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ABSTRACT

We consider images corrupted by impulsive noise (outliers). A
large variety of methods are based on order statistic filters. Other
methods use state-conditioned filters. We propose a different ap-
proach, consisting of two stages. First, outliers are detected based
on the minimizer of a cost-function composed of an �1 data-fidelity
and an �2 regularization term. The computation of this minimizer
is speed and the detection of outliers reliable. Then, only outliers
are removed and replaced by the median of the nearest neighbor-
ing regular (uncorrupted) data samples. This method is justified by
some recent theoretical results [13]. The numerical experiments
show that our method is very efficient in a broad range of situa-
tions, including highly corrupted images.

1. INTRODUCTION

The unknown original image x∗ and the data y are identified with
vectors of IRp. We consider data y corrupted with impulsive noise.
We call outliers all samples yi for i ∈ Ωy where Ωy := {i ∈
{1, .., p} : yi �= x∗

i }. Conversely, Ωc
y = {1, .., p} \ Ωy ad-

dresses all regular (uncorrupted) data samples. It is naturally sup-
posed that there are “enough” regular data samples and that out-
liers are quite dissimilar with respect to neighboring pixels. Since
[1], many different order-statistic filters have been derived in or-
der to process outliers [2, 3, 4, 5, 6, 7, 8], e.g. recursive me-
dian, hybrid median, center-weighted median (CWM), permuta-
tion weighted median (PWM). Being applied uniformly across the
image, these filters tend to alter both corrupted and regular pix-
els. State-conditioned filters smooth pixels conditionally on a de-
cision, taken over a small window, on whether or not it is an outlier
[9, 10, 11]. Their success is closely dependent on the reliability of
the outlier decision rule and of the window size.

Our approach is different. In [12, 13], we consider cost-func-
tions composed of a non-smooth data-fidelity term and a smooth
regularization term, and show that their minimizers fit exactly reg-
ular (uncorrupted) data entries and smooth outliers. We observed
that outliers are reliably detected, even in highly corrupted images,
but that their smoothing is not optimal. In this paper, we separate
these tasks. For the detection of outliers we use an �1-�2 cost-
function—see (2)—whose minimization is very easy (§4). Then
detected outliers are smoothed using conventional median-based
techniques. The numerical results are extremely encouraging.

2. THE PROPOSED METHOD

For every pixel i ∈ {1, . . . , p}, the symbol Ni denotes the set of
the four, or the eight pixels adjacent to i. Recall that i∩Ni = ∅ and

that j ∈ Ni ⇔ i ∈ Nj . By extension, if ω is a connected subset
on the grid of the image, its adjacent neighborhood Nω reads

Nω =

 [
i∈ω

Ni

!
\ ω.

If ω = {i}, we find Nω = Ni. The sought-after denoised image
will be denoted x̂. The proposed method is summarized below.

Step 1: Detection of outliers. The estimate Ω̂y of the locations
of outliers in data y is defined as

Ω̂y = {i ∈ {1, . . . , p} : x̃i �= yi} , (1)

where x̃ minimizes the cost-function Fy : IRp → IR

Fy(x) =

pX
i=1

|xi − yi| + α

2

pX
i=1

X
j∈Ni

(xi − xj)
2, (2)

where α > 0 is a fixed parameter. We then put

x̂i = yi, ∀i ∈ Ω̂c
y,

since Ω̂c
y is the estimated set of regular data points.

Step 2: Smoothing of outliers. Let us represent Ω̂y as a union
of connected components, say ω�, for � = 1, . . . , n. We consider
successively all ω�, for � = 1, . . . , n. If ω� is a singleton, say
ω� = {i}, we take

x̂i = median({yj : j ∈ Ni}).
In practice, many ω�s are singletons. Otherwise, for every i ∈ ω�,
we determine Ñi ⊂ Nω� as the subset of the m closest samples to

i (e.g., m = 4) and calculate x̂i = median({yj : j ∈ Ñi}). Thus
all x̂i are calculated based only on regular data samples.

