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(©
© Fig. 6. Convex MRF energies: = [1, 1, 1, 1, 0.045, 0.045, 0.045].
Fig. 5. Deconvolution example. (a) Original image. (b) Data—a blurred arfd) Gaussian MRF(' (t) = t2); ( = 2; = 5): (b) GG MRF,
noisy (10 dB SNR) version of the original image. (c) ML estimate. ( =1:1; =6):(c)Huber PF( =0:2; =5):
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retrieved in the ultimate GNC solution—Fig. 7(c). The latter is
obtained using an exponential decreas#,0f whereZ), = 80,
7., = 0.01, K = 30, andr = 1, followed by an ultimate
stage with7;.,. ., = 0.003—in order to closely fitp,., ., ~ ¢.
Ultimate energy¢(z) = 2.53 10* is the lowest energy that we
could reach by any minimization technique. The role of the
initial thresholdZ, is illustrated in Fig. 8(a): a largef, = 20
leads to a more shallow minimumé{z) = 2.73 10*—which

is slightly different visually. GNC optimization witHZ,.,
decreasing linearly and logarithmically starting frdn = 80
leads to local minima with a higher energ¥(z) = 2.64 10*
and&(z) = 2.72 10*, respectively—Fig. 8(b) and (c).

The ML solution—Fig. 5(c)—does not provide a useful
initialization for direct local minimization. Instead, the GNC
initial solution=(™) corresponding td, = 20—Fig. 9(a)—is
underregularized and it leads to a very acceptable solution,
given in Fig. 9(b), where€(z) = 2.76 10*. Initialization,
corresponding to a smaller threshdld, = 10 provides a
slightly different solution, shown in Fig. 9(c), and having a
slightly higher energy¢(z) = 2.79 10*. We calculated the
same estimate using also a half-quadratic SA [21], but we
obtained a shallow local minimum wheééz) = 10.26 10%.

B. Emission Tomography

The concentration of an isotope in a part of the body
provides an image characterizing the metabolic functions and
local blood flow [9], [23], [27]. In ECT, a radioactive drug
is introduced in a region of the body and the emitted photons
are recorded around it. Data are formed by the number of
photonsy; > 0 reaching each detectoy, = 1,---, V.
Data-fidelity £, given in (2), is nonstrictly convex since
D2L(z) = SN, y;h;h] /(R] ;)? is nonnegative definite but
ill-conditioned; sou = 0.

We treat the reconstruction of the 64 64 phantom in
Fig. 10(a)—(b) with amplitudes in ]0, 3.8], from the simulated
ECT raw data in Fig. 10(c). Data correspond go= 8§,

u = 0.08 in (2) and are collected on 64 arrays surrounding the
object at equally spaced angles, each containing 64 detectors.

The MRF prior energies used in these reconstructions in-
volve first and second order differences, whefe—= 1 for
1< g<4andy? =0.01 for 5 < ¢ < 7in (16). In addition,

a “soft” positivity constraint is imposed on the solution by
appending ta,. a convexterm ¥ with «w = 60

En(@) +rol(z), U(z) = > 22l (zm < 0). (19)
meEeS

Weighting with » serves to improve conditioning for local

optimization.
A reconstruction defined using a Huber PF (17) and pa-
rameters(oe = 0.2,8 = 0.5) is given in Fig. 11. Note that (©

a reconstruction using a GG PF (18) with= 1.1 provided Fig. 7. MRF energy using a concave PF and GNC-minimization:
a closely similar solution. The reconstructed images allow(g = 12,6 = 16) andy = [1, 1, 1, 1, 0.045, 0.045, 0.045gxponential
further interpretation by the user, but they are slightly smootfgcreas® °Tr With T, = 80. Trpe = 0.01. & = 30,7 = 1, followed
p y the ! % ya ghtly T, = 0.003. (a) The initial solutionz("0). (b) Intermediate
The last reconstruction is obtained using a concave B

TK41
) amned using ution z(#). (c) The ultimate GNC solutiori = z("%); its energy is
with (¢« = 4,8 = 1.5). The minimization is performed &(z) = 2.53 10%.
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Fig. 8. Other relaxations (the same estimate as in [Fig. 7]). (&) GNC ©

minimization starting from7, = 20, with 7., = 0.001, K
then £(#) = 2.73 10%. For (b) and (c), T, = 80, T, = 0.001,
K = 30. (@) GNC minimization using dinear decrease ofl},, then
E(#) = 2.64 10%. (b) GNC minimization using dog-decrease of, , in

which casef(#) = 2.27 10%.

