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Markovian Reconstruction Using a GNC Approach

Mila Nikolova

Abstract—This paper is concerned with the reconstruction
of images (or signals) from incomplete, noisy data, obtained at
the output of an observation system. The solution is defined in
maximum a posteriori(MAP) sense and it appears as the global
minimum of an energy function joining a convex data-fidelity
term and a Markovian prior energy. The sought images are

objectx (a signal, an image, a three-dimensional object) and
the measurementg which are corrupted by a noise process
n intervening by an operation denoted. This relation is
assumed discrete, while the notations used in this paper are
mainly for images.

composed of nearly homogeneous zones separated by edges and Recovering imager from datay amounts to invert the

the prior term accounts for this knowledge. This term combines
general nonconvex potential functions (PF’s) which are applied
to the differences between neighboring pixels.

The resultant MAP energy generally exhibits numerous local
minima. Calculating its local minimum, placed in the vicinity
of the maximum likelihood estimate, is inexpensive but the
resultant estimate is usually disappointing. Optimization using
simulated annealing is practical only in restricted situations.
Several deterministic suboptimal techniques approach the global
minimum of special MAP energies, employed in the field of image
denoising, at a reasonable numerical cost. The latter techniques
are not directly applicable to general observation systems, nor to
general Markovian prior energies.

This work is devoted to the generalization of one of them, the
graduated nonconvexity (GNC) algorithm, in order to calculate
nearly-optimal MAP solutions in a wide range of situations. In
fact, GNC provides a solution by tracking a set of minima along a
sequence of approximate energies, starting from a convex energy
and progressing toward the original energy. In this paper, we
develop a common method to derive efficient GNC-algorithms
for the minimization of MAP energies which arise in the context
of any observation system giving rise to a convex data-fidelity
term and of Markov random field (MRF) energies involving any
nonconvex and/or nonsmooth PF’s. As a side-result, we propose
how to construct pertinent initializations which allow us to obtain
meaningful solutions using local minimization of these MAP
energies.

Two numerical experiments—an image deblurring and an
emission tomography reconstruction—illustrate the performance
of the proposed technique.

Index Terms—Continuation methods, image reconstruction,
inverse problems, MAP estimation, nonconvex optimization, reg-
ularization.

I. INTRODUCTION

HENEVER the objects we need to visual-

observation relation. The log-likelihood L(z) x log p(y|x)
measures the fidelity of an imageto datay. Function £

is supposedconvex—a numerical requirement met by many
observation models [12], [27], [23]. In the popullAnear-
Gaussian(LG) modely = Az + n, n is a Gaussian noise
field while observation operatof can represent a point spread
function (PSF) accounting for optical blurring, a distortion
wavelet in seismic imaging and nondestructive evaluation, a
Radon transform in X-ray tomography, a Fourier transform
in diffraction tomography, or it can be the identity operator
A = T if the observation is direct. Up to a constant factor,

(LG) L(z) = |lAz —y|I*. 1)

In both emission and transmission computed tomography
(ECT and TCT, respectively), the observed photon cognts
have a Poissonian distribution [9], [18], [39]. Their mean is
determined using projection operato[rlsf,j =1,2,---,N}

and constanp. In both cases( is convex (see Section VII-B)
and it reads

(ECT) L(zx) =pz’ Z h; — Z yjln (k] ),
(TCT) L(z) = Z pexp(—hlz)+yhiz. (2

Quite often,z is underdetermined iy and the inverse
problem isill-posed[43], [12]. The recovery of the unknown
image must rely on both, data and prior knowledge about it.
Maximum a posterior{MAP) estimation, or regularization, is
a flexible means allowing the recovery of objedtswhich
exhibit a priori expected features [17], [2], [12]. Estimaids
the minimizer of an energ§, which balances, using parameter

ize—anomalies inside a medium, anatomical imageg, closeness to data and confidence in prior guesses embodied

astronomical images, petroleum deposits, etc.—cannot

iR€prior energy®

observed directly, the effects of some physical phenomena
which characterize them are measured. The observation® = argmin&(z), where £(z) = L(x)+ f(=). (3)
relation A(x) @ n = y models the link between the unknown
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differenced-x. An important class of images are composed of
homogeneous zones, separated by edges. Edges contain crucial
visual information, so Pk should favor their recovery.
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1st order: C(% ={0,1}, d; = {dé = l,d{ =-1}
O=2 | C6=1{0,J}, &={d=1,d5=-1}
Ct={0,-1,1}, d' ={dy=-2,d" ,=1,d =1}
nd order: | 2 o g}, dP={dl=-2,d%,=1,d5 =1}
QZS CSZ{Ovlv']7J+1}7 dSZ{dBZLd?:_Ld:S:_17d3+1:1}
Cs =10,-1,1,2} d' ={-3,1,3,-1}
o 0,1,J,J+1 9 ’ "_,7 o
0= {0.1. ; 3rd order: C(g =10,-J,J,2J}, d*={-3,1,3,-1}
di={d}, di, d7, d%,} Q=4 C3=10,~-1,1,J,J - 1,J+1}, d*={-2,1,1,2,-1,~1}
Cl=1{0,1,~J, =+ 1,1, ]+ 1}, d'={-2,2,1,-1,-1,~1}

@ (b)

Fig. 1. Difference operators. (a) A pattern cliqd¥; various difference patterns can be associated to it. (b) Difference patférasheir indices are
elements of the relevant pattern cliquég..

Convex PF's are often used, mainly because en&iigthen original GNC algorithm in order to compute MAP estimates
convex and its optimization is always tractable. Among therorresponding to

generalized Gaussian, Huber and log-cosh [8], [24] PF's per-(g1) MRF energies defined usingny nonconvex, and
mit to partially preserve edges. Other such PF’s are derived in possibly nonsmooth, PE (Section II);

[30]. Still, MAP energies defined using nonconvex PF’s permit (g2) any observation model giving rise to a convex data-
to recover truly homogeneous zones separated by sharp edges  fidelity term £ (Section V).

[18], [20], [31], [34], [45], [41]. The resultant generally  The syccess of a GNC optimization is closely dependent on
has numerous local minima and its global optimization is @¢ pertinence of the approximation involved in the relaxed

difficult task. Several techniques were conceived to deal Wilje(gies: this important problem is addressed in Section IV.
particular observation systems and often wighrticular prior  ~gnditions for finding a convex initial relaxed energy are
energies (Section Ill). Simulated annealing (SA) needs either

- : _ tablished for both the well-posed and the ill-posed cases
an observation operator with an extremely restricted Suib|O°(r§ection V). Considerations about the relaxation sequence and
[19], [26], [45] or an LG model withA shift-invariant [21]. running of GNC are exposed in Section VI.

