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Abstract. This paper deals with regularized pointwise estimation of discrete signals which
contain large strongly homogeneous zones, where typically they are constant, or linear, or more
generally satisfy a linear equation. The estimate is defined as the minimizer of an objective function
combining a quadratic data-fidelity term and a regularization prior term. The latter term is the sum
of the values obtained by applying a potential function (PF) to each component, called a difference,
of a linear transform of the signal. Minimizers of functions of this form arise in various settings in
statistics and optimization.

The features exhibited by such an estimate are closely related to the shape of the PF. Our goal
is to determine estimators providing solutions which involve large strongly homogeneous zones—
where more precisely the differences are null—in spite of the noise corrupting the data. To this
end, we require that the strongly homogeneous zones, recovered by the estimator, be insensitive to
any variation of the data inside a small open ball. More generally, this requirement is addressed to
any local or global minimizer of the objective function whose local behavior with respect to the data
gives rise to a locally continuous minimizer function. On the one hand, we show that if the PF is
smooth at zero, then all the data, yielding minimizers with large, strongly homogeneous zones, are
contained in a closed, negligible set. The chance that noisy data generate such minimizers is null. In
contrast, if the PF is nonsmooth at zero, then for almost all data, the strongly homogeneous zones
recovered by a minimizer function are preserved constant under any small perturbation of the data.
The data domain is thus organized into volumes whose elements yield minimizers which share the
same strongly homogeneous zones. This explains why the solutions, obtained using nonsmooth-at-
zero PFs, exhibit strongly homogeneous zones.

These theoretical results are illustrated using a numerical example. Our analysis can be extended
to general functions combining smooth and nonsmooth terms.
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1. Introduction. Let an unknown signal1 x ∈ IRM be observed through a sys-
tem y = Ãx + n ∈ IRN , where Ã ∈ IRN×M is a linear operator and n represents
the observation noise. Bayesian MAP estimation defines the inverse solution x̂ as the
minimizer of the posterior energy Ey(x) ∝ − ln P (x|y), which combines log-likelihood
− ln P (y|x) and prior energy Φ̃(x) ∝ − ln P (x). In a regularization framework, Ey is
an objective function and its global minimizer x̂ is a regularized estimate:

x̂ := arg min
x
Ey(x).(1.1)

∗Received by the editors September 25, 1997; accepted for publication (in revised form) February
10, 1999; published electronically August 9, 2000. This paper contains the demonstration and
development of some ideas that were summarized in a short note, published in C.R. Acad. Sci.,
6 (1997).

http://www.siam.org/journals/siap/61-2/32779.html
†UFR Mathématiques et Informatique, Université René Descartes, 45, rue des Saints-Pères, 75270
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We confine our attention to objective functions of the form2

Ey(x) := ‖Ãx− y‖2 + βΦ̃(x),(1.2)

Φ̃(x) :=
∑

k∈S◦
ϕ(gT

k x),(1.3)

where β > 0 is a parameter and {gk, k ∈ S◦} is any collection of linearly independent
operators, gk : IRM 7→ IR, and T denotes transpose. Let S be the ordered set of the
sites of x; then S◦ ⊆ S. Typically, S = {1, . . . , M} and gT

k x are finite differences;
then S◦ is composed of those k for which gT

k x involves only elements xi with i ∈
S (for instance, gT

k x = xk − xk+1 and S◦ = {1, . . . ,M − 1}). By a slight abuse
of language, hereafter gT

k x are called differences. The regularizer Φ̃ results from
applying a potential function (PF) ϕ to each difference gT

k x for k ∈ S◦. The PF ϕ in
(1.3) is symmetric, increasing on [ 0,∞ [, twice differentiable except at several points
where it can be nonsmooth and even discontinuous; it can be nonconvex. Minimizers
of objective functions of the form (1.2)–(1.3) arise in different settings: Bayesian
estimation [5, 6], regularization [29, 14], variational methods [27, 3, 8, 9], proximal
point optimization [25, 20, 12].

This work addresses any strict local or global minimizer x̂ whose local behavior
with respect to y gives rise to a locally continuous minimizer function X , yielding in
particular x̂ = X (y). Although X is a random function with respect to the origi-
nal unknown signal, the features of any particular solution x̂ = X (y) are inherently
related to the shape of Φ̃. Our approach is to consider the behavior of X in con-
nection with the shape of Φ̃. This work is focused on the possibility of obtaining
estimates x̂ = X (y) which exhibit large strongly homogeneous zones—namely, zones
where the differences are null—in spite of the noise corrupting y. According to the
form of gk, a strongly homogeneous zone may be constant, linear, quadratic, etc. Re-
covering strongly homogeneous zones “in spite of the noise” means that these zones
are invariably recovered from data corrupted by arbitrary noise samples of weak am-
plitude. We establish that strongly homogeneous zones in x̂ are both recovered from
noisy data and preserved intact from small variations of the data, if and only if the
PF ϕ in (1.3) is nonsmooth at zero. Such a behavior is local in two different senses:
it is independent of the shape of ϕ beyond 0 and it is exhibited by almost any strict
local minimizer of Ey . Among the most popular nonsmooth-at-zero PFs, we cite the
following [23, 17, 19, 27, 2]:

modulus: ϕ(t) = |t|,(1.4)
concave: ϕ(t) = α|t|/(1 + α|t|),(1.5)

“0-1”: ϕ(t) = 1 if t 6= 0, ϕ(0) = 0.(1.6)

In order to simplify the presentation, we suppose ϕ is twice differentiable everywhere
except at 0. However, our results can be extended to more general objective functions
combining smooth and nonsmooth terms.

To our knowledge, the generic problem of obtaining solutions involving large
strongly homogeneous zones using regularization has never been formalized previously.
Nonetheless, the ability of the modulus PF (1.4) to recover noncorrelated (gT

k x = xk)
“nearly black images” is interpreted in [17] using minimax decision theory. In total
variation methods, pioneered in [27], the regularization is an `1-norm of the derivatives

2Recall that − ln P (y|x) ∝ ‖Ãx− y‖2 when n is white Gaussian noise.
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of the unknown signal. Such regularizations have been observed to produce “blocky
estimates” [15, 11]. The concave PF (1.5) is shown in [19] to give rise to a step-shaped
estimate from ramp-shaped data, and this PF is called “strictly noninterpolating.”

Our study can be seen as an attempt to understand what regularization using
nonsmooth-at-zero PFs accomplishes on the estimate, in comparison with smooth-
at-zero PFs. It provides some new results in the analysis of nonsmooth functions.
Nonsmooth analysis has been developed widely for the purpose of optimization. Dif-
ferent properties of the minimum of an objective function, y 7→ Ey (X (y)), in the
case when ϕ is convex and nonsmooth, are examined in the framework of Moreau–
Yosida regularization [20, 24]. Many studies are concerned with the optimization of
nonsmooth objective functions [28, 20, 12].

Organization of the paper. The notion of strong homogeneity, in connection
with the minimizers of Ey , is introduced in section 2. The inability of a minimizer
function X , corresponding to a smooth-at-zero PF, to retrieve strongly homogeneous
zones from noisy data, is shown in section 3. Henceforth, nonsmooth-at-zero PFs are
considered in (1.2)–(1.3). The objective function Ey is then nonsmooth, and necessary
conditions for minimum are derived in section 4. Sufficient conditions for a strict local
minimum are given in section 5. In section 6, we show how the variations of the data
inside an open ball yield a family of minimizers that are strongly homogeneous over
the same zones. This behavior induces a specific organization of the data space IRN

which is discussed in section 7. Numerical illustrations are given in section 8, with
concluding remarks in section 9.

2. Strong homogeneity of local minimizers.

2.1. Notion of strong homogeneity. Different kinds of homogeneity, i.e., of
smoothness, are encountered in real-world signals. These are frequently modeled using
linear operators gk : IRM 7→ IR, k ∈ S◦, in such a way that the homogeneous zones
in x are the locations k of weak differences, gT

k x ≈ 0. Usually {gk, k ∈ S◦} provide
a discrete approximation of differential operators. Such a notion of homogeneity is
loose and it concerns a wide range of features. In this work, we introduce the precise
notion of strong homogeneity which can be applied to any collection {gk, k ∈ S◦}.

Definition 2.1. The set of strong homogeneity J (x) of a signal x, with respect
to a family of difference operators {gk : k ∈ S◦}, is composed of the indices k of all
zero-valued differences:

J (x) :=
{
k ∈ S◦ : gT

k x = 0
}

.

Thus J : IRM 7→ P(S◦), where P(S◦) is the set of all possible subsets of S◦.
The values of x, corresponding to a strongly homogeneous zone, satisfy a ho-

mogeneous system of linear equations. For example, if gT
k x := xk − xk+1 for k ∈

{1, . . . , M−1}, then J addresses the constant zones in x; if gT
k x := xk−1−2xk +xk+1

for k ∈ {2, . . . , M −1}, then J addresses the linear zones in x, third-order differences
correspond to parabolic zones, and so on.

2.2. Minimizers of an objective function. In order to narrow the context
of this study, we recall several facts about the minimizers of an objective function
Ey of the form (1.2)–(1.3). If Ey is strictly convex, it has a unique minimizer x̂.
A nonstrictly convex function has a unique minimum that is either strict (i.e., it is
reached at a unique minimizer point) or nonstrict (when it is reached at an infinite
set of points). If ϕ is nonconvex, Ey usually exhibits numerous local minima, some of
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which can be nonstrict. Our analysis concerns all strict local and global minimizers of
Ey , so we suppose that Ey exhibits strict minimizers. Then we focus on the behavior
of any such local minimizer of Ey entailed by small, arbitrary variations of y.

Definition 2.2. Suppose Ey admits a strict local minimum for any y ∈ U , where
U ⊆ IRN is a domain. An application X : U 7→ IRM is said to be a (local) minimizer
function relevant to Ey if for any y ∈ U , Ey reaches a strict local minimum at X (y).