Fig. 9. Direct local minimization (the same estimate as in [Fig. 7]). (a)
Initialization corresponding tdl,, = 20. (b) Solution found by local
minimization in its vicinity has energ§ () = 2.76 10*. (c) Solution found
using initalization withT,, = 10, then&(&) = 2.79 10%.
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Fig. 11. Reconstruction using a second-order MRF energy with a Huber PF:
v =11,1,1,1,0.01, 0.01, 0.01]a = 0.2,3 = 0.5) and a soft positivity
constraintw = 60 [cf. (17), (19)].

VIIl. CONCLUDING REMARKS

In this paper, we proposed a family of efficient GNC-
algorithms for Markovian MAP reconstruction of images
and signals. Data are obtained at the output of a system
giving rise to a convex data-fidelity term. Prior scene features
are introduced in the reconstruction by the means of MRF
energies, defined as the application of general nonconvex PF’s
to the differences between neighboring pixels. This allows to
recover images (or signals) composed of homogeneous zones
separated by neat edges.

The relevant MAP energies are nonconvex and generally
multimodal, and their optimization is a difficult task. Previ-
ously, the use of nonconvex PF’s was limited to observation
operators having either an extremely restricted support, or
which are linear shift-invariant, and often to particular prior

Fig. 10. Emission tomography (a)~(b) Original %272 phantom. (c) ECT €nergies. In order to deal with the global optimization prob-

simulated raw data witlx = 0.8 andp = 8).

lem, we focused on the GNC algorithm which was initially
proposed for the minimization of a MAP energy conceived for

using GNC with auxiliary relaxation, wher#&,., decreases the denoising of images using truncated quadratic PF's. Based
exponentially fromZ,, = 40 to Z;., = 0.01 in K = 30 steps. on a proper theoretical analysis, we developed an extension
Fig. 12(a) presents the initial GNC solutiefi®). The ultimate of GNC permitting to compute MAP estimates involving
GNC solution—Fig. 12(b)—(c)—has a nice resolution and theny convex data-fidelity term and any nonconvex and/or

contours are neat.

nonsmooth PF. Both theoretical and practical recommenda-
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suggests how to define pertinent initializations for direct local
minimization. The resultant method overcomes the limitations
of classical ICM when faced with ill-posed problems.

Experimental results bear on the deconvolution of a blurred
and noisy image and on the reconstruction of a phantom from
simulated ECT raw data. The quality of the reconstructions
obtained with MRF priors involving nonconvex PF’s is due to
the pertinence of the prior constraints.

APPENDIX A
FUNCTIONS AND APPROXIMATIONS

We present several PFg dependent on a parametar
These PF's are illustrated in Fig. 2.

Truncated Quadratic PF:Such PF’s are often used for the
processing of images, whetd = 7 in the LG model (1)
[5], [26], [31], [33], [42]. Extension to ill-posed linear inverse
problems is proposed in [35].

