
Functionals for signal and image reconstruction: properties of

their minimizers and applications

Research report

Mila NIKOLOVA
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Chapter 1

Introduction

1.1 Focus on inverse problems

We mainly address inverse problems where an original unknown function uo ∈M—an image or a signal—

has to be recovered based on data v ∈ N , related to it like

v = A(uo)¯ n (1.1)

where A : M → N is a transform, n stands for perturbation, and M and N are suitable real spaces.

Continuous signals and images are defined on subsets Ω ⊂ Rd, for d = 1, 2, ..., M is a functional space

on Ω (e.g. L∞(Ω), W 1,2(Ω), BV (Ω) and so on). For discrete signals and images, M is Rp or a manifolds

in Rp where p is the number of the samples composing u. Data v can be given either on a subset

Ω′ ⊂ Rd, d = 1, 2, ..., or on a discrete grid, say of cardinality q, in which case N is Rq or a subset of it.

In general, the observation operator A captures the main deterministic physical phenomena in the

chain between the unknown uo and the data v, while n models the random phenomena like perturbations

and noise that contribute to data v via an operation symbolized by “¯”. Sharing data v between an ideal

A(uo) and noise n is rarely unambiguous and is part of the modelling. Furthermore, the conception of a

model (1.1) is subjected to the material constraint that it gives rise to realist analytical and numerical

calculations. Partly in connection with the latter, the most widely used model is

v = Auo + n (1.2)

where A is a linear operator and n is white Gaussian noise. Classical (and yet unsolved) problems are

the denoising and the segmentation of signals and images which corresponds to A = I (the identity

operator). In segmentation, however, n is composed out of noise, textures and insignificant objects inside

the regions. Transmission through noisy channels, or faulty cells in camera sensors or memories corrupt

uo with impulse noise where some of its samples are replaced by random numbers. Radar and ultrasound

images are corrupted with speckle noise: at each data point vi the noise multiplies a function of A(uo).

To model the blurring of signals and images, A represents the convolution of uo with a kernel. Linear

operators A arise in super-resolution problems where several low-resolution data sets are used to compute

a high-resolution solution. In biomedical and geophysical imaging uo is the distribution of the density

of a material and v are measurements that are indirectly related to uo, via a linear integral operator A.

3
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In emission and transmission computed tomography the samples of v—observed photon counts—follow

Poissonian distributions with means determined by A(uo). These and many other observation models

are described in the literature; some classical textbooks are [49, 53, 44, 15, 81, 5].

We do not consider the rare cases when the noise is negligible (i.e. v ≈ A(uo)) and A admits a stable

inverse, so that one can find a good solution by taking A−1(v)... Except when A is the identity, A usually

introduces a loss of useful information which means that A is ill-conditioned or even non-injective. The

reconstruction of an estimate û of uo based on (1.1) involves two stages, namely (a) the definition of a

meaningful solution û and (b) the conception of realist numerical method for its computation. In the

following we address both questions.

The author’s publications are listed in chapter 9 and reference to them is of the form [? X (year)].

1.2 Solutions as minimizers of cost-functions (energies)

The noise in (1.1) can be described only by some statistics, such as its mean and its variance. Recovering

an estimate û of uo from noisy data v naturally appeals to use statistics. To present the ideas, and in

accordance with the history of reconstruction methods, let us consider the linear case (1.2) where n is

white, zero-mean Gaussian noise with variance σ2. The likelihood of v—the distribution of v conditionally

to u—reads π(v|u) = exp{− 1
2σ2 ‖Au−v‖2}/Z where Z > 0 is the normalization constant. The maximum

likelihood estimator proposes û = arg max
u∈M

π(v|u), which is actually the least-squares solution:

û = arg min
u∈M

‖Au− v‖2,

where ‖.‖ is the Euclidian norm. The solution û necessarily satisfies

A∗Aû = A∗v, (1.3)

where A∗ is the adjoint of A (= the transposed when A is a matrix). Such a solution is not satisfactory.

In the case of denoising (where v = u + n), the noise remains intact since (1.3) leads to û = v. In typical

applications, solving (1.3) is an ill-posed problem since A∗A is not invertible or is ill-conditioned. It is

well known that the solutions of (1.3) are unstable with respect to the noise and the numerical errors,

see for instance [77, 31, 82].

In order to stabilize ill-posed inverse problems, Tikhonov and Arsenin [79] proposed to define û as

the (unique) minimizer of a cost-function F(., v) : M→ R, called often an energy:

F(u, v) = ‖Au− v‖2 + β‖u‖2 for β > 0. (1.4)

The first term in F(., v) measures the fidelity of Aû to data v whereas the second encourages û to be

smooth; the trade-off between these two goals is controlled by β. Since then, it is well known that

smoothing the noise by (1.4) is reached at the expense of a large β which leads to solutions û that are too

flattened with respect to uo. Nevertheless, the cost-function in (1.4) is at the origin of the very popular

regularization approach [31, 5]. The idea is to define a solution û to (1.1) as

û = arg min
u∈M

F(u, v), (1.5)

F(u, v) = Ψ(u, v) + βΦ(u), (1.6)



CHAPTER 1. INTRODUCTION 5

where Ψ : M×N → R is a data-fidelity term and Φ : M→ R is a regularization term, and β > 0 is a

parameter. The term Ψ ensures that û is close enough to satisfying (1.1). Usual models consider that A

is linear—as in (1.2)—and that Ψ is either the L2 or the `2 norm (according to N ) of the residual,

Ψ(u, v) = ‖Au− v‖2. (1.7)

More specific terms Ψ arise when the noise n is non-Gaussian or non-additive. The formulation in (1.6)

marks an important progress with respect to (1.4) since Φ in (1.6) is asked to partly compensate for the

loss of information on uo entailed by the observation system A and the noise n. To this end, Φ is required

to push û to exhibit some a priori expected features like smoothness, presence of edges or textures.

Such information is essentially contained in the derivatives, or the finite differences, of u, of different

orders, denoted Dku, k ≥ 1. Hence faithful recovery of derivatives, and more generally of high frequency

components, is a permanent concern in signal and image reconstruction methods. A straightforward

improvement of (1.4) in this direction is

Φ(u) = ‖Du‖2.

Even if this Φ allows û to have larger variations, edges are flattened. Regularization terms giving rise

to a better recovery of edges and other fine features have been designed basically in a variational or

a statistical framework. Although these approaches are fundamentally different, they have led to very

similar, and even the same, cost-functions. Unifying frameworks are considered for instance in [31, 55].

If u is defined on a subset Ω ⊂ Rd, d = 1, 2,

Φ(u) =
∫

Ω

φ(|Du|)dx, (1.8)

whereas if it is defined on a discrete grid,

Φ(u) =
r∑

i=1

φ(|Diu|), (1.9)

where {Di : 1 ≤ i ≤ r} is a set of difference operators. In both expressions, |.| is an appropriate norm

and φ : R+ → R, often called a potential function (PF). Several choices for φ are given in Table 1.1

[41, 9, 64, 42, 11, 69, 74, 39, 3, 18, 14, 10, 82]. The most popular function φ now is certainly

φ(t) = |t|, (1.10)

proposed in [9] to form a median pixel prior and introduced as total variational (TV) regularization in

[74], which allows a better recovery of the edges in signals and images. The way Φ is chosen in a statistical

or a variational setting is discussed next.

1.2.1 Bayesian approach

Statistical approaches deal with discrete signals and images, so M = Rp and N = Rq (or possibly subsets

of them), and assimilate the samples ui of u with particles and F(., v) with an energy. The Bayesian

approach provides a rich framework to derive energies F that combine observation models (1.1) with
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Convex PFs
Smooth at zero PFs Nonsmooth at zero PFs

(f1) φ(t) = |t|α, 1 < α ≤ 2 (f5) φ(t) = |t|
(f2) φ(t) =

√
α + t2

(f3) φ(t) = log(cosh(αt))
(f4) φ(t) = |t|/α− log (1 + |t|/α)

Nonconvex PFs
Smooth at zero PFs Nonsmooth at zero PFs

(f6) φ(t) = min{αt2, 1} (f10) φ(t) = |t|α, 0 < α < 1

(f7) φ(t) =
αt2

1 + αt2
(f11) φ(t) =

α|t|
1 + α|t|

(f8) φ(t) = log(αt2 + 1) (f12) φ(t) = log (α|t|+ 1)
(f9) φ(t) = 1− exp (−αt2) (f13) φ(0) = 0, φ(t) = 1 if t 6= 0

Table 1.1: Commonly used PFs φ where α > 0 is a parameter.

prior knowledge on the unknown uo. It is based on the posterior distribution of the random variable u,

namely

π(u|v) = π(v|u)π(u)/Z,

where π(u) is the prior model for uo and Z = π(v) can be seen as a normalization constant. The Maximum

a posteriori (MAP) estimator defines the optimal solution û as

û = arg max
u∈M

π(u|v) (1.11)

= arg min
u∈M

(− ln π(v|u)− ln π(u)) (1.12)

Comparing the last expression with (1.6) shows that MAP is equivalent to minimizing F(., v) as given in

(1.5)-(1.6) if one takes

Ψ(u, v) = − ln π(v|u), (1.13)

Φ(u) = − 1
β

ln π(u). (1.14)

By (1.13), the term Ψ is completely determined by A and the distribution of the noise. There is some

freedom in the choice of Φ. Since [8, 41, 9, 38], the sought-after u can be modelled as the realization

of a Markov random field. By the famous Hammersley-Clifford theorem, π(u) can be put into the form

π(u) = exp{−Φ(u)}/Z where Φ can convey the local interactions between each sample of u and its

neighbors. For instance, Φ can be of the form (1.9) for a “general” function φ. It may be useful to notice

that by (1.9), the subsets of neighbors (the cliques) are given by {j : Di[j] 6= 0}, for all i (here Di[j]

denotes the jth entry of Di ∈ Rp). With this interpretation, (1.9) provides a powerful tool for modelling.

Indeed, a large variety of potential functions φ and difference operators Di have been proposed in the

Bayesian setting [42, 9, 48, 46, 57, 39, 14]. However, it is not difficult to establish that the distribution

of û can be very different from the prior model (cf. chapter 6), which is misleading in the applications.
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1.2.2 Variational approach

This approach is naturally developed for continuous signals and images, so that Φ is of the form (1.8).

Suppose that |Du| =
√

u2
x1

+ u2
x2

and that Ψ is of the form (1.7). At a minimizer point û, the Euler-

Lagrange equation formally reads

A∗(Au− v)
β

= div
(

φ′(|Du|)
2|Du| Du

)
. (1.15)

In case A = I, a possible approximation is

ut ≈ u− v

β

in which case

ut ≈ div
(

φ′(|Du|)
2|Du| Du

)
.

Under this approximation, we have anisotropic diffusion filtering with diffusivity φ′(s)
2s , initial condition

u0 = v and time step β. This approximation is usually rough, since it suppose a linear evolution for ut.

It is justified only in several special cases, according to the analysis of Steidl, Weickert, Mrázek and Welk

in [76].

An important step to better understand regularization was the observation that (1.15) can be rewritten

as [5]

A∗Au− β

2

(
φ′(|Du|)
|Du| utt + φ′′(|Du|)unn

)
= A∗v, (1.16)

where utt and unn are the second derivatives of u in the directions that are tangential and normal,

respectively, to the isophote lines of u (i.e. the lines along which u(x) is constant). Inside homogeneous

regions we have ∇u ≈ 0 so smoothing is achieved if limt→0+ φ′′(t) = φ′′(0) > 0, since then (1.16) is

approximated by

A∗Au− β

2
φ′′(0)∆u = A∗v.

This is a uniformly elliptic equation known to perform smoothing in all directions. In contrast, near an

edge |∇u| is large and it could be preserved large in û if limt→∞ φ′′(t) = 0 so that φ′′(|∇u|)unn ≈ 0, and

limt→∞ φ′′(t)t/φ′(t) = 0 in which case the first term between the parentheses in (1.16) remains non-zero.

As the limiting case one finds the TV regularization method corresponding to (1.10) which was proposed

in [74]. Let us notice that this reasoning is basically qualitative since the contribution of A along utt and

unn is ignored. Results on PDEs cannot be transported directly on regularized cost-functions.

1.3 Our approach : the minimizers as a function of the energy

We can remark that both approaches consider the effect of the regularization separately from the data-

fidelity term and tend to evade the optimization of the whole functional. In [?68(1994)] we did some

preliminary studies that clearly showed that minimizers do not behave as expected by the prior model.

The question that arise then is on the way in which the priors are effectively involved in û—a local or a

global minimizer of an energy F(., v). It led us to formulate a different problem which is the analysis of

the relationship between the shape of F—hence the shapes of Ψ and Φ—and the characteristic features
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exhibited by its (global or local) minimizers û. This problem, that we considered for the first time in

[?7(1997)], reflects a different point of view which, to the best of our knowledge, has never been studied

in a systematic way before. It is completely general since it can be considered for any functional F .

The interest is that it leads to rigorous results on the solutions û. Its ultimate ambition is to provide

simple rules connecting the shape of F(., v) to the characteristic features exhibited by its minimizers

û. Such a knowledge enables a real control on the regularization methods that are used. On the other

hand, it allows the conception of specialized energies F whose minimizers correctly reflect the a priori

expectations. Furthermore, it gives precious indication for a relevant choice of the parameters (β and

others) involved in F . Last, it can be used to conceive more economic numerical methods by taking

a benefit from the features of the solution that are known in advance. The main difficulties are (a) to

extract and to formalize pertinent properties of minimizers û and (b) to conduct the analysis.

Studying the properties of the minimizers of cost-functions as a function of the shape of the cost-

function is a widely open problem. We have explored only several directions relevant to the (non)smoothness

and the (non)convexity of F . Given the intrinsic difficulty of the problem, we did not hesitate to focus

on signals and images defined on discrete finite grids. In this practical framework, our results are quite

general since we consider functions F which can be convex or non-convex, smooth or non-smooth, and

results address local and global minimizers. Not without surprise it appeared that irregular cost-functions

were easier to analyze and led us to stronger results than regular ones.

1.4 Preliminary notions

In our studies, we analyze the behavior of the minimizer points û of F(., v) under variations of v. In

words, we consider local minimizer functions.

Definition 1 Let F : M×N → R and O ⊆ N . We say that U : O →M is a local minimizer function

for the family of functions F(., O) = {F(., v) : v ∈ O} if for any v ∈ O, the function F(., v) reaches a

local minimum at U(v). Moreover, U is said to be a strict local minimizer function if F(., v) has a strict

local minimum at U(v), for every v ∈ O.

The next lemma, which can be found in [36], addresses the regularity of the local minimizer functions

when F is smooth. We use this result several times in the following in order to justify our assumptions.