Minimizer functions are generally implicit. If Ey is strictly convex, it admits
a unique minimizer function X and then U = IRN . Otherwise, Ey may give rise to
numerous local and global minimizer functions. Notice that X in Definition 2.2 is any
local or global minimizer function. The properties established in this paper address
minimizer functions that are continuous at some points or on some domains.

Global or only local continuity of estimators of the form (1.1) is a theme which
has no direct impact on this work; we assume the weaker among these requirements,
so our statements hold in both situations. It is worth recalling that global continuity
of the minimizer of a strictly convex objective function is a classical result [22]. Global
continuity of the unique minimizer of a strictly unimodal objective function is consid-
ered in [7]. Stability of total variation methods is analyzed in [1, 10]. Local continuity
for some special unbounded nonsmooth regularizers is considered in [30]. Bounded
PFs give rise to locally smooth estimates involving sharp edges [19]: although the
relevant estimators are not globally continuous [7], it can be observed that in general
Ey has strict minimizers which are locally continuous with respect to y.

2.3. Strong homogeneity of minimizer functions. The set of strong homo-
geneity of a minimizer x̂ is denoted by Ĵ := J (x̂). Given a minimizer function X ,
we will focus on the reciprocal function J ◦X with argument y which yields the set
of strong homogeneity of X (y):

(J ◦X ) (y) := J (X (y));

hence (J ◦X ) : U 7→ P(S◦).
Since the data are noisy, estimating a set of strong homogeneity Ĵ is not meaning-

ful unless this set can be recovered from slightly perturbed data y + n, where n has
a “small” amplitude. That is, the set of strong homogeneity, yielded by a minimizer
function, should be insensitive to any small variation of the data.

Definition 2.3. Let X be a minimizer function relevant to Ey. Suppose x̂ =
X (y) involves a nonempty set of strong homogeneity Ĵ = J (x̂). The minimizer
function X is said to be locally strongly homogeneous if there exists ξ > 0 such that

(J ◦X ) (y′) = Ĵ for all y′ ∈ B(y; ξ),

i.e., such that x̂ and x̂′ := X (y′) share the same set of strong homogeneity Ĵ whenever
y′ ranges over a neighborhood of y.

Ball B(y; ξ) := {y′ : ‖y′ − y‖ < ξ } is defined with respect to the `2-norm ‖v‖ :=
(
∑

k v2
k)

1
2 . The relevant closed ball is denoted by B(y; ξ). The centered, unit sphere

in IRN is 1IN :=
{
v ∈ IRN : ‖v‖ = 1

}
. The cardinality of a set Ĵ is denoted by #{Ĵ}.

2.4. Equivalent formulation of Ey. It is convenient to transform Ey into a
function of the differences gT

k x. Since {gk, k ∈ S◦} are linearly independent, we
can find a family of operators g̃k : IRM 7→ IR for k ∈ S \ S◦, so that the matrix
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G := [g1, . . . , g#{S◦}, g̃1, . . . , g̃#{S\S◦}] is invertible. Define
{

tk := gT
k x for k ∈ S◦,

tk := g̃T
k x for k ∈ S \ S◦, i.e., t = GT x, then x =

(
GT

)−1
t.

Put A := Ã
(
GT

)−1. We get an equivalent objective function Fy(t) := Ey [
(
GT

)−1
t]:

Fy(t) = ‖At− y‖2 + βΦ(t),(2.1)

where Φ(t) =
∑

k∈S◦
ϕ(tk).(2.2)

In this formulation, T := GT X is a minimizer function relevant to Fy which meets
Definition 2.2 and is defined on the same domain U . Let y ∈ U ; then t̂ := T (y) is a
strict minimizer of Fy and its set of strong homogeneity reads

Ĵ = J (t̂) = (J ◦ T ) (y) =
{
k ∈ S◦ : t̂k = Tk(y) = 0

}
.(2.3)

In the last expression, Tk : U 7→ IR is the kth entry of the vector-valued function T .

3. Estimation using a smooth-at-zero PF.

3.1. Minimizers with no strong homogeneity. We wish to know whether a
minimizer t̂, recovered from noisy data y, can involve a large set of strong homogeneity
Ĵ = J (t̂) when ϕ is smooth at zero. To simplify the presentation, the next theorem
is stated for PFs which are twice differentiable everywhere.

Theorem 3.1. Suppose ϕ in (2.2) is a twice differentiable function on IR. Let
Fy, as given in (2.1), reach a strict local minimum at t̂. Assume the following:

(a) t̂ involves a large set of strong homogeneity Ĵ = J (t̂) with #{Ĵ} > M −N ;
(b) Fy admits a (local) minimizer function T , such that t̂ = T (y), and which is

defined and differentiable on a neighborhood of y;
(c) A ∈ IRN×M in (2.1) satisfies Rank (A) = N ≤ M .
Then there exists η > 0 such that the set

NĴ =
{

y′ ∈ B(y; η) : (J ◦ T ) (y′) = Ĵ
}

(3.1)

is closed and negligible with respect to the Lebesgue measure on IRN . In other words,
any y′ ∈ B(y; η), yielding a minimizer t̂

′
= T (y′) which has the same set of strong

homogeneity as t̂, i.e., (J ◦ T ) (y′) = Ĵ , belongs to a closed set of measure zero
in IRN .

If an estimate involves strongly homogeneous zones, these are usually quite large,
#{Ĵ} À M −N (see the experiments in section 8). So the assumption (a) is not re-
strictive, while it reduces to #{Ĵ} > 0 when A is invertible. By the implicit functions
theorem we see that (b) is satisfied when Fy is C2-continuous on a neighborhood of
t̂ and its Hessian at t̂ is positive definite. As to (c), note that the remaining cases,
namely Rank (A) < N ≤ M and Rank (A) ≤ M ≤ N , can be reduced to (c).

Proof. Let ε > 0 be such that (b) is valid on B(y; ε). Let D refer to differential
operator. Being a minimizer of Fy′ , any t̂

′
= T (y′), corresponding to y′ ∈ B(y; ε),

satisfies the equation

DFy′(t̂′) = 0T ,(3.2)

where DFy′(t′) = 2(At′ − y′)T A + βDΦ(t′).
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From now on, 0 and 1 will denote vectors or matrices with zero-valued and one-valued
entries, respectively, of whatever size appropriate to the context. Differentiating both
sides of (3.2) with respect to y′ yields

D2Fy′(T (y′))DT (y′) = 2AT for any y′ ∈ B(y; ε),

where we recall that D2Fy′(t) = 2AT A + βD2Φ(t) for any y′ ∈ IRN . We determine
now the rank of DT (y′). On the one hand,

min
{

Rank
[
D2Fy′(T (y′))

]
, Rank [DT (y′)]

} ≥ Rank
(
2AT

)
= N,

then Rank [DT (y′)] ≥ N on B(y; ε). On the other hand, T : IRN 7→ IRM , then
Rank [DT (y′)] ≤ min{M, N} = N . Hence

Rank [DT (y′)] = N whenever y′ ∈ B(y; ε).(3.3)

More generally, the equality above is true at any y′ where DT is defined.
Let us suggest now a value for the radius η in (3.1). For S◦ \ Ĵ nonempty, put

µ := min
k∈S◦\Ĵ

|t̂k|, then µ > 0.(3.4)

By (b), there exists η ∈ ] 0, ε [ such that

y′ ∈ B(y; η) leads to
∣∣Tk(y′)− t̂k

∣∣ ≤ µ

2
for all k ∈ S◦ \ Ĵ .(3.5)

Then any T (y′) yielded by y′ ∈ B(y; η) satisfies

|Tk(y′)| ≥
∣∣t̂k

∣∣− µ

2
≥ µ

2
> 0 for any k ∈ S◦ \ Ĵ .

The latter inequality means that

J (T (y′)) ⊆ Ĵ for any y′ ∈ B(y; η).(3.6)

If S◦ = Ĵ , (3.6) is trivially satisfied for η = ε/2.
Let Ĵ read Ĵ = {j1, . . . , j#{Ĵ}}; for definiteness, assume that j1 < j2 < · · · <

j#{Ĵ}. Define CĴ to be the following #{Ĵ} ×M matrix:

{
CĴ [i, ji] = 1 for i = 1, . . . , #{Ĵ},
CĴ [i, j] = 0 otherwise.

(3.7)

Clearly, CĴt = 0 is a compact way to say that tk = 0 for any k ∈ Ĵ , i.e., that J (t) ⊇ Ĵ .
This remark, combined with (3.6), suggests expressing the set NĴ in (3.1) as

NĴ =
{

y′ ∈ B(y; η) : CĴT (y′) = 0
}

.(3.8)

Next, we characterize the rank of D
(
CĴT (y′)

)
= CĴDT (y′). Using both Sylvester’s

theorem [21] and (3.3), and by noticing that Rank (CĴ) = #{Ĵ}, we get

Rank
[
D

(
CĴT (y′)

)] ≥ #{Ĵ}+ N −M ≥ 1 for all y′ ∈ B(y; ε).(3.9)
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The set NĴ in (3.8) is clearly closed in IRN , since CĴT is continuous on B(y, ε).
Let mN denote the Lebesgue measure on IRN . Next we check whether mN (NĴ ) = 0
or not. For suppose mN (NĴ ) > 0. The latter, combined with the closeness of NĴ ,
indicates that NĴ contains a nonempty open N -cell, say, ÑĴ ⊆ NĴ . By (3.8) we have
CĴT (y′) = 0 for any y′ ∈ ÑĴ . Differentiating both sides of the latter identity yields

CĴDT (y′) = 0 for all y′ ∈ ÑĴ .