3. THEORETICAL JUSTIFICATION

The statements given below follow from some more general results
developed in [13]. For any x ∈ IRp, and for any i ∈ {1, . . . , p},
let χi(x) be the mean of the neighbors of xi:

χi(x) =
1

#Ni

X
j∈Ni

xj .

Let us emphasize that χi(x) does not depend on xi.

Proposition 1 For y ∈ IRp, the function Fy : IRp → IR reaches
its minimum at x̃ ∈ IRp if and only if

|x̃i − χi(x̃)| ≤ 1

2α#Ni
, ∀i ∈ Ω̂c

y, (3)

x̃i − χi(x̃) =
sign(yi − χi(x̃))

2α#Ni
, ∀i ∈ Ω̂y, (4)

where Ω̂y is defined as in (1).
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Notice that in (3)we have x̃i = yi. By (3)-(4), if |yi − χi(x̃)| >
1/(2α#Ni), then yi is estimated to be an outlier. So, the detection
of outliers is based on the (implicit) comparison of each yi with
the relevant χi(x̃). Let Mi be an extended neighborhood of i, say

Mi = Ni ∪
“S

j∈Ni
Nj

”
\ {i}. Below we show that various

subsets Ω̂y can arise as long as y varies.

Proposition 2 Choose Ω̂ so that Mi ∈ Ω̂c for every i ∈ Ω̂. Then
there is an open set YΩ̂ ⊂ IRp such that for every y ∈ YΩ̂, the
function Fy reaches its minimum at a point x̃ such that x̃i = yi,
for all i ∈ Ω̂c, whereas x̃i 6= yi is given by (4) for all i ∈ Ω̂.

For instance, suppose that x̃ is such that for some i we have
Mi ∈ Ω̂c

y . Based on (3)-(4), it is not difficult to see that

|yi − χi(y)| ≤ 1

2α#Ni
⇔ x̃i = yi

|yi − χi(y)| >
1

2α#Ni
⇔ x̃i = χi(y)− σi

2α#Ni
,

(5)

where σi = sign(yi − χi(y)). In the second case, yi is an outlier,
because it is “too far” from the mean of its neighbors. When the
image is highly corrupted, many outliers are adjacent neighbors;
then Ω̂y is composed of connected components of different size.
Let ω be a connected component of Ω̂y . It can be shown that x̃i,
for i ∈ ω, is calculated as an increasing, affine combination of all
neighboring regular samples, yj , for j ∈ Nω ⊂ Ω̂c

y .
Next we focus on the stability of the detection of outliers pro-

posed in step 1. For i ∈ Ω̂y , put σi = sign(yi −χi(x̃)). Based on
(4), it can be shown that for all y′ ∈ IRp such that

y′i = yi ∀i ∈ Ω̂c
y,

σiy
′
i ≥ σiyi ∀i ∈ Ω̂y,

the relevant Fy′ reaches its minimum at the same point x̃. This
shows that if yi is outlier, then x̃i is independent of the exact value
of yi, hence x̃ is insensitive to the magnitude of aberrant data.

Proposition 3 For y ∈ IRp given, let Fy reach its minimum at x̃.
Suppose that Ω̂c

y , defined according to (1), is nonempty and that
for every i ∈ Ω̂c

y , the inequality in (3) is strict. Then there is an
open subset YΩ̂ ⊂ IRp, with y ∈ YΩ̂, such that for every y′ ∈ YΩ̂,
the relevant Fy′ reaches its minimum at an x̃′ such that

x̃′i = y′i if i ∈ Ω̂c
y,

x̃′i 6= y′i if i ∈ Ω̂y.

The estimation of outliers proposed in step 1 is stable since Ω̂y

remains unchanged under small perturbations of the data. Recip-
rocally, the sets YΩ̂ in Propositions 2 and 3 being open, noisy data
y do come across them and yield minimizers which fit exactly a
certain number of the data entries, i.e. that Ω̂y 6= ∅.