Lemma 1 Let F be Cm, m ≥ 2, on a neighborhood of (û, v) ∈ M × N . Suppose that F(., v) reaches

at û a local minimum such that D2
1F(û, v) is positive definite. Then there are a neighborhood O ⊂ N

containing v and a unique Cm−1 strict local minimizer function U : O →M, such that D2
1F(U(ν), ν) is

positive definite for every ν ∈ O and U(v) = û.

A special attention being dedicated to non-smooth functions, we recall some basic facts. In what

follows, M will denote the tangent of M.

Definition 2 Given v ∈ N , the function F(., v) : M→ R admits at û ∈ M a one-sided derivative in a

direction w ∈ M , denoted δ1F(û, v)(w), if the following limit exists:

δ1F(û, v)(w) = lim
t↘0

F(û + tw, v)−F(û, v)
t

,
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where the index 1 in δ1 specifies that we address derivatives with respect to the first variable of F .

In fact, δ1F(û, v)(w) is a right-side derivative; the relevant left-side derivative is −δ1F(û, v)(−w). If

F(., v) is differentiable at û for w, then δ1F(û, v)(w) = D1F(û, v)w. Next we recall the classical necessary

condition for a local minimum of a possibly non-smooth function [72, 50, 26].

Lemma 2 If F(., v) has a local minimum at û ∈M, then δ1F(û, v)(w) ≥ 0, for every w ∈ M .

If F(., v) is differentiable at û, one easily deduce that D1F(û, v) = 0 at a local minimizer û.



Chapter 2

Non-smooth regularization to
recover strongly homogeneous
regions

2.1 Main theoretical result

In [?2(2004)] we consider the general question of how, given a set of linear operators and vectors, denoted

Gi and θi ∈ Rs for i = 1, . . . , r, the shape of F favors, or conversely inhibits, the possibility that for some

v ∈ N , the function F(., v) admits a (local) minimizer û ∈M satisfying

Giû = θi, ∀i ∈ Ĵ , with Ĵ ⊂ {1, . . . , r} and Ĵ 6= ∅, (2.1)

where

M = {u ∈ Rp : Cu = b}, C ∈ L(Rp,Rp0) and b ∈ Rp0 , p0 < p.

The samples ûi of û involved in (2.1) are said to form strongly homogeneous regions. Although [?2(2004)]

addresses very general functions F , we present our results for functions F of the form (1.6) along with

Φ(u) =
r∑

i=1

ϕi(Giu− θi), (2.2)

where for every i = 1, . . . , r, the function ϕi : Rs → R is Cm, m ≥ 2 on Rs \ {0} while at zero ϕi is

non-smooth, has a strict minimum and has a one-sided derivative application w → δϕi(0)(w) which is

uniform on the unit sphere S. The most typical form for the regularization term Φ in (2.2) corresponds

with

ϕi(z) = ϕ(z) = φ (‖z‖) , ∀i ∈ {1, . . . , r}, (2.3)

where φ : R+ → R is Cm for m ≥ 2 and φ′(0) > 0. Some examples of such functions φ are (f5) and

(f10)-(f12) given in Table 1.1. The data-fidelity term Ψ : M×N → R in (1.6) is any explicit or implicit

Cm-function, m ≥ 2. In particular, our formulation allows us to address cost-functions combining both

smooth and non-smooth regularization terms.

Let us define the set-valued function J on M by

J (u) =
{

i ∈ {1, . . . , r} : Giu = θi

}
. (2.4)

10
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Theorem 1 For v ∈ Rq given, let û ∈M be a solution to (1.5). For Ĵ = J (û), let KĴ be the subspace

KĴ =
{

u ∈M : Giu = θi,∀i ∈ Ĵ
}
6= M (2.5)

and KĴ be its tangent. For O ⊂ Rq suppose that

(a) δ1F(û, v)(w) > 0, for every w ∈ K⊥
Ĵ
∩ S;

(b) F|KĴ
(., O) has a local minimizer function UĴ : O → KĴ which is continuous at v and û = UĴ(v).

Then there is a neighborhood OĴ of v such that F(., OĴ) admits a local minimizer function U : OĴ →M
which satisfies U(v) = û and

ν ∈ OĴ ⇒ U(ν) = UĴ(ν) ∈ KĴ and GiU(ν) = θi, for all i ∈ Ĵ .

If UĴ is a strict local minimizer function for F|KĴ
(., O), then U is a strict local minimizer function for

F(., OĴ).

We show that the results of Theorem 1 holds also for irregular functions φ of the form (f13) in Table 1.1.

Commentary on the assumptions. Since F(., v) has a local minimum at û, Lemma 2 shows that

δ1F(û, v)(w) ≥ 0, for all w ∈ M and this inequality cannot be strict unless F is non-smooth. When Φ

is non-smooth as specified above, it is easy to see that (a) is not a strong requirement. By Lemma 1,

condition (b) holds if F|KĴ
is Cm on a neighborhood of (û, v) belonging to KĴ×N , and if D1(F|KĴ

)(û, v) =

0 and D2
1(F|KĴ

)(û, v) is positive definite, which is usually satisfied for the convex cost-functions F used

in practice.

If Ψ is of the form (1.7) with A∗A invertible and if {ϕi} are non-convex according to some non-

restrictive assumptions, the analysis in [?9(2005)] shows that for almost every v (except those contained

in a negligible subset of Rq), every local minimizer û of F(., v) satisfies both (a) and (b)—see Remark 3

in § 5.1.1 in this manuscript.

Significance of the results. The conclusion of the theorem can be reformulated as

v ∈ OĴ ⇒ J (U(v)) ⊇ Ĵ ⇔ U(v) ∈ KĴ , (2.6)

where J is defined in (2.4). The latter is a severe restriction since KĴ is a closed and negligible subset

of M whereas data v vary on open subsets of N . (The converse situation where a local minimizer û

of F(., v) satisfies Giû 6= θi, for all i seems quite natural.) Observe also that there is an open subset

ÕĴ ⊂ OĴ such that J (U(v)) = Ĵ for all v ∈ ÕĴ .

Focus on a minimizer function U : O → M for F(., O) and put Ĵ = J (U(v)) for some v ∈ O. By

Theorem 1 the sets OĴ and ÕĴ are of positive measure in N . The chance that random points ν (e.g.

noisy data) come across OĴ , or ÕĴ , is real. When data ν range over O, the set-valued function (J ◦ U)

generally takes several distinct values, say {Jj}. Thus, with a minimizer function U , defined on an open

set O, there is associated a family of subsets {ÕJj} which form a covering of O. When ν ∈ ÕJj , we find

a minimizer û = U(ν) satisfying J (û) = Jj . This is the reason why non-smooth cost-functions, as those
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1 100

0

4

1 100

0

4

Figure 2.1: Data v = uo +n (—), corresponding to the original uo (-.-.), contaminated with two different
noise samples n in the left and in the right.

considered here, exhibit local minimizers which generically satisfy constraints of the form (2.1). For a

regularized cost-function of the form defined by (1.6) and (2.2), with {ϕi} as in (2.3), {Gi} first-order

difference operators and θi = 0, for all i, minimizers û are typically constant on many regions. This

explains in particular the stair-casing effect observed in total-variation (TV) methods [74, 32, 22]. Such

minimizers can be seen for signals in Figs. 2.2 (a), (b) and (c), and for images in Fig. 2.4 (b) and in

Fig. 2.5 (c) and (d). Initially we explained this phenomenon in a more restricted context in [?7(1997)]

and [?5(2000)]. These papers provided the first mathematical explanation of stair-casing in the literature.

Restoration of a noisy signal. In Figs. 2.1 and 2.2 we consider the restoration of a piecewise

constant signal uo from noisy data v = uo +n by minimizing F(u, v) = ‖u− v‖2 +β
∑p−1

i=1 φ(|ui−ui+1|).
In this case, the strongly homogeneous regions are constant,

{
i ∈ {1, . . . , p − 1} : ûi = ûi+1

}
. In order

to evaluate the ability of different functions φ to recover, and to conserve, the strongly homogeneous

zones yielded by minimizing the relevant F(., v), we process in the same numerical conditions two data

sets, contaminated by two very different noise realizations shown in Fig. 2.1. The minimizers shown in

Figs. 2.2(a), (b) and (c) correspond to functions φ that are non-smooth at zero. In accordance with our

theoretical results, they are constant on large segments. In each one of these figures, the reader is invited

to compare the subsets where the minimizers corresponding to the two data sets in Fig 2.1, are constant.

In contrast, the function φ in Fig. 2.2(d) is smooth and the resultant minimizers in are nowhere constant.

This will be explained in § 2.3.

Deblurring of an image from noisy data. The original image uo in Fig. 2.3(a) presents smoothly

varying regions, constant regions and sharp edges. Data in Fig. 2.3(b) correspond to v = a∗uo +n, where

a is a blur with entries ai,j = exp
(−(i2 + j2)/12.5

)
for −4 ≤ i, j ≤ 4, and n is white Gaussian noise

yielding 20 dB of SNR. The amplitudes of the original image are in the range of [0, 1.32] and those of the

data in [−5, 50]. In all restored images, {Gi : 1 ≤ i ≤ r} correspond to the first-order differences of each

pixel with its 8 nearest neighbors and θi = 0; again, the strongly homogeneous regions are constant. In

all figures, the obtained minimizers are displayed on the top. Below we give two sections of the restored

images, corresponding to rows 54 and 90 where the relevant sections of the original image are plotted with

a dotted line. The minimizers corresponding to non-convex functions φ are calculated using a generalized

graduated non-convexity method developed in [?8 (1999)] and briefly described in § 7.1.
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(a) φ(t) = |t| (b) φ(t) =
(
t− αsign(t)

)2
(nonsmooth at 0)

1 100

0

4

1 100

0

4

1 100

0

4

1 100

0

4

1
0

(c) φ(t) = α|t|/(1 + α|t|) (d)φ(t) =

{
t2

2
if |t| ≤ α

α|t| − α2

2
if |t| > α

(smooth at 0)

Figure 2.2: Restoration using different functions φ. Original uo (-.-.), minimizer û (—). Each figure from
(a) to (d) shows the two minimizers û corresponding to the two data sets in Fig. 2.1 (left and right),
while the shape of φ is plotted in the middle.



CHAPTER 2. NON-SMOOTH REGULARIZATION TO RECOVER STRONGLY HOMOGENEOUS REGIONS14

(a) Original image (b) Data v = blur + noise

Figure 2.3: Data v = a ? uo + n, where a is a blur and n is white Gaussian noise, 20 dB of SNR.

The restorations in Figs. 2.4 (b) and 2.5(c)-(d) correspond to non-smooth regularization and they in-

volve large constant regions. No constant regions are observed in the other restorations which correspond

to smooth regularization.

2.2 The 1D total variation regularization

The example below describes the sets ÕJ , for every J ⊂ {1, . . . , r}, in the context of the one-dimensional

discrete TV regularization. It provides a rich geometric interpretation of Theorem 1. Let F : Rp×Rp → R
be given by

F(u, v) = ‖Au− v‖2 + β

p−1∑

i=1

|ui − ui+1|, (2.7)

where A ∈ L(Rp,Rp) is invertible and β > 0. It is easy to see that there is a unique minimizer function

U for F(.,Rp). In [?2(2004)] we exhibit two striking phenomena:

1. For every point û ∈ Rp, there is a polyhedron Qû ⊂ Rp of dimension #J (û), such that for every

v ∈ Qû, the same point U(v) = û is the unique minimizer of F(., v);

2. For every J ⊂ {1, . . . , p−1}, there is a subset ÕJ ⊂ Rp, composed of 2p−#J−1 unbounded polyhedra

(of dimension p) of Rp, such that for every v ∈ ÕJ , the minimizer û of F(., v) satisfies ûi = ûi+1

for all i ∈ J and ûi 6= ûi+1 for all i ∈ Jc. A description of these polyhedra is given in the appendix

of [?2(2004)]. It also shows how the parameter β works. Moreover, their closure forms a covering

of Rp.

Fast minimization method for (2.7) Since the discussion is on 1D TV, let us mention that in

[?3(2004)] we propose a fast numerical scheme to minimize (2.7). Consider the change of variables

z = Tu defined by zi = ui − ui+1 for 1 ≤ i ≤ p − 1 and zp = 1
p

∑p
i=1 ui, and put B = AT−1 whose

columns are denoted bi, 1 ≤ i ≤ p. At each iteration k ∈ N, we do the following:
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Row 54 Row 54

Row 90 Row 90

(a) ϕ(t) = |t|α for α = 1.4, β = 40 (b) ϕ(t) = |t| for β = 100

Figure 2.4: Restoration using convex PFs. Left: smooth at zero PF. Right: non-smooth at zero PF.

• for every i ∈ {1, . . . , p− 1}, calculate

ξ
(k)
i = 2b∗i B

(
z
(k)
1 , z

(k)
2 , . . . , z

(k)
i−1, 0, z

(k−1)
i+1 , . . . , z(k−1)

p

)
− 2b∗i v,

then
if

∣∣∣ξ(k)
i

∣∣∣ ≤ β, set z
(k)
i = 0,

if ξ
(k)
i < −β, set z

(k)
i = −ξ

(k)
i + β

2‖bi‖2 > 0,

if ξ
(k)
i > β, set z

(k)
i = −ξ

(k)
i − β

2‖bi‖2 < 0;
• for i = p,

z(k)
p = − ξ

(k)
p

2‖bp‖2 .

The convergence of T−1z(k) towards the sought-after minimizer û of (2.7) is established in a more general

context in [?3(2004)]. Notice that this method cannot be extended to images.

2.3 Comparison with smooth cost-functions

Here we explain that the special properties exhibited in § 2.1 do almost never occur if F is smooth.

Theorem 2 Let U : O → M be a differentiable local minimizer function for F(., O) where O ⊂ N is

open. Suppose that F is twice differentiable on OU × O where OU ⊂ M is open and U(O) ⊂ OU . Let
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Row 54 Row 54

Row 90 Row 90

(a) ϕ(t) =
αt2

1 + αt2
for α = 25, β = 35 (b) ϕ(t) = min{αt2, 1} for α = 60, β = 10

Row 54 Row 54

Row 90 Row 90

(c) ϕ(t) =
α|t|

1 + α|t| for α = 20, β = 100 (d) ϕ(t) = 1− 1l(t=0) for β = 25

Figure 2.5: Restoration using non-convex PFs. First row ((a) and (b)): smooth at zero PFs. Second row
((c) and (d)): non-smooth at zero PFs.
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θ ∈ Rs and G be such that

rank G > p− rankD12F(u, v), ∀(u, v) ∈ OU ×O, (2.8)

where p is the dimension of M. For any O ⊆ O whose interior is nonempty define the subset VO by

VO = {v ∈ O : GU(v) = θ}. (2.9)

Then

(i) the interior of VO is empty;

(ii) if U is C1 on O, for any compact O ⊂ O, the relevant VO is included in a closed, negligible subset

of N .