Hence Rank
[
CĴDT (y′)

]
= 0 for all y′ ∈ ÑĴ ; but this contradicts (3.9) since we have

ÑĴ ⊂ B(y; η) ⊂ B(y; ε). It follows that mN (NĴ) = 0. This completes the proof.
The set NĴ in (3.8) can equivalently be expressed as

NĴ = B(y; η)
⋂ (

CĴT )−1(0).(3.10)

Let us focus on the particular case when Rank (A) = M = N . Now, (3.9) yields

Rank
[
D

(
CĴT (y′)

)]
= #{Ĵ} for all y′ ∈ B(y; ε).

The rank of DCĴT being constant on B(y; η), then NĴ in (3.10) determines a contin-
uous manifold [4] of dimension

dim(NĴ ) = N − Rank
[
D

(
CĴT (y′)

)]
= N −#{Ĵ}.

But the assumption (c) of the same Theorem 3.1 is more general and does not guar-
antee that Rank [D

(
CĴT (y′)

)
] in (3.9) remains constant near to y.

The fact that NĴ is a closed, negligible subset of IRN is of crucial importance. The
possible configurations of Ĵ being of finite number, any data y′ in the vicinity of y,
leading to minimizers which are strongly homogeneous over large zones, belong to a
finite union of closed negligible sets. Such a union is a set of measure zero in IRN . So,
even if we trap a minimizer that is strongly homogeneous over large zones, the latter’s
zones are destroyed under almost any perturbation of the data, due to the noise. In
a global plan, the chance that noisy data belong to the special set of the data in
IRN which lead to minimizers with large strongly homogeneous zones is almost null.
In other words, if ϕ is smooth at zero, we should not expect to find minimizers that
involve large strongly homogeneous zones. For illustration, see Figure 8.2 in section 8.

3.2. Example. Let ϕ(t) = t2 and Rank (A) = N = M . Then T is explicit:

t̂ = T (y) =
(
AT A + βI◦

)−1
AT y, where I◦k,l =

{
1 if k = l ∈ S◦,
0 otherwise.

Reciprocally, y can be expressed as a function of t̂:

y = H t̂ with H = A + β
(
AT

)−1
I◦.(3.11)

Let t̂k = 0 for k ∈ Ĵ with Ĵ 6= ∅. Any t̂
′
, satisfying J (t̂

′
) = Ĵ , has the form

t̂
′
= t̂ + w, where wk = 0 if k ∈ Ĵ and wk 6= 0 otherwise.

Hence, t̂
′
belongs to an affine subspace of dimension M−#{Ĵ}. Since H is invertible,

any y′, yielding t̂
′
= T (y′) with (J ◦ T ) (y′) = Ĵ , necessarily belongs to the affine
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subspace spanned by those columns hk of H which are indexed by S \ Ĵ :

y′ = H(t̂ + w) = y +
∑

k∈S\Ĵ
hkwk.

This affine subspace is of dimension M −#{Ĵ} ≤ M − 1, so it is a closed, negligible
subset of IRN .

Take now a nonempty Ĵ . We will determine the set of all y for which (J ◦ T ) (y) =
Ĵ . By (3.11), any such y must have the form

y =
∑

k∈S\Ĵ
hkvk with vk ∈ IR \ {0};

i.e., it belongs to the subspace spanned by {hk, k ∈ S \ Ĵ}. Being of dimension
N −#{Ĵ}, this subspace is a closed, negligible subset of IRN . The same holds for any
nonempty Ĵ ∈ P(S◦). Any y, leading to (J ◦ T ) (y) 6= ∅, therefore belongs to the set

⋃

Ĵ∈P(S◦)\{∅}
Span

{
hk, k ∈ S \ Ĵ

}
.

The above union forms a closed set of measure zero in IRN . The presence of noise in
the data makes it extremely unlikely to come across data y placed in this set.

4. Regularization using a PF that is nonsmooth at zero.

4.1. General relations. Henceforth, ϕ is nonsmooth at zero. Suppose also that
(H1) ϕ is twice differentiable on IR \ {0};ϕ is symmetric and ϕ(0) = 0.
The first assumption can be relaxed, as mentioned in section 1. The second is a

technical assumption which simplifies the presentation.
Furthermore, we shall focus on two types of PFs:
(H2) ϕ is continuous on IR and admits a positive right3 derivative at zero, say,

ϕ′+(0) = limh↓0 ϕ(h)/h > 0, which can be finite or infinite;
(H3) ϕ is discontinuous at zero and there are γ > 0 and η > 0 such that ϕ(t) ≥ γ

whenever |t| ∈ ] 0, η [.
Both (H2) and (H3) originate in the practical requirement that ϕ be increasing

on ] 0,+∞ [. Note that (H2) is satisfied by the PFs given in (1.4) and (1.5), whereas
(H3) is true for the “0-1” PF given in (1.6) for any γ ∈ ] 0, 1 [ and η = +∞.

Now Fy fails to be smooth on the union of hyperplanes
⋃

k∈S◦ [t : tk = 0].
Definition 4.1. Let Fy : IRM 7→ IR be a function, t ∈ IRM a point, and v ∈ 1IM

a unit direction. We say that Fy admits a left and a right derivative at t in the
direction of v, denoted by ∂−vFy and ∂+

vFy, respectively, if the limits

∂+
vFy(t) = lim

h↓0
Fy(t + hv)−Fy(t)

h
, ∂−vFy(t) = lim

h↓0
Fy(t− hv)−Fy(t)

−h
(4.1)

exist and belong to {−∞} ∪ IR ∪ {+∞}.
The down arrow in h ↓ 0 means that h converges to zero by positive values. If

Fy is smooth at t in the direction v, then ∂+
vFy(t) = ∂−vFy(t) is its usual directional

derivative; otherwise ∂+
vFy(t) 6= ∂−vFy(t) and these may be infinite.

3By the symmetry of ϕ, the left derivative of ϕ at zero is ϕ′−(0) = −ϕ′+(0) < 0.
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Conditions for minima of nonsmooth functions can be found in [26, 20, 13]. Below
we give a formulation which is appropriate to our analysis.

Theorem 4.2. Let Fy : IRM 7→ IR reach a strict minimum at t̂—local or global.
Suppose Fy admits side derivatives at t̂ in the direction of any v ∈ 1IM . Then

∂−vFy(t̂) ≤ 0 ≤ ∂+
vFy(t̂) for all v ∈ 1IM .(4.2)

The proof of this necessary condition is outlined in the appendix. Observe
that if Fy is nonsmooth at t̂ along v, we have either ∂−vFy(t̂) < 0 ≤ ∂+

vFy(t̂) or
∂−vFy(t̂) ≤ 0 < ∂+

vFy(t̂), which inequalities are strict in most of the cases.

4.2. Necessary condition for a minimum of Fy. Now we specialize the
necessary condition (4.2) to objective functions of the form (2.1)–(2.2). This result
generalizes the conditions concerning the modulus PF provided in [2].

Theorem 4.3. Consider Fy in (2.1)–(2.2) where ϕ meets (H1) and (H2). Sup-
pose Fy reaches a (local) minimum at t̂. Then t̂ satisfies the following system:

2
∣∣aT

k (y −At̂)
∣∣ ≤ βϕ′+(0) if k ∈ Ĵ ,(4.3)

2 aT
k (y −At̂)− βϕ′(t̂k) = 0 if k ∈ S◦ \ Ĵ ,(4.4)

2 aT
k (y −At̂) = 0 if k ∈ S \ S◦,(4.5)

where ak are the columns of A and Ĵ = J (t̂); see (2.3).
The minimum reached by Fy at t̂ can be local or global, strict or nonstrict.
If ϕ′+(0) = ∞, then (4.3) is superfluous since it becomes

∣∣aT
k (y −At̂)

∣∣ < ∞ for
all k ∈ Ĵ . If t̂k 6= 0 for all k ∈ S◦, then Ĵ = ∅ and (4.3) is absent, while Fy is smooth
in the vicinity of t̂ and (4.4)–(4.5) means that the gradient of Fy at t̂ is null. The
only case where (4.4)–(4.5) are both absent is Ĵ = S◦ = S, in which case t̂ = 0.

Proof. Let v be an arbitrary direction in 1IM . Using (4.1),

∂−vFy(t) = 2 (At− y)T Av + β∂−vΦ(t), ∂+
vFy(t) = 2 (At− y)T Av + β∂+

vΦ(t),

∂−vΦ(t) =
∑

k∈S◦
∂−vϕ(tk), ∂+

vΦ(t) =
∑

k∈S◦
∂+
vϕ(tk),

∂−vϕ(tk) = lim
h↓0

ϕ(tk − hvk)− ϕ(tk)
−h

, ∂+
vϕ(tk) = lim

h↓0
ϕ(tk + hvk)− ϕ(tk)

h
.(4.6)

Since t̂ is a minimizer of Fy , Theorem 4.2 shows that

β∂−vΦ(t̂) ≤ 2(y −At̂)T Av ≤ β∂+
vΦ(t̂) for all v ∈ 1IM ,

or equivalently, using the fact that Av =
∑

k∈S
akvk,

β
∑

k∈S◦
∂−vϕ(t̂k) ≤ 2

∑

k∈S
aT

k (y −At̂) vk ≤ β
∑

k∈S◦
∂+
vϕ(t̂k).(4.7)

The sums in (4.7) are now split according to the following partition:

S = Ĵ ∪
(
S◦ \ Ĵ

)
∪ (S \ S◦) .
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Below, if a term is indexed by a set that is empty, it is supposed to be zero. Since
∂−vϕ(tk) = ∂+

vϕ(tk) = vkϕ′(tk) when ϕ is smooth at tk, (4.7) yields

β
∑

k∈Ĵ

∂−vϕ
(
t̂k

) ≤ 2
∑

k∈Ĵ

aT
k

(
y −At̂

)
vk + 2

∑

k∈S\S◦
aT

k

(
y −At̂

)
vk

+
∑

k∈S◦\Ĵ

[
2aT

k (y −At̂)− βϕ′(t̂k)
]

vk ≤ β
∑

k∈Ĵ

∂+
vϕ

(
t̂k

)
.(4.8)

Next we compute (4.8) for each direction en of the canonical basis of IRM ,

en[k] =
{

0 if k 6= n,
1 if k = n.