The iterated conditional modes (ICM) algorithm [1] finds a A gjge result of this work is to propose a systematic way
local minimum of€ in the vicinity of the maxumum likelihood 14 c5|cylate initializations for which a local minimization of

(ML) estim_ate, but the Iatt_er is not a pertinent init_ializ_atio% provides a meaningful solution. Such a strategy yields an
unless the inverse problem is well-posed and the noise is wegknyed ICM(Section VI-D) which can be applied in general
Another suboptimal deterministic approximation of SA Wagjy,ations, including the cases of ill-posed inverse problems.

proposed in [10]. Several deterministic techniques, proposeda|ihough mathematically suboptimal, generalized GNC per-
for the denoising and the segmentation of images, address s efficiently in a broad range of situations and leads

LG model with.A = Z in (1) and a truncated quadratic or a *01; nearly optimal solutions. Two numerical experiments—the
1" PF's (cf., Appendix A): the mean field annealing [3], [4].4econvolution of an image and the inversion of ECT syn-
[14], the multigrid minimization [7], and the graduated Nofyetic data—illustrate its performance, which is compared with

convexity (GNC) algorithm [5], [6], [29]. All these techniqueshe main alternative approaches (Section VII). Concluding
are'subqptlmal in pracnce, while thelr extension .to genergl narks are given in Section VIII.
settings is not straightforward. Reciprocally, practical use of
nonconvex PF’s is subject to the feasibility of the optimization
stage.

The obje,cti.ve of this work is to_enaplpractical use of A. Markovian Models on Differences
various PF’s in a broad range of situations. To this end, we . ]
focus on the GNC algorithm. Basically, GNC can be seen astet # be an(l x J) image whoseM = IJ sites are
a continuation technique [44] which substitutes a sequencedsfanged in latticeS. Identifying R**” and R, we write
local minimizations along a sequence of approximestageg henceforthz € R*; similarly, y € RY. We define overs
energiest,, , where (r)/_ is an increasing positive relax-Several fqm-|l|escl,---,CQ of linked cliques: anyg-clique
ation sequence, for the global minimization &f The first Ci, € C? is indexed by the pixein to which it corresponds.
relaxed energy,, is convex and the last one fi&s The main The ¢-cliques result from the translation of a pattern clique

contribution of our paper consists in the generalization of theCy Over S, so thatCg, = m — C§ for m € S, where
S@W = {m € 8: €2, C S} is the interior ofS with respect

to (w.r.t)C?. PatternC{ = {0,p!,---,p%,_,} is an ordered
1The support of an observation operatis the set of the pixels af which 'Set of pF)SIt!Ve a':‘d negative indices and includes 0 Bfids
contribute to the obtention of any datuyn. its cardinality [Fig. 1(a)].

Il. PRIOR MODEL



1206 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 8, NO. 9, SEPTEMBER 1999

B — 7= e ————— appropriate difference pattere#, so that the edges are the
: ‘ L locations of the largest differencéd?, «|, while the homoge-
! i neous zones correspond to differences which are close to zero.
e Thus, ifd? is first-order (e.g.d,ln:c =%, — Tm-1), the edges
() (b) are jumps and the homogeneous zones are nearly constant; if
d? is second-order (cf., Fig. 1), the edges are creases while the
RN e U TR T homogeneous zones are nearly planar, etc. The edges contain
) g o - essential visual information. Justly, the use of nonconvex PF’s
in (5) allows to obtain MAP estimates exhibiting homogeneous
regions separated by sharp transitions [18], [20], [31], [34],
[41], [45]. We focus on strictly nonconvex PHs satisfying
= B — ~————— several general conditions:
1 h o I r (f1) ¢ is symmetric,o(t) = ¢(—t) and we setp(0) = 0;
o g (f2) ¢ is almost everywhere (a.e.) twice differentiable (i.e.,
4 vy C'-continuous);
(e) ® (f3) ¢ is monotone increasing df, +oc[—its first deriva-
tive ¢, defined a.e., is>(¢) > 0 for ¢ > 0;
e Pt B e (f4) there existss > 0 such thaty decreases toward zero
"*f\\\ / N\ / for ¢ > and limyp—. $(t) = 0; in other words,¢
) YR has strictly concave parts while its concavity vanishes
asymptoptically.
Thanks to (f4), the large differences in the original image are
I ' R w}rf;j:ﬁ’fﬂf allowed to remain large in the estimate as well. PFeaches
| ‘ R its maximum concavityy < 0 at £7° (which is |T"| > )

, 7 = inf lim <P(t+5)+<ﬂ(t2—5) —20(t).
0) 0) teR =0 €

n<0 and

Fig. 2. PF's: originals (left column) and relaxed versions (right column). The T =|argn|. (6)
PF's are plotted for two values ef. The relevant relaxed PF’s are plotted . . . . o

for three values of-. (a)—(b) Truncated quadratic PF. (c)—(d) Lorentzian PF. If ¢ is twice differentiable afl’, thenn = min, ¢(t) =
(e)—(f) Gaussian PF. (g)-(h) Concave PF. (i)—(j) Kronecker PF. ¢(:|:T).

An estimation using (3) and (f1-f4) involves anplicit line

We consider the popular class of MRF's which are defind0c€ss [20], [45], [34]. Energy is generally multimodal and

over differences between neighbors [2], [8], [20]. A differenciis local minima correspond to alternative configurations of
patternd? = {d? # 0if j € C¥,d? = 0 otherwiseX; d? = 0} the edges in the solution. More precisely, it can be remarked
J I 3

is associated to each famifif. The ¢-differences are obtained that these minima are separated by strictly nonconvex zones

by translatingd? over S(@. The ¢-differenced? « relevant to (and possibly by maxima) which contain differences of the
m is " form |d%,x| = 77 (see Fig. 4). In consequence, differences

which are|d!,z| =~ T? appear quite rarely, or never, in an
dlx = (z+xd")(m) = Z i dd = Z T,—jdj. (4) estimate. Pixels involved in a differendd? | <7 belong
ieCy, ject to the sameg-region, while ag-edge sets their adherence to
o _ _ different regions if|d%,&| > 7. In practice, differences of
The resultant sefd’);_; can in particular correspond to aare eitherd?, | < 7 or |d? | > T and7* can be viewed

finite differences operator [Fig. 1(b)]. as a threshold for the recovering of largalifferences, i.e.,
The contribution of eacly-clique to the prior energ® is  of 4-edges.
weighted by a PRp? and a coefficienty? Several among the most widely used nonconvex PF’s are
o given in Appendix A. These are usually bounded and we set
@(z) = Z,chpq(x)’ where ¢(t) < 1for anyt. The methodology presented in this paper is
=1 easy to extend to general nonconvex and/or nonsmooth PF’s.

(I)q("’") = Z wq(dgn"”')v q= 17"'7Q' (5)

ey I1l. OPTIMIZATION OF MULTIMODAL CRITERIA AND GNC
m

Calculating an estimaté of the form (3), (f1-f4) needs
a M-dimensional global optimization of. However, the
latter cannot be performed exactly except in several very
special cases [5], [22]. Grossly speaking, two strategies can
be followed for the minimization of which are either to
Various types of edges, and of homogeneous regions, éirel a pertinent initialization and compute the nearest local
observed in real-world images. They can be modeled usimanimum of £, or to undertake a global minimization.

Often, the same PF is applied to all cliques,= ¢, for any
q. When unambiguous, we writg for (9.