If F is of the form (1.6)-(1.7) with A∗A invertible, the requirement in (2.8) is simplified to rankG > 0.

We show that the same result holds if φ is non-smooth in such a way that φ′(τ−i ) > φ′(τ+
i ) for several

nonzero points τi (see Proposition 2 and Theorem 4 in [?2(2004)]). The most famous function φ of this

kind is the truncated quadratic function,

φ(t) = min{1, αt2} with α > 0.

This function was initially introduced in [41] for the restoration of images involving sharp edges. It can

also be seen as the discrete version of the Mumford-Shah regularization [64] and was considered in a very

large amount of papers [11, 19]. It is non-smooth at 1/
√

α and C∞ elsewhere.

Example 1 (Quadratic regularized cost-function) Consider the function F : Rp × Rq → R,

F(u, v) = ‖Au− v‖2 + β‖Gu‖2, (2.10)

where β > 0 and G ∈ L(Rp,Rs). Under the trivial assumption ker (A∗A) ∩ ker (G∗G) = {0}, for every

v ∈ Rq, the function F(. , v) is strictly convex and its unique minimizer function U : Rq → Rp reads

U(v) = (A∗A + βG∗G)−1A∗v. (2.11)

Let the rows of G be denoted Gi ∈ L(Rp,R) for i = 1, . . . , r. For a given i ∈ {1, . . . , r}, the set V{i} of

all data points v ∈ Rq for which U(v) satisfies exactly Gi U(v) = 0 reads

V{i} = {v ∈ Rq : 〈v, pi(β)〉 = 0} = {pi(β)}⊥ ,

pi(β) = A(A∗A + βG∗G)−1G∗i .

We can have pi(β) = 0 only if rank A < p and if β is such that G∗i ∈ kerA(A∗A + βG∗G)−1: if there are

β > 0 satisfying this system, they form a finite, discrete set of values. However, β in (2.10) will almost

never belong to such a set, so in general, pi(β) 6= 0. Then V{i} ⊂ Rq is an affine subspace of dimension

q − 1. More generally, we have the implication

∃i ∈ {1, . . . , r} such that Gi Ui(v) = 0 ⇒ v ∈
r⋃

i=1

V{i}.

The union on the right side is of Lebesgue measure zero in Rq. ¦
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2.4 Some applications

2.4.1 Segmentation of signals and images

When Φ is non-smooth as specified in §2.1, the function J defined in 2.4 naturally provides a classification

rule if for any u ∈ M we consider the two classes Ĵ = J (u) and Ĵc, its complement in {1, . . . , r}. If

for every i ∈ {1, . . . , r} we have θi = 0 and Gi yields either the first-order differences or the discrete

approximation of the gradient at i, then J (û) addresses the constant regions in û. Since J (û) is usually

nonempty and large, û provides a segmentation of the original uo. This is nicely illustrated in Figs. 2.4(b)

and 2.5 (c)-(d). One can notice that this segmentation is neater if φ is non-convex rather then if it is

convex—an explanation is provided by Theorem 9 below. By Theorem 1, this classification is stable with

respect to small variations of the data (e.g. due to noise perturbations).

2.4.2 Restoration of binary images using convex energies

It is well known that no cost-function defined on the set of the binary images can be convex. The usual

non-convex cost-functions for binary images are difficult to minimize while approximate solutions are

very often of limited interest. On the other hand, general-purpose convex cost-functions yield continuous-

valued smooth estimates which are far from being satisfying.

In [?60(1998)] we propose an alternative approach which is to construct convex cost-functions whose

minimizers are continuous-valued but have a quasi-binary shape. For instance,

F(u, v) = ‖Au− v‖2 − α

p∑

i=1

(
ui − 1

2

)2

+ β
∑

i∼j

|ui − uj | (2.12)

subject to ui ∈ [0, 1], ∀i ∈ {1, . . . , p} (2.13)

where i ∼ j means that ui and uj are neighbors and α ≥ 0 and α
≤≈ min{λ = eigenvalue of A∗A}, so

that F(., v) is convex. By the concave term, pixels ûi are discouraged to be in the interior of (0, 1) and

by the constraint they cannot be outside [0, 1], while via the regularization term, neighboring pixels are

likely to be equal. The obtained solutions are almost binary, as seen in Fig. 2.6.

2.4.3 Blind deconvolution of binary signals

In collaboration with Florence Alberge and Pierre Duhamel, [?18(2002)] and [?19(2005)], we

focus on different aspects of a blind deconvolution problem where the goal is to identify a channel and

to estimate the binary symbols transmitted through it, based on the outputs of several arrays of censors.

The main novelty of our approach is to introduce a continuous non-smooth cost-function which is convex

with respect to the symbols and discourages them from taking non-binary values. The resultant method

is robust and of low complexity.
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0 1

Original image uo Data v=u+Gaussian noise The proposed method Histogram of the solution

0 1

Data with salt-and-pepper noise The proposed method Histogram of the solution

Figure 2.6: Restoration of quasi-binary images by minimizing (2.12).



Chapter 3

Non-smooth data-fidelity to fit
exactly part of the data entries

In [?4(2002)] and [?3(2004)] we consider that in (1.6), the data-fidelity Ψ is non-smooth and that the

regularization Φ is smooth. This situation is “dual” to the one considered in chapter 2. More specifically,

let M = Rp and N = Rq, and

F(u, v) = Ψ(u, v) + βΦ(u), (3.1)

Ψ(u, v) =
q∑

i=1

ψi (〈ai, u〉 − vi) , (3.2)

where ψi : R → R, i = 1, . . . , q, are continuous functions which decrease on (−∞, 0] and increase

on [0,+∞), and a∗i for i = 1, . . . , q, are the rows of the observation matrix A. One usual choice is

ψ(t) = |t|ρ, for ρ > 0, which yields Ψ(u, v) =
∑q

i=1 | 〈ai, u〉 − vi|ρ [71, 2]. We have already mentioned

that the most often, Ψ(x, y) = ‖Ax − y‖2, that is, ψ(t) = t2. Recall that many papers are dedicated to

the minimization of this Ψ(., y) alone i.e., F = Ψ, mainly for ψ(t) = t2 [52], in some cases for ψ(t) = |t|
[12], but also ψ(t) = |t|ρ for ρ ∈ (0,∞] [71, 70]. Until our work (2002 and 2004), non-smooth data-

fidelity terms in regularized cost-functions of the form (1.6) were very unusual and only Alliney [1], who

considered F(u, v) =
∑p

i=1 |ui − vi|+ β
∑p−1

i=1 (ui − ui+1)2, made an exception. Nonsmooth data-fidelity

terms Ψ were systematically avoided in image processing, for instance. Following our example, L1-TV

cost-functions were analyzed in [20] and in [?22(2004)]. Many other papers considered cost-functions

with L1 data-fidelity terms later on.

3.1 Main theoretical results

We suppose that {ψi} are Cm-smooth on R \ {0}, m ≥ 2, whereas at zero their side derivatives satisfy

−∞ < ψ′i(0
−) < ψ′i(0

+) < +∞ (3.3)

For simplicity, we consider that ψi = ψ for all i. The term Φ : Rp ×Rq → R in (3.1) is any Cm-function,

which in particular may depend on data v as well. There is a striking distinction in the behavior of the

minimizers relevant to non-smooth data-fidelity terms with respect to non-smooth regularization, as it

20
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F(u, v) = ‖u− v‖22 + β‖Gu‖1 F(u, v) = ‖u− v‖1 + β‖Gu‖22 F(u, v) = ‖u− v‖22 + β‖Gu‖22
(a) Stair-casing (b) Exact data-fit (c)

Figure 3.1: G is a first-order difference operator, [Gu]i = ui−ui+1, i = 1, . . . , p−1. Data (- - -), Restored
signal (—-).

can be seen in Fig. 3.1. It concerns the possibility of fitting exactly a certain number of the data entries,

i.e., that for v given, a local minimizer û of F(., v) satisfies 〈ai, û〉 = vi for some, or even for many, indexes

i. To analyze such a property we define J to be the following set-valued function:

(u, v) → J (u, v) =
{

i ∈ {1, . . . , q} : 〈ai, u〉 = vi

}
. (3.4)

Given v and a local minimizer û of F(., v), the set of all data entries which are fitted exactly by û reads

Ĵ = J (û, v). Our main result, established in [?4(2002)] is presented below.

Theorem 3 Given v ∈ Rq and û ∈ Rp, for Ĵ = J (û, y), let

KĴ(v) = {u ∈ Rp : 〈ai, u〉 = vi ∀i ∈ Ĵ and 〈ai, u〉 6= vi ∀i ∈ Ĵc},

and let KĴ be its tangent. Suppose the following:

(a) The set {ai : i ∈ Ĵ} is linearly independent;

(b) ∀w ∈ KĴ ∩ S we have D1(F|KĴ (y)
)(û, v)w = 0 and D2

1(F|KĴ (y)
)(û, v)(w, w) > 0;

(c) ∀w ∈ K⊥
Ĵ
∩ S we have δ1F(û, v)(w) > 0.

Then there is a neighborhood O ⊂ Rq containing v and a Cm−1 local minimizer function U : O → Rp

relevant to F(., O) yielding, in particular, û = U(y), and

ν ∈ O ⇒
{ 〈ai,U(ν)〉 = νi if i ∈ Ĵ ,

〈ai,U(ν)〉 6= νi if i ∈ Ĵc.
(3.5)

The latter means that J (U(ν), ν) = Ĵ is constant on O.

Note that for every v and J 6= ∅, the set KJ(v) is a finite union of connected components, whereas its

closure KJ(v) is an affine subspace.

Commentary on the assumptions. Assumption (a) does not require the independence of the whole

set {ai : i ∈ {1, . . . , q}}. We show (Remark 6 in [?4(2002)]) that this assumption fails to hold only for

some v is included in a subspace of dimension strictly smaller than q. Hence, assumption (a) is satisfied

for almost all v ∈ Rq and the theorem addresses any matrix A, whether it be singular or invertible.
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Assumption (b) is the classical sufficient condition for a strict local minimum of a smooth function

over an affine subspace. As stated in § 5.1 hereafter, this assumption may fail to hold only for some v

belonging to a negligible subset of Rq.

If an arbitrary function F(., v) : Rp → R has a minimum at û, then necessarily δ1F(û, v)(w) ≥ 0 for

all w ∈ T⊥
Ĵ
∩ S [73]. In comparison, (c) requires only that the latter inequality be strict. One can easily

conjecture that this inequality can be non-strict only for some data v included in a negligible subset of

Rq; the arguments are similar to those involved in the results summarized in Remark 3 in § 5.1.1.

Significance of the results. The result in (3.5) means that the set-valued function v → J (U(v), v)

is constant on O, i.e., that J is constant under small perturbations of v. Equivalently, all residuals

〈ai,U(v)〉 − vi for i ∈ Ĵ are null on O. Intuitively, this may seem unlikely, especially for noisy data.

Theorem 3 shows that Rq contains volumes of positive measure composed of data that lead to local

minimizers which fit exactly the data entries belonging to the same set (e.g., for A invertible, β = 0 yields

Ĵ = {1, . . . , q} and the data volume relevant to this Ĵ is Rq). In general, there are volumes corresponding

to various Ĵ so that noisy data come across them. That is why in practice, non-smooth data-fidelity terms

yield minimizers fitting exactly a certain number of the data entries. The resultant numerical effect is

observed in Fig. 3.1(b) as well as in Figs. 3.3 and 3.4.

Remark 1 (stability of minimizers) The fact that there is a Cm−1 local minimizer function shows

that, in spite of the non-smoothness of F , for any v, all the strict local minimizers of F(., v) which satisfy

the conditions of the theorem are stable under weak perturbations of data v. This result extends Lemma 1.

Numerical experiment. The original image uo in Fig. 3.2(a) can be supposed to be a noisy version

of an ideal piecewise constant image. Data v in Fig. 3.2(b) are obtained by replacing some pixels of uo,

whose locations are seen in Fig. 3.5-left, by aberrant impulsions. The image in Fig. 3.3(a) corresponds

to an `1 data-fidelity term for β = 0.14. The outliers are well visible although their amplitudes are

considerably reduced. The image of the residuals v − û, shown in Fig. 3.3(b), is null everywhere except

at the positions of the outliers in v. The pixels corresponding to non-zero residuals (i.e. the elements

of Ĵc) provide a faithful estimate of the locations of the outliers in v, as seen in Fig. 3.5-middle. Next,

in Fig. 3.4(a) we show a minimizer û of the same F(., v) obtained for α = 0.25. This minimizer does

not contain visible outliers and is very close to the original image uo. The image of the residuals v − û

in Fig. 3.4(b) is null only on restricted areas, but has a very small magnitude everywhere beyond the

outliers. However, applying the above detection rule now leads to numerous false detections, as seen in

Fig. 3.5-right.

The minimizers of two different cost-function F involving a smooth data-fidelity term Ψ, shwon in

Fig. 3.6, do not fit any data entry. The mathematical explanation will be presented in § 3.3.

3.2 Minimization method

In [?3(2004)] we propose a numerical method to minimize convex non-smooth energies F where Ψ is

defined by (3.2)-(3.3), Φ is convex and C1 continuous, and {ai : 1 ≤ i ≤ q} are linearly independent.
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Using the change of variables z = T (u) defined by zi = 〈ai, u〉 − vi for 1 ≤ i ≤ q and if p > q, zi = ui,

q + 1 ≤ i ≤ p, we consider equivalently the minimization of F (z) =
∑q

i=1 ψi(zi) + βΦ(T−1(z)). We focus

on relaxation-based minimization and generalize a method proposed by Glowinski, Lions and Trémolières

in [43]. Let z(0) ∈ Rp be a starting point. At every iteration k = 1, 2, . . ., the new iterate z(k) is obtained

from z(k−1) by calculating successively each one of its entries z
(k)
i using one-dimensional minimization:

for any i = 1, . . . , p, find z
(k)
i such that

F (z(k)
1 , . . . , z

(k)
i−1, z

(k)
i , z

(k−1)
i+1 , . . . , z

(k−1)
p ) ≤ F (z(k)

1 , . . . , z
(k)
i−1, t, z

(k−1)
i+1 , . . . , z

(k−1)
p ), ∀t ∈ R.

(3.6)

The details of the method and its convergence under mild assumptions are given in section 2.2 in

[?3(2004)]. Let us notice that the points where ψi is non-smooth—which are the most difficult to reach

using standard minimization methods—are easily solved by checking an inequality. The convergence of

the method to a minimizer û of F(., v) is established under mild assumptions.

(a) Original uo. (b) Data v = u·outliers.