Recall that by (4.6) we have ∂±en
ϕ(t̂k) = 0 whenever n 6= k.

• For any v = en such that n ∈ Ĵ , (4.8) leads to

β
[
∂−en

ϕ(t̂n)
]
t̂n=0

≤ 2aT
n (y −At̂) ≤ β

[
∂+
en

ϕ(t̂n)
]
t̂n=0

.

Since
[
∂−en

ϕ(tn)
]
tn=0

= −ϕ′+(0) = − [
∂+
en

ϕ(tn)
]
tn=0

, we obtain (4.3).

If Ĵ = ∅, (4.8) does not involve terms of this form and (4.3) is absent.
• For any n ∈ S◦ \ Ĵ , introducing v = en into (4.8) yields

∑

k∈S◦\Ĵ

[
2aT

k (y −At̂)− βϕ′(t̂k)
]

en[k] = 0.

Its left side becomes 2aT
n (y −At̂)− βϕ′(t̂n), so we get (4.4).

• For any v = en with n ∈ S\S◦, (4.8) becomes 2
∑

k∈S\S◦a
T
k (y−At̂) en[k] = 0,

which yields 2aT
n (y −At̂) = 0, hence (4.5).

The proof is completed.

4.3. Smooth restriction of the objective function. Let Ĵ ∈ P(S◦) be
nonempty and Ĵ 6= S. We associate to each i ∈ {1, . . . , #{S \ Ĵ}} the integer κi,
which is the ith element of S \ Ĵ . Thus

S \ Ĵ =
{

κ1, κ2, . . . , κ#{S\Ĵ}
}

.(4.9)

For definiteness, assume that κ1 < κ2 < · · · < κ#{S\Ĵ}. Given t ∈ IRM , let the

subscripts Ĵ and 0 mean that t̂J and t0 are composed of those entries of t which are
indexed by S \ Ĵ and Ĵ , respectively:

t̂J [i] := t[κi] for i = 1, . . . , #{S \ Ĵ} and t0 = CĴt,(4.10)

where CĴ is the matrix defined in (3.7). Then t̂J ∈ IR#{S\Ĵ} and t0 ∈ IR#{Ĵ}. Similarly,
let AĴ and A0 be composed of those columns of A that are indexed by S \ Ĵ and by
Ĵ , respectively. That is,

AĴ :=
[
aκ1 , . . . , aκ#{S\Ĵ}

]
and A0 := ACT

Ĵ
.(4.11)

Thus At = AĴ t̂J + A0t0 for any t.
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Now focus on t̂, a minimizer of Fy involving Ĵ = J (t̂) nonempty, Ĵ 6= S. Then t̂̂J
is composed of both nonzero entries relevant to S◦ \ Ĵ and entries relevant to S \ S◦
(which are not involved in Φ and may be null). By a slight abuse of language, t̂̂J is
called the nonhomogeneous part of t̂. The remaining elements of t̂ correspond to Ĵ
and are null; that is, t̂0 = 0. So we have

At̂ =
∑

k∈S\Ĵ
ak t̂k +

∑

k∈Ĵ

ak0 = AĴ t̂̂J .(4.12)

Take µ as defined in (3.4). The following restricted objective function,

FĴ
y : IR#{S\Ĵ} 7→ IR,

t̂J 7→ FĴ
y(t̂J) =

∥∥AĴ t̂J − y
∥∥2 + βΦĴ(t̂J ),(4.13)

where ΦĴ(t̂J) :=
∑

k∈S◦\Ĵ
ϕ(tk),(4.14)

is twice differentiable on B(t̂̂J ; µ) and reaches a minimum at t̂̂J ; the latter fact is easily
verified by using (4.12). Moreover, if t̂ is a strict minimizer of Fy , then t̂̂J is a strict
minimizer of FĴ

y . If Ĵ = ∅, then F∅y = Fy , whereas ΦS
◦

= 0. We will denote by

T Ĵ : U 7→ IR#{S\Ĵ} any minimizer function relevant to FĴ
y .

With these notations, (4.4)–(4.5) mean that the gradient of FĴ
y at t̂̂J is null. Put

θk := 2 aT
k (y −AĴ t̂̂J) for k ∈ Ĵ .(4.15)

Then (4.3) can be expressed as |θk| ≤ βϕ′+(0) for all k ∈ Ĵ . Define

θmax := max
k∈Ĵ

| θk |; then θmax ≤ βϕ′+(0).(4.16)

5. Specific properties in nonsmooth regularization.

5.1. The key feature of ϕ. The following proposition states the key property
of a PF which allows a minimizer of an objective function of the form (1.2)–(1.3), or
equivalently (2.1)–(2.2), to involve strongly homogeneous zones.

Proposition 5.1. Let ϕ satisfy (H1) and (H2).
(a) If ϕ′+(0) > 0 is finite, then for any γ ∈ ] 0, 1 [ there exists ηγ > 0 such that

ϕ(t) ≥ γϕ′+(0)|t| whenever |t| < ηγ .
(b) If ϕ′+(0) = ∞, then for any γ > 0 finite there exists ηγ > 0 such that ϕ(t) ≥

γ|t| whenever |t| < ηγ .
Proof. Being twice differentiable on ] 0,∞ [ and null at zero, ϕ satisfies

ϕ(t) = lim
u↓0

∫ t

u

ϕ′(s)ds for any t > 0.

Moreover, lims↓0 ϕ′(s) = ϕ′+(0) > 0 shows that ϕ′ is positive for s > 0 close to zero.
Case (a). Since ϕ′+(0) is finite and ϕ′ is continuous on ] 0,+∞ [, for every γ ∈ ] 0, 1 [

there is ηγ > 0 such that ϕ′(s) ≥ γϕ′+(0) for all s ∈ ] 0, ηγ [. Thus ϕ(t) ≥ ∫ t

0
γϕ′+(0)ds =

γϕ′+(0) t for 0 < t < ηγ . By the symmetry of ϕ, we deduce (a).
Case (b). Now lims↓0 ϕ′(s) = +∞. Then for any γ > 0 finite, it is possible to

find ηγ > 0 such that ϕ′(s) ≥ γ for 0 < s < ηγ . Hence (b).
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5.2. Sufficient condition for a strict minimum. We determine conditions
which ensure that an arbitrary local minimizer, where Fy is nonsmooth, is strict.

Theorem 5.2. Suppose Fy is of the form (2.1)–(2.2), where ϕ satisfies (H1) and
(H2) with ϕ′+(0) > 0 finite. Let t̂ ∈ IRM be such that

(a) the inequality system (4.3) is strict (i.e., each one of its inequalities is strict);
(b) its nonhomogeneous part t̂̂J , defined as in (4.10), is a strict (local) minimizer

of the restricted objective function FĴ
y given in (4.13)–(4.14), whenever Ĵ 6= S.

Then Fy reaches a strict (local) minimum at t̂.
Proof. Put Ĵ = J (t̂). The result is trivial when Ĵ = ∅, since F∅y = Fy .
Suppose Ĵ is nonempty. Let ∆v :] 0, +∞ [ 7→ IR yield the altitude increment of

Fy at t̂ in the direction of v ∈ 1IM :

∆v(h) := Fy(t̂ + hv)−Fy(t̂)(5.1)

= h2‖Av‖2 + 2h(At̂− y)T Av + β
∑

k∈S◦
ϕ(t̂k + hvk)− β

∑

k∈S◦
ϕ(t̂k).

This proof consists in finding a radius ρ > 0 which ensures that ∆v(h) > 0 for any
h ∈ ] 0, ρ [ , along all v ∈ 1IM . For Ĵ 6= S, let v0 and vĴ be obtained from v according
to (4.10). We now split ∆v into two terms:4

∆v(h) = ∆1
v(h) + ∆0

v(h),(5.2)

∆1
v(h) := h2‖AĴvĴ‖2 + 2h

(
AĴ t̂̂J − y

)T
AĴvĴ + βΦĴ (t̂̂J + hvĴ)− βΦĴ(t̂̂J ),

∆0
v(h) := h2

[ ‖A0v0‖2 + 2(A0v0)T AĴvĴ
]
+ 2h

(
AĴ t̂̂J − y

)T
A0v0(5.3)

+β
∑

k∈Ĵ

ϕ(hvk),

where ΦĴ is defined as in (4.14), and AĴ and A0 are as in (4.11). Next, the terms ∆1
v

and ∆0
v are analyzed separately.

• Term ∆1
v. If ‖vĴ‖ = 0, then ‖v0‖ = 1, in which case ∆v = ∆0

v . So suppose
0 < ‖vĴ‖ ≤ 1. Then ∆1

v(h) gives the altitude increment of FĴ
y in the vicinity of t̂̂J . By

(b), there exists ρ1 > 0 such that FĴ
y

(
t̂̂J + hvĴ/‖vĴ‖

)−FĴ
y

(
t̂̂J

)
> 0 for any h ∈ ] 0, ρ1[

and for any vĴ . It follows that

∆1
v(h) = FĴ

y
(
t̂̂J + hvĴ

)−FĴ
y

(
t̂̂J

)
> 0 whenever h ∈ ] 0, ρ1 [ and 0 < ‖vĴ‖ ≤ 1.