B. Potential Functions Recovering Edges
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A. Direct Local Minimization is thus drastically reduced; however, it is difficult to check

When a plausible initial guess about the sought image"?@ether the. initial energy has a unigue minimum. In mean
easy to obtain, a local minimum df in its vicinity can be fleld annealing (MFA) [3], [4], [14], [41], an edge-process

substituted for the global minimum &. Such a strategy is 'S feplaced by its mean effect at varying temperatures. MFA

simple to implement and can give rise to fast algorithms, blePeNds on the initialization while its extention beyond the LG

it is highly sensitive to the pertinence of the initialization. case W'thA = 1 seems difficult. Another way to approxma’Fe
The original ICM algorithm [1] takes the ML estimate as is to.sllghtly deform the.nonconvex zones of the PF—which

initialization, so it can be used only in the situations whergnderlies the GNC algorithm.

the inverse problem is well-posed (i.&.,is well determined

in y) and if the noise is weak. Indeed, the ML solution ob. GNC Relaxation

an ill-posed inverse problem is unstable in the sense that itThe original GNC algorithm was proposed in [5] for the

exhibits an arbitrarily large amplification of the Observatioﬂenoising and the segmentation of images and signals from

noisen [12]. '.A‘S an alternative_z, a co_nvqlution back-projectioraatay = z+mn in the LG model, wherea$ involves truncated

gf TCT data is used as start!ng point in [39]. We propose %[I'Jadratic PF’'s. A similar algorithm was used in [40]. This

improvement of ICM in Section VI-D. approach was applied to “0-1" PF’s in [29] and later in [38].
The general GNC approach is sketched below. Consider

B. Global Minimization Using Simulated Annealing a family of relaxed energies,, dependent on a parameter
Optimization using simulated annealing (SA) is based en€]0,1[, and such that

the fact that the distributiop.(x|y) = exp[~E(x)/7]/Z-,  (el) relaxed energies, are C*-continuous w.r.t.z and

wherer means temperature, decreases toward zero-as0 continuous Ww.r.tzr;

for objectsz different from the global minimaz. Family  (e2) the concavity of, is relaxed (i.e., reduced), and it

p-(z|y) is processed in order to construct a Markov chain vanishes monotonously whendecreases;

which converges to the set of the global minimafoés long (e3) moreover, there exists >0 such thaté, is convex

as7 decreases slowly from an initial high value toward zero. for any r < ro while lim,_; &.(x) = &(x).

Such algorithms were proposed initially for quantified object§0’5r has a unique minimum for < ro. Whenr increases,

z and later for real-valued images and signals. The Mark@Xinima progressively appear ify.. -

chain can be constructed in different ways. Some methods usgqnsider an increasing relaxation sequepggl_, and the
stochastic gradient maximization of (x|y) [11], [15], [13]. | qlevant relaxed energies, , indexed byk = 0, 17_27 K.

In others,p-(x|y) is sampled using Metropolis dynamics [16]y+ ¢ is Cl-continuous, we tekikeK = 1and&, = £. Otherwise,
[26], [32] or using Gibbs dynamics [17], [19], [45]. The lattefye family (¢, )i_, cannot involve any element equal &

of them generates realizations pfz;|z;,j # i,¥), SO it iS  then we takez]jK < 1 such thats, . ~ &.

well suited if z|y is a MRF with local interactions: but these  The GNC minimization starts from calculating the unique
become global if the support of the observation system is largginimum =) of &, . Afterwards, for each, a minimum
which makes this SA [17], [19], [26] impractical [21], [45], 5t ¢ _an intermediate solution™)—is calculated by local

[35]. A recent form of SA [21] eludes this constraint for a LGjescent in the vicinity(z(m+-1)) of the previously obtained
model (1) whereA is shift-invariant. minimum

Asymptotical convergence toward the global minima&of
can be ensured if 1¥ — oo when||z|| — oo and £ is ) _ o . _
smooth (forz real-valued), and 2) if temperaturedecreases  ~ Y= argxevgﬂlfi,ﬂ)g”k (®) fork=12-- K (7)
according to a theoretical schedule. Butas given in (3) and
(5), (f1-f4), usually does not satisfy 1) while schedule 2) is

: ) . ; i iong("Kx) i
too slow to be followed in practice. Any numerical solution .T_he ult|[nate solut|onz_ *’, Its closeness to the global
thus found is almost surely suboptimal [20], [22]. minimum %, are determined by the sequence of relaxed

energies. It is reasonable to require that for anyelaxed

C. Global Minimization Using Deterministic Relaxation energyé,. closely approximates the original energy

An appealing approach for the global minimizationéfs
the following: a family of approximate (relaxed) energies is V. RELAXATION OF THE PRIOR ENERGY
constructed by reducing the nonconvexity¢ofSo is reached a . . . .

. . .. The nonconvexity of is due to the strict nonconvexity of
relaxed energy having only a few local minima, one of wh|cg . L
. : : . Hence, relaxing® amounts to relaxb. Approximations®,.
is then calculated. Starting from it, each relaxed energy Is . . . :

L . . are obtained by relaxing the strictly nhonconvex regionsof
minimized locally, by descent in the current attraction valley,
while the energies are progressing toward the origih&uch
techniques have been proposed for the optimization of several
particular MAP energies.

In [7], £ involves truncated quadratic PF's and a LG
model (1) with.4 = Z, and its nonconvexity is reduced by iz) = > @idiz), g¢=1,---,Q. (8
coarsening the grid of. The calculation cost at early stages meSo)

Q
b (x) = Z’y’]@;{(z), where
q=1
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Moreover, we require that approximatiofts remain as close further developed in the context of an example in Appendix B.
as possible to the originab. The relaxed PF'sp? should
satisfy the following conditions (we drop the superscript B, Maximum Concavity of the Relaxed Prior Energy

) . ) )

(r1) ¢, areC’-continuous w.r.t¢, while for any? fixed ¢, Now we focus on the maximum nonconveXitygeached by
are continuous w.r.tr; a relaxed prior energy.

(r2) ¢, should stray the least fronp for eachr and  pefinition 1: The maximum concavity,. < 0, reached by

. = st o _ _ _
lim, .1 ¢r = ¢ (@ndgy = ¢ if @ is C*); a strictly nonconvex functiom®,., is

(r3) the maximum concavity ap,., 7, = inf;cg ¢,-(t) <0,
occuring at+7;., i.e., n, = inf lim;— 47 $,.(£7}.), is vI[D?®,.(x)lv

o, = inf inf , zeRM, veRM

required to increase continuously and strictly monoto- —* 7 " & [|v]]?
nously toward 0 ag — 0. (9)
) ) where D? stands for second order differential operator. Hes-
A. Relaxed Potential Functions sian D2®,.(x) is given in Appendix C.
There are numerous ways to get a relaxed@F corre- Below, we establish an inferior bound @f which is often
sponding to a given original Pk. reached in practice.
1) Dilation: Whene is C*-continuous, its second derivative Proposition 1: Let 7¢ and be defined as it follows:
exists a.e. and it is finite, so the minimal value of the latter may
be controlled using a dilation of the original RE;:(t) = ¢(rt) ¥4 Y (dhw)?
for any » € (0,1]. Thus are relaxed the Lorentzian and the 79 — max S and
Gaussian PF’s (cf., Appendix A). v |[v]|?
2) Regularization: An elegant manner to obtaip,. is to Q
regularize by a family of Ct-continuous functiong, con- Zryq Z (d? v)?
verging to the Dirac distribution, which readsip,. = ¢ * g, 7 — max L mES@
and lim,_,; g, = 6. Kronecker PF is relaxed thus (cf., v ]2