(1) :{atQ, if [t|<T, {T: 1/V/a,

1, if[{>T, n= oo,
at?, if [t] < ar,
r(lt = b)*
r t) = 1 7 f - < s
er(t) S0y if a, < [t|<b
1, if by < |t|7
T
ap = 2 ,
1-2a+ 2
.
b, = T2/a7,,
{ﬂ = (aptb/2
7,
T
9, if [t <a,,
el ) i
(b) o) = 57 (H = a)%, if a, < |t|<b,,
1 .
) 7l = ,)? = (a, = 1,)%), if b, <[]

Lorentzian PF: It has been used in [18] for SPECT image
reconstruction, calculations being performed using ICM. Such
PF's are also used for the denoising and the edge-enhancement
of images in [36].

at?

ty=——, 1T =1 =a/2

90() 1+Oét27 /\/av n a/a
rot?

on(t) = Trra r= 1Vre, ne=raf2,

Fig. 12. Reconstruction using a second-order MRF energy with a concave o(t) = { 0, if |t <wu,,

PF:y =1, 1,1, 1,0.01,0.01 0.0l = 4,3 = 1.5) andw = 60. (a) The —p,(t) + [t|3/(8u,) — 1/8, if |t| = u,,
initial GNC solution corresponding td, = 40. (b)—(c) The ultimate solution

T, = 0.01 obtained after 30 GNC-steps using an exponential decrease for W, = 1
Ty T \/3pa

tions for the construction of GNC algorithms were provided.
The resultant algorithms are mathematically suboptimal, butGaussian PF: Such PF's has been used for the denoising
definitely efficient. On the other hand, the GNC approadmnd the segmentation of images, along with a MFA optimiza-



1218

tion [41] and anisotropic diffusion [36].

o(t) =1 — exp (—at?),

(Pr(t) =1—exp (—7‘Oét2),
—3/2

T =

e =4rae

o) ={ 1
— e—patz + e—(l/Q)(\/%|t| - 2)a

1
T V2

U

Concave PF:It has been applied for the restoration of
blurred images, as well as for the reconstruction of SPECT
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APPENDIX B
COMPARISON OF RELAXED POTENTIALS

3/(2a),n = 4a6_3/2,

T. = 3/(2ra),

Kronecker PF can be relaxed using a regularization with
Lorentzian or with Gaussian functions. The threshold of
the Kronecker PF, equal t@ = 0%, is less deformed by

if [t <, Lorentzians than by Gaussians:
if |t > wp,,
. 1 1
Lorentzian TF = ~ 0.7071
2|7’]7| |777|
. 6 1
Gaussian TS = 55 ~ 11571
[y le®/ 7]

images, where the solution is obtained using different forms

of SA [20], [21], [45].

at]
t) = =07t =202
@(t) T+ ol =207,
LA T
146,27 r ]
r(t) = alt| . 1—»
, f [ > ,
1+ «ft] T
2ra
Ar = —,
1—7r
r(r+2a — 20r)
by = =
(1-7)
1 1—17r
I, =—< ;
{ b, r
nr=ra/(l—r),
0,
_) a
0) =9 22 — o, () + (It — )@,
4b,

1 9a,

/
U, = ———, = .
P38 B,

since TX < T for any #, fixed. Experiments show that
a relaxation using Lorentzians permits to obtain a better
minimization of £ than a relaxation using Gaussians.

The example in Fig. 3 presents the restoration of a gate-
shaped 1-D signat® from blurred noise-free datg= a * z°,
wherea is a PSF. Energy¥ involves a Kronecker PF and it
has two minima: a constant signal= ¢1 and the original
gate z°; here,1 is composed of 1's and has the size of
andc is a scalarc = argming ||a * ({1 — z°)||. The figures
depict the section of the relaxed energ&salong the line
linking these minimag,.(t) = &,.[tz+(1—¢)z°]. The three sets
of images correspond to three gates with decreasing widths.
In Fig. 3(a), the global minimum is the originaf and it is
correctly retrieved using the two relaxations. The second gate,
Fig. 3(b), is slightly narrower and it is still the global minimum
of £. In this case, a relaxation using Lorentzians lead to the
global minimumz° while a relaxation using Gaussians leads
to the local minimumg. The gate in Fig. 3(c) is still narrower
and the global minimum of corrsponds t@&. Although £(%)
and&(x?) are close to each other, the two relaxations find the

if |t <u,
if |t] > w,

Kronecker PF: It has been introduced for the segmentatio@ilobal minimumz.
and coding of images in [29], along with a GNC alogrithm

involving a relaxation with Gaussians;.(t) = 1 — e*”z,
r €]0, +oo[. This approach is applied later in [38]. Relaxation

APPENDIX C
DIFFERENTIAL AND HESSIAN OF THE PRIOR ENERGY

using Lorentzian functions improves the convergence (cf.