• Term ∆0
v. If ‖v0‖ = 0, then ‖vĴ‖ = 1 and ∆v = ∆1

v .
Now suppose 0 < ‖v0‖ ≤ 1, and hence 0 ≤ ‖vĴ‖ < 1. Let λ > 0 be the largest

eigenvalue of AT A; then ‖AT Av‖ ≤ λ‖v‖ for any v, which implies that ‖AT
0 AĴvĴ‖ ≤

λ‖vĴ‖ < λ, since A0 and AĴ are submatrices of A, and ‖vĴ‖ < 1. The term multiplying
h2 in (5.3) can be bounded below as follows:

‖A0v0‖2 + 2 (A0v0)
T

AĴvĴ ≥ −2‖v0‖
∥∥AT

0 AĴvĴ
∥∥

> −2λ‖v0‖ ≥ −2λ1T |v0| = −2λ|||v0|||1,(5.4)

4We use ‖Av‖2 = ‖AĴvĴ‖2 + ‖A0v0‖2 + 2(A0v0)T AĴvĴ and (At̂− y)T Av = (AĴ t̂̂J − y)T (AĴvĴ +
A0v0).
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where the entries of the vector |v0| are the moduli of the relevant entries of v0. Thus
|||v0|||1 := 1T |v0| =

∑
k∈Ĵ |vk| is the `1-norm of v0. In the last inequality in (5.4) we

exploit the fact that ‖v0‖ ≤ |||v0|||1.
The term multiplying h in (5.3) can be expressed in terms of θk and θmax, con-

sidered in (4.15)–(4.16). Then we have

2
(
AĴ t̂̂J − y

)T
A0v0 = 2

∑

k∈Ĵ

aT
k

(
AĴ t̂̂J − y

)
vk = −

∑

k∈Ĵ

θkvk ≥ −θmax |||v0|||1.(5.5)

By (a), we get |θk| < βϕ′+(0) for any k ∈ Ĵ , hence θmax < βϕ′+(0). Take

γ :=
1
2

[
1 +

θmax

βϕ′+(0)

]
; then γ ∈ ] 0, 1 [.(5.6)

Proposition 5.1(a) guarantees that there exists ηγ such that

ϕ(hvk) ≥ γϕ′+(0)h|vk| whenever 0 ≤ h|vk| < ηγ .(5.7)

By |vk| ≤ 1 we get {h > 0 : h|vk| < ηγ} ⊇ {h > 0 : h < ηγ} for any k. Hence (5.7)
holds for any k ∈ Ĵ when 0 < h < ηγ . The last term in (5.3) then satisfies

∑

k∈Ĵ

ϕ(hvk) ≥
∑

k∈Ĵ

γϕ′+(0)h|vk| = γϕ′+(0)h |||v0|||1 if 0 ≤ h < ηγ .

This result, combined with (5.4), (5.5), and (5.6), yields

∆0
v(h) > −2λh2|||v0|||1 − θmaxh|||v0|||1 +

β

2

[
1 +

θmax

βϕ′+(0)

]
ϕ′+(0) h |||v0|||1

= h

[
−2λh +

βϕ′+(0)
2

− θmax

2

]
|||v0|||1 if 0 < h < ηγ .(5.8)

The right side above is positive for 0 < h < ρ2, where

ρ2 =
βϕ′+(0)− θmax

4λ
.

If Ĵ = S, we have t̂ = 0 in (5.1). Now, v0 = v and ∆1
v is absent, so take ρ1 = 1.

By (4.3) and (4.16), −2yT Av ≥ −θmax |||v|||1. Writing down ‖Av‖ > −2λ |||v|||1, and
taking γ as in (5.6), leads to (5.8).

In conclusion, we see that ∆v(h) > 0 along any v ∈ 1IM , if h ∈ ] 0, ρ [ with
ρ = min { ρ1, ηγ , ρ2 }.

The possibility of checking whether a point in IRM is a strict minimizer of Fy ,
by splitting Fy into two parts that are analyzed for strictness separately, exists only
because Fy is nonsmooth at this point.

It is worth noting that neither Theorem 4.3 nor Theorem 5.2 permits conditions
for a strict minimum, which are simultaneously necessary and sufficient, to be derived.
Indeed, there may exist strict minima for which (4.3) involves equalities, but such
minima do not fall into the scope of Theorem 5.2. The next theorem focuses on PFs
which either have an infinite right derivative at zero or are discontinuous at zero.

Theorem 5.3. Consider Fy of the form (2.1)–(2.2), where ϕ satisfies (H1). In
addition, suppose that ϕ satisfies either (H2) with ϕ′+(0) = +∞, or (H3). Let t̂ ∈ IRM

be such that the assumption (b) of Theorem 5.2 holds.
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Then Fy has a strict (local) minimum at t̂.
It turns out that the sufficient conditions for a strict minimum are simpler when

ϕ′+(0) = ∞ than ϕ′+(0) is finite. The proof of this theorem is given in the appendix.

6. Strong homogeneity.

6.1. The general situation. Next we show that taking ϕ nonsmooth at zero
ensures that the minimizer functions relevant to Fy are locally strongly homogeneous
in quite general conditions. This is the main contribution of our work.

Theorem 6.1. Suppose ϕ satisfies (H1) and (H2) with ϕ′+(0) > 0 finite, and Fy
is as in (2.1)–(2.2). Let t̂ be a strict (local) minimizer of Fy such that Ĵ = J (t̂) is
nonempty. Suppose that

(a) the inequality system (4.3) is strict;
(b) the restricted objective function FĴ

y, given in (4.13) for Ĵ 6= S, admits a

(local) minimizer function T Ĵ which is defined on a neighborhood of y and is
continuous at y, where it yields t̂̂J = T Ĵ(y)—the nonhomogeneous part of t̂;
see (4.10).

Then there exists T , a (local) minimizer function relevant to Fy, which is con-
tinuous at y and yields t̂ = T (y), and which has the following remarkable property:

there exists ξ > 0 such that (J ◦ T ) (y′) = Ĵ for all y′ ∈ B(y; ξ).

Typically, there is a neighborhood of t̂, say, V , and a neighborhood of y, say,
U , such that each Fy′ , corresponding to any y′ ∈ U , has a unique local minimizer
over V . In such a situation, we can assert that all the minimizers t̂

′
= T (y′) ∈ V ,

obtained from y′ ∈ B(y; ξ) ⊆ U , have the same set of strong homogeneity Ĵ . If Fy
is strictly convex, this assertion holds with U = IRN and V = IRM . As to (b): recall
that the relation between t̂ and t̂̂J is determined both by (4.10) and by t̂[k] = 0 for
k ∈ Ĵ .

Proof. Let first Ĵ 6= S. By (b), there exists ω > 0 such that (b) holds on B(y; ω)
and, whenever Ĵ 6= S◦,

y′ ∈ B(y; ω) leads to
∣∣∣T Ĵ

i (y′)− t̂̂J [i]
∣∣∣ < µ for any i such that κi ∈ S◦ \ Ĵ ,(6.1)

with µ the bound defined in (3.4) and κi defined as in (4.9). Then ω is similar to
η in (3.5). From (6.1), we see that | T Ĵ

i (y′) | >
∣∣ t̂̂J [i]

∣∣ − µ ≥ 0 for any i such that
κi ∈ S◦ \ Ĵ and for all y′ ∈ B(y;ω).

Define T̃ : B(y;ω) 7→ IRM as follows:

T̃κi(y
′) = T Ĵ

i (y′) if i = 1, . . . , #{S \ Ĵ},
T̃k(y′) = 0 if k ∈ Ĵ .

(6.2)

By construction, T̃ is continuous at y. Moreover, (6.1) and (6.2) together show that

J
(
T̃ (y′)

)
= Ĵ for all y′ ∈ B(y, ω).

However, it is not clear whether or not T̃ is a minimizer function relevant to Fy on a
neighborhood of y. From Definition 2.2, we have to check whether or not t̃

′
= T̃ (y′)
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are strict minimizers of Fy′ when y′ is in the vicinity of y. Our considerations are
based on Theorem 5.2. First, the assumption (b) above says that each t̃

′
= T̃ (y′),

obtained from y′ ∈ B(y; ω), satisfies the condition (b) of Theorem 5.2. So, it remains
to find a radius ξ ≤ ω such that t̃

′
= T̃ (y′) satisfies the condition (a) of Theorem 5.2

for all y′ ∈ B(y; ξ). That is, we seek ξ ∈ ] 0, ω ], which ensures that any y′ = y + hu

for 0 < h < ξ and u ∈ 1IN yields t̃
′
= T̃ (y + hu), which strictly satisfies (4.3).

For any k ∈ Ĵ , let Lk give the left side of (4.3), relevant to t̃
′
= T̃ (y + hu):

Lk(h; u) := 2
∣∣∣ aT

k

[
(y + hu)−AT̃ (y + hu)

] ∣∣∣ .(6.3)

Next, we determine a convenient upper bound of Lk. Put

a := max
{

max
k∈Ĵ

‖ak‖, 1
}

.(6.4)

By (6.2) and (4.11) we see that AT̃ (y + hu) = AĴT Ĵ(y + hu). Hence

Lk(h; u) = 2
∣∣∣aT

k

[
y −AĴT Ĵ(y)

]
+ haT

k u− aT
k AĴ

[
T Ĵ (y + hu)− T Ĵ(y)

]∣∣∣(6.5)

=
∣∣∣ θk + 2 aT

k

[
hu−AĴ

(
T Ĵ(y + hu)− T Ĵ(y)

)] ∣∣∣ for any k ∈ Ĵ ,

where θk are defined as in (4.15). Let λ be as in (5.4), then ‖aT
k AĴ‖ ≤

√
λ‖ak‖. Also

using θmax as given in (4.16) and the fact that ‖u‖ = 1, we get

Lk(h; u) ≤ |θk |+ 2h ‖ak‖+ 2‖aT
k AĴ‖

∥∥∥T Ĵ(y + hu)− T Ĵ (y)
∥∥∥

≤ θmax + 2ha + 2a
√

λ
∥∥∥T Ĵ(y + hu)− T Ĵ(y)

∥∥∥ for any k ∈ Ĵ .(6.6)

From (b), there exists σ ∈ ] 0, ω ], which ensures that for all u ∈ 1IN we have that

h ∈ ] 0, σ [ leads to
∥∥∥T Ĵ(y + hu)− T Ĵ (y)

∥∥∥ <
βϕ′+(0)− θmax

4 a
√

λ
.(6.7)

The upper bound above is positive by (a). Introducing (6.7) into (6.6) yields

Lk(h;u)< L(h) for all h ∈ ] 0, σ [, for all u ∈ 1IN and for any k ∈ Ĵ ,(6.8)

where L(h) := θmax + 2ha +
βϕ′+(0)− θmax

2
.