Appendix A). In general, it is difficult to find regularization .
functions o, leading to an explicit and easy convolutior-EL 7 = ming 7. _ _
product ¢,.. The maximum concavity,. of the relaxed prior energ®,.
3) Splines: Another way to construck, is to fit splines Satisfieso, > max {n,77, Sel, nivt).
in the vicinity of the points wherey is not differentiable ~_From the definition ofo,., we can write thato,||v]|* >
and nonconvex; this is always feasible. This is the techniqté[D*®.(x)]v. The latter term can also be put into the form
proposed in [5] for the relaxation of the truncated quadratit’ [D>®:(x)lv = X, Xy, v4(dhv)* ¢ (df z)—cf., Appendix A.
PF; we relax the concave PF in this way (cf. Appendix A). Let nowT¥ =T, andni = », for any g—which corresponds
Given a PF, various relaxed PF’s can be envisaged, but thégdhe usual situation whep? = ¢, for any q. Suppose
may induce the GNC optimization to converge toward slightiioreover thatd?, ), admits images satisfyingd?, & = 7;
different solutions. It is hence important to use approximatiorier any m € S and for anyq. For instance, if(dq)qQ=1 is a
which ensure a better convergence of the GNC. first-order difference operator (Fig. 1), this hold for the image
Given a PRy, suppose that we have two relaxed Pkgg, with elementss; ; = T,.(+7), while if the difference operator
and .., which reach the same maximum concavify for is of second order, we can take ; = 7,.(i + j)*/2. In such
r = 1o andr = po, respectively. Amongp, and ., the a casep?[D?®,.(z)lv = 0, X, %, v/(dlv)?, and hence the
approximation which is “closer” tg is clearly the better. The bound given in Proposition 1 is reached, = »,7.
sense of this closeness needs a further precision. Magnitudes7 and 7? can be closely approximated by
Recall that the local minima of correspond to different substituting acirculant convolution for the usual convolution
configurations of the edges in the solution. Thus, a GN@ (4). The circulant operatdlq approximatingd?, reads
optimization is aimed at finding the edge configuration corre- . )
sponding to the global minimum @f. Observe that a relaxed iy, =~td},, ifmeC§ andm >0,
PF ¢. is at the same time a nonconvex PF which permits to J;{Hm =+, ifmeC! andm<Oo,
recover edges with respect to thresh@ld(cf., Section 1I-B).
Hence, the choice of a particular relaxed PF should be based
on its behavior w.r.t. the recovery of edges. On t_he one har}jlq1d S, (div)? ~ %, (3:1})2 for any v. Then, 74
thresholdsl’. should decrease monotonously wheimcreases y '
tovyard one. Th|s naturally corresponds to an edge recoverlﬁ}g Q. = EQ=1 ds - similarly, 7 = max; {|s|%: v = dov—
which starts with the large edges and progresses toward tre 4 ; M M
small edges. On the other hand, the closenes®,ofo the /" € S} E'gehvalues(“’“)k_:l and (yi;)=, are f,t'e
original 7' should be surveyed. Thus, the better amongst thgefficients of the discrete Fourier transform défand d',
PF's ¢, and, is the one whose initial threshold is closer t§€SPectively [25].
the originalT’: we check whether the threshold relevan{at;g 2A strictly nonconvexC!-continuous function necessarily involves zones
or the threshold relevant t9,,, is closer tol’. These ideas are where it is strictly concave.

d% =0, otherwise

max; {|pf|%: v = div = piv,,n € S}. Let d be given
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(GAUSSIANS: LORENTZIANS:

©

Fig. 3. Comparison of relaxations. Each row presents the reconstruction of the originalasighat—) from datay = a * ° (---), plotted in the middle.

The gates in (a)—(c) have a width of 12, 9, and 8 samples, respectively, while the lengthi®f64. Energy& involves Kronecker PF's, defined over
the first-order differences, whilg = 1.5. This PF is relaxed using Gaussians (left column) and using Lorentzians (right column). Original Enkagy

two minima: the original gata® and a constant signaé = c1. The figures depict,.(t) = &.[tZ 4+ (1 — t)x°] for several values of. The sequence of

minima yielded by a slowly evolving GNC is marked with.” Explications are given in Section IX-B.

V. INITIAL CONVEXITY whether its Hessian is nonnegative definite for ang R :

GNC minimization starts from a relaxed energy, which ﬁ”d; SL;Ch that - .
has a unique minimum. A strictly nonconvex function can v [D°E(z)]v = v [D°L(z)lv+ pv” [DP, ()]
clearly be unimodal; but small changes incan make it > 0 for anyz andw. (10)

multimodal (see Fig. 4). Being unable to provide general i gitficuit to find the largest, satisfying (10) for general
necessary conditions for the unimodality &f,, we ensure r and%,. But it is sufficient to taker, such that for < ro, the

instead its convexity for any. Following the example of minimum convexity of the convex terms &}. is larger than
[5], the initial convex approximatio#,., is found by checking the maximum nonconvexity of the nonconvex termsEpf
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Definition 2: The minimum convexity: > 0, reached by a the r.h.s. of (12) is negative for any €]0,1[. This fact

convex functionZ, is does not necessarily imply th&. is strictly nonconvex for
TIp2y any r, although this is produced if a pait;,#) exists such
p = infinf %, z e RM, veRM. that#? [D2L(z)]v = 0 and#” [D?®,.(¢)]# < 0. So, a relaxed

- v T v

energyé&,., corresponding to a singular LG model (1) and a
(11) regularization applied to the usual finite differencesnéver

The Hessian corresponding to the LG model (1P&L(x) = ;anVNe xefoIr< arn(ﬁ}j)m;iéhfeofte\gggﬁ t(;]c;r:&gloqs_areT ”}gtr for
2AT A s0 pt = 2Amin, Where A,y is the smallest eigenvalue yv N z m®l = Lr

T . : . - any (g, m). Note that this fact has not been accounted for by
of AA. In ECT and TCT,£ is convex withy = 0 (cf, several authors who applied GNC to LG ill-posed problems

Section VII-B). -
. . . ... [29], [38]: the initial relaxed energy they used was nonconvex
, ;it;ngon]unctlon of (9), (10), Proposition 1 and Definitio nd certainly multimodal.

A possible issue is then t@nder convexhe initial relaxed
oI [D2E,(x)]v > pllw]|? + Bo,|[v]|? prior energy®,,,. Let us flx_p close to zerop e_](_), 1_[ ar_1d con-
siderrg < p. In the beginning of the GNC minimization—i.e.,

Q . .
2 | p+pFmax 0,7, 277317‘1 o] |2 whenr € [ro, p[—the relaxed prior energ®, is kept .constant
while an auxiliary convex tern® is appended to it:

q=1
for anyz and v. (12) _
O, (x) =0, (x) + (r)O(x) with
If &, is strictly nonconvex, the right-hand side (r.h.s.) of L p—T o

(12) is negative for close to one; moreover, there exiats n(r) = o— 10 for € [ro, pl, (14)
for which the left hand side (I.h.s.) of (12) is negative as well. Q
Thanks to (r3), the sum in the r.h.s. of (12) increases from a O(x) = Z ©%(x), where
negative value to zero as long ass decreased to zero. q=1

Of(x) = 61(dl x). 15
A. Strictly Convex Data-Fidelity Term (=) m;q> () (13)

