, are obtained by litting a

quadratic spline at +77 dropping indexes [i], ¢, is [1]:

Gpit = min{()\t)z.ﬂ — ér[i - p(r)}z.ﬂ} (17)
where p(r} = T/(r <+ 2A7y/r. Clearly limyoync ¢ = ¢.
Transitions in the zone of the spline are undetermined.
As r evolves to larger values, they leave this zone.

The convex energy function is found by checking the
positive-deliniteness ol its Hesslan matrix, When A — 1,
convexity occurs for # < § [1]. In a recent paper [3] the
authors showed that an ill-posed problem does not allow
the family {F} to admit any convex function. That’s
why they append a small auxiliary convex term, which
is relaxed to zero afterwards: F, , — Fp+5 > (t[]]}? and
F, s 18 convex when s > %r, VA

A crucial thing in GNC, which is not expressed ex-
plicitely, 1s that the first convex approximation must be
“as close as possible” to the true energy £. For small »
a great part of the transitions are in the undetermined
zone: let us look at the Hessian H in the extreme case:

H = URB B — (r —25)D" D, (18)
It suggests that the deformation imposed by the con-
vex approximation upon undetermined transition at the
end of the chain is much greater than at its beginning.
That’s why GNC fails, as 1t can be observed in the Fig.
§ {a}. Supposing again that the uy,,’s vary slowly, we
can counterbalance this effect by taking (r4,54):
ra = % and 5,4 = sl (19)
It 1s clear that initial convexily conditions remain un-
chainged. The obtained result is seen in Fig. 6 (b}.
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Figure 6: GNC adaptation. The original chain: see Fig. 4 (d).
{a} Reconstruction with {&v4,A4) and non-adapled GNC (b}
(x4, Aas) and adapted GNC

8 Simulations

We present the reconstruction, using the proposed tech-
nique, ol a 128-point chain from its 64-point low-pass
liltered and noisy Laplace transform, with attenuation
2wy, = e~ a0 with a SNR of 20 dB.
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Figure 7: Incomplete noisy Laplace transform: SNR=20
dB, 64 data points for a 128-points signal. Original chain
(..-)» reconmstruction (_). (a) Data — real part. (b} Data
- lmaginary part. fc) The MAP solution, computed by
GNC. {d} the reconstruction using the proposed technique.
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Figure 8: The same observation model as in Fig, 7. {a) MAP via

GNC. b} The proposed technique result.

9 Conclusion

The presented analysis explaings why the weak-string
MAT estimate [alls when the linear observation model
is attenuating. We established an attenuation-adapted
processing and deduced its application domain in func-
tion of the noise variance. The obtalned lmprovement,
in comparison with the MAT estimale is considerable:
data is more efliciently exploited. The optimisation is
carried out by GNC, whose relaxation parameters have
also to be adapled to the attenuation. By way ol appli-
cation, we show the inversion, using the proposed tech-
nique, of a noisy and incomplete Laplace transform.
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