This L is the sought upper bound of Lk for any k. Now put

ξ := min
{

σ,
βϕ′+(0)− θmax

4a

}
.(6.9)

Using that a > 0 and that ξ ≤ (
βϕ′+(0)− θmax

)
/(4a), we deduce that

L(h) < θmax + 2aξ +
βϕ′+(0)− θmax

2
≤ βϕ′+(0) whenever h ∈ [0, ξ[.(6.10)

This inequality, combined with (6.8), shows that

h ∈]0, ξ[ leads to Lk(h;u) < βϕ′+(0) for all u ∈ 1IN , for any k ∈ Ĵ .(6.11)



648 MILA NIKOLOVA

In other words, t̃
′
= T̃ (y + hu) satisfies (4.3) in its strict form.

If Ĵ = S, put T̃ = 0 and ω = 1 in (6.2). Taking σ = 1 and ξ as in (6.9), we get
(6.11).

By Theorem 5.2, every t̃
′
= T̃ (y′) obtained from y′ ∈ B(y; ξ) is a strict minimizer

of Fy′ . Thus T := T̃ is a strict minimizer function on y′ ∈ B(y; ξ).
The next theorem gives a similar result for continuous PFs with ϕ′+(0) = ∞ and

for discontinuous-at-zero PFs.
Theorem 6.2. Consider Fy in (2.1)–(2.2) with ϕ satisfying (H1). Suppose

also that ϕ satisfies either (H2) with ϕ′+(0) = ∞, or (H3). Let t̂ be a strict (local)
minimizer of Fy such that Ĵ = J (t̂) is nonempty and that the assumption (b) of
Theorem 6.1 holds.

Then there exists T a (local) minimizer function relevant to Fy, which is contin-
uous at y and yields t̂ = T (y), and which exhibits the following particularity:

there exists ξ > 0 such that (J ◦ T ) (y′) = Ĵ for all y′ ∈ B(y; ξ).

Proof. Take T̃ as in the proof of Theorem 6.1, then each T̃ (y′) with y′ ∈ B(y; ω)
satisfies the conditions of Theorem 5.3. Thus T̃ is a strict minimizer function of Fy ,
and therefore T = T̃ on B(y; ω). So take ξ = ω.

Note that Theorems 6.1 and 6.2 require that only T Ĵ—the minimizer function
of FĴ

y—be locally defined and continuous. In particular, this holds if FĴ
y is C2 in the

vicinity of t̂̂J and its Hessian at t̂̂J is positive definite.
Both Theorems 6.1 and 6.2 reveal a particular form of local resistance to noise,

proper to the strongly homogeneous zones of a local minimizer where the objective
function is nonsmooth: in the presence of small data variations, the nonhomogeneous
part of the minimizer function evolves continuously, while its zero part remains con-
stant. Moreover, the proofs of these theorems show that ξ ≤ ω: this local resistance
is stronger when ϕ′+(0) is infinite.

6.2. Boundary situations. Theorem 6.1 establishes the strong homogeneity of
a local minimizer function relevant to Fy when all the inequalities in (4.3) are strict.
Now we focus on a minimizer involving one, or several, equalities in (4.3). Note that
such a situation cannot occur unless ϕ′+(0) is finite.

Proposition 6.3. Let ϕ satisfy (H1) and (H2) and ϕ′+(0) > 0 be finite. Consider
Fy as given by (2.1)–(2.2). Let t̂ be a strict (local) minimizer of Fy with Ĵ = J (t̂) 6= ∅.
Suppose

(a) the set Ĵ0 := {k ∈ Ĵ : 2
∣∣aT

k (y −At̂)
∣∣ = βϕ′+(0)} is nonempty; i.e., (4.3)

involves several equalities;
(b) the restricted objective function FĴ

y, given in (4.13)–(4.14) for Ĵ 6= S, admits

a minimizer function T Ĵ such that T Ĵ is differentiable on a neighborhood of
y, DT Ĵ is continuous at y, and T Ĵ(y) = t̂̂J is the nonhomogeneous part of
t̂; see (4.10);

(c) for any k ∈ Ĵ0, τT
k := aT

k − aT
k AĴDT Ĵ(y) 6= 0 whenever Ĵ 6= S. If Ĵ = S,

put τ k := ak.
By using θk as given in (4.15), introduce the set

Q :=
⋂

k∈Ĵ0

Qk where Qk :=
{

u ∈ 1IN : θkτT
k u < 0

}
.(6.12)
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Then there exists T a (local) minimizer function relevant to Fy, characterized by
the following: with any u ∈ Q there is associated a ζ(u) > 0 such that

any y′ = y + hu with 0 < h < ζ(u) leads to (J ◦ T )(y′) = Ĵ ,

and T is continuous at y′.
The situations where (c) fails to hold are unlikely since they may occur only at

special data points. The proof of this proposition is given in the appendix.

7. Data sets and strong homogeneity.

7.1. Sets of data yielding the same estimate. Given an arbitrary t̃ ∈ IRM ,
the next theorem shows the possibility of finding connected sets of data y such that
all relevant objective functions Fy reach a strict minimum at this t̃.

Proposition 7.1. Suppose ϕ satisfies (H1) and (H2). Let t̃ ∈ IRM be an arbitrary
point involving J̃ = J (t̃) nonempty. In addition, suppose

(a) A is invertible, i.e., Rank (A) = M = N ;
(b) the matrix 2AT

J̃
AJ̃ + βD2ΦJ̃ (t̃̃J ) is positive definite, where t̃̃J is the nonhomo-

geneous part of t̃, defined as in (4.10), and ΦJ̃ and AJ̃ are defined according
to (4.14) and (4.11), respectively.

Then there exists a polyhedron Ṽt ⊂ IRN of dimension #{J̃} such that for any
y ∈ Ṽt, the relevant Fy reaches a strict local minimum at t̃.

The assumption (b) holds in numerous important situations; for instance, take ϕ
and t̃ such that ϕ′′(t̃k) > 0 for any k ∈ S◦ \ J .

Proof. We reformulate the strict form of (4.3)–(4.5) as follows:

−βϕ′+(0)1 + 2AT
0 AJ̃ t̃̃J <2AT

0 y< βϕ′+(0)1 + 2AT
0 AJ̃ t̃̃J ,(7.1)

2AT
J̃

y = 2AT
J̃

AJ̃ t̃̃J + βDΦĴ(t̃̃J ),(7.2)

where the operations = and < are performed element by element. If we wish for t̃
to satisfy the conditions of Theorem 5.2 with respect to Fy , then y must meet (7.1)–
(7.2) with respect to t̃̃J . Since A is invertible, Rank (AT

J̃
) = M − #{J̃}, then the

assumption (a) shows that

G̃t :=
{
y ∈ IRN : (7.2) holds

}

is an affine subspace with dim(G̃t) = N − Rank (AT
J̃

) = #{J̃} ≥ 1.
Next, H̃t :=

{
y ∈ IRN : (7.1) holds

}
is a polyhedron of IRN . Notice that H̃t = IRN

if ϕ′+(0) = ∞. By (a), we see that Ṽt := G̃t
⋂ H̃t is nonempty. Moreover, Ṽt contains

cells of dimension #{J̃}. The condition (a) of Theorem 5.2 is valid at t̃ for any Fy
corresponding to y ∈ Ṽt.

Combining (7.2) and (b) above, that is,

DFJ̃
y(t̃̃J ) = 0T

D2FJ̃
y(t̃̃J) positive definite

for all y ∈ Ṽt,(7.3)

shows that t̃̃J is a strict (local) minimizer of any FJ̃
y corresponding to y ∈ Ṽt. So t̃

satisfies the condition (b) of Theorem 5.2 with respect to Fy whenever y ∈ Ṽt. Hence
the result.
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Remark. If ϕ is C2 on IR\{0}, there is a minimizer function T , such that T (y) = t̃
on Ṽt, and which is continuous on Ṽt. To see the latter, choose y ∈ Ṽt arbitrarily.

By (b) and (3.4), there exists % ∈ ] 0, µ ] such that D2FJ̃
y(t̃J) is positive definite for

any t̃J ∈ B(t̃̃J ; %). By the implicit function theorem [4], the equation DFJ̃
y(t̃J) = 0T

defines a unique, implicit, differentiable function T Ĵ on a neighborhood of y, such
that T Ĵ(y′) ∈ B(t̃̃J ; %) and DFJ̃

y′ [T Ĵ(y′)] = 0T whenever y′ is in this neighborhood.
Hence the condition (b) of Theorem 6.1 holds for any y ∈ Ṽt. Using Theorem 6.1
if ϕ′+(0) is finite, or Theorem 6.2 if ϕ′+(0) = ∞, we deduce that T is continuous at
any y ∈ Ṽt.

7.2. Volumes of data preserving (J ◦ T ) constant. We now turn to the
organization of the data space IRN , induced by the distinct sets of strong homogeneity
yielded by the strict minimizers of an objective function. Theorems 6.1 and 6.2 mean
that IRN contains open volumes composed of data that lead to local minimizers having
the same set of strong homogeneity. Consider a minimizer function T , and let y ∈ U
give rise to Ĵ = (J ◦ T ) (y) nonempty. Such a volume reads

WT
Ĵ

=
{

y′ ∈ U : (J ◦ T ) (y′) = Ĵ
}

.