Consider first the resolution of a well-posed inverse prob-
lem, which means that > 0. In this case, there existg for In order to rendef,. convex forr < rg, each®?, 1 < ¢ < @,
which the r.h.s. of (12) becomes positive. has to compensate for the nonconvexity of the reledgntAt
Proposition 2: Let > 0 and€ strictly nonconvex; consider the same time@ should deform®,, the least. The auxiliary
the family of relaxed_energie(sf,,)},:,,o. The equation i PF’s ¢ satisfy:
(al) 4 are C*-continuous;

Q .
2) 6 tricf(t) = 6(—¢) and6(0) = 0;
4+ [ max {&17,277217(1} =0 (13) EZS; are symmetricf(t) (—t) and6(0) ;
gq=1
is satisfied for a unique. Any relaxed energy€,., corre- é(t) =0, if ¢,(t)>0i.e.,if [t| <u,,
sponding tor < 7, is strictly convex. 0(t) = —¢,(t), if ¢,(t) <0i.e.,if [t|>u,

Conditions for initial convexity, established in [5], appear
as a particular case of this proposition. The above conditipihere we drop superscrigt).
is sufficient; it is also necessary when the both equalities inOpserve that a relaxed RF,, satisfying (r1-r3), is strictly
(12) can be met, i.e., when there exists a pair) such that convex over an intervalt| < Up, Whereup > 0. We setf(t) =
' [D?L(&)w = pllo|]* and o' [D?@.(&)]6 = o, ||9]]%, i.e., 0 for |¢|<u, and 6(t) = —@,(t) + c|t| + d for |t| > u,.
when the both bounds in Definitions 1 and 2 are reached fgmoothness atu, requires thaﬂ(u;f) — 0 and g’(u;r) =0,
the samez and 4. This occurs for anys in the case when wherefd(ut) meandim,_., ¢~ 6(t). These conditions lead to
A =7 in the LG model (1) and the prior energy is such that — ¢ (ut) andd = ¢, (ul) — cu,, so finally
o, = 1,7 (cf., Section IV-B). g g

Equation (13) may be solved numerically, if analytic resolu- 0, if [£] <,
tion is d_|ff|cu_lt. For numerical reasons, the case 0 presents o0(t) = {%(u;r) — @, (t) + (Jt| - up)%(u;r)’ it |t > w,.
a practical interest only whep is not too close to zero,
since . ~ 0 leads torg ~ 0. The latter case then should

be assimilated to the cage= 0. The obtainedf, (14)—(15) is convex for any such that

r < ro. It is nonconvex forr €]rg, p[, while the auxiliary
i o term vanishes at = p. For r > p, relaxed prior energyb..
B. Nonstrictly Convex Data-Fidelity Term finds the original form (8).

The situationy, = 0 corresponds to ill-posed inverse If ever calculatingy is problematic, the “nonstrict convex-
problems [12], [43]. Such are the ECT and TCT modelity” strategy can be applied: if is smaller than the solution
and the frequent cases whet?' A in (1) is singular or ill- of (13), the both strategies (Sections V-A and V-B) yield the
conditioned. Data-fidelityZ is only nonstrictly convex and same solution.
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VI. MINIMA TRACKING ALONG THE RELAXED ENERGIES

Minimization by GNC needs to calculate a sequence of
intermediate solutiong:("*) which are local minima of the
relaxed energie$8,,k)§=l. Its computational cost is hence
determined by the efficiency of the local minimization al-
gorithm which is used. The latter can be performed using
either coordinate-wise descent (ICD, ICM) or directional de-
scent—gradient descent, conjugate gradients, etc. [1], [37],
[39].

A. Convergence Considerations

Convergence of a continuously evolving GNC toward the
global minimum in several very simple cases (step- and gate-
shaped signals, noise-free daja= =, truncated quadratic _
PF) has been demonstrated in [5]. These results can ’ha@%i;é g Eveﬁlﬁ getﬁgtr'g;‘t-ziiﬁa'gf': e{‘F‘;;@yZ(CS;?EE)Ond:S tC;) CLET(_%)TQ
be extended to other observation models, to other PF's afjl 4 5042/(1 + aa?). If y1 <y, the global minimum is close to zero,
to general images. Instead, we have conducted extensinde fory; >y it is far from zero. The global minimum of cannot lie in
experiments in order to evaluate the performance of tH¥ zone marked with (—) which contains the paint= 7'
proposed GNC minimization and to explain its functioning.

Relaxed energy, is obtained by subtracting ® avarying (cf., Section VI-C). To simplify the presentation, it is assumed
bias B.(z) = &(x) — &.(x). Bias B, is small for im- that ¢ = ¢ for any q.
agesz containing a large number of nearly null differences,

d! x ~ 0, and it vanishes for large differences. HowevBy, B |nitialization of GNC

increases along with the number of differenceszofvhich
are {(m,q): |dLz| € [I,1,]}. Let a deep minimum of
£, say %, contain numerous differences which are close
zero; in &,, such az is surrounded by a “corona” where
many differences ared! x| € [I,T.]—i.e., where B, is
large. Suppose that the global minimunof £ is deep and
consider a deep local minimudy such that(z) < £(&1).
We examine the two coronae whel. is large, generated
by z and by #;, respectively. Letr;, be such thatf,, is
unimodal over a region containing and z;, as well as the
past intermediate solutioa("*-1). If moreoverz and; are
close to each other, i.e||& — #1]| is small, &.(%) involves
an important bias coming front; and reciprocally,£,.(%1)
involves an important bias due o (i.e., B,.(%) and B,.(%1)
are large). It may then happen thét, (%) <&, (£), and
that the actual intermediate solutiaet™’ is closer to;
rather than tag. The sequence of minima{"*) may then be
entailed to evolve in the attraction valley &f and finally,
to provide z; as the ultimate solution. Normally, such
“confusion” of minima does not seriously deform the solutio
since it concerns only several details—because close minifhgoNcave PF.

differ only at several small edges. On the other hand, such a _

confusion does not occur if minima and #, are distanced C: Relaxation Sequence

from each other and/or their energies are quite different. Thislf £ has two close local minim&; varies sharply and has
reasoning is corroborated by the experiments in Section VH-maximum along the line linking these minima. Conversely,
A: the images shown in Figs. 7(c), 9(b)-(c), correspond sharp variations in the shape &fare related to the presence
close local minima and indeed, these solutions are quitéclose minima; following Section VI-A, closeness of minima

Convexity conditions established in Sections V-A and V-B
l%rovide a bound-y ensuring that,. is convex forr < rq. It
is hence sufficient to start GNC with < 7, since&,. then
has a unique minimum.

When L is strictly convex,rq is uniquely determined by
Proposition 2. If£ is only nonstrictly convex, the choice of
p in (14) is guided by the following argument. Unlike the
principal relaxation ofb,. (8), the weight of the auxiliary terms
01, qg=1,---,Q in &. increases rapidly withd? x|, which
penalizes the recovery of large differences during the early
stages of a GNC minimization. The intermediate solutions can
thus be attracted to evolve toward a smooth local minimum.
For this reason, we choogequite small—or equivalently?,
quite large. The many experiments that we performed showed
systematically that choosirifj, larger leads to deeper minima
of £. However, numerical instabilities may arise whegns
too close to zero, becausk, may then exhibit almost flat
aregions where local descent becomes problematical. In our
ﬁxperiments (Section VII) we usé€t], = 40 — 80 along with

similar. suggests the recovery of fine features in the estimate. During
Anillustration of these considerations can be found in Fig. tBe early stages of a GNC optimization, parametés close
and Appendix B. to zero and the concavities of the relaxed Pg,sare weak.