By (3)-(4) and (5) we see that decreasing α increases the thresh-
old for the detection of outliers, and vice-versa. For images with
complex features, detecting all outliers may require α to be pretty
large. Then some regular data entries (especially those placed near
the edges) may be falsely detected as outliers. This will not consid-
erably decrease the quality of the restoration since at step 2 of our
method, these entries are replaced by the median of their neigh-
bors, which is a good edge-preserving operation. Practically, the
method is quite stable with respect to the value of α.

4. MINIMIZATION ALGORITHM

For every k = 1, 2, . . ., the iterate x(k) is obtained from x(k−1) by
calculating successively all its components x

(k)
i , for i = 1, . . . , p

(taken in any order), according to the scheme:

Fy(x
(k)
1 , x

(k)
2 , . . . , x

(k)
i−1, x

(k)
i , x

(k−1)
i+1 , . . . , x(k−1)

p )

= min
t∈IR

Fy(x
(k)
1 , x

(k)
2 , . . . , x

(k)
i−1, t, x

(k−1)
i+1 , . . . , x(k−1)

p ).

Proposition 4 The sequence x(k) converges, as k → ∞, to a
point x̃ such that Fy(x̃) ≤ Fy(x), for all x ∈ IRp.

This result is obtained by applying Theorem 2 of [13]. Let the in-
termediate solution at step i−1 of iteration k be denoted x(k,i−1) =

(x
(k)
1 , x

(k)
2 , . . . , x

(k)
i−1, x

(k−1)
i , x

(k−1)
i+1 , . . . , x

(k−1)
p ). By Proposi-

tion 1, at the next step we calculate x
(k)
i according to the rule:

ξ
(k)
i = yi − χ

(k)
i where χ

(k)
i =

1

#Ni

X
j∈Ni

x
(k,i−1)
j ,

if
˛̨
˛ξ(k)

i

˛̨
˛ ≤ 1

2α#Ni
⇒ x

(k)
i = yi,

if
˛̨
˛ξ(k)

i

˛̨
˛ >

1

2α#Ni
⇒ x

(k)
i = χ

(k)
i +

sign(ξ
(k)
i )

2α#Ni
.

Notice that updating each entry x
(k)
i involves only the samples be-

longing to its neighborhood Ni. So, at one step we can update
simultaneously any subset of entries {i1, . . . , iK} ⊂ {1, . . . , p}
provided that ij ∩Nik = ∅ for all j, k ∈ {1, . . . , K} with j 6= k.
Based on Proposition 3, we can expect that x̃i = yi for a certain
number of the entries of x̃. This suggests we initialize the algo-
rithm with x(0) = y. Because of the simplicity of the calculations,
the algorithm is fast. The calculation time is of the order of the
median filtering (quite faster if there is a few outliers).

5. EXPERIMENTS

5.1. Illustration of the method.

0

5

0
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(a) x̃ for α = 0.3 (***) (b) x̃ for α = 0.4 (***)

5 5

(c) Solution x̂ (***) (α=0.3) (d) Solution x̂ (***) (α=0.4)

Fig. 1. Original (—), Data (- -), Outliers in y (o), Residual
|x̃− y| (- -).



We consider the denoising of the original signal x∗ plotted
with the solid line in Fig. 1 from the data y plotted with the dashed
line in (a) and (b), which involve 5 outliers. For α = 0.3, the
minimizer x̃ of Fy , plotted in (a) with “∗”, leads to Ω̂y = Ωy ,
i.e. to the true set of outliers in y. Applying step 2 of our method
yields the solution x̂ plotted in (c) with “∗”. A larger value for
α, as in (b), leads to an Ω̂y which contains Ωy plus some falsely
detected outliers. The resultant solution x̂ is shown in (d).

5.2. Denoising of an image

The data in Fig. 2(right) contain 50 % salt-and-pepper (S-P) noise,
uniformly distributed over the grid of the image.

Fig. 2. Original image and data with 50% S-P noise.

(a) Median filter. (b) PWM.

(c) CWM. (d) Recursive CWM.