Note that WT
Ĵ
⊃ B (y, ξ) with ξ the radius found in Theorems 6.1 and 6.2, but WT

Ĵ
are not connected in general. The proofs of these theorems and of Proposition 6.3
show that the extent of a connected component of such a volume depends on both the
domain of validity of (4.3) and the domain of definition of T Ĵ . These domains depend
on the forms of A and of ϕ, and on the model parameters (β and those involved in
ϕ). It is crucial that the probability that noisy data belong to a volume WT

Ĵ
, with Ĵ

nonempty, be strictly positive.
When y ranges over U , the set-valued function (J ◦ T ) (y) generally takes several

distinct values Ĵn ∈ P(S◦), n ∈ IT where IT is a set of indices relevant to the
minimizer function T . Each Ĵn, in its turn, gives rise to a volume WT

Ĵn
. Thus, with

a minimizer function T there is associated a set of volumes {WT
Ĵn

, n ∈ IT }: each

time y ∈ WT
Ĵn

, we get a minimizer T (y) with J (T (y)) = Ĵn. Reciprocally, the
domain of T equivalently reads U = ∪n∈ITWT

Ĵn
. Speaking more loosely, the volumes

corresponding to the different nonempty sets of strong homogeneity Ĵn are placed
side by side. For a “reasonable” choice of the model parameters these volumes are
large enough and the noisy data come across their union. This is the reason why the
minimizers of an objective function, involving a nonsmooth-at-zero PF, exhibit large
strongly homogeneous zones.

Theorems 6.1 and 6.2 show how the estimation using nonsmooth regularization
reduces the “richness” of IRM—the domain of the original signal x—to a finite family
of solutions in IRM . This kind of soft classification is the way in which the prior,
expressed through a regularizer Φ involving a nonsmooth-at-zero PF, is effectively
taken into account by the estimator T , or equivalently by X .

7.3. Example. Consider the following strictly convex objective function:

Ey(x) = ‖x− y‖2 + β
∑

k∈S
|xk|; then Ĵ = {k ∈ S : x̂k = 0} .

Its global minimizer x̂ is the unique point satisfying (4.3)–(4.5). Assume for the
moment that 0 < #{Ĵ} < M . Since A is the identity and ϕ′+(0) = 1, the system
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(4.3)–(4.5) becomes

2(yk − x̂k)− βsign (x̂k) = 0 for k ∈ S \ Ĵ ,

2|yk| ≤ β for k ∈ Ĵ .(7.4)

The minimizer x̂ = X (y) admits an explicit expression:

x̂k = Xk(y) = yk − β

2
sign (yk) if |yk| > β

2
,

x̂k = Xk(y) = 0 if |yk| ≤ β

2
;

hence

(J ◦ X ) (y) =
{

k ∈ S : |yk| ≤ β

2

}
.

This X is a nonlinear filter which is used in [18, 16] to perform soft thresholding.
Provided that (7.4) is strict, i.e., that |yk| 6= 1

2β for all k ∈ Ĵ , a radius ξ, as the
one exhibited in Theorem 6.1, reads

ξ = min
k∈S

∣∣∣∣
β

2
− |yk|

∣∣∣∣ .

Now let (7.4) involve one nonstrict inequality, say, Ĵ0 = {m} with ym = β/2.
According to Proposition 6.3 and (4.15), we have θm = 2ym = β and τm = em, hence

Qm =
{

u ∈ 1IN : um < 0
}

and ζ(u) = min
{

β,

∣∣∣∣
β

2
− |yk|

∣∣∣∣ for k ∈ S \ {m}
}

.

On the other hand, (J ◦ X ) (y + hu) 6= Ĵ whenever um > 0.
Conversely, fix x̂ ∈ IRM with Ĵ = J (x̂) nonempty. As in Proposition 7.1, we seek

Vx̂, the set of all y such that x̂ minimizes Ey :

Vx̂ =
{

y : |yk| ≤ β

2
for k ∈ Ĵ and yk = x̂k +

β

2
sign (x̂k) for k ∈ S \ Ĵ

}
.

Now fix Ĵ 6= ∅. As in section 7.2, the set WĴ of all y yielding (J ◦ X ) (y) = Ĵ
reads

WĴ =
{

y : |yk| ≤ β

2
for k ∈ Ĵ and |yk| > β

2
for k ∈ S \ Ĵ

}
.

Such a WĴ is composed of a finite number of connected sets. In particular, the set
WS = {y : |yk| ≤ β

2 for k ∈ S} gives rise to x̂ = 0, and hence Ĵ = S. On the contrary,
W∅ = {y : |yk| > β

2 for any k ∈ S} corresponds to minimizers x̂ with J (x̂) = ∅.
Finally, {WĴ , Ĵ ∈ P(S)} form a partition of the data space IRN .

8. Numerical illustration. By way of illustration, we consider the estimation
of a signal x from noisy data y = x+n. In order to evaluate the ability of different PFs
to recover, and to conserve, the strongly homogeneous zones yielded by minimizing the
relevant Ey , we process in the same numerical conditions two data sets, contaminated
by two very different noise realizations; see Figure 8.1. In all subsequent figures, the
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Fig. 8.1. Data y = x + n (—), corresponding to the original x (-.-.), contaminated with two
different noise samples n. The two data sets are shown in the left and in the right.

estimates are presented on the left and on the right, respectively, while the shape of
the PF is plotted in the middle.

Figure 8.2 shows an estimation using a Huber PF5, which is quadratic near the
origin, ϕ(t) = α t2/2 if |t| < 1/α, and affine beyond it, ϕ(t) = ( |t|−1/2α ) if |t| ≥ 1/α.
This PF smooths the small differences while it adds a bias to the large differences.
The obtained solutions do not contain strongly homogeneous zones.

Figure 8.3 illustrates the effect of a dislocated quadratic PF, which is nonsmooth
at 0 and quadratic elsewhere, ϕ(t) = (t−α)2 if t < 0 and ϕ(t) = (t+α)2 if t > 0, with
ϕ(0) = 0. Because of the quadratic shape of ϕ beyond 0, the large differences are
noticeably underestimated. However, large strongly homogeneous zones are recovered
under both noise samples. This experiment nicely corroborates our assertion that the
estimation of strongly homogeneous zones is related only to the differentiability of ϕ
at zero.

Figure 8.4 shows an estimation using the modulus PF in (1.4). This PF differs
from the Huber PF only on ] − 1/α, 1/α [. However, the obtained solutions are
essentially different: the strongly homogeneous zones are now well retrieved and they
are globally the same for the two data sets. Note that now the amplitude of the signal
is better estimated than with the dislocated quadratic PF.

Figure 8.5 presents an estimation using the concave PF given in (1.5). The same
set of strong homogeneity is found under both noise samples. As expected, the large
differences—the jumps—are slightly different.

9. Conclusion. Signals involving strongly homogeneous zones arise in various
practical situations. The ability of a regularized estimator—the minimizer of an ob-
jective function—both to yield a solution containing large strongly homogeneous zones
and to conserve them under small variations of the data has been formalized math-
ematically. It has been shown that an estimator involving a PF which is smooth
at zero cannot recover nor conserve such zones. Instead, it has been demonstrated
that nonsmoothness of the PF at zero ensures that the strict local minimizers of the

5This PF is not twice differentiable at ±1/α. Nevertheless, it can be shown that the data y ∈ IRN ,
yielding a minimizer which involves one or several differences t̂k equal to ±1/α, belong to a closed,
negligible set in IRN . . . . Correspondingly, Fy is twice differentiable in the vicinity of its minimizer

for almost any y ∈ IRN .
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Fig. 8.2. Huber PF: ϕ(t) = αt2/2 if |t| < 1/α and ϕ(t) = ( |t| − 1/2α ) if |t| ≥ 1/α, where
α = 30 and β = 4. Original (-.-.); estimate (—). This PF is smooth at zero and the obtained
solutions do not contain strongly homogeneous zones.
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Fig. 8.3. Dislocated quadratic PF: ϕ(t) = (t− α)2 if t < 0 and ϕ(t) = (t + α)2 if t > 0, where
α = 3 and β = 1. Original (-.-.); estimate (—). The minimizer has large strongly homogeneous
zones. The large differences are underestimated.
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Fig. 8.4. Modulus PF: ϕ(t) = |t| with β = 9. Original (-.-.); estimate (—). The location of
the strongly homogeneous zones, corresponding to both data sets, differ only at a few points. The
large differences are better estimated than in Figure 8.3.
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Fig. 8.5. Concave PF: ϕ(t) = α|t|/(1 + α|t|), with α = 10 and β = 3. Original (-.-.); estimate
(—). Both data sets yield minimizers that are strongly homogeneous over the same zones. This PF
is nonconvex and large differences are detected in these estimates.

objective function conserve their strong homogeneity zones under small variations of
the data. More precisely, any strict minimizer involving strongly homogeneous zones
arises from a set of data which, in turn, give rise to strict minimizers having the same
strongly homogeneous zones. Conversely, an estimator, comprising a PF that is non-
smooth at zero, recovers solutions that involve large strongly homogeneous zones. Two
analytical examples and a set of numerical illustrations corroborate the relevance of
our mathematical results.

10. Appendix.
Proof of Theorem 4.2. Function Fy has a strict local minimum at t̂ whenever there

exists ρ > 0 such that for any t ∈ B(t̂; ρ) \ {t̂} we have Fy(t) > Fy(t̂). Equivalently,
for any v ∈ 1IM and for any h ∈ ] 0, ρ [:

Fy(t̂ + hv) > Fy(t̂) and Fy(t̂− hv) > Fy(t̂).

The latter is equivalent to

Fy(t̂− hv)−Fy(t̂)
−h

< 0 <
Fy(t̂ + hv)−Fy(t̂)

h
.