Figure 3.2: Original uo and data v degraded by outliers.

(a) Restoration û for β = 0.14. (b) Residual v − û.

Figure 3.3: Restoration using F(u, v) =
∑

i |ui − vi|+ β
∑

i∼j |ui − uj |α α = 1.1 and β = 0.14.

(a) Restoration û for β = 0.25. (b) Residual v − û.

Figure 3.4: Restoration using F(u, v) =
∑

i |ui − vi|+ β
∑

i∼j |ui − uj |α for α = 1.1 and β = 0.25.
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Figure 3.5: Left: the locations of the outliers in v. Next—the locations of the pixels of a minimizer û
at which ûi 6= vi. Middle: these locations for the minimizer obtained for β = 0.14, Fig. 3.3. Right: the
same locations for the minimizer relevant to β = 0.25, see Fig. 3.4.

(a) Restoration û for β = 0.2. (b) Residual v − û.

Figure 3.6: Restoration using a smooth cost-function, F(u, v) =
∑

i(ui−vi)2 +β
∑

i∼j(ui−uj)2, β = 0.2.

3.3 Comparison with smooth cost-functions

The special properties exhibited in § 3.1 are due to the non-smoothness of Ψ and they do almost never

occur if F is smooth. The theorem below shows this under strong sufficient conditions.

Theorem 4 Let F be Cm, m ≥ 2, and let J ⊂ {1 . . . , q} be nonempty. Assume the following:

(a) ψi : R→ R satisfy ψ′′i (t) > 0 for all t ∈ R, ∀i = 1, . . . , q;

(b) A is invertible (recall that for every i = 1, . . . , q, the ith row of A is a∗i );

(c) there is an open domain O ⊂ Rq so that F(., O) admits a Cm−1 local minimizer function U : O → Rp,

such that D2
1F(U(v), v) is positive definite, for all v ∈ O;

(a) Restoration û for β = 0.2. (b) Residual v − û.

Figure 3.7: Restoration using non-smooth regularization F(u, v) =
∑

i

|ui − vi|+ β
∑

i∼j

|ui − uj |, β = 0.2.
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(d) for every u ∈ U(O) ⊂ Rp and for every i ∈ J we have D2Φ(u)[A−1]i 6= 0, where [A−1]i denotes the

ith column of A−1, for i = 1, . . . , q.

For any O ⊂ O a closed subset, put

VO = {v ∈ O : 〈ai,U(v)〉 = vi ∀i ∈ J} . (3.7)

Then VO is a closed subset of Rq whose interior is empty.

Hence, there is no chance that noisy v give rise to a minimizer û such that 〈ai, û〉 = vi for some

i ∈ {1, . . . , q}.
Assumption (a) holds for the usual data-fidelity terms. Assumption (b) is easy to extend to the

case when A∗A invertible. Assumption (c) here is the same as (b) in Theorem 3 and was commented

there. Assumption (d) holds for almost all A, as explained in Remark 11 in [?4(2002)]. Proposition 2 in

[?4(2002)] states the same conclusions but under different assumptions.

Example 1, continued. We now determine the set of all data points v ∈ Rq for which û = U(v) fits

exactly the ith data entry vi. To this end, we solve with respect to v ∈ Rq the equation 〈ai,U(v)〉 = vi

Using (2.11), this is equivalent to

〈pi(β), v〉 = 0, (3.8)

pi(β) = A(A∗A + β G∗G)−1ai − ei, (3.9)

where ei is the ith vector of the canonical basis of Rq. We can have pi(β) = 0 only if β belongs to the

set of several values which satisfy (3.9). However, β will almost never belong to such a set, so pi(β) 6= 0

in general. Then (3.8) implies v ∈ {pi(β)}⊥. More generally, we have the implication

∃i ∈ {1, . . . , q} such that Ui(v) = vi ⇒ v ∈
q⋃

j=1

{pj(β)}⊥.

Since every {pi(β)}⊥ is a subspace of Rq of dimension q− 1, the union on the right-hand side is a closed,

negligible subset of Rq. The chance that noisy data v yield a minimizer U(v) that fits even one data entry,

is null.

3.4 `1 data-fidelity to detect and remove outliers

3.4.1 Theoretical method

The properties established in [?4(2002)] suggest that non-smooth data-fidelity terms can be used to

process “spiky” data. In [?3(2004)] we develop a method to detect and to remove outliers and impulse

noise by minimizing F of the form (3.1)-(3.2) where

Ψ(u, v) =
p∑

i=1

|ui − vi|, (3.10)

Φ(u) =
1
2

p∑

i=1

∑

j∈Ni

φ(ui − uj). (3.11)
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Here Ni denotes the set of the neighbors of i, for every i = 1, . . . , p. If u is a signal, Ni = {i, i + 1}, if

i = 2, . . . , p − 1; for a 2D image, Ni is the set of the 4, or the 8 pixels adjacent to i. The function φ

is C1, convex, symmetric, and edge-preserving [14, 24, 46], as (f1)-(f4) given in Table 1.1. Suppose that

F(., v) reaches its minimum at û and put Ĵ = {i : ûi = vi}. The idea of our method is that every vi,

for i ∈ Ĵ , is uncorrupted (i.e. regular), since ûi = vi; in contrast, every vi, for i ∈ Ĵc, can be an outlier

since ûi 6= vi, in which case ûi is an estimate of the original entry. In particular, we define the outlier

detector function

v → Ĵc = {i ∈ {1, . . . , p} : ûi 6= vi}, where û is such that F(û, v) ≤ F(u, v), ∀u ∈ Rp. (3.12)

The rationale of this method relies on the properties of the minimizers û of F(., v) when v involves

outliers. Below we give a flavor of these properties.

First, the p-dimensional subset given below is the set of all outlier-free data,


v ∈ Rp :

∣∣∣∣∣∣
∑

j∈Ni

φ′(vi − vj)

∣∣∣∣∣∣
≤ 1

β
, ∀i = 1, . . . , p



 , (3.13)

since F(., v) reaches its minimum at û = v for every v belonging to this set. Observe that the latter

contains signals or images with smoothly varying and textured areas and edges.

• Detection of outliers. A datum vi is detected to be an outlier if |vi| is much larger than its neighbors,∑

j∈Ni

φ′(vi − ûj) >
1
β

. Notice that vi is compared only with faithful neighbors—regular entries vj

for j ∈ Ni ∩ Ĵ and estimates of outliers ûj for j ∈ Ni ∩ Ĵc. This is crucial for the reliability of

the detection of outliers and allows very restricted neighborhoods {Ni} to be used (e.g. the four

nearest neighbors in the case of images). Since φ′ is increasing on R and φ′(0) = 0, we see that if

vi is too dissimilar with respect to its neighbors, vi is replaced by an ûi such that |ûi| < |vi| and

whose value is independent of the magnitude |vi| of the outlier (Lemma 3 in [?3(2004)]). Hence the

robustness of û. Moreover, we show that the detection of outliers is stable: the set Ĵc is constant

under small perturbations of regular data entries vi for i ∈ Ĵ and under arbitrary deviations of

outliers vi for i ∈ Ĵc (Theorem 3 in [?3(2004)]).

• Restoration of sets of neighboring outliers. Let ζ be a connected component of Ĵc and let ûζ be

the restriction of û to ζ. We show that ûζ is the minimizer of a regularized cost-function f(., v) of

the form (1.6). Its first term encourages every boundary entry for ζ, namely ûi for an i ∈ ζ such

that Ni ∩ Ĵ 6= ∅, to fit neighboring regular data entries vj for j ∈ Ni ∩ Ĵ . Its second term is a

smoothness constraint on ûζ since it favors neighboring entries for ζ, say ûi and ûj , with i, j ∈ ζ

and j ∈ Ni, to have similar values. Thus we can expect that edges in ûζ are well restored if φ is

a good edge-preserving function. We show that ûζ results from a continuous minimizer function

Uζ which depends only on the neighboring regular data entries vi for i ∈ Nζ and is independent of

the value of the outliers vi for i ∈ ζ (see Lemma 4 in [?3(2004)]).

We also show that this restoration introduces a small bias.

Furthermore, we derive bounds for β and show that there is a compromise between detection of outliers

of small amplitude and preservation of large edges. Last, we justify the choice of ψi(t) = |t| in (3.10).
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(a) Original image uo (size 300× 300). (b) Data v with 10% random-valued noise.

Figure 3.8: Original picture and data with random-valued noise.

The computation of minimizers û is done by adapting the relaxation method sketched in §3.2.

Picture with 10% random-valued impulse noise. The original image uo is shown in Fig. 3.8 (a).

In Fig. 3.8(b), 10% of the pixels have random values uniformly distributed on
[
min

i
[uo]i, max

i
[uo]i

]
.

Denoising results using different methods are displayed in Fig. 3.9, where all parameters are finely tuned.

The restoration in Fig. 3.9 (a) corresponds to one iteration of a 3× 3 window median filter. The image

in (b) is calculated using a 3 × 3 window recursive CWM for α = 3. The result in (c) corresponds to a

3×3 window PWM filter for α = 4. These images are slightly blurred, the texture of the sea is deformed,

and several outliers still remain. The image û in (d) is the minimizer of F as given in 3.10)-(3.11), with

φ(t) = |t|1.1, Ni the set of the 4 adjacent neighbors and β = 0.3. All details are well preserved and the

image is difficult to distinguish from the original. Indeed, for 85% of the pixels, |ûi − [uo]i| /∆ ≤ 2%,

where ∆ = maxi[uo]i − mini[uo]i. Based on previous, one can expect that a smaller β can reduce

the number of regular data entries erroneously detected as outliers, but that detected outliers are not

smoothed enough.

Picture with 45% salt-and-pepper noise. 45% of the entries in Fig. 3.10 (a), with locations uni-

formly distributed over the grid of the image, are equal either to min
i

[uo]i, of to max
i

[uo]i, with probability

1/2. The image in Fig. 3.10 (b) is obtained after 2 iterations of a 3× 3 window recursive median filter. It

has a poor resolution and exhibits a stair-case effect. The result in (c) results from a 7×7 window PWM

filter for α = 14. Although better than (b), the resolution is poor, there are artifacts along the edges and

the texture of the sea is destroyed. The images in (d) is the minimizer of F as given in (3.10)-(3.11) where

φ(t) = |t|1.3 and Ni is the set of the 4 adjacent neighbors. for β = 0.18. The quality of the restoration is

clearly improved: the contours are neater, the texture of the sea in better preserved and some details on

the boat can be distinguished.
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(a) Median filtering (‖û−u‖2 = 4155). (b) Recursive CWM (‖û−u‖2 = 3566).

(c) PWM (‖û−u‖2 = 3984). (d) The proposed method (‖û−u‖2 = 2934).

Figure 3.9: Restoration from a picture with 10% random-valued noise.
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(a) Data v with 45% salt-and-pepper noise. (b) Recursive median filter (‖û−u‖2 = 7825).

(c) PWM (‖û−u‖2 = 6265). (d) The proposed method (‖û−u‖2 = 6064)

Figure 3.10: Picture with 45% salt-and-pepper noise.
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3.4.2 The `1 − `2 cost-function

In [?41(2003)] we specialize the method in § 3.4.1 to quadratic regularization terms Φ, namely

Φ(u)
1
2

p∑

i=1

∑

j∈Ni

(ui − uj)2.

This regularization is not edge-preserving but the method is still quite good. The main interest is that

the computation is very fast. Once again, we use a relaxation minimization scheme. Let the intermediate

solution at step i− 1 of iteration k be denoted u(k,i−1) = (u(k)
1 , u

(k)
2 , . . . , u

(k)
i−1, u

(k−1)
i , u

(k−1)
i+1 , . . . , u

(k−1)
p ).

At the next step we calculate u
(k)
i according to the rule:

ξ
(k)
i = vi − χ

(k)
i where χ

(k)
i =

1
#Ni

∑

j∈Ni

u
(k,i−1)
j ,

if
∣∣∣ξ(k)

i

∣∣∣ ≤ 1
2β#Ni

⇒ u
(k)
i = vi,

if
∣∣∣ξ(k)

i

∣∣∣ >
1

2β#Ni
⇒ u

(k)
i = χ

(k)
i +

sign(ξ(k)
i )

2β#Ni
.

Notice that updating each entry u
(k)
i involves only the samples belonging to its neighborhood Ni, so

computation can be done in a parallel way. Based on previous results, we recommend to start with

u(0) = v.

Another important point of interest is that the minimizers û can be characterized almost explicitly.

Some results are given in [?41(2003)] but we did not yet complete the full paper.

In our experiment, the sought image uo, shown in Fig. 3.11(a), is related to u∗ in Fig. 2.3(a) by

uo = u∗ + n, where n is white Gaussian noise with 20 dB SNR. The histogram of n is plotted in Fig.

3.11(b). Our goal is to restore uo in Fig. 3.11 (a) which contains Gaussian noise based on the data v in

Fig. 3.11(c) which contain 10% salt-and-pepper noise. Restoring uo is a challenge since the white noise

n there must be preserved. The histogram of the estimated noise, n̂ = û−u∗, must be close to the initial

noise n. The image in Fig. 3.12 (a) corresponds to one iteration of median filter over a 3 × 3 window.

The histogram of the resultant estimate of the Guassian noise in u is given in (b). The image in Fig.

3.12 (c) is calculated using CWM with a 5× 5 window and multiplicity parameter 14. The relevant noise

estimate is given in (d). In these estimates, the distribution of the noise estimate n̂ is quite different

from the distribution of n. Fig. 3.13 displays the issue of the proposed method, for β = 1.3. It achieves

a good preservation of the statistics of the noise in u, as seen from the histogram of the estimated noise

n̂. The proposed method accurately suppresses the outliers and preserves the Gaussian noise.

3.4.3 Restoration of wavelet coefficients

In collaboration with Sylvain Durand [?42(2003)] we consider hybrid methods to denoise a signal or an

image v = uo +n ∈ Rp, where n is white Gaussian noise, based on the coefficients y of a frame transform

of the data

y = W̃v =
∑

i

w̃iv.
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−1 0 1

500

(a) uo = u∗ + n to recover (b) Histogram of n to recover (c) Data=Image ¯ SP

Figure 3.11: The goal is to restore uo in (a) which contains Gaussian noise n, see (b) from the data in
(c).

−1 0 1

500

−1 0 1

500

(a) Median Filter (b) Noise estimate n̂ (c) Center-Weighted Median (d) Noise estimate n̂

‖û−uo‖1 =43, ‖û−uo‖2 =46 ‖û−uo‖1 =22, ‖û−uo‖2 =35

Figure 3.12: Classical methods to clean the outliers.

−1 0 1

500

(a) F = `1 + `2 (b) Noise estimate n̂= û− u∗

‖û−uo‖1 =14, ‖û−uo‖2 =26

Figure 3.13: The proposed method.