Fig. 3. Median-based methods

In Fig. 3, different median-based techniques are applied by using
the set of parameters (window size, number of iterations, recursiv-
ity, additional parameters) which lead to the best image denoising.
In all cases, we have a 5x5 window. The image in (a) corresponds
to 2 iterations of median filter. The solution in (b) corresponds to
PWM with rank parameters 7 and 19. The image in (c) is obtained

using 3 iterations of CWM with multiplicity parameter 5. The next
(d) results from 5 iterations of recursive CWM with parameter 10.
All these restorations are slightly blurred, especially the hairs and
the feathers, the tissue of the hat lose detail, and there are defaults
near the nose. Moreover, they still contain several outliers with
high intensity.

(a) The minimizer x̃ of Fy (b) Solution x̂.

Fig. 4. The proposed method.

The image in Fig. 4 (a) is x̃, the minimizer of Fy for α = 0.0075.
For 45 % of its entries, x̃i = yi. The other entries correspond to
important outliers. The image in Fig. 4 (b) corresponds to step 2
of our method. In is quite clean, edges are neat and the challenging
features—hair, feathers, hat—are well recovered. This restoration
is pretty satisfactory.

5.3. Preprocessing of noisy data

In different applications, data y result from outlier-free degrada-
tions (e.g., distortion, blurring, quantization errors, electronic noise),
plus impulsive noise. A preliminary processing, aimed at remov-
ing the outliers, is usually needed before to apply reconstruction
methods. Preprocessing is often realized using median-based fil-
ters. It is critical that preprocessing keeps intact all the information
contained in the outlier-free data.

−1 0 1

500

−1 0 1

200

noise to recover

histogram of data y

(a) Image x∗ to recover (b) Histograms

(c) Underlying image xo. (d) Data y.

Fig. 6. Data with two-stage degradation.



In our experiment, the sought image x∗, shown in Fig. 6(a), is
related to xo, shown in (c), by x∗ = xo + n, where n is white
Gaussian noise with 20 dB SNR. The histogram of n is plotted in
(b), up. Our goal is to restore x∗ based on the data y, shown in
(d), which contain 10 % S-P noise. Restoring x∗ is a challenge
since the white noise there must be preserved. The relevance of an
estimate x̂ is evaluated by both, the error x̂− x∗ and the closeness
of the histogram of the estimated noise, n̂ = x̂− xo, to the initial
noise n. All results in Fig. 7 correspond to the parameters which
lead to the best denoising. The image in (a) corresponds to one
iteration of median filter over a 3x3 window. The image in (b)
is calculated using CWM with a 5x5 window and multiplicity pa-
rameter 14. The image in (d) corresponds to one iteration of PWM,
for a 5x5 window and rank parameters 4 and 22. In all these esti-
mates, the distribution of the noise estimate n̂ (shown on the right,
up) is quite different from the distribution of n. Fig. 8 displays
the issue of the proposed method, for α = 1.3. It achieves a good
preservation of the statistics of the noise in x∗, as seen from the
histogram of the estimated noise n̂—Fig. 8, right, up. Moreover,
the error x̂−x∗ is essentially concentrated around zero, as seen in
Fig. 8, right, down.
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(a) Median filter
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noise estimate n̂

error x̂− x∗

(b) CWM

−1 0 1
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noise estimate n̂

error x̂− x∗

(c) PWM

Fig. 7. Median-based restorations.

6. CONCLUSIONS

We present a new framework for the removal of impulsive noise.
An important advantage of our method is that the outlier decision
is based on a global cost-function, taking into account a prior on

the image. Hence the reliability of the outlier detection. The nu-
merical results are promising. Further improvement of step 2 can
be envisaged in order to take into account local edge information.

−1 0 1

500

−1 0 1

100

noise estimate n̂

error x̂− x∗

Fig. 8. The proposed method.

Method ‖x̂−x∗‖2 ‖hist(n̂−n)‖2
Median filter 45.79 1.95x103

CWM 30.96 1.08x103

PWM 34.70 0.86x103

Proposed method 25.59 0.43x103

Fig. 9. Errors: data and noise distribution.
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