Taking these inequalities in the limit h ↓ 0 leads to (4.2).
Proof of Theorem 5.3. As in Theorem 5.2, we examine the altitude increment

∆v given in (5.1) with h ≥ 0. For Ĵ 6= S, the latter is split into two terms, as in
(5.2)–(5.3).

• Term ∆1
v . The condition ensuring that ∆1

v(h) > 0 comes from the arguments
presented in the proof of Theorem 5.2 and it has the form 0 < h < ρ1.

• Term ∆0
v . Two situations arise, according to the continuity of ϕ at 0.

—ϕ satisfies (H2) with ϕ′+(0) = +∞. Choose

γ :=
2θmax

β
.

By Proposition 5.1 (b), there exists ηγ such that

ϕ(hvk) ≥ γh|vk| if 0 ≤ h|vk| < ηγ and in particular if 0 ≤ h < ηγ ,
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since 0 ≤ |vk| ≤ 1. Then

∑

k∈Ĵ

ϕ(hvk) ≥
∑

k∈Ĵ

γh|vk| = γh1T |v0| = h
2θmax

β
|||v0|||1 if 0 ≤ h < ηγ .

This result, combined with (5.4) and (5.5), is introduced in (5.3):

∆0
v(h) > −2λh2|||v0|||1 − θmaxh|||v0|||1 + 2θmaxh|||v0|||1 = h (−2λh + θmax)|||v0|||1.

The last term is positive if 0 < h < θmax/2λ.
When ϕ is continuous at 0, we conclude that ∆v(h) > 0 along any v ∈ 1IM if

0 < h < ρ with ρ = min
{

ρ1, ηγ ,
θmax

2λ

}
.

—ϕ satisfies (H3). The fact that |vk| ≤ 1 allows us to write that ϕ(hvk) ≥ γ |vk|
when h ∈ ] 0, η [. In consequence,

∑

k∈Ĵ

ϕ(hvk) ≥ γ 1T |v0| = γ|||v0|||1 if 0 < h < η.

The following lower bound on ∆0
v can then be obtained:

∆0
v(h) > −2λh2|||v0|||1 − θmaxh|||v0|||1 + βγ|||v0|||1 = (−2λh2 − θmax h + βγ) |||v0|||1,

which holds if 0 < h < η. The quadratic term in parentheses is concave and has a
positive and a negative real root; it is positive between these roots.

For ϕ discontinuous at 0, we see that ∆v(h) > 0 for any v ∈ 1IM if

0 < h < ρ where ρ = min

{
ρ1, η,

−θmax +
√

θ2
max + 8λβγ

4λ

}
.

If Ĵ = S, we have the same arguments as in the proof of Theorem 5.2.
Proof of Proposition 6.3. This proof extends the reasoning underlying the proof

of Theorem 6.1. The considerations about t̂̂J = T Ĵ(y) for Ĵ 6= S, presented in the
beginning of the latter proof, are still valid. So, consider ω—the radius in (6.1)—
and T̃ as defined in (6.2). Our goal now is to find an open domain, contained in
B(y;ω), whose elements y′ are such that t̃

′
= T̃ (y′) are assuredly strict minimizers

of the relevant Fy′ . To this end, we will seek a family of directions, say Q ⊂ 1IN , in
connection with a family of bounds {ζ(u) ∈ ] 0, ω ] : u ∈ Q}, such that t̃

′
= T̃ (y+hu)

satisfies6 the conditions of Theorem 5.2 whenever u ∈ Q and h ∈ ] 0, ζ(u) [. Observe
that the condition (b) of Theorem 5.2 is actually satisfied by any T̃ (y′) with y′ ∈
B(y;ω).

Now we determine a domain where the condition (a) of Theorem 5.2 holds as well,
i.e., that (4.3) holds and is strict. By (a), each k ∈ Ĵ0 gives rise to the alternative:

either −βϕ′+(0) = 2aT
k (y −AĴ t̂̂J) < βϕ′+(0), i.e., θk = −βϕ′+(0),(10.1)

or −βϕ′+(0) < 2aT
k (y −AĴ t̂̂J) = βϕ′+(0), i.e., θk = βϕ′+(0).(10.2)

6Notice that y belongs not to the domain determined by Q and ζ but to its closure.
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Requiring that (4.3) be strict for y′ = y + hu is equivalent to the following:

find u ∈ 1IN and ζ(u) > 0 such that h ∈ ] 0, ζ(u) [ leads to
Lk(h; u) < βϕ′+(0) for any k ∈ Ĵ0,(10.3)

Lk(h; u) < βϕ′+(0) for any k ∈ Ĵ \ Ĵ0,(10.4)

where Lk are defined as in (6.3). Below, we determine conditions on h and on u which
ensure that (10.3) and (10.4) are true.
• Condition (10.4). Following (4.16), we now introduce

θ0
max := max

{
| θk | for k ∈ Ĵ \ Ĵ0

}
;

then θ0
max < βϕ′+(0) strictly. By (b), there exists σ0 ∈ ] 0, ω [ such that

h ∈ ] 0, σ0 [ yields
∥∥∥T Ĵ (y + hu)− T Ĵ(y)

∥∥∥ <
βϕ′+(0)− θ0

max

4 a
√

λ
for all u ∈ 1IN ,(10.5)

where a and λ are as in (6.4) and (5.4), respectively. Similarly to (6.9), define

ξ0 = min
{

σ0,
βϕ′+(0)− θ0

max

4a

}
.

The implication (10.5) is similar to (6.7), whereas the arguments that yielded (6.10)
can now be applied to (10.4). Thus we see that (10.4) holds for all u ∈ 1IN whenever
0 < h < ξ0.
• Condition (10.3). These inequalities are more difficult to satisfy. Define

Rk(h; u) := haT
k u− aT

k AĴ

[
T Ĵ(y + hu)− T Ĵ(y)

]
.(10.6)

Using (6.5) and (10.1)–(10.2), any Lk corresponding to k ∈ Ĵ0 can be reformulated as

Lk(h; u) =





∣∣−βϕ′+(0) + 2Rk(h;u)
∣∣ if θk = −βϕ′+(0),

∣∣βϕ′+(0) + 2Rk(h;u)
∣∣ if θk = βϕ′+(0).

Then (10.3) is equivalent to requiring that for all k ∈ Ĵ0 we have
{

0 < Rk(h; u) < βϕ′+(0) if θk = −βϕ′+(0),
0 < −Rk(h; u) < βϕ′+(0) if θk = βϕ′+(0).(10.7)

For each k ∈ Ĵ0 we next determine conditions ensuring that (10.7) is true.
• Upper inequalities in (10.7). From the definition of Rk in (10.6) we get

|Rk(h; u)| ≤ h‖ak‖+ ‖aT
k AĴ‖

∥∥∥T Ĵ (y + hu)− T Ĵ(y)
∥∥∥

≤ ha + a
√

λ
∥∥∥T Ĵ(y + hu)− T Ĵ (y)

∥∥∥ .

From (10.5) we see that h ∈ ] 0, σ0 [ guarantees that7

∥∥∥T Ĵ (y + hu)− T Ĵ(y)
∥∥∥ <

βϕ′+(0)

2 a
√

λ
,

7We use the fact that
βϕ′+(0)− θ0

max

4 a
√

λ
<

βϕ′+(0)

4 a
√

λ
<

βϕ′+(0)

2 a
√

λ
.
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and consequently

|Rk(h; u)| < ha +
βϕ′+(0)

2
.

Now define

ζ1 := min
{

βϕ′+(0)
2a

, σ0

}
.

Since ζ1 ≤
(
βϕ′+(0)

)
/(2a) we see that

0 < h < ζ1 leads to |Rk(h;u)| < ζ1a +
βϕ′+(0)

2
≤ βϕ′+(0).

Hence, both upper inequalities (10.7) (relevant to θk < 0 and to θk > 0) are satisfied
for any u ∈ 1IN , provided that 0 < h < ζ1.

• Lower inequalities in (10.7). By (b), the function h 7→ T Ĵ(y + hu) allows a
local Taylor expansion:

T Ĵ(y + hu)− T Ĵ (y) = hDT Ĵ(y)u + Pu(h) if 0 ≤ h < χu ,

where χu ∈ ] 0, ω ] is a bound and Pu is the remainder. Then for each k ∈ Ĵ0 we have

Rk(h; u) = haT
k u− aT

k AĴ

[
hDT Ĵ (y)u + Pu(h)

]
= hτT

k u− aT
k AĴPu(h),

where τ k was introduced in the assumption (c).
Fix k ∈ Ĵ0 and suppose u ∈ Qk with Qk as given in (6.12). Two cases arise now.
—Case θk = −βϕ′+(0). By the assumption (b), the function h 7→ Pu(h)/h is

continuous on [ 0, χu [ and limh↓0 Pu(h)/h = 0. By u ∈ Qk we get τT
k u > 0; then

there exists νk(u) ∈ ] 0, χu ] such that

τT
k u > aT

k AĴ

Pu(h)
h

whenever 0 < h < νk(u).

For any such h we have Rk(h; u) > 0.
—Case θk = βϕ′+(0). Now u ∈ Qk means that τT

k u < 0. The same considerations
as previously yield a bound νk(u) ∈ ] 0, χu ] such that

τT
k u < aT

k AĴ

Pu(h)
h

if 0 < h < νk(u).

Hence Rk(h;u) > 0 for any h ∈ ] 0, νk(u) [.
Now put

ν(u) := min
{

νk(u) for k ∈ Ĵ0
}

.

Hence, the inequality system (4.3) is strict for any y′ = y + hu such that

u ∈
⋂

k∈Ĵ0

Qk and 0 < h < ζ(u), with ζ(u) = min {ξ0, ζ1, ν(u)} .

All conditions of Theorem 5.2 are satisfied for the relevant t̃
′
= T̃ (y′); hence these

are strict minimizers of Fy′ at which T is continuous.
The case Ĵ = S is easily analyzed by using the arguments evoked in the proof of

Theorem 6.1.
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