The adequacyof an ultimate solutionz("*) obtained us- The relevant relaxed energiés have only a small number
ing GNC—its closeness to the global minimuta—greatly of local minima which are distanced from each other, while
depends on both, the level of the convex initialization (cfg,. vary weakly between them. Mainly the rough features of
Section VI-B) and the discrete relaxation sequefcgX , the solution are recovered during these early stages. As long
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as r increases,I,. evolves toward the original” while £,. is not adapted for a direct local minimization. In the latter
exhibits more and more close local minima. Thus, fine featurease, the value op should be larger. On the other hand,
are recovered along with the advancement of the GN@n initial solution where the noise effects are well smoothed
optimization. It results that edges are detected throughout ikevery likely to correspond to a smooth local minimum
whole GNC-minimization, which corresponds tgressive of £. Experience confirms thaf), should yield an initial
segmentation “from coarse to fine,” of the reconstructedsolution (") which is only slightly under-regularized [see
image, under the control df,.. This is the reason why we Fig. 9(a)-(c)]. The precise value @f is set experimentally
focus on the evolution off2 )1, towardZ” and then calculate (Section VII).

the relevant sequendey,)_, using the expressions fdF. in

Appendix A. _ o o VIl. NUMERICAL RESULTS

The auxiliary relaxation (when it is applied) introduces a

preliminary stage in the GNC-optimization.

e During the auxiliary relaxation (14)—(15), the relaxe(g
threshold remains constarff,, = 7, for ry € [ro, p]. It
can be observed that GNC is not particularly sensitive %)
the form of this early relaxation. We decreaséinearly
from x(rg) = 1 to k(p) = 0 in several steps (3-5 in

Reconstructions, presented in this Section, are defined using
ifferent MRF prior energies. The use of nonconvex PF’s
nd GNC minimization is compared to the main alternative
proaches.

A. Deconvolution of an Image

practice). The original 72 x 72 imagez in Fig. 5(a) is locally
If auxiliary relaxation is unnecessary, this stage isonstant and is observed through ax99 PSF:a(i,j) =
automatically omitted by setting = 7. exp {—0.3[(i—4)*+(5—4)*]}, 0 < 4, j < 8. Datay = x*a-tn,

» The main relaxationy;, > p, is adapted to the evolution given in Fig. 5(b), are corrupted by white Gaussian naise
of the thresholdsZ;., . Different schedules for this evo-with 10 dB SNR. The inverse problem is ill-posed and the ML
lution can be envisaged. A slow initial decreasepf estimate, Fig. 5(c), is unstable. The MRF prior energies used
followed by an acceleration is justified by the fact thapelow involve the following elements:
the main features of the solution are recovered during
the early stages of the GNC minimization. In particular, d* = [ 1} = dQT, d = F 0}, d = { 0 1},
the exponential decreasel,, = T, + (T,, — T,)[1 — -1 0 -1 -1 0

e™F=D]/[1—em =D wherer €]0,1[ controls the speed 1 S 1 -1
of this decrease, is revealed to give rise to importantd” = | —2 =d°, d= [_1 1}
practical minimizations. 1
Alternative schemes for the decreaseldf arelinear =1 for1<¢g<4, ~41=0.045 for5<¢<7,
T, =1,+k(T'—1,)/(K — 1) or logarithmical T;., = pl=¢ forl<qg<T7. (16)

T, +In(k + 1)(T — 1,)/In(K). We found that the
logarithmical scheme leads to more shallow minima theFhe estimates presented below are defined using either convex
the linear scheme. These two schemes perform less wallnonconvex PF's. Among the former PF’s, we applied a
than the exponential scheme. In our experiments, we ditlber PF and a generalized Gaussian (GG) PF [8], [24]:
not find exceptions.
We found also that a GNC relaxation i ~ 30—40 steps
permits a convenient evolution fcF,, . At = a), (17)
(GG) (t) =t|*, l<a<2 (18)

(Huber) () =#1(|t| < @) + (o* + 2aft — af)

D. Pertinent Initialization for Direct Local Optimization wherel(p) = 1if pis true and(p) = 0 otherwise. Parameters

By construction£,., is the convex energy “closest” to the(«, 3) are setexperimentallyin such a way as to reach the
original £. Following Section VI-A, we can remark th&., best reconstruction allowed by each PF.
reflects the main features expresse@irbut in an “attentuated  The image in Fig. 6(a) is restored using a quadratic PF
form”—because of the relaxation. We can say thét) is (a Gaussian MRF) anda = 2,4 = 5) in (18), and it
the unique minimum of the “best” convex approximation ofloes not exhibit large differences. The next Fig. 6(b) shows a
the original€ and that it partially incorporates some featuresestoration obtained using a GG PF with= 1.1, 3 = 6). In
expressed irb. That is why we advocate that an initial GNCFig. 6(c), a Huber PF witliee = 0.2, 3 = 5) is used. In the
solution ) can be used as starting point for ICM-likereconstructed images, large differences may be distinguished
direct local minimization (Section IlI-A). In particular, thisbut they are not neat.
minimizer (") is closer tog than a ML estimate. Moreover, The remaining reconstructions are defined using dbe-
it is always available, even when the ML estimate is unstableave PFwith (« = 12,8 = 16) and they are calculated
For a well-posed problem, the initial convex ened&y is using different techniques. The images in Fig. 7 illustrate the
uniquely determined using Proposition 2. If the problem is illbroposed GNC minimization with auxiliary relaxation. The
posed, parameter in (14)—(15) has to be chosen. Note thainitial solution (™), shown in Fig. 7(a), is underregularized
a GNC-suited initial solution—corresponding to Section Vland so is the intermediate solutiart”) in Fig. 7(b). Both,
B—involves important noise effects [see Fig. 7(a)] and the contours and the locally constant regions are correctly
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©

© Fig. 6. Convex MRF energiesy = [1, 1, 1, 1, 0.045, 0.045, 0.045].
Fig. 5. Deconvolution example. (a) Original image. (b) Data—a blurred arfd) Gaussian MRF(¢(t) = t2), (o« = 2,8 = 5). (b) GG MRF,
noisy (10 dB SNR) version of the original image. (c) ML estimate. (e« =1.1,3 = 6). (c) Huber PF(a = 0.2, = 5).
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retrieved in the ultimate GNC solution—Fig. 7(c). The latter is
obtained using an exponential decreas#,0f whereZ), = 80,
7., = 0.01, K = 30, andr = 1, followed by an ultimate
stage with7;.,. ., = 0.003—in order to closely fitp,., ., ~ ¢.
Ultimate energy¢(z) = 2.53 10* is the lowest energy that we
could reach by any minimization technique. The role of the
initial thresholdZ, is illustrated in Fig. 8(a): a largef, = 20
leads to a more shallow minimumé{z) = 2.73 10*—which

is slightly different visually. GNC optimization witHZ,.,
decreasing linearly and logarithmically starting frdn = 80
leads to local minima with a higher energ¥(z) = 2.64 10*
and&(z) = 2.72 10*, respectively—Fig. 8(b) and (c).

