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(a)

(b)

(c)

Fig. 5. Deconvolution example. (a) Original image. (b) Data—a blurred and
noisy (10 dB SNR) version of the original image. (c) ML estimate.

(a)

(b)

(c)

Fig. 6. Convex MRF energies:
 = [1, 1, 1, 1, 0.045, 0.045, 0.045].
(a) Gaussian MRF( ' (t ) = t2); (� = 2 ; � = 5) : (b) GG MRF,
(� = 1 :1; � = 6) : (c) Huber PF,(� = 0 :2; � = 5) :
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retrieved in the ultimate GNC solution—Fig. 7(c). The latter is
obtained using an exponential decrease of where

and followed by an ultimate
stage with —in order to closely fit
Ultimate energy is the lowest energy that we
could reach by any minimization technique. The role of the
initial threshold is illustrated in Fig. 8(a): a larger
leads to a more shallow minimum— —which
is slightly different visually. GNC optimization with
decreasing linearly and logarithmically starting from
leads to local minima with a higher energy,
and respectively—Fig. 8(b) and (c).

The ML solution—Fig. 5(c)—does not provide a useful
initialization for direct local minimization. Instead, the GNC
initial solution corresponding to —Fig. 9(a)—is
underregularized and it leads to a very acceptable solution,
given in Fig. 9(b), where Initialization,
corresponding to a smaller threshold provides a
slightly different solution, shown in Fig. 9(c), and having a
slightly higher energy We calculated the
same estimate using also a half-quadratic SA [21], but we
obtained a shallow local minimum where

B. Emission Tomography

The concentration of an isotope in a part of the body
provides an image characterizing the metabolic functions and
local blood flow [9], [23], [27]. In ECT, a radioactive drug
is introduced in a region of the body and the emitted photons
are recorded around it. Data are formed by the number of
photons reaching each detector,
Data-fidelity given in (2), is nonstrictly convex since

is nonnegative definite but
ill-conditioned; so

We treat the reconstruction of the 64 64 phantom in
Fig. 10(a)–(b) with amplitudes in ]0, 3.8], from the simulated
ECT raw data in Fig. 10(c). Data correspond to

in (2) and are collected on 64 arrays surrounding the
object at equally spaced angles, each containing 64 detectors.

The MRF prior energies used in these reconstructions in-
volve first and second order differences, where for

and for in (16). In addition,
a “soft” positivity constraint is imposed on the solution by
appending to a convexterm with

(19)

Weighting with serves to improve conditioning for local
optimization.

A reconstruction defined using a Huber PF (17) and pa-
rameters is given in Fig. 11. Note that
a reconstruction using a GG PF (18) with provided
a closely similar solution. The reconstructed images allow a
further interpretation by the user, but they are slightly smooth.

The last reconstruction is obtained using a concave PF
with The minimization is performed

(a)

(b)

(c)

Fig. 7. MRF energy using a concave PF and GNC-minimization:
(� = 12; � = 16) and 
 = [1, 1, 1, 1, 0.045, 0.045, 0.045],exponential
decrease ofTr with T� = 80; Tr = 0:01; K = 30; � = 1; followed
by Tr = 0:003: (a) The initial solutionxxx(r ): (b) Intermediate
solution xxx(�): (c) The ultimate GNC solution̂xxx = xxx(r ); its energy is
E(x̂xx) = 2:53 104:
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(a)

(b)

(c)

Fig. 8. Other relaxations (the same estimate as in [Fig. 7]). (a) GNC
minimization starting fromT� = 20; with Tr = 0:001; K = 30;
then E(x̂xx) = 2:73 104: For (b) and (c),T� = 80; Tr = 0:001;
K = 30: (a) GNC minimization using alinear decrease ofTr ; then
E(x̂xx) = 2:64 104: (b) GNC minimization using alog-decrease ofTr ; in
which caseE(x̂xx) = 2:27 104:

(a)

(b)

(c)

Fig. 9. Direct local minimization (the same estimate as in [Fig. 7]). (a)
Initialization corresponding toT� = 20: (b) Solution found by local
minimization in its vicinity has energyE(x̂xx) = 2:76 104: (c) Solution found
using initalization withT� = 10; thenE(x̂xx) = 2:79 104:
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(a)

(b)

(c)

Fig. 10. Emission tomography (a)–(b) Original 72� 72 phantom. (c) ECT
simulated raw data with� = 0:8 and � = 8):

using GNC with auxiliary relaxation, where decreases
exponentially from to in steps.
Fig. 12(a) presents the initial GNC solution The ultimate
GNC solution—Fig. 12(b)–(c)—has a nice resolution and the
contours are neat.

Fig. 11. Reconstruction using a second-order MRF energy with a Huber PF:

 = [1, 1, 1, 1, 0.01, 0.01, 0.01],(� = 0:2; � = 0:5) and a soft positivity
constraint,! = 60 [cf. (17), (19)].

VIII. C ONCLUDING REMARKS

In this paper, we proposed a family of efficient GNC-
algorithms for Markovian MAP reconstruction of images
and signals. Data are obtained at the output of a system
giving rise to a convex data-fidelity term. Prior scene features
are introduced in the reconstruction by the means of MRF
energies, defined as the application of general nonconvex PF’s
to the differences between neighboring pixels. This allows to
recover images (or signals) composed of homogeneous zones
separated by neat edges.