CHAPTER 3. NON-SMOOTH DATA-FIDELITY TO FIT EXACTLY PART OF THE DATA ENTRIES32

Since the inaugural work of Donoho and Johnstone [33], shrinkage estimators are a popular and fast tool

to denoise images and signals. Let I denote the set of the indexes of all noisy coefficients that must be

restored. Hard-thresholding defines the denoised coefficients by

x̂[i] =
{

y[i] if i ∈ I1,
0 if i ∈ I0,

(3.14)

where

I0 = {i ∈ I : |y[i]| < T} and I1 = I \ I0, (3.15)

whereas soft-thresholding corresponds to replace y[i] in (3.14) by y[i] − T sign(y[i]) if i ∈ I1. These are

asymptotically optimal in the minimax sense if W̃ is an orthogonal wavelet transform and

T = σ
√

2 loge p, (3.16)

where σ is the standard deviation of the noise. An intrinsic difficulty is that T increases along with the

size p of u which entails a loss of useful information. Refinements of these methods have been proposed

in order to adapt thresholding to the scale of the coefficients [34]. Other shrinkage methods are based

on a priori models for the distribution of the coefficients x = W̃u and MAP estimation, thus leading to

minimize energies of the form ‖x − y‖2 +
∑

i λiφ(xi) [84, 75, 63, 7, 4]. The denoised signal or image is

then

û = Wx̂ =
∑

i

x̂iwi (3.17)

where W is a left inverse of W̃ and {wi} the associated dual frame. The major problems with these

methods is that shrinking large coefficients leads to oversmoothing of edges, while shrinking small coeffi-

cients towards zero yield Gibbs-type oscillations in the vicinity of edges. On the other hand, if shrinkage

is weak, some coefficients bearing mainly noise will remain (almost) unchanged and (3.17) shows that

they generate in û artifacts with the shape of the functions wi. Furthermore, priors on the coefficients x

cannot adequately address the presence of edges and smooth regions in uo.

Instead, several authors [13, 28, 37, 60, 17, 35] combined the information contained in the large

coefficients y[i] with pertinent priors directly on the sought-after function u. Although based on different

motives, these “hybrid” methods amount to define the restored function û as

minimize Φ(u) =
∫

Ω

φ(|∇u(s)|) ds subject to û ∈
{

u :
∣∣∣
(
W̃ (u− v)

)
[i]

∣∣∣ ≤ µi, ∀i ∈ I
}

, (3.18)

where {µi} depend on y. In the first such method, introduced in [13], φ(t) = t2. General functions φ are

considered in [28]. In order to remove pseudo-Gibbs oscillations, the authors of [37, 60, 17, 35] focused

on φ(t) = |t| and did various choices for the operator W—orthogonal bases in [13, 28, 37, 35], curvlets

transforms in [17], unions of wavelet bases in [60]. These methods differ also in the choice of parameters

{µi}i∈J . If the use of an edge-preserving function for φ is clearly a pertinent choice, the strategy for the

selection of parameters {µi}i∈J remains an open question. In our paper we provide a critical analysis of

the strategies adopted by these authors.

Our approach is to determine {µi}i∈J based both on the data and on a prior regularization term. To

this end, restored coefficients x̂ are defined to minimize a cost-function of the form

F (x, y) =
∑

i∈I1

λi |(u− v)[i]|+
∑

i∈I0

λi |x[i]|+
∫

Ω

φ(|∇Wx|) ds.
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where I0 and I1 are defined by (3.15) for a T smaller than the value prescribed in (3.16), and φ is a convex

edge preserving potential function (e.g. a possibly smooth approximation of φ(t) = t). In such a case,

I1 is composed out of (a) large coefficients which bear the main features of u and (b) coefficients which

are highly contaminated by noise, called outliers. Based on [?4(2002)], we can expect that the first are

preserved intact whereas the second are restored by the regularization term so that no wavelet-shaped

artifacts appear in û. Furthermore, I0 is composed out of (c) noise coefficients and (d) coefficients y[i]

which correspond to edges and other details in u. The coefficients relevant to (c) are likely to remain zero,

which is certainly the best one can do, whereas those in (d) will be restored according to the regularization

term which prevents û from Gibbs-like oscillations. These conjectures are demonstrated for simple input

signals and corroborated by the experiments. Parameters {λi} can be determined in a semi-automatic

way as a function of the frame W̃ . Notice that the method is robust with respect to T since both outliers

(b) and erroneously thresholded coefficients (d) are restored.

Numerical experiment. We consider the restoration of the 512-length original signal in Fig. 3.14(a)

from the data shown there, contaminated with white Guassian noise with σ = 10. The restoration in (b)

is obtained using the sure-shrink method [34] and the toolbox WaveLab. The result displayed in Fig. 3.14

(d) is the minimizer of F = ‖Au− v‖2 + β
∑

i φ(‖Diu‖) where φ(t) =
√

α + t2 for α = 0.1 and β = 100.

Smooth zones are rough, edges are slightly smoothed and spikes are eroded, while some diffused noise is

still visible on the signal.

The other restorations are based on thresholded wavelet coefficients where W̃ is an orthogonal basis

of Daubechies wavelets with 8 vanishing moments. The optimal T , as given in (3.16), reads T = 35.

The wavelet-thresholding estimate
∑

i∈I1
y[i]w is shown in Fig. 3.14 (c). It involves important Gibbs

artifacts, as well as wavelet-shaped oscillations due to aberrant coefficients. In Fig. 3.14 (e) we present

the result obtained with the proposed method which corresponds to T = 23, α = 0.05, λj,κ = 0.5×2j/2 if

(j, κ) ∈ I0 and λj,κ = 1.5×2j/2 if (j, κ) ∈ I1. In this restoration, edges are neat and polynomial parts are

well recovered. Fig. 3.14(f) illustrates how restored coefficients x̂ are placed with respect to thresholded

and original coefficients. In particular, we observe how erroneously thresholded coefficients are restored

and how outliers are smoothed. More details are given in [?42(2003)].

3.5 Practical two-stage methods for impulse noise removal

Median-based filters are well-known to locate outliers accurately but to replace them inaccurately, and

to be faster than variational methods. On the other hand, the variational methods of the form presented

in § 3.4.1 have the default to possibly detect some noise-free pixels as noisy if these are placed near

to edges (see (3.13)), and the quality to give rise to accurate restoration of the noisy pixels. Hence

the idea to approximate the outlier-detection stage in the variational method in § 3.4.1 by a median-

based filtering method. In collaboration with Raymond Chan and several students, we investigate how

to combine the advantages of filtering and variational methods for salt-and-paper and random-valued

impulse noise [?13(2004)], [?14(2005)], [?15(2005)] and [?38(2005)]. Following this direction, we develop

efficient two-stage methods whose principal steps are
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(a) Original and data (b) Sure-shrink method (c) Hard thresholding
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410 425

23

50

◦ original
× threshold
∗ restored

(d) Total variation (e) The proposed method (f) Magnitude of coefficients

Figure 3.14: Various methods to restore the noisy signal in (a). Restored signal (—), original signal (- -).

(a) Find v̂ by applying an appropriate median-based filter to v and consider that the corrupted pixels

are

Ĵc = {i : v̂i 6= vi};

(b) Restore the noise candidates
{

ûi : i ∈ Ĵc
}

using a variational method of the form § 3.4.1, restricted

only to Ĵc, and keep ûi = vi for all i ∈ Ĵ .

After extended experiments, we found out that the adaptive median filter is well suited for salt-and-

pepper noise, while the adapted center-weight median filter is better for random-valued impulse noise.

Random impulse noise being much more difficult to clean out, we designed a refining iterative scheme.

We do not present here the details of these methods. In Fig. 3.15 we present restoration results from 70%

salt-and-pepper impulse noise. In Figs. 3.16 and 3.17 we show the results from 30% and 50% random

impulse noise, respectively. Even at very high noise ratios, we could obtain accurate restorations at a low

numerical cost.
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70% SP noise (6.7 dB) MED filer (23.2 dB) PSM filter (19.5 dB) MSM filter (19.0 dB)

DDBSM filter (17.5 dB) NASM filter (21.8 dB) ISM filter (23.4 dB) Adaptive median (25.8 dB)

Variational (24.6) Our method (29.3 dB) Original Lena

Figure 3.15: Restoration from 70% salt-and-pepper noise using different methods.

30% random noise ACWMF with s = 0.6 DPVM with β = 0.19 Our method

Figure 3.16: Restoration from 30% random-valued impulse noise using different methods.
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50% random noise ACWMF with s = 0.3 DPVM with β = 0.19 Our method

Figure 3.17: Restoration from 50% random-valued impulse noise using different methods



Chapter 4

Nonsmooth data-fidelity and
regularization

4.1 A corollary of chapters 2 and 3

If both terms Φ and Ψ are non-smooth as required in § 2.1 and in § 3.1, respectively, Theorems 1 and 3

indicate that minimizers û are likely to be such that

Giû = 0 for i ∈ Ĵφ 6= ∅,
〈ai, û〉 = vi for i ∈ Ĵψ 6= ∅ (4.1)

Minor refinements in the conditions and the proofs are necessary for a proper proof of this conjecture.

We underestimated the potential importance of such a result. Inspired by our non-smooth data-fidelity

terms in [?4(2002)] and [?3(2004)], T. Chan and S. Esedoglou did in [20] a very interesting analysis of the

minimizers of cost-functions composed of an L1 data-fidelity term and TV regularization. Even though

their work concerned images on an open domain of R2, the conjecture in (4.1) was confirmed. Some new

reports in this direction are for instance [47, 16].

4.2 Restoration of binary images using an L1 − TV energy

Based on (4.1), one can see that if v is binary (e.g. with values in {0, 1}), then minimizers û are likely to

be binary as well.

In a joint work with Toni Chan and Selim Esedoglu, [?22(2004)] and [?37(2005)] we started by

exploring the possibilities to restore a binary image on Rd, d ≥ 2, based on binary noisy data v, by

minimizing a convex non-smooth energy. Binary data v can be expressed as

v(x) = 1lΩ(x),

where Ω is a bounded domain of Rd whose boundary ∂Ω can be very rough because of the noise (one can

think of a noisy Fax document, for instance). A straightforward variational method, suggested in [80], is

to consider a TV energy constrained to the set of the binary images u(x) = 1lΣ(x):

min
Σ⊂RN

u(x)=1lΣ(x)

∫

Rd

(
u(x)− v(x)

)2

dx + β

∫

RN

φ(|∇u|). (4.2)
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This problem is non-convex because the minimization is over a non-convex set of functions. It is equivalent

to the following geometry problem:

min
Σ⊂Rd

(
|Σ4 Ω|+ βPer(Σ)

)
(4.3)

where Per stands for perimeter, | · | is the d-dimensional Lebesgue measure, and S1 4 S2 denotes the

symmetric difference between the two sets S1 and S2. The unknown set Σ in (4.3) can be described by

its boundary ∂Σ. So a common approach of solving (4.3) has been to use some curve evolution process,

sometimes referred to as active contours, where ∂Σ is updated iteratively according to gradient flow for

the energy involved. The usual numerical methods, such as the explicit curve representation [54], the

level set method of Osher and Sethian [68], or the Gamma convergence method [29], are prone to get

stuck in spurious local minima, thus leading to images with wrong level of detail.

The crux of our approach is to consider minimization of the following convex energy, defined for any

given observed image v(x) ∈ L1(Rd) and β > 0:

F(u, v) =
∫

Rd

|u(x)− f(x)|dx + β

∫

Rd

|∇u| (4.4)

The relevance of (4.4) for our purposes comes from the fact that F(., v) is convex, hence its minimum

can practically be reached, and from the equivalence theorem stated below.

Theorem 5 We have the following:

(i) If û = 1lΣ is a (global) solution to (4.2), then F(., v) reaches its minimum at û.

(ii) If F(., v) reaches its minimum at ŵ, then for almost every µ ∈ (0, 1) the function û = 1lΣ where

Σ = {x ∈ Rd : ŵ(x) > µ} is a global solution to (4.2).

These statements come from the obvious fact that the energies in (4.2) and (4.4) agree on binary images,

and from the theory developed in [20].

Algorithm. To find a solution (i.e. a global minimizer) û of the non-convex variational problem (4.2),

it is sufficient to carry out the following three steps:

1. Find any minimizer ŵ(x) of the convex energy (4.4).

2. Determine Σ = {x ∈ Rd : ŵ(x) > µ} for some µ ∈ (0, 1).

3. Set û(x) = 1lΣ(x): then û is a global minimizer of (4.2) for almost every choice of µ.

Next, we extended this approach to solve the piecewise constant Mumford-Shah segmentation energy

[21] where data v are no longer binary. This is presented in section 4 in [?22(2004)].



Chapter 5

Non-convex regularization

5.1 Stability results

In [?48(2001)], [?9(2005)] and [?10(2005)] in collaboration with Sylvain Durand, we explore the difficult

question of the stability of the minimizers—local and global—of non-convex and possibly non-smooth

cost-functions F . More precisely, we focus on F : Rp × Rq → R of the form

F(u, v) = ‖Au− v‖2 + β

r∑

i=1

ϕi(Giu),

where for every i ∈ {1, . . . , r}, the function ϕi : Rs → R is continuous on Rs and Cm, m ≥ 2, everywhere

except possibly at a given θi ∈ Rs, and Gi : Rp → Rs is a linear operator. We systematically assume that

A is injective, i.e. that rank A = p.

5.1.1 Local minimizers

The first part of our work [?9(2005)] focuses on the local minimizers of F (., v). Studying the stability of

local minimizers (rather than global minimizers only) is a matter of critical importance in its own right for

several reasons. In many applications, smoothing is performed by only locally minimizing a non-convex

cost-function in the vicinity of some initial solution. Second, it is worth recalling that no minimization

algorithm guarantees the finding of the global minimum of a general non-convex cost-function. The

practically obtained solutions are frequently only local minimizers.

To this end, we analyze the extent in Rq of the subset Ω ⊂ Rq of all data leading to minimizers which

have good regularity properties as specified below:

Definition 3 Let F(., v) be Cm with m ≥ 2 almost everywhere on Rp, for every y ∈ Rq. Denote

Ω =



v ∈ Rq :

if û is a strict local minimizer of F(., v) then there
is a Cm−1 strict (local) minimizer function U : O → Rp

such that v ∈ O ⊂ Rq and û = U(v)



 .

When Φ is Cm, no special assumptions are taken. In the non-smooth case, we have a few non-restrictive

assumptions (H4-H6 in [?9(2005)]) which are shown to hold in the most important case when

ϕi(z) = φ(‖z − θi‖) for φ ∈ Cm(R+) and φ′(0) > 0, 1 ≤ i ≤ r. (5.1)
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In particular, φ can be any one of the functions (f10)-(f12) in Table 1.1.