The ML solution—Fig. 5(c)—does not provide a useful
initialization for direct local minimization. Instead, the GNC
initial solution=(™) corresponding td, = 20—Fig. 9(a)—is
underregularized and it leads to a very acceptable solution,
given in Fig. 9(b), where€(z) = 2.76 10*. Initialization,
corresponding to a smaller threshdld, = 10 provides a
slightly different solution, shown in Fig. 9(c), and having a
slightly higher energy¢(z) = 2.79 10*. We calculated the
same estimate using also a half-quadratic SA [21], but we
obtained a shallow local minimum wheééz) = 10.26 10%.

B. Emission Tomography

The concentration of an isotope in a part of the body
provides an image characterizing the metabolic functions and
local blood flow [9], [23], [27]. In ECT, a radioactive drug
is introduced in a region of the body and the emitted photons
are recorded around it. Data are formed by the number of
photonsy; > 0 reaching each detectoy, = 1,---, V.
Data-fidelity £, given in (2), is nonstrictly convex since
D2L(z) = SN, y;h;h] /(R] ;)? is nonnegative definite but
ill-conditioned; sou = 0.

We treat the reconstruction of the 64 64 phantom in
Fig. 10(a)—(b) with amplitudes in ]0, 3.8], from the simulated
ECT raw data in Fig. 10(c). Data correspond go= 8§,

u = 0.08 in (2) and are collected on 64 arrays surrounding the
object at equally spaced angles, each containing 64 detectors.

The MRF prior energies used in these reconstructions in-
volve first and second order differences, whefe—= 1 for
1< g<4andy? =0.01 for 5 < ¢ < 7in (16). In addition,

a “soft” positivity constraint is imposed on the solution by
appending ta,. a convexterm ¥ with «w = 60

En(@) +rol(z), U(z) = > 22l (zm < 0). (19)
meEeS

Weighting with » serves to improve conditioning for local

optimization.
A reconstruction defined using a Huber PF (17) and pa-
rameters(oe = 0.2,8 = 0.5) is given in Fig. 11. Note that (©

a reconstruction using a GG PF (18) with= 1.1 provided Fig. 7. MRF energy using a concave PF and GNC-minimization:
a closely similar solution. The reconstructed images allow(g = 12,6 = 16) andy = [1, 1, 1, 1, 0.045, 0.045, 0.045gxponential
further interpretation by the user, but they are slightly smootfgcreas® °Tr With T, = 80. Trpe = 0.01. & = 30,7 = 1, followed
p y the ! % ya ghtly T, = 0.003. (a) The initial solutionz("0). (b) Intermediate
The last reconstruction is obtained using a concave B

TK41
) amned using ution z(#). (c) The ultimate GNC solutiori = z("%); its energy is
with (¢« = 4,8 = 1.5). The minimization is performed &(z) = 2.53 10%.
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Fig. 8. Other relaxations (the same estimate as in [Fig. 7]). (&) GNC ©

minimization starting from7, = 20, with 7., = 0.001, K
then £(#) = 2.73 10%. For (b) and (c), T, = 80, T, = 0.001,
K = 30. (@) GNC minimization using dinear decrease ofl},, then
E(#) = 2.64 10%. (b) GNC minimization using dog-decrease of, , in

which casef(#) = 2.27 10%.

Fig. 9. Direct local minimization (the same estimate as in [Fig. 7]). (a)
Initialization corresponding tdl,, = 20. (b) Solution found by local
minimization in its vicinity has energ§ () = 2.76 10*. (c) Solution found
using initalization withT,, = 10, then&(&) = 2.79 10%.
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Fig. 11. Reconstruction using a second-order MRF energy with a Huber PF:
v =11,1,1,1,0.01, 0.01, 0.01]a = 0.2,3 = 0.5) and a soft positivity
constraintw = 60 [cf. (17), (19)].

VIIl. CONCLUDING REMARKS

In this paper, we proposed a family of efficient GNC-
algorithms for Markovian MAP reconstruction of images
and signals. Data are obtained at the output of a system
giving rise to a convex data-fidelity term. Prior scene features
are introduced in the reconstruction by the means of MRF
energies, defined as the application of general nonconvex PF’s
to the differences between neighboring pixels. This allows to
recover images (or signals) composed of homogeneous zones
separated by neat edges.

The relevant MAP energies are nonconvex and generally
multimodal, and their optimization is a difficult task. Previ-
ously, the use of nonconvex PF’s was limited to observation
operators having either an extremely restricted support, or
which are linear shift-invariant, and often to particular prior

Fig. 10. Emission tomography (a)~(b) Original %272 phantom. (c) ECT €nergies. In order to deal with the global optimization prob-

simulated raw data witlx = 0.8 andp = 8).

lem, we focused on the GNC algorithm which was initially
proposed for the minimization of a MAP energy conceived for

using GNC with auxiliary relaxation, wher#&,., decreases the denoising of images using truncated quadratic PF's. Based
exponentially fromZ,, = 40 to Z;., = 0.01 in K = 30 steps. on a proper theoretical analysis, we developed an extension
Fig. 12(a) presents the initial GNC solutiefi®). The ultimate of GNC permitting to compute MAP estimates involving
GNC solution—Fig. 12(b)—(c)—has a nice resolution and theny convex data-fidelity term and any nonconvex and/or

contours are neat.

nonsmooth PF. Both theoretical and practical recommenda-



NIKOLOVA: MARKOVIAN RECONSTRUCTION 1217

suggests how to define pertinent initializations for direct local
minimization. The resultant method overcomes the limitations
of classical ICM when faced with ill-posed problems.

Experimental results bear on the deconvolution of a blurred
and noisy image and on the reconstruction of a phantom from
simulated ECT raw data. The quality of the reconstructions
obtained with MRF priors involving nonconvex PF’s is due to
the pertinence of the prior constraints.

APPENDIX A
FUNCTIONS AND APPROXIMATIONS

We present several PFg dependent on a parametar
These PF's are illustrated in Fig. 2.

Truncated Quadratic PF:Such PF’s are often used for the
processing of images, whetd = 7 in the LG model (1)
[5], [26], [31], [33], [42]. Extension to ill-posed linear inverse
problems is proposed in [35].

