
Relationship between the optimal solutions of least squares

regularized with �0-norm and constrained by k-sparsity

Mila NIKOLOVA
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Abstract. Two widely used models to find a sparse solution from a noisy underdetermined linear system

are the constrained problem where the quadratic error is minimized subject to a sparsity constraint, and the

regularized problem where a regularization parameter balances the minimization of both quadratic error and

sparsity. However, the connections between these two problems have remained unclear so far. We provide an

exhaustive description of the relationship between their globally optimal solutions. A partial equivalence between

them always exists. We exhibit a sequence of critical parameters that partitions the positive axis into a certain

number of intervals. For every regularization parameter inside an interval, there is a sparsity level such that the

regularized problem and the constrained problem have the same global minimizers. At the values of the critical

parameters, the optimal set of the regularized problem contains two optimal sets of the constrained problem.

When the length of the sequence of critical parameters equals the number of all sparsity levels, both problems

are quasi-completely equivalent. The critical parameters are obtained from the optimal values of the constrained

problem.
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1 Introduction

The recovery of sparse objects (e.g., signals, images) or representations u ∈ RN using a few basis vectors

from few and possibly inaccurate data d ∈ RM is an extremely lively area of research in linear inverse

problems and in compressed sensing [13, 8, 37, 14]. The most natural measure of sparsity is the counting

function ‖ . ‖0, called usually the �0-norm

‖u‖0 := �
{
i ∈ {0, 1, · · · ,N} : ui �= 0

}
, (1)

where � S is the number of elements in the set S and ui is the ith components of u. We consider a matrix

(e.g., a dictionary, a measurement system) A ∈ RM×N with M < N for fixed M and N.

Two desirable models to find a sparse solution are given by the following optimization problems:

• the k-sparsity constrained minimization problem where one looks for the minimum squared error at a

given level of sparsity k

(Ck) min
u∈RN

‖Au− d‖22 , subject to ‖u‖0 � k , (2)
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• the ‖ · ‖0-regularized problem where a positive parameter β is used to balance the minimization of both

squared error and sparsity in the objective function Fβ : RN → R

(Rβ) Fβ(u) := ‖Au− d‖22 + β‖u‖0 , β > 0 . (3)

Let us evoke a few fields where problems (Ck) and (Rβ) arise. Problem (Ck) involves a natural sparse

coding constraint; it is a particular case of the well known best k-term approximation [11, 10]. It has been

used for low-rank matrix decomposition [3], sparse inverse problems [7]. Problem (Rβ) has been widely

considered for subset selection [26, 5], model selection [21], variable selection [19], feature selection [29, 15],

signal and image reconstruction [18, 16, 12].

Even though explored for several decades, problems (Ck) and (Rβ) were essentially considered from a

numerical standpoint. The existence of some connections between these problems seems intuitive. However,

the relationship between these problems has never been studied in a systematic way.

The goal of this work is to analyze in depth the connections between the sets of global minimizers of (Ck)
and of (Rβ). Our theoretical results raise salient questions about the existing algorithms and can help the

design of innovative numerical schemes.

As usual, we say “optimal set” or “optimal solutions” (resp., “optimal values”) for globally optimal

solutions, i.e., global minimizers (resp., globally optimal values) [34, 2]. For clarity we recall that:

− In problem (Ck) for k � N the constraint set of u reads as
{
u ∈ RN

∣∣ ‖u‖0 � k
}
, so we have

optimal value ck := inf
{
‖Au− d‖2 ∣∣ u ∈ RN and ‖u‖0 � k

}
, (4)

optimal solutions Ĉk :=
{

u ∈ RN and ‖u‖0 � k
∣∣ ‖Au− d‖2 = ck

}
. (5)

− In problem (Rβ) for β > 0 one has

optimal value rβ := inf
{
Fβ(u) | u ∈ RN

}
, (6)

optimal solutions R̂β :=
{
u ∈ RN

∣∣ Fβ(u) = rβ

}
. (7)

We anticipate that for any d ∈ RN, it holds that Ĉk �= ∅, ∀ k � 0 and that R̂β �= ∅, ∀ β > 0 (Lemma 1

and Theorem 2(b), respectively). In view of these definitions, we are aimed at clarifying the relationship

between the sets of global minimizers Ĉk and R̂β . To this end, we adopt a blanket assumption:

H1. The matrix A ∈ RM×N satisfies rank(A) = M < N. It is also assumed that d �= 0.

The quite standard Definition 1 shall be used to evaluate the extent of some properties.

Definition 1. A property is generic on RM if it holds on a subset of RM \S where S is closed in RM and

its Lebesgue measure in RM is null.

A generic property is clearly stronger than a property that holds only with probability one because

RM \S contains a dense open subset of RM. Equivalently, we say that a property holds generically.
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1.1 A brief tour of numerical approaches

The amount of papers dealing with problems (Ck) and (Rβ) is huge. We present a brief summary.

Solving problems (Ck) and (Rβ) by exhaustive search is combinatorial and NP-hard in general [36]. A

major difficulty raised by these problems is the design of practical numerical schemes.