Appendix B): In order to simplify notations, we writé, for D2®,.. The
n elements of the differential ob? are
et)=1-1t=0), T=0%, n=o
rt? 1—7 1 7 9Pi(z) q.2q
[ t =5 C217 = r = = = dg@, d;ln ;T
@ () 1—7’+7’t27 r 7 21_7)7 axrn ch:q J ( +j )
0, if [t <u,, ’
o(t) = 3001 . . . w0 o
—p,(t) + |t|§ Y if [¢] > w,, Hessian®,.(x) reads®,(x) = ¥ _, v/®(x). The elements

P

of the Hessian of? are shown at the bottom of the page. It is
practical to consider the sums; above as infinite but having
only a finite number of nonzero terms. Furthermore, recalling

[B4(@ ) = ¥, dF GH(dL ),
[(I):I(I)]n"l = E] d3d3+n,—nl¢g(dz,+j‘1")7

forn € S@,

iftn—me |Jch{o},

jccy

ifn—m¢g |JCch{o}

seC9
JjeC]
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that 2, dZ, = 0 for any ¢, we can write

[P2@)in == > [PUD)]um. (20)
rnES(‘Z)\{n}
APPENDIX D
PROOF OF PROPOSITION 1
We now develop the numerator of (HT[P,(x)]v =
5@ 7 [$4(z)]v, where
o7 [ (z)]

]krn ViUm

>, 2. [N

kcS(a) mCS
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APPENDIX E
PROOF OF PROPOSITION 2

Let us consider the functiong, f>, and f:

flr) = e fi(r)  where
fi(r)=p+pBn vy and
Q
f(r)=p+B> 0"
q=1

Since lim,._,; &.(x) is strictly nonconvex/lim,_,; f;(r) <0
fori=1,2. On the other hand, (r3) ensures that both terms,
pn v <0 and g9 a=1 M1 <0, increase toward zero strictly

monotonously along with- — 0. So, both functionsf; and

Z Z [éz(x)]kmvkvm + [‘P?(x)]kkvf

k m#Ek

Thanks to (20), it is obtained the

f2 increase strictly monotonously when — 0; then f is
monotone incresing withr — 0, as well. Asp is strictly
positive, f; and f> reach a positive value far close to zero;

same is true foff as well. In conclusion, there exists a

uniquerg €]0, 1[ which satisfiesf(r9) = 0.

vl [04(x)|v
= Z Z ]krn VUm — U}%)
k. m#k
= Z Z (Vavm — vR) Z d; dq+k mPr(dy +5%)-
ke matk J (1]

(2]
(3]

Letus seth = k+jandl =k + j — m. Thenm # k leads
tol # j, so

Yoo = @Hdiz) S S dhall (v — 03 ).

JI#

(4]

— (5]

Since El# df = —dq for any j € C¢ (cf., Section II-A),

Yz Vi qud}] =) _;di By df = —vl_;(d})?. Then (6]
? [7]
oo =3 gidia) | S dlun

n J 8]

= (dw)*@i(dlx).
n [
Then we have [10]
z)lv = va Z )?@(dix). [11]
[12]

Using thatn? = min; $(¢) <0, two inequalities can be

extracted from the previous relation: (13]
o o [14]

VS (@) = D 0ty > (daw)? 2 [Jof]P D i,
q:l n q=1 (15]
o' [, ]11>771Z’7 Z )2 2> ol *ner (16]
[17]

according to the definition af? andw. Hence, the proposition.

Furthermore, the Hessidn?&,.(x), given in (12), is positive
definite, sincef(r) >0 for » < ro.
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