(1) :{atQ, if [t|<T, {T: 1/V/a,

1, if[{>T, n= oo,
at?, if [t] < ar,
r(lt = b)*
r t) = 1 7 f - < s
er(t) S0y if a, < [t|<b
1, if by < |t|7
T
ap = 2 ,
1-2a+ 2
.
b, = T2/a7,,
{ﬂ = (aptb/2
7,
T
9, if [t <a,,
el ) i
(b) o) = 57 (H = a)%, if a, < |t|<b,,
1 .
) 7l = ,)? = (a, = 1,)%), if b, <[]

Lorentzian PF: It has been used in [18] for SPECT image
reconstruction, calculations being performed using ICM. Such
PF's are also used for the denoising and the edge-enhancement
of images in [36].

at?

ty=——, 1T =1 =a/2

90() 1+Oét27 /\/av n a/a
rot?

on(t) = Trra r= 1Vre, ne=raf2,

Fig. 12. Reconstruction using a second-order MRF energy with a concave o(t) = { 0, if |t <wu,,

PF:y =1, 1,1, 1,0.01,0.01 0.0l = 4,3 = 1.5) andw = 60. (a) The —p,(t) + [t|3/(8u,) — 1/8, if |t| = u,,
initial GNC solution corresponding td, = 40. (b)—(c) The ultimate solution

T, = 0.01 obtained after 30 GNC-steps using an exponential decrease for W, = 1
Ty T \/3pa

tions for the construction of GNC algorithms were provided.
The resultant algorithms are mathematically suboptimal, butGaussian PF: Such PF's has been used for the denoising
definitely efficient. On the other hand, the GNC approadmnd the segmentation of images, along with a MFA optimiza-
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tion [41] and anisotropic diffusion [36].

o(t) =1 — exp (—at?),

(Pr(t) =1—exp (—7‘Oét2),
—3/2

T =

e =4rae

o) ={ 1
— e—patz + e—(l/Q)(\/%|t| - 2)a

1
T V2

U

Concave PF:It has been applied for the restoration of
blurred images, as well as for the reconstruction of SPECT
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APPENDIX B
COMPARISON OF RELAXED POTENTIALS

3/(2a),n = 4a6_3/2,

T. = 3/(2ra),

Kronecker PF can be relaxed using a regularization with
Lorentzian or with Gaussian functions. The threshold of
the Kronecker PF, equal t@ = 0%, is less deformed by

if [t <, Lorentzians than by Gaussians:
if |t > wp,,
. 1 1
Lorentzian TF = ~ 0.7071
2|7’]7| |777|
. 6 1
Gaussian TS = 55 ~ 11571
[y le®/ 7]

images, where the solution is obtained using different forms

of SA [20], [21], [45].

at]
t) = =07t =202
@(t) T+ ol =207,
LA T
146,27 r ]
r(t) = alt| . 1—»
, f [ > ,
1+ «ft] T
2ra
Ar = —,
1—7r
r(r+2a — 20r)
by = =
(1-7)
1 1—17r
I, =—< ;
{ b, r
nr=ra/(l—r),
0,
_) a
0) =9 22 — o, () + (It — )@,
4b,

1 9a,

/
U, = ———, = .
P38 B,

since TX < T for any #, fixed. Experiments show that
a relaxation using Lorentzians permits to obtain a better
minimization of £ than a relaxation using Gaussians.

The example in Fig. 3 presents the restoration of a gate-
shaped 1-D signat® from blurred noise-free datg= a * z°,
wherea is a PSF. Energy¥ involves a Kronecker PF and it
has two minima: a constant signal= ¢1 and the original
gate z°; here,1 is composed of 1's and has the size of
andc is a scalarc = argming ||a * ({1 — z°)||. The figures
depict the section of the relaxed energ&salong the line
linking these minimag,.(t) = &,.[tz+(1—¢)z°]. The three sets
of images correspond to three gates with decreasing widths.
In Fig. 3(a), the global minimum is the originaf and it is
correctly retrieved using the two relaxations. The second gate,
Fig. 3(b), is slightly narrower and it is still the global minimum
of £. In this case, a relaxation using Lorentzians lead to the
global minimumz° while a relaxation using Gaussians leads
to the local minimumg. The gate in Fig. 3(c) is still narrower
and the global minimum of corrsponds t@&. Although £(%)
and&(x?) are close to each other, the two relaxations find the

if |t <u,
if |t] > w,

Kronecker PF: It has been introduced for the segmentatio@ilobal minimumz.
and coding of images in [29], along with a GNC alogrithm

involving a relaxation with Gaussians;.(t) = 1 — e*”z,
r €]0, +oo[. This approach is applied later in [38]. Relaxation

APPENDIX C
DIFFERENTIAL AND HESSIAN OF THE PRIOR ENERGY

using Lorentzian functions improves the convergence (cf.

Appendix B): In order to simplify notations, we writé, for D2®,.. The
n elements of the differential ob? are
et)=1-1t=0), T=0%, n=o
rt? 1—7 1 7 9Pi(z) q.2q
[ t =5 C217 = r = = = dg@, d;ln ;T
@ () 1—7’+7’t27 r 7 21_7)7 axrn ch:q J ( +j )
0, if [t <u,, ’
o(t) = 3001 . . . w0 o
—p,(t) + |t|§ Y if [¢] > w,, Hessian®,.(x) reads®,(x) = ¥ _, v/®(x). The elements

P

of the Hessian of? are shown at the bottom of the page. It is
practical to consider the sums; above as infinite but having
only a finite number of nonzero terms. Furthermore, recalling

[B4(@ ) = ¥, dF GH(dL ),
[(I):I(I)]n"l = E] d3d3+n,—nl¢g(dz,+j‘1")7

forn € S@,

iftn—me |Jch{o},

jccy

ifn—m¢g |JCch{o}

seC9
JjeC]
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that 2, dZ, = 0 for any ¢, we can write

[P2@)in == > [PUD)]um. (20)
rnES(‘Z)\{n}
APPENDIX D
PROOF OF PROPOSITION 1
We now develop the numerator of (HT[P,(x)]v =
5@ 7 [$4(z)]v, where
o7 [ (z)]

]krn ViUm

>, 2. [N

kcS(a) mCS
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APPENDIX E
PROOF OF PROPOSITION 2

Let us consider the functiong, f>, and f:

flr) = e fi(r)  where
fi(r)=p+pBn vy and
Q
f(r)=p+B> 0"
q=1

Since lim,._,; &.(x) is strictly nonconvex/lim,_,; f;(r) <0
fori=1,2. On the other hand, (r3) ensures that both terms,
pn v <0 and g9 a=1 M1 <0, increase toward zero strictly

monotonously along with- — 0. So, both functionsf; and

Z Z [éz(x)]kmvkvm + [‘P?(x)]kkvf

k m#Ek

Thanks to (20), it is obtained the

f2 increase strictly monotonously when — 0; then f is
monotone incresing withr — 0, as well. Asp is strictly
positive, f; and f> reach a positive value far close to zero;

same is true foff as well. In conclusion, there exists a

uniquerg €]0, 1[ which satisfiesf(r9) = 0.

vl [04(x)|v
= Z Z ]krn VUm — U}%)
k. m#k
= Z Z (Vavm — vR) Z d; dq+k mPr(dy +5%)-
ke matk J (1]

(2]
(3]

Letus seth = k+jandl =k + j — m. Thenm # k leads
tol # j, so

Yoo = @Hdiz) S S dhall (v — 03 ).

JI#

(4]

— (5]

Since El# df = —dq for any j € C¢ (cf., Section II-A),

Yz Vi qud}] =) _;di By df = —vl_;(d})?. Then (6]
? [7]
oo =3 gidia) | S dlun

n J 8]

= (dw)*@i(dlx).
n [
Then we have [10]
z)lv = va Z )?@(dix). [11]
[12]

Using thatn? = min; $(¢) <0, two inequalities can be

extracted from the previous relation: (13]
o o [14]

VS (@) = D 0ty > (daw)? 2 [Jof]P D i,
q:l n q=1 (15]
o' [, ]11>771Z’7 Z )2 2> ol *ner (16]
[17]

according to the definition af? andw. Hence, the proposition.

Furthermore, the Hessidn?&,.(x), given in (12), is positive
definite, sincef(r) >0 for » < ro.
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