The solutions of problems (Ck) and (Rβ) are usually approximated by greedy pursuit [27], relaxation of

the ‖·‖0 penalty [36] often combined with nonconvex minimization [15, 21, 16], as well as direct optimization

[26, 1]. Tropp and Wright [37] gave a comprehensive overview, mainly focused on greedy pursuits and convex

relaxation. In the compressed sensing context, iterative hard thresholding has become a major technique

after the convergence results of Blumensath and Davies [5], further expanded by the authors to solve (Ck)
in [6, 7]. Convergence of several algorithms has been obtained under strong assumptions, e.g., restricted

isometry property, bounds on spark(A) and sparsity of the solution [8, 6]. Certain classes of matrices, known

to satisfy such conditions, are typically employed [22, 4, 9]. In the context of ill-posed inverse problems

from limited data, the matrix A is fixed. Convergence of descent methods – proximal, operator splitting,

and regularized Gauss-Seidel – for a wide class of problems including (Rβ) and (Ck) was established by

Attouch, Bolte and Svaiter in [1]. A promising continuous tight relaxation of problem (Rβ) was recently

proposed by Soubies, Blanc-Féraud and Aubert in [35].

Problem (Rβ) is a particular case of a class of objectives where the counting function ‖ · ‖0 is used for

Markov random field models. In the inaugural work [17] Geman and Geman (1984) designed a stochastic

relaxation method for labeled images that achieves global minimization asymptotically. Various approaches

have been proposed to improve the convergence speed. Robini, Lachal and Magnin [31, 32] introduced

the stochastic continuation approach and proved high probability for convergence to a global minimizer in

finite time. They applied the method to reconstruct 3D tomographic images. Robini and Reissman [33]

extended the methodology to general combinatorial objectives and gave results on the probability for global

convergence with respect to the running time.

The progress in solving problems (Ck) and (Rβ) is important. One observes that the corresponding numerical

schemes share some common points. Exploring the relationship between the optimal sets of these two problems

arises as a natural question.

1.2 Main contributions

This work provides a detailed description of the relationship between the sets of global minimizers (called

also optimal sets) of the two nonconvex (combinatorial) problems (Ck) and (Rβ), given in (2) and (3),

respectively. These sets, see (5) and (7), are always nonempty (Lemma 1 and Theorem 2(b)). Our main

results are summarized below. The couple (A, d) satisfies H1.

• We define L as the least number so that the optimal value of (CL) is null; note that L = M generically

(Proposition 5). For any k � L, any optimal solution û of (Ck) is strict and obeys ‖û‖0 = k (Theorem 1).

Problem (Rβ) for all β ∈ (0,+∞) has at most L+ 1 different sets of global minimizers which are global

minimizers of (Ck) for k ∈ {0, . . . , L} (Theorem 4).

• Optimality of (Rβ) can be reduced to a search over the optimal sets of (Ck) (Theorem 5).

• A sequence of parameter values {βk, βU
k }Lk=0 is proposed (Definition 3) using the optimal values of problem

(Ck). The global minimizers of (Ck) and of (Rβ) coincide if and only if βk < β < βU
k (Theorem 6). However,
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according to the data, it can occur that (βk, β
U
k ) = ∅. So we focus on J := {k ∈ {0, . . . , L} | βk < βU

k }
which subset is always nonempty and yields βU

Jk
= βJk−1

(Proposition 3).

• Problem (Rβ) for any β ∈ (βJk , βJk−1

)
and problem (CJk) have the same global minimizers (Theorem 7).

This agreement is referred to as partial equivalence. For the isolated values β = βJk , the optimal set of

problem (Rβ) contains the global minimizers of (CJk) and
(CJk+1

)
(Theorem 8).

• {βk}k∈J is the largest strictly decreasing subsequence in Definition 3 containing β0 (Proposition 4).

• When the whole sequence {βk}Lk=0 in Definition 3 is strictly decreasing, problem (Ck) and problem (Rβ)

for all β ∈ (βk, βk−1) have the same optimal set (Theorem 9). This case is referred to as quasi-complete

equivalence.

• The optimal solutions of (Ck) and of (Rβ) are generically unique (subsection 6.1).

1.3 Paper overview

Section 2 establishes necessary and sufficient conditions for global minimizers of problem (Rβ) only in

terms of the global minimizers of problem (Ck). It begins with a study of the optimal sets of problem

(Ck). Facts on the optimal sets of problem (Rβ) are taken from [30]. Section 3 is devoted to parameter

values and conditions for agreement between the optimal sets of problems (Ck) and (Rβ). The main results

on the relationship between the optimal sets of problems (Ck) and (Rβ) – partial equivalence and possible

quasi-complete equivalence – are established and discussed in section 4. Some facts on the optimal values

of these problems are given in section 5. Uniqueness of the global minimizers of problems (Ck) and (Rβ)

under additional mild conditions is discussed in section 6. The theoretical findings are illustrated using

exact numerical tests for (M,N) = (5, 10) in section 7. Conclusions and future directions are presented in

section 8.

1.4 Notation

For ease of presentation, we give here all important notations used throughout the paper.

The �2-norm is denoted by ‖ . ‖ := ‖ . ‖2 . Let n be a positive integer. We denote by In and I0n the totally

and strictly ordered index sets

In :=
({1, . . . , n}, < ) and I0n :=

({0, 1, . . . , n}, < ) , (8)

where the symbol < stands for the natural order of integers (the superscripts 0 recalls that zero is included).

Thus any subset ω ⊆ In is also totally and strictly ordