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The Equivalence of Half-Quadratic Minimization
and the Gradient Linearization Iteration

Mila Nikolova and Raymond H. Chan

Abstract—A popular way to restore images comprising edges is
to minimize a cost function combining a quadratic data-fidelity
term and an edge-preserving (possibly nonconvex) regulariza-
tion term. Mainly because of the latter term, the calculation
of the solution is slow and cumbersome. Half-quadratic (HQ)
minimization (multiplicative form) was pioneered by Geman and
Reynolds (1992) in order to alleviate the computational task in the
context of image reconstruction with nonconvex regularization.
By promoting the idea of locally homogeneous image models with
a continuous-valued line process, they reformulated the optimiza-
tion problem in terms of an augmented cost function which is
quadratic with respect to the image and separable with respect
to the line process, hence the name “half quadratic.” Since then,
a large amount of papers were dedicated to HQ minimization
and important results—including edge-preservation along with
convex regularization and convergence—have been obtained. In
this paper, we show that HQ minimization (multiplicative form)
is equivalent to the most simple and basic method where the
gradient of the cost function is linearized at each iteration step. In
fact, both methods give exactly the same iterations. Furthermore,
connections of HQ minimization with other methods, such as the
quasi-Newton method and the generalized Weiszfeld’s method,
are straightforward.

Index Terms—Gradient linearization, half-quadratic (HQ)
regularization, inverse problems, optimization, signal and image
restoration, variational methods.

I. INTRODUCTION

LET data be obtained from an original unknown
image or signal via where

is a linear transform. This simple model addresses various appli-
cations, such as denoising, deblurring, image reconstruction in
tomography, and other inverse problems [1]–[3]. Since [4]–[6],
the sought-after is defined as the minimizer of an objec-
tive function of the form

(1)

(2)
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TABLE I
COMMONLY USED FUNCTIONS ' : ! WHERE

� > 0 IS A PARAMETER AND ' (0) = 0

where , for , are linear oper-
ators, is the norm, is called
a potential function (PF) and is a parameter. Typically,1

either and operators give rise to finite differences be-
tween neighboring samples of , or and every yields a
discrete approximation of the gradient of at . One can observe
that is used along with Markov random field models for
Bayesian inference, e.g., [1] and [6]–[10], while along
with variational formulations, e.g., [3] and [11]–[14]. The ratio-
nale of the image and signal restoration approach (1), (2) has
widely been discussed in the literature; let us evoke [1]–[4], [6],
and [9], among many others. Let denote the matrix
obtained by vertical concatenation of the matrices , that is

. A basic condition in order to have regu-
larization is that

(3)

Many different functions can be found in the literature [3], [6],
[9], [13], [16], [17], some of the most popular ones are given in
Table I. Observe that all these PFs satisfy the general condition
as follows.

H1 is continuous and increasing on with and
.

The effect of the choice of on the solution has been dis-
cussed, e.g., in [13] and [16]–[19]. One important requirement
is that allows large differences (“edges”) to be recovered in
the solution . From the references cited, it is well known that
edge-preserving functions are nearly affine beyond a neighbor-
hood of the origin. Then and, hence, involve almost
flat regions where standard minimization methods progress very
slowly. The computation of a minimizer of presents a real

1Let x be an m � n image. If s = 1, for every (i; j) 2 f1; . . . ;mg �
f1; . . . ; ng, there are associated two, or possibly four operatorsG that yield the
differences x �x and x �x , and possibly also x �x
and x �x . When s = 2, for every (i; j), the operatorG is usually
defined by G x = [x � x ; x � x ] . The operators relevant
to the boundaries are defined according to the boundary conditions.
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challenge because in addition to this, the dimension of is
high and is usually ill conditioned.

This paper focuses precisely on the computation of a mini-
mizer of when PF is a smooth edge-preserving function.
In their inaugural paper [8], Geman and Reynolds have shown
that is also given by

where is an auxiliary variable (called also a line process)
and is of the form

(4)

for a function outlined in Section II. One can
notice that is quadratic and that
can be minimized separately for each . Then a two-step al-
ternate minimization scheme is used: if the th iterate is

, the next one is defined by

(5)

(6)

The resulting minimization method is called half quadratic
(HQ). It can also be qualified as multiplicative2 because the line
variables in (4) multiply the differences . HQ minimiza-
tion (4)–(6) has been considered in a large number of papers,
e.g., [13], [14], and [20]–[23]. Connections of HQ method
with other well-known methods have also been explored,
most notably, with generalized Weiszfeld’s method [25], with
statistical EM algorithms [26], with Lagrangian unconstrained
optimization in recursive robust fitting [27], with quasi-Newton
minimization [15], [28] and as a residual steepest descent
method [28].

The contribution of this paper is to show that the HQ mini-
mization defined by (4) and (5) is equivalent to the very classical
gradient linearization approach, known also as the relaxed fixed
point iteration: in order to solve the equation , we
write

(7)

where is independent of . Then at each iteration , one finds
by solving the linear problem

(8)

A connection between both approaches has been mentioned
by Vogel in [29] for the particular case when .
As we show in the following, equivalence holds in general. In
turn, convergence results on HQ regularization can now be ap-
plied directly to the basically heuristic gradient linearization
method in (7) and (8).

2Let us mention that another form of HQ minimization, where b is involved
additively via terms of the form (b +G x) , was initiated in [10] and studied,
e.g., in [15], [20], [23], and [24]; it is out of the scope of this paper.

The outline of the paper is as follows. A concise review of the
multiplicative form of HQ minimization is given in Section II.
Then, in Section III, we formally show that HQ minimization
and the simple gradient linearization approach define exactly
the same iterates. In Section IV, we give some implications of
this equivalence. Conclusions are given in Section V.

II. HALF-QUADRATIC REGULARIZATION

(MULTIPLICATIVE FORM)

To make the paper self-contained, below we present the
derivation of the augmented objective in (4)
by synthesizing the results obtained in many previous papers
[8], [13]–[15], [20]–[23]. A fundamental assumption for what
follows is that:

H2 is concave.
Put , then is convex by H2 and contin-

uous on by H1. Its convex conjugate [30], [31] is
where . Define

which means that

(9)

By the Fenchel–Moreau theorem [30], [31], the convex conju-
gate of satisfies . Calculating at yields

Since on , we have if and
then the supremum of in the middle expression
above necessarily corresponds to . Finally

(10)

The conclusion is that under H1 and H2, (9) holds if and only if
(10) holds. This equivalence was first exhibited in [8] for non-
convex and bounded functions . It was established under dif-
ferent conditions on in [13]–[15], [23], and [32].

For defined by (9), the function in (4) clearly satisfies
for every , because of (10). In

what follows, it is supposed that:
H3 is on with .
Then the regularization term in (2) is smooth. Furthermore,

we adopt the classical assumption for edge preservation which
states that grows less fast than a quadratic function [3], [13],
[33]:

H4 .
Next, we focus on the possibility to achieve the supremum

in (9) jointly with the infimum in (10). For any , define
by , then (9) yields

. Observe that is convex by H2 with
by H1 and by H4; hence,

has a unique minimum reached at a . According to (9),
, then equivalently the infimum in
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(10) is reached for since . Then one
finds3 that for

if
if

(11)

where the expression for corresponds to and
uses the fact that . Notice that by H1,
for all and that by H2, is decreasing on . Hence,

. Let us now consider the possibility that
. Put , then
by H1. If for all [e.g., is strictly

increasing as (f1)–(f8) in Table I], for the term between
the braces in (10) equals , so (10) cannot be realized for any
finite ; then the infimum in (10) necessarily corresponds
to . Otherwise, by H1, there is such that

for all , and then in (9) corresponds
to in (10) and in (11) since if
[e.g., (f9) in Table I].

The formula in (11) was initially obtained in [13] under spe-
cial conditions on and was considered in later papers, e.g.,
[14], [15], and [23]. The derivation presented above is more
general than these references. Let us resume its meaning: if
H1–H4 hold, for every , the infimum in (10) is reached
for , where is defined in (11), and we
have unless there is a such that for
all .

Let us come back to the augmented objective function
given in (4). The result given in (11) shows that
if for all . For convenience, let us
now write in (4) as

where, for every

(12)
Define by

(13)

Sufficient conditions for the invertibility of are that
and (3) holds, or that . Henceforth, we as-

sume that is invertible on the domain of , namely
. Combining (11) with the necessary and sufficient condi-

tion for a minimum of shows that the minimum of
is characterized by

(14)

(15)

3Notice that � (t) = �(' (
p
t)=2

p
t) and that f (t) = (1=2)̂b + � (t) is

increasing on by H2. If f (0 ) � 0, i.e., if b̂ � ' (0 ), f reaches its
minimum at t̂ = 0. Otherwise, its minimum is reached for a t̂ > 0 such that
f (t̂) = 0, i.e., b̂ = �2� (t̂). In this case, t ! �(1=2)b̂t + '(t) in the
last expression of (9) reaches its supremum for a t̂ that satisfies b̂ = �2� (t̂ ),
hence, (11).

The alternate minimization scheme mentioned in (5) and (6) is
aimed at solving (14) and (15). Given , the first step of
iteration , as defined in (5), has an explicit form

(16)

Its second step, defined by (6), amounts to

(17)

The convergence of the resulting iterative scheme (16), (17) was
considered under different assumptions on in [13], [21], and
[23], while its speed was analyzed in [19] and [28].

It is worth it to recall the interpretation of the auxiliary array
pioneered in [8]. Since in (11) is decreasing on , (14) shows
that a large is attached to a small , and vice versa. In this
way, each expresses the weight of the quadratic smoothness
constraint imposed to the relevant . Indeed, the auxiliary
variable has been interpreted by Geman and Reynolds [8] as a
continuous-valued, noninteracting line process. This interpreta-
tion had a significant impact on the research on edge-preserving
regularization during the last 15 years. From the PDE point of
view, the auxiliary variables , , can also be seen as
the conduction coefficients in an anisotropic diffusion equation;
see [12] and [34] for details.

III. LINEARIZATION OF THE GRADIENT

A natural alternative to simplify the search for a solution to
is to linearize this gradient at each step, as sketched

in (7) and (8). Below we develop these expressions for an objec-
tive function of the form (1) and (2). The gradient of reads

(18)

Since is uniformly bounded on and that
, we can write

if
else

(19)

where is the function in (11). Notice that the two cases in (19)
are necessary because if , which occurs for instance
for , , we can replace this infinite value
by any positive real number without changing the expression in
(18). Using (19), in (18) reads

where is the application defined by (12). Then
is easily put into the form (7), namely , for

(20)

where is the matrix-valued function defined in (13). The ma-
trix is invertible if is invertible on the domain of ,
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a question which was addressed already in Section II. Applying
(8) actually yields

(21)

This amounts to inserting the expression for the in (16) into
the expression for in (17) in the HQ minimization methods.
It follows that the HQ minimization and the gradient lineariza-
tion approach construct exactly the same sequence of iterates

.
The gradient linearization method was used by Vogel and

Oman in [29], [35] to minimize an approximate total variation
regularization corresponding to and it
was called the “lagged diffusivity fixed point iteration.” In [29],
the authors mention that it amounts to apply the multiplicative
form of HQ minimization to this . As we have shown above,
the equivalence holds for general functions applied either to
the or to the norm of .

IV. IMPLICATIONS

The equivalence established in the last section shows in par-
ticular that the gradient linearization iteration is convergent for
all objective functions for which convergence of HQ regulariza-
tion has been proven [13], [21], [23]. We can also use the equiv-
alence to connect the HQ minimization to other well-known
methods. As an example, it has been pointed out in [15] and
[28] that for convex PFs , the HQ minimization corresponds
to a quasi-Newton minimization. The same holds now in our
more general context since any gradient linearization method
can always be viewed as a form of quasi-Newton method. In-
deed, starting with (21), we derive

where, in the last equality, we use (7). This shows that HQ
regularization (16), (17), or equivalently the gradient lineariza-
tion iteration (21), performs a quasi-Newton iteration where the
Hessian of at is approximated by as defined
in (20).

Following [25] and [28], we note further that if one defines

then provides a majorizing quadratic approximation for
. In the generalized Weiszfeld’s algorithm, the iterates are

given by which amounts to the
gradient linearization method (21) and equivalently to the HQ
minimization (16), (17) whenever is given by (20).

V. CONCLUSION

HQ minimization has been studied and used by numerous au-
thors. In this paper, we have shown that it is equivalent to the
very basic approach where at each iteration a linear approxi-

mation of the gradient is used. We also demonstrate that it is
a form of quasi-Newton method and is closely related to the
gradient descent method and the generalized Weiszfeld’s algo-
rithm. This paper nicely shows a case where research follows a
tortuous way to find a simple result.
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