Theorem 6 The set Ωc—the complement of Ω in Rq—has Lebesgue measure zero in Rq. Moreover, if

∀i, ∀t ∈ R, lim
t→∞

∇ϕi(tz)
t

→ 0 uniformly with z ∈ S, (5.2)

then Ωc has Lebesgue measure zero in Rq.

When Φ is Cm, m ≥ 2 we can formally write that r = 1 and Φ = ϕ1, so Φ can be arbitrary. Let us

mention some interesting auxiliary results.

Remark 2 When F is Cm, m ≥ 2, define the subset Ω0 ⊂ Ω via

Ωc
0 =

{
v ∈ Rq : ∃û ∈ Rp such that DF(û, v) = 0 and D2F(û, v) = 0

}

The proof of Theorem 6 consists in showing that Ωc
0 if of Lebesgue measure zero in Rq and that if (5.2)

holds, then Ωc
0 has Lebesgue measure zero in Rq as well. It follows that for almost every v ∈ Rq, all

local minimizers û of F(., v) are such that D2F(û, v) is positive definite. This is an important result. In

particular it shows that the conditions of Lemma 1 hold for almost every v ∈ Rq (except those contained

in a negligible subset of Rq).

Consider now that Φ piecewise smooth only. For any nonempty J ⊂ {1, . . . , r}, define

KJ = {u ∈ Rp : Giu = θi,∀i ∈ J and Giu 6= θi,∀i ∈ Jc}.
Notice that on KJ , every ϕi for i ∈ Jc is smooth, while ϕi = 0 for every i ∈ J . Define the following

subsets:

AJ = {v ∈ Rq : ∃uJ ∈ KJ such that DF|KJ (uJ , v) = 0 and D2F|KJ (uJ , v) = 0};
BJ = {v ∈ Rq : ∃û ∈ KJ local minimizer of F(., v) and ∃w ∈ K⊥J ∩ S such that δ1F(û, v)(w) = 0}.

Remark 3 We show in Propositions 2 and 3 in [?9(2005)] that

(a) the sets AJ and BJ are of Lebesgue measure zero in Rq;

(b) if (5.2) holds, then AJ and BJ are of Lebesgue measure zero in Rq as well.

Several interesting results on local minimizers established in [?10(2005)] are given below.

• Local minimizer functions never cross on Ω0. Let us consider two minimizer functions U1 and U2

defined on an open and connected domain O ⊂ Ω0. We show that either U1 ≡ U2 on O, or

U1(v) 6= U2(v), ∀ v ∈ O. (5.3)

• For every bounded O ⊂ Rq, there is a compact subset Q ⊂ Rp such that for every v ∈ O, if F(., v)

has a (local) minimum at û, then û ∈ Q. This is very important for practical applications.

• Every open set of Rq contains an open subset O on which F admits exactly n local minimizer

functions Ui : O → Rp, i = 1, . . . , n, which are Cm−1 and are such that for all v ∈ O, all the

local minimizers of F(., v) read Ui(v), i = 1, . . . , n and satisfy F(Ui(v), v) 6= F(Uj(v), v), ∀i, j ∈
{1, . . . , n} with i 6= j.

Even though the statements concerning non-smooth functions F are basically the same as those corre-

sponding to smooth functions F , their proofs when F is non-smooth are much more technical.
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5.1.2 Global minimizers

The global minimizers of F are analyzed in the second part of our work [?10(2005)]. Under the as-

sumptions mentioned in § 5.1.1, function F(., v) is coercive for every v ∈ Rq, hence it admits minimizers

[25, 73]. However, F(., v) may have several global minimizers which may be misleading in applications.

So we focus on the subset

Γ = {v ∈ Rq : F(., v) has a unique global minimizer}.

On Γ, we consider the global minimizer function Û : Γ → Rp—the function which for every v ∈ Γ yields

Û(v), the unique global minimizer of F(., v).

If Φ is Cm, no specific assumptions are taken. When Φ is piecewise smooth, we add two non-restrictive

assumptions to those given in § 5.1.1. These are H7 and H8 in section 3 in [?10(2005)] and we show they

hold in the case of (5.1).

Theorem 7 Let (5.2) hold. Then

(i) Γc has Lebesgue measure zero in Rq and the interior of Γ is dense in Rq.

(ii) The global minimizer function Û : Γ → Rp is Cm−1 on an open subset of Γ which is dense in Rq.

A crucial consequence of Theorem 7 is that in a real-world problem there is no chance of getting data v

leading to a cost-function having more than one global minimizers. Equivalently, the optimal solution û

is almost surely unique.

5.2 Edge enhancement

Edges in images and breaking points in signals concentrate critical information. Hence the requirement

that the regularization term Φ in (1.6) leads to minimizers û involving large gradients |Du| or differences

| 〈gi, û〉 | at the location of edges in the original u, and smooth differences elsewhere. Since the pioneering

work of Geman & Geman [41], different non-convex functions Φ have been considered [64, 42, 9, 69, 39, 40,

58, 5]. The relevant minimizers exhibit neat edges and well smoothed homogeneous regions. However, they

are awkward to compute, to control and to analyze... In order to alleviate these intricacies, a considerable

effort has been done to derive convex edge-preserving functions Φ, see for instance [10, 14, 24, 46, 58].

Nevertheless, possibilities are limited with respect to non-convex regularization. Various non-convex

regularization functions are currently used in engineering problems. Research is mainly focused on the

Mumford-Shah model, see e.g. [65, 62, 61]. For non-convex regularization of the form (1.8) or (1.9), some

necessary conditions and heuristics have been suggested in [39, 58, 24].

In [?6(2000)] and [?1(2005)] we address the question of non-convex regularization from the point of

view proposed in § 1.3. We consider that F(., v) of the form (1.6)-(1.7) along with

Φ(u) =
r∑

i=1

φ(〈gi, u〉), (5.4)

where {gi} are difference operators on Rp; in the following, G will denote the r × p matrix whose rows

are g∗i for 1 ≤ i ≤ r. In these papers, we derive formal results that explain how edges are enhanced and

small differences smoothed out when φ is non-convex. The potential function
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θ0 θ1

u + β
2
φ′(u)

η1

η0

u
θ0 θ1

u + β
2
φ′(u)

φ(u) = αu2

(1+αu2)
φ(u) =

α|u|
(1+α|u|)

Figure 5.1: Plots of
1
2
D1F(u, v)− v = u +

β

2
φ′(u) on R \ {0} for a PF satisfying H2 on the left and H3

on the right. These plots suggest how to find the local minimizers û of F(., v) graphically.

H1 φ : R→ R is C2 on R \ {0}, satisfies φ(t) = φ(−t) and φ′(t) ≥ 0 for all t > 0, has a strict minimum

at 0 and is non-convex in the following sense: there is θ > 0 such that φ′′(θ) < 0 while lim
t→∞

φ′′(t) = 0.

According to the smoothness of φ at zero, we consider either H2 or H3 as given below.

H2 φ is C2 and there are τ > 0 and T ∈ (τ,∞) such that φ′′(t) ≥ 0 if t ∈ [0, τ ] and φ′′(t) ≤ 0 if t ≥ τ ,

where φ′′ is decreasing on (τ, T ) and increasing on (T ,∞).

H3 φ′(0+) > 0 and φ′′ is increasing on (0,∞) with φ′′(t) ≤ 0, for all t > 0.

These assumptions are satisfied for almost all non-convex PFs used in practice (check Table 1.1). They

can be extended to other classes of functions, too.

5.2.1 An instructive illustration on R

For v ∈ R+, let F : R× R→ R read

F(u, v) = (u− v)2 + βφ(u), (5.5)

where φ is as specified above. Consider that β > − 2
φ′′(T ) under H2 and β > − 2

φ′′(0+) under H3. Define

θ0 = inf Cβ and θ1 = sup Cβ ,

where Cβ =
{

t ∈ (0,∞) : φ′′(t) < − 2
β

}
. Notice that θ0 = 0 if H3 holds and that T ∈ (θ0, θ1) if H2 holds.

In both cases,

D2
1F(u, v) = 2 + βφ′′(u) < 0 if θ0 < |u| < θ1. (5.6)

This shows that for any v ∈ R+, no local minimizer û of F(., v) lies in (−θ1,−θ0)∪ (θ0, θ1). Conversely,

minimizers û satisfy either |û| ∈ [0, θ0] or |û| ∈ [θ1,∞). This observation underlies the property of

recovering either shrunk or enhanced differences at the (local) minimizers û of F(., v), discussed next. It

is worth noticing that θ0 decreases with β while θ1 increases with β.

Let us now focus on the global minimization of F(., v). Without loss of generality, suppose that the

equation φ′′(t) = − 2
β is solved on R∗+ only for {θ0} ∪ {θ1} when H2 holds, and only for {θ1} if H3 holds
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F(u, v)

xθ0 θ1

F(u, v)

xθ0 = 0 θ1

φ(u) = αu2

(1+αu2)
φ(u) =

α|u|
(1+α|u|)

Figure 5.2: Each curve represents F(u, v) = (u − v)2 + βφ(u) for a different v ∈ (η1, η0). The global
minimizer of each F(., v) is marked with “o”. Observe also that no local minimizer belongs to (θ0, θ1).

(reader is invited to check Fig. 5.1). Some simple calculations show that for any v ≥ 0, any (local)

minimizer û of F(., v) satisfies 0 ≤ û ≤ v. Define η1 and η0 by (see Fig. 5.1 again)

η1 = θ1 +
β

2
φ′(θ1) and η0 =





θ0 +
β

2
φ′(θ0) under H2,

β

2
φ′(0+) under H3.

(5.7)

One can then see that if v ∈ (η1, η0), there are two strict local minimizers, û0 ∈ [0, θ0] and û1 > θ1. Let

ω0 : [0, η0) → [0, θ0] and ω1 : (η1,∞) → (θ1,∞) denote the relevant minimizer functions. Notice that

these functions are C1, that ω0 = 0 if H3 holds, and that

(
v − ω0(v)

)
>

(
v − ω1(v)

)
+ (θ1 − θ0), ∀v ∈ (η1, η0).

Since v − ω0(v) and v − ω1(v) are the bias on the relevant minimizer, we can say that û0 = ω0(v) incurs

strong smoothing while smoothing for û1 = ω1(v) is weak. If in addition lim
t→∞

φ′(t) = 0 (which is a current

assumption), then

lim
v→∞

|v − ω1(v)| = 0.

Hence smoothing for û1 = ω1(v) is vanishing which corresponds to the recovery of sharp edges.

Furthermore, one can show that there is a unique η ∈ (η1, η0) such that

• if v ∈ [0, η), the global minimizer û of F(., v) satisfies û = ω0(v) ∈ [0, θ0];

• if v > η, the global minimizer û of F(., v) is such that û = ω1(v) > θ1,

whereas Fη has two global minimizers, ω0(η) and ω1(η). This behavior is illustrated in Fig. 5.2. Clearly,

the global minimizer function is discontinuous at v = η. The critical value v = η can be seen as a threshold

to decide whether or not the global minimizer û of F(., v) incurs strong smoothing. In the context of

signal and image reconstruction, this corresponds to the decision on whether a difference belongs to a

homogeneous region or to an edge.

5.2.2 Either shrinkage or enhancement of the differences

Consider first that the regularization is smooth, i.e. φ satisfies H1 and H2.
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Theorem 8 Assume the set {gi : 1 ≤ i ≤ r} is linearly independent and put µ = max
1≤i≤r

‖G∗(GG∗)−1ei‖.

If β >
2µ2 ‖A∗A‖
|φ′′(T )| , (5.8)

there exist θ0 ∈ (τ, T ) and θ1 ∈ (T ,∞) such that for every v ∈ Rq, every local minimizer û of F(., v)

satisfies

either | 〈gi, û〉 | ≤ θ0, or | 〈gi, û〉 | ≥ θ1, ∀i ∈ {1, . . . , r}. (5.9)

A reciprocal statement says that if we fix either θ0 or θ1, we can find a suitable β such that (5.9) holds.

The thresholds θ0 and θ1 in the proof delimit only the regions in Rp where D2F(u, v) is not non-negative

definite. We can expect that they are pessimistic.

The assumption that {gi} is linearly independent fails in usual image restoration problems. Never-

theless, the analysis above is easy to extend to all situations where a (local) minimizer û is homogeneous

on some connected regions. Details are given in [?1(2005)].

Truncated quadratic PF. This PF φ(t) = min{αt2, 1} is the discrete version of the Mumford-Shah

model [11]. It fails to satisfy the assumptions above. We consider that {gi : 1 ≤ i ≤ r} is linearly

independent.

Proposition 1 If F(., v) reaches its global minimum at û, then for every i ∈ {1, . . . , r} we have:

(i) if Bei = 0, then 〈gi, û〉 = 0;

(ii) if Bei 6= 0, then

either | 〈gi, û〉 | ≤ 1√
α

Γi or | 〈gi, û〉 | ≥ 1√
α Γi

, (5.10)

where B is a matrix that depends only on A and G, and

Γi =

√
‖Bei‖2

‖Bei‖2 + αβ
< 1.

Moreover, the inequalities in (5.10) are strict if F(., v) has a unique global minimizer.

The matrix B is easy to compute but we skip the details. Since the result holds for global minima

exclusively, this proposition furnishes a necessary condition for a global minimum of F(., v). The result

is pretty fine since the thresholds are adapted to each difference. In particular, (5.9) holds for θ0 = γ√
α

and θ1 = 1√
αγ

, where γ = max
1≤i≤r

Γi < 1.

Numerical illustration of Proposition 1. We generate 100 random signals uk, 1 ≤ k ≤ 100, of

length 128. At each position i ∈ {1, . . . , 127} of the x-axis of Fig. 5.3 (a) we plot (with dots) the set

{uk
i − uk

i+1 : 1 ≤ k ≤ 100}. For a given A, we compute the thresholds in (5.10). Namely, the curves

with a solid line in Fig. 5.3 (b), from the top to the bottom, represent (
√

αΓi)−1, Γi/
√

α, −Γi/
√

α

and −(
√

αΓi)−1. For each k ∈ {1, . . . , 100} we generate data vk = Auk + nk where nk is noise and then

compute the global minimizer ûk of F(u, vk) where φ is the truncated quadratic function. At each position
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(a) The differences for the original signals: (b) The differences for the global minimizers

for 1 ≤ k ≤ 100, each dot at position for 1 ≤ k ≤ 100, each dot at position

i ∈ {1, . . . , 127} on the x-axis represents uk
i − uk

i+1 i ∈ {1, . . . , 127} on the x-axis represents ûk
i − ûk

i+1

Figure 5.3: Distribution of the differences of the original signals (left) and of the global minimizers (right).
The thresholds ±Γi/

√
α, ±1/

√
αΓi for i = 1, . . . , 127 are plotted with solid lines (—).

i = 1, . . . , 127 of the x-axis in Fig. 5.3 (b) we represent (with dots) the set {ûk
i − ûk

i+1 : 1 ≤ k ≤ 100}.
For many k, many differences satisfy |ûk

i − ûk
i+1| ≤ Γi/

√
α. As predicted by Proposition 1, for no i, no

difference has its magnitude |ûk
i − ûk

i+1| in (Γi/
√

α, (
√

αΓi)−1, for any k.