The relevant MAP energies are nonconvex and generally
multimodal, and their optimization is a difficult task. Previ-
ously, the use of nonconvex PF’s was limited to observation
operators having either an extremely restricted support, or
which are linear shift-invariant, and often to particular prior
energies. In order to deal with the global optimization prob-
lem, we focused on the GNC algorithm which was initially
proposed for the minimization of a MAP energy conceived for
the denoising of images using truncated quadratic PF’s. Based
on a proper theoretical analysis, we developed an extension
of GNC permitting to compute MAP estimates involving
any convex data-fidelity term and any nonconvex and/or
nonsmooth PF. Both theoretical and practical recommenda-
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(a)

(b)

(c)

Fig. 12. Reconstruction using a second-order MRF energy with a concave
PF:
 = [1, 1, 1, 1, 0.01, 0.01, 0.01],(� = 4; � = 1:5) and! = 60: (a) The
initial GNC solution corresponding toT� = 40: (b)–(c) The ultimate solution
Tr = 0:01 obtained after 30 GNC-steps using an exponential decrease for
Tr :

tions for the construction of GNC algorithms were provided.
The resultant algorithms are mathematically suboptimal, but
definitely efficient. On the other hand, the GNC approach

suggests how to define pertinent initializations for direct local
minimization. The resultant method overcomes the limitations
of classical ICM when faced with ill-posed problems.

Experimental results bear on the deconvolution of a blurred
and noisy image and on the reconstruction of a phantom from
simulated ECT raw data. The quality of the reconstructions
obtained with MRF priors involving nonconvex PF’s is due to
the pertinence of the prior constraints.

APPENDIX A

FUNCTIONS AND APPROXIMATIONS

We present several PF’s dependent on a parameter
These PF’s are illustrated in Fig. 2.

Truncated Quadratic PF:Such PF’s are often used for the
processing of images, where in the LG model (1)
[5], [26], [31], [33], [42]. Extension to ill-posed linear inverse
problems is proposed in [35].

if
if

if

if

if

if

if

if

Lorentzian PF: It has been used in [18] for SPECT image
reconstruction, calculations being performed using ICM. Such
PF’s are also used for the denoising and the edge-enhancement
of images in [36].

if
if

Gaussian PF: Such PF’s has been used for the denoising
and the segmentation of images, along with a MFA optimiza-
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tion [41] and anisotropic diffusion [36].

if
if

Concave PF: It has been applied for the restoration of
blurred images, as well as for the reconstruction of SPECT
images, where the solution is obtained using different forms
of SA [20], [21], [45].

if

if

if

if

Kronecker PF: It has been introduced for the segmentation
and coding of images in [29], along with a GNC alogrithm
involving a relaxation with Gaussians,

This approach is applied later in [38]. Relaxation
using Lorentzian functions improves the convergence (cf.
Appendix B):

if

if

APPENDIX B

COMPARISON OF RELAXED POTENTIALS

Kronecker PF can be relaxed using a regularization with
Lorentzian or with Gaussian functions. The threshold of
the Kronecker PF, equal to is less deformed by
Lorentzians than by Gaussians:

Lorentzian

Gaussian

since for any fixed. Experiments show that
a relaxation using Lorentzians permits to obtain a better
minimization of than a relaxation using Gaussians.

The example in Fig. 3 presents the restoration of a gate-
shaped 1-D signal from blurred noise-free data
where is a PSF. Energy involves a Kronecker PF and it
has two minima: a constant signal and the original
gate here, is composed of 1’s and has the size of
and is a scalar, The figures
depict the section of the relaxed energiesalong the line
linking these minima, The three sets
of images correspond to three gates with decreasing widths.
In Fig. 3(a), the global minimum is the original and it is
correctly retrieved using the two relaxations. The second gate,
Fig. 3(b), is slightly narrower and it is still the global minimum
of In this case, a relaxation using Lorentzians lead to the
global minimum while a relaxation using Gaussians leads
to the local minimum The gate in Fig. 3(c) is still narrower
and the global minimum of corrsponds to Although
and are close to each other, the two relaxations find the
global minimum

APPENDIX C

DIFFERENTIAL AND HESSIAN OF THE PRIOR ENERGY

In order to simplify notations, we write for The
elements of the differential of are

Hessian reads The elements
of the Hessian of are shown at the bottom of the page. It is
practical to consider the sums above as infinite but having
only a finite number of nonzero terms. Furthermore, recalling

for

if

if
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that for any we can write

(20)

APPENDIX D

PROOF OF PROPOSITION 1

We now develop the numerator of (9),
where

Thanks to (20), it is obtained

Let us set and Then leads
to so

Since for any (cf., Section II-A),
Then

Then we have

Using that two inequalities can be
extracted from the previous relation:

according to the definition of and Hence, the proposition.

APPENDIX E

PROOF OF PROPOSITION 2

Let us consider the functions and

Since is strictly nonconvex,
for On the other hand, (r3) ensures that both terms,

and increase toward zero strictly
monotonously along with So, both functions and

increase strictly monotonously when then is
monotone incresing with as well. As is strictly
positive, and reach a positive value for close to zero;
the same is true for as well. In conclusion, there exists a
unique which satisfies

Furthermore, the Hessian given in (12), is positive
definite, since for
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