Next we focus on functions φ that are non-smooth at zero. In this case, all formulae are more

complicated but the results are stronger. Notice that no assumption on {gi : 1 ≤ i ≤ r} is done.

Theorem 9 Let H1 and H3 hold. If

β >
2µ2 ‖A∗A‖
|φ′′(0+)| , (5.11)

where µ > 0 is a constant that depends only on {gi : 1 ≤ i ≤ r}, then there exists θ1 > 0 such that for

every v ∈ Rq, every (local) minimizer û of F(., v) satisfies

either | 〈gi, û〉 | = 0, or | 〈gi, û〉 | ≥ θ1, ∀i ∈ {1, . . . , r}. (5.12)

If |φ′′(0+)| = ∞, we find β0 = 0 in (5.11). We also prove a reciprocal statement saying that if we fix

θ1 > 0, there is β > 0 such that (5.12) holds.

Remark 4 By (5.12), all non-zero differences are necessarily larger then θ1. Thus û is piecewise constant

with large edges. We are hence faced with an enhanced stair-casing effect.

“0-1” PF. This function reads ϕ(0) = 0, ϕ(t) = 1 if t 6= 0: it is discontinuous at 0 and does not satisfy

the assumptions given above. As in Proposition 1, we suppose that {gi : i ∈ J} is linearly independent

and focus on the global minimizers of F(., v).

Proposition 2 If F(., v) has a global minimum at û, then for every i ∈ {1, . . . , r},

(i) if Bei = 0, then 〈gi, û〉 = 0;
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(ii) if Bei 6= 0, then

either 〈gi, û〉 = 0 or | 〈gi, û〉 | ≥
√

β

‖Bei‖ , (5.13)

where B is the matrix mentioned in Proposition 1. The last inequality is strict if F(., v) has a unique

global minimizer.

This proposition provides a simple necessary condition for a global minimum of F(., v). Notice that

(5.13) is finely adapted to each difference 〈gi, û〉, and that (5.12) holds if we put θ1 = min
1≤i≤r

√
β

‖Bei‖ .

5.3 Selection for the global minimum

In section 4 in [?1(2005)] we study how an original image or signal of the form η1lΣ, where η > 0, the

sets Σ ⊂ {1, . . . , p} and Σc are nonempty, and 1lΣ ∈ Rp reads

1lΣ[i] =
{

1 if i ∈ Σ,
0 if i ∈ Σc,

(5.14)

is recovered at the global minimizer û of F(., v) when v = A η1lΣ and {gi} are first-order difference

operators. Additional assumptions are that φ(t) ≤ 1 for all t ∈ R (it is easily justified by Table 1.1) and

that A∗A is invertible. By the latter, F(., v) reaches its global minimum on a bounded subset of Rp.

From now on, we systematically denote

J =
{

i ∈ {1, . . . , r} : 〈gi, 1lΣ〉 6= 0
}

(5.15)

Observe that J address the edges in 1lΣ. It will be convenient to denote by ûη a global minimizer of the

function u → F(u, ηA1lΣ). Below we resume the main results demonstrated in section 4 in [?1(2005)].

• Considering smooth regularization in the context of Theorem 8, we exhibit two constants η0 > 0

and η1 > η0 such that

η ∈ [0, η0) ⇒ | 〈gi, ûη〉 | ≤ θ0, ∀i ∈ {1, . . . , r} (5.16)

whereas

η ≥ η1 ⇒ | 〈gi, ûη〉 | ≤ θ0, ∀i ∈ Jc,
| 〈gi, ûη〉 | ≥ θ1, ∀i ∈ J.

This result corroborates the interpretation of θ0 and θ1 as thresholds for the detection of smooth

differences and edges, respectively.

• For the truncated quadratic function, define ωΣ ∈ Rp by

ωΣ = (A∗A + βαG∗G)−1
A∗A1lΣ. (5.17)

Then there are η0 > 0 and η1 > η0 such that

η ∈ [0, η0) ⇒ ûη = η ωΣ, (5.18)

η ≥ η1 ⇒ ûη = η 1lΣ. (5.19)

Moreover, ûη in (5.18) and (5.19) is the unique global minimizer of the relevant F(., ηA1lΣ). Observe

that ηωΣ in (5.18) is the regularized least-squares solution, and it does not involve edges. For η ≥ η1

the global minimizer ûη is equal to the original u.
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• When φ is non-smooth at zero, we have η0 > 0 and η1 > η0 such that

η ∈ [0, η0) ⇒ ûη = ηζ 1l, where ζ =
(A1l)∗A1lΣ
‖A1l‖2 (5.20)

whereas

η > η1 ⇒ 〈gi, ûη〉 = 0, ∀i ∈ Jc,
| 〈gi, ûη〉 | ≥ θ1, ∀i ∈ J.

So, if η is small, ûη is constant, while for η large enough, ûη has the same edges and the same constant

regions as the original η1lΣ. Moreover, if Σ and Σc are connected with respect to {gi : 1 ≤ i ≤ r},
there are ŝη ∈ (0, η] and ĉη ∈ R such that

ûη = ŝη1lΣ + ĉη1l, (5.21)

and ŝη → η and ĉη → 0 as η →∞. Hence ûη provides a faithful restoration of the original η1lΣ.

• Very light assumptions are needed to show that when φ is the “0-1” potential function, there are

η0 > 0 and η1 > η0 such that

η ∈ [0, η0) ⇒ ûη = ηζ 1l, (5.22)

η > η1 ⇒ ûη = η 1lΣ, (5.23)

where ζ is given in (5.20). Moreover, ûη in (5.22) and (5.23) is the unique global minimizer of

F (., ηA1lΣ).

Experiments on signal denoising. Let us come back to the experiment presented in Figs. 2.1 and

2.2 in § 2.1. The function φ used in Fig. 2.2(c) is non-convex and non-smooth at zero. The two minimizers

plotted there, corresponding to two different realizations of the noise corrupting the data, involve sharp

edges whose height is close to the original and they are neatly segmented in the same way. In contrast,

the edges in Figs. 2.2(a)-(b) are underestimated which can be explained by the convexity of φ.

Experiments on image deblurring. We interpret the experiments in § 2.1 in the light of the new

theoretical results on edge-enhancement. The restorations in Fig. 2.4 (a) and (b) correspond to convex

functions φ. The edges in (a) are slightly blurred and underestimated while (b) shows a strong stair-

caising effect. The restorations in Fig. 2.5 are calculated using non-convex functions φ. Those in the first

row correspond to smooth at zero functions φ while those in the second row correspond to non-smooth

at zero functions φ. On the average, the important edges are very neat and their amplitude is correct. In

addition, the images corresponding to smooth functions φ—Fig. 2.5 (a) and (b)— have smoothly varying

homogeneous regions whereas those corresponding to a non-smooth at zero φ—(c) and (d)—are piecewise

constant with high edges, as suggested by (5.12) in Theorem 9.

5.4 Convex edge-preserving regularization versus non-convex
regularization

Each local minimizer û of F(., v) can be seen as resulting from a continuous local minimizer function

v → ω(v) defined on a subset of O ⊂ Rq, i.e. û = ω(v). From the continuity, ω : O → Rp produces
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Figure 5.4: Convex edge-preserving regularization versus non-convex regularization.

minimizers û = ω(v), for v ∈ O, that have the same set of edges J = {i ∈ {1, . . . , r} : 〈gi, ω(v)〉 ≥ θ1} for

all v ∈ O.

Given v ∈ Rq, let F(., v) reach its global minimum at û = ω(v) with edges J and homogeneous

regions Jc. When data vary in a neighborhood of v in such a way that noticeable edges either appear

or disappear in the original u, the global minimum jumps from the (local) minimizer function ω with

edges J to another (local) minimizer function ω′ whose edges are J ′ 6= J . This discontinuity of the global

minimizer function allows edges to be detected or removed at the global minimum of F(., v). Using the

results in § 5.1, such discontinuities occur only at data points included in a negligible subset of Rq.

In contrast, if F(., v) is strictly convex for every v ∈ Rq, there is a unique minimizer function ω :

Rq → Rp and the latter is continuous [14]. In particular, differences 〈gi, û〉 can take any value on R.

The edge-preservation properties of φ(t) = |t|—the TV regularization—have been extensively discussed

in the literature. We should emphasize that they are based on a totally different property. As explained

in § 2.1, the relevant minimizers û exhibit stair-casing: for many differences, 〈gi, û〉 = 0, so û contains

constant regions. The non-zero differences that separate the constant regions in û then naturally appear

as edges. This effect is observed in Fig. 2.4(b) where numerous spurious edges appear on planar-shaped

regions. A nice illustration is given in Fig. 5.4.

Thus, image and signal restoration using non-convex regularization is fundamentally different from

restoration using convex regularization. The main difference is related to the (dis)continuity of the global

minimizers with respect to the data.



Chapter 6

Critical remarks on Bayesian MAP

Let us consider the simple example presented in Fig. 6.1. The original u, plotted with a solid line in Fig.

6.1 (a), is generated according to the law π(ui−ui+1) = exp{−β|ui−ui+1|}/Z, 1 ≤ i ≤ p−1, for p = 128

and β = 10. The histogram of the differences ui−ui+1 is seen below in (c). Data v, plotted in (a) with a

dashed line, are generated as v = u+n where n is white Gaussian noise with σ2 = 0.04. The true Bayesian

MAP solution is hence the minimizer û of F(u, v) = 1
2σ2 ‖u− v‖2 + β

∑p−1
i=1 |ui − ui+1|. This solution is

plotted in (b) with a solid line (data v are recalled there with a dashed line) and the histogram of the

differences ûi − ûi+1 is presented in (d). In particular, û involves 96 zero-valued differences. Obviously

the obtained û is very far from the prior model!

Our studies on the properties of minimizers exhibited several points of disagreement between prior

models and MAP solutions. Some of them were discussed in [?52(2000)]. We briefly describe the essential

points and skip the technical details.

• Let Φ be of the form (2.2) with ϕ continuous and non-smooth at zero, as considered in that section.

The prior π(u) relevant to (1.14) is a continuous function, so Pr
(
Giu = θi

)
= 0. (Here Pr stands

for probability.) Consider that F is of the form (1.6) where Ψ is a smooth data-fidelity function.

According to Theorem 1, that the minimizers û of F(., v), when v ranges over some open domain,

are such that Pr
(
Giû = θi

)
> 0, hence the law of û contains Dirac distributions. Such a solution û

cannot be in agreement with the prior conveyed by Φ.

• Consider that Ψ is of the form (3.2) with ψ non-smooth at zero and continuous, and that the

assumptions given in § 3.1 hold. For definiteness, let ψ be even and increasing on R+, and let Φ

be a smooth regularization function. Using (1.13), the likelihood π(v|u) is a continuous function,

hence Pr
( 〈ai, u〉 = vi

)
= Pr(noisei = 0) = 0. However, by Theorem 3, the minimizer û is such

that Pr
( 〈ai, û〉 = vi

)
> 0. The law of the residuals corresponding to û contains Dirac distributions.

There is a gap between the model for the noise and the behavior of the residuals.

• Now let Φ be continuous and non-convex as considered in § 5.2. Consider that u belongs to a ball

B(0, ρ) where the radius ρ > 0 is large enough. The prior defined by (1.14) clearly satisfies π(u) > 0

for all u ∈ B(0, ρ). Let θ0 and θ1 be the thresholds exhibited in § 5.2. In particular, Pr
(| 〈gi, u〉 | ∈
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−0.3 0 0.3

20

100

−0.3 0 0.3

20

100

(c) Histogram of |ui − ui+1| (d) Histogram of |ûi − ûi+1| at û.

Figure 6.1: MAP signal reconstruction using the true prior law and the true parameters.

(θ0, θ1)
)

> 0. Furthermore, let Ψ be a smooth data-fidelity term. From Theorems 8 and 9,

and Propositions 1 and 2, it follows that the minimizers û of F(., v) are such that Pr
(| 〈gi, û〉 | ∈

(θ0, θ1)
)

= 0. The latter is a contradiction with the prior model for u. By the way, it is nicely

illustrated in Fig. 5.3 for the case of a truncated quadratic regularization.

• The two methods for restoration of binary images, described in § 2.4.2 and § 4.2, are a blatant

illustration of the disagreement between model and solution. In a Bayesian setting, these models

corresponds to Gaussian or Laplace noise, respectively, on the data v, and to Laplace prior on the

differences between neighboring pixels. In spite of this, the solutions are either quasi-binary, or

binary.

MAP estimation comes from the minimization of a 0-1 cost and expresses a risk diminishing. In

particular, it does not require that the obtained solutions are in agreement with the likelihood or the

prior models. However, the disagreements between the models and the relevant solutions is misleading

when one has to solve signal and image reconstruction problems.



Chapter 7

Computational issues

7.1 Non-convex minimization using continuation ideas

The minimization of non-convex energies of the form (1.6) especially when Ψ =
∑

i ψi is such that the

calculation of each ψi involves more than a few samples of u, is still an open problem. The reasons

explained in [?8(1999)] and [?20(1998)] remain currently in force. We briefly sketch the approach devel-

oped in these papers which was inspired by the work of Blake and Zisserman [11] in the context of visual

reconstruction.

We consider that Ψ in (1.6) is convex but possibly only nonstrictly so, as is the case in usual inverse

problems. The regularization term is of the form

Φ(u) =
∑

k

γk

∑

i

φ(| 〈gk
i , u

〉 |),

where {gk
i : i ≥ 1} are difference operators of the kth order, γk are weighting constants and φ are general

non-convex and possibly non-smooth potential functions (including all non-convex PFs given in Table

1.1). Global minimizer û is approximated by a sequence of local minimizers û` for ` = 1, . . . , L,

û` = arg min
V (û`−1)

Fρ`
(u, v)

Fρ`
(u, v) = Ψ(u, v) + βΦρ`

(u)

where V (u) denotes the smaller neighborhood of u containing a local minimizer of Fρ`
(., v), so that the

minimization of each Fρ`
(., v) is realized using standard descent methods. The sequence ρ` is increasing

in [0, 1] and approximated energies Fρ`
(., v) are smooth and such that Fρ0(., v) is strictly convex and

FρL
(., v) ≈ F(., v). Even though convergence of û` towards a global minimizer cannot be ensured,

a careful construction of Fρ can improve the chance to get a better approximation. In this respect,

approximations Fρ are as close as possible to the original F with a special control on the points where

D2
1Fρ(u, v) reaches its minimum (which is < 0 for ` > 1). Examples and counter-examples are provided.

Two numerical experiments—an image deblurring and an emission tomography reconstruction—illustrate

the performance of the proposed technique with respect to the main alternative approaches.
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7.2 Convergence rate for the main forms of half-quadratic reg-
ularization

Consider F of the form defined by (1.6)-(1.7) and (5.4) where φ : R+ → R is convex, smooth and edge-

preserving. Examples of such functions are (f1)-(f4) in Table 1.1. Suppose also that A∗A is invertible

and/or φ′′(t) > 0, ∀t ∈ R+. Then for every v ∈ Rp, F(., v) has a unique minimum and the latter is

strict. In spite of this well-posedness, F(., v) may exhibit nearly flat regions where minimization methods

progress very slowly. In order to cope with the computation, half-quadratic (HQ) reformulation of F was

pioneered, in two different ways, in [39] and [40]. For simplicity, we will write F(u) for F(u, v). The idea

is to construct an augmented cost-function F : Rp ×Rr → R which involves an auxiliary variable b ∈ Rr,

F (u, b) = ‖Au− y‖2 + β

r∑

i=1

(
Q(〈gi, u〉 , bi) + ψ(bi)

)
, (7.1)

where ψ : R → R satisfies φ(t) = min
s∈R

{Q(t, s) + ψ(s)}, ∀t ∈ R, so that F(u) = min
b∈Rr

F (u, b). The main

forms for Q were introduced in [39] and [40] and read:

multiplicative form Q(t, s) =
1
2
t2s, for t ∈ R, s ∈ R+ (7.2)

additive form Q(t, s) = (t− s)2, for t ∈ R, s ∈ R. (7.3)

The minimizer (û, b̂) of F in (7.1) is found using alternate minimization. So at iteration k we calculate

b(k) = arg min
b

F (u(k−1), b) (7.4)

u(k) = arg min
u

F (u, b(k)). (7.5)

The key points are that the minimization with respect to b is done in a componentwise way while the

function on the right is quadratic with respect to u. We formally write these iterations in the form

b
(k)
i = σ

(〈
gi, u

(k−1)
〉)

, 1 ≤ i ≤ r, (7.6)

u(k) = ω(b(k)), (7.7)

where σ : R→ R and ω : Rr → Rp are the relevant minimizer functions.

The multiplicative form was considered in [23, 24, 30, 51, 56, 78] and the additive form in [6, 23, 27,

51]. In [27], the auxiliary variable is introduced in a non-convex data-fidelity term. Extensions of the

multiplicative form were proposed in [78, 51]. The convergence rate of (7.4)-(7.5) for the multiplicative

form is considered in [24, 30, 51] and for the additive form in [6]. The numerical results have shown that

both forms of HQ regularization can speed up computation. However, their convergence rates has never

been analyzed and compared in a systematic way.

In a joint work with Michael Ng [?11(2005)], we show that both the multiplicative and the additive

forms of HQ regularization can be put into the form of quasi-Newton minimization and we analyze their

convergence rates.

Multiplicative form. The standard assumptions are that t → φ(|t|) is convex and C1 on R,

t → φ(
√

t) is concave on R+, φ′′(0+) > 0 and lim
t→∞

φ(t)/t2 = 0. The minimizer function σ introduced
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in (7.4) and (7.6) has an explicit form that was originally determined in [24]:

σ(t) =

{
φ′′(0+) if t = 0,
φ′(t)

t
if t 6= 0.

(7.8)

It satisfies σ(t) > 0 for all t ∈ R. The minimizer function with respect to u is

ω(b) = (H(b))−1 2A∗v

H(b) = 2A∗A + βG∗diag(b)G Â 0, ∀b > 0. (7.9)

For our convergence rate analysis, we suppose also that φ is C2 on R and C3 near zero, which is not

a practical assumption.

Additive form. The basic assumptions are that φ is convex and ∃c > 0 such that t → ct2/2−φ(t)

is convex, φ is continuous on R+, lim
|t|→∞

φ(t)/t2 < c/2. The minimizer function σ admits an explicit

form [23, 27, 6]:

σ(t) = ct− φ′(t). (7.10)

The minimizer function with respect to u reads

ω(b) = H−1 (2A∗y + βG∗b) ,

H = 2A∗A + βc G∗G Â 0. (7.11)

For each form, let T : Rp → Rp be defined as

T (u) = ω
(

[σ(〈gi, u〉)]ri=1

)
. (7.12)

Half-quadratic iterations (7.4)-(7.5) are then equivalent to

u(k) = T (u(k−1)), for all k ∈ N. (7.13)

More precisely, we show that

T (u) = u− (H(u))−1
DF(u), (7.14)

where and DF denotes the differential of F and

multiplicative form H(u) = 2A∗A + βG∗diag ([σ(〈gi, u〉)]ri=1)G Â 0, (7.15)

additive form H(u) = H = 2A∗A + βcG∗G Â 0. (7.16)

Hence each form of HQ regularization is a variant of Newton minimization where the matrix H(u)

provides a correction of the steepest descent direction −DF(u). Recall that the classical Newton method

corresponds to H(u) = D2F(u), where

D2F(u) = 2A∗A + βG∗diag
(
[φ′′(〈gi, u〉)]ri=1

)
G.

More details are given in section 4 in [?11(2005)]. Furthermore, HQ minimization amounts to find the

fixed point û of T . Given a matrix H ∈ Rp×p, we write ρmax(H) for its largest-in-magnitude eigenvalue
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and ρmin(H) for its smallest-in-magnitude eigenvalue. In order to analyze the contraction properties of

T , we focus on the root-convergence factor [25, 67]

C(T , û) = sup
{

lim sup
k→∞

∥∥∥u(k) − û
∥∥∥

1
k

: u(0) ∈ Rp

}
, (7.17)

= ρmax(DT (û)), (7.18)

where the second equality comes from the linear convergence theorem [67, p. 301].

Theorem 10 For each form of HQ regularization the spectral radius of DT at û satisfies

ρmax (DT (û)) ≤ K max
1≤i≤r

R(| 〈gi, û〉 |) < 1, (7.19)

where K ∈ [0, 1] and R : R+ → [0, 1] is continuous and

multiplicative form





K =
βφ′′(0)ρmax(G∗G)

2ρmin(A∗A) + βφ′′(0)ρmax(G∗G)
,

R(t) = 1− φ′′(t)
σ(t)

,
(7.20)

additive form





K =
βcρmax(G∗G)

2ρmin(A∗A) + βcρmax(G∗G)
,

R(t) = 1− φ′′(t)
c

(7.21)

The result in (7.21) recommend to choose c = φ′′(0) for the constant c in the additive form § ?? In such

a case, the constant K is the same for both forms. If A∗A is singular, K = 1. Furthermore, for all

edge-preserving functions φ used in practice, the function R is monotone increasing on R+ and

R(t) < R(t), ∀t ∈ R \ {0},
multipl. form additive form

with R(0) = 0 for both forms. An illustration is seen in Fig. 7.1. This suggests that the multiplicative

form needs fewer iterations than the additive form in order to reach the minimizer û. This is corroborated

by the experiments presented in Section 5 in [?11(2005)].
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Figure 7.1: The shape of R as a function of α for φ(t) =
√

α + t2. Multiplicative form “—–”, Additive
form “- - - -” for c = φ′′(0).

In both the multiplicative and the additive forms of HQ regularization, the calculation of b(k) has

basically the same complexity. In the multiplicative form, the matrix H(b(k)) in (7.9) is changing at each
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iteration. Although invertible, it can be ill-conditioned so that finding ω(b(k)) can need a large number

of iterations. In the additive form, H is fixed—see (7.11). If p is small, we can compute H−1 before

to start iterations. When p is large, the conjugate gradient method can be used to find ω(b(k)) at each

iteration. The convergence of the additive form can be improved using preconditioning techniques. So,

the computational cost of each iteration is much smaller for the additive form than for the multiplicative

form. In order to verify these claims in practice, we provide the average results from extensive numerical

experiments where we compare the convergence properties (number of iterations, computational times,

conditioning) of the two forms of HQ regularization and then compare them with standard minimization

methods (see section 5 in [?11(2005)]). In conclusion, the computational cost of each iteration for the

additive form of HQ regularization is smaller than for the multiplicative form and it can substantially be

improved using fast solvers and preconditioning.

7.3 Equivalence result for the multiplicative half-quadratic reg-
ularization

The contribution of our joint paper with Raymond Chan [?23(2005)] is to show that the multiplicative

form of half-quadratic regularization is equivalent to the very classical gradient linearization approach,

known also as the fixed point iteration. Connection between both approaches has been mentioned by

Vogel in [83] for the particular case when φ(t) =
√

α + t2. As we show, equivalence holds in general.

With only a little loss of generality, we keep here the framework of the previous section § 7.2. In order

to solve the equation DF(u) = 0, at each iteration k of the fixed point iteration method one finds u(k)

by solving a linear problem,

L
(
u(k−1)

)
u(k) = z, (7.22)

where z ∈ Rp is independent of u, and for any u ∈ Rp given, z and L(u) ∈ Rp×p are uniquely defined by

DF(u) = L(u) u− z. (7.23)

Let us remind that

DF(u) = 2A∗Au + βG∗ [φ′(〈gi, u〉)]ri=1 − 2A∗v

= H(u)u− 2A∗v

where H(u) is the matrix given in (7.15). The identification with (7.22) clearly reads

L(u) = H(u) and z = 2A∗v.

On the other hand, inserting (7.8) and (7.9) into (7.12) yields

T (u) = (H(u))−1A∗v

By (7.13), the kth iteration for the multiplicative HQ regularization reads

u(k) =
(
H(u(k−1))

)−1

z.

Hence the result.
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7.4 Fast minimization for cost-functions of the form `2 − `1 and
`1 − `1

The work in [?12(2005)] is aimed at providing efficient methods to minimize non-smooth cost-functions

F of the form

`2 − `1 F(u) = ‖Au− v‖22 + β‖Gu‖1 (7.24)

`1 − `1 F(u) = ‖Au− v‖11 + β‖Gu‖1 (7.25)

under the constraint that u ≥ 0. Here, u ∈ Rp is an image and G is a difference operator, e.g. the

operator that yields the differences between each pixel and its 4 or 8 adjacent neighbors. Instead of

directly minimizing these functions, we restate them as the minimization of differentiable cost-functions

under linear constraints.

The `1 − `1 cost-function. Put x = Au− v and y = βGu. Let us decompose x as x = x+ − x−

where x+
i = max{xi, 0} and x−i = max{−xi, 0}, 1 ≤ i ≤ p. In a similar way, let y = y+ − y−.

Minimizing F in (7.25) is then equivalent to

minimize
〈
1l, x+

〉
+

〈
1l, x−

〉
+

〈
1l, y+

〉
+

〈
1l, y+

〉

subject to Au− v = x+ − x−

βGu = y+ − y−

x+ ≥ 0, x− ≥ 0, y+ ≥ 0, y− ≥ 0, u ≥ 0.

This is a linear programming (LP) problem that can be put into the standard form

minimize 〈c, z〉 subject to Hz = b and z ≥ 0.

The `2 − `1 cost-function. Now put y = βGu and decompose y as above. Minimizing F in

(7.24) is equivalent to

minimize ‖Au− v‖22 +
〈
1l, y+

〉
+

〈
1l, y+

〉

subject to βGu = y+ − y−

y+ ≥ 0, y− ≥ 0, u ≥ 0.

This is a quadratic programming (QP) problem whose standard form reads

minimize
1
2
z∗Qz + 〈c, z〉 subject to Hz = b and z ≥ 0.

The steps that follow are to define the optimal solution using generalized Lagrange multipliers and then

to eliminate a certain number of variables. The resultant constrained minimization problem is solved

using an interior point method [66] (chapter 1) and [85] (chapter 14), combined with factorized sparse

inverse preconditioners [59]. All details are explained in [?12(2005)].



Chapter 8

Perspective and future research

The approach proposed in section 1.3 is new and important. Even if a few results could been obtained, it

is widely open for future research and arises a lot of new questions. The slogan of my future research can

be formulated as the conception of feasible signal and image reconstruction methods that make a correct

use of all available information, i.e. that respect the data acquisition and the perturbation models as well

as the priors. Several directions that I feel can be fruitful to explore are presented next.

(a) The contradictions relevant to Bayesian methods exhibited in chapter 6 need a deep analysis. Hence

the foundations of statistical methods combining knowledge of different origins, have to be revisited

from the point of view of signal and image reconstruction.

We belief that this can help to determine ways to construct solutions of inverse problems that really

do respect the models.

Will we be happy with solutions that respect the models? In many cases probably not. The reason

is that current models, and especially priors, are usually taken in an ad hoc manner. Let us recall

the work of Gousseau and Morel [45] demonstrating that natural images do not satisfy the Bounded

Variation model which underlies one of the most popular image reconstruction methods. In the

recent years, researchers become aware that little is known on natural images and even less on

digital images. Realist modelling of images will certainly be the center of important research in

the next years. Once one has right models, it will be crucial to have reconstruction methods that

respect the models.

(b) I will pursue studying the properties of the minimizers relevant to various cost-functions. This is

important for several reasons. It allows to obtain rigorous results on the solutions that are currently

used, and hence a real control on them and on the parameters involved there. This gives an access

to the models that these solutions follow effectively. The obtained results can provide a reversed

way to perform modelling by providing a “dictionary” where different properties of the minimizers

are related to different features of the underlying cost-function.

Using the elements of this “dictionary”, one can think of creating specialized cost-functions adapted

to solve particular problems. Relevant examples in our previous research are the binary image

reconstruction using convex cost-functions and the outliers suppression methods based on `1 data-

fidelity.
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This is a challenge for the intellect and for the applications as far as it can lead to simple solutions

of complicate problems.

An important extension of the analytical results on the properties of the minimizers will be to put

them in a statistical context. More precisely, the idea is to give a statistical description of these

properties as a function of the randomness of the data. This provides an elegant way to get an

access to the statistics of the solutions, which remains an unsolved problem.

(c) The computational aspects are crucial for the success of a signal or image reconstruction method.

The knowledge on some properties of the minimizers points can in principle be used in the optimiza-

tion schemes in order to reduce the search space and thus simplify the optimization. Furthermore,

it may be possible to find (partial) equivalences with PDE filtering methods and thus improve the

convergence rates.

The problems briefly described above are likely to yield various ramifications. I will be happy to have

the opportunity to initiate young researchers to this research. Hence my motivation to apply for the

grade habilité à dirigier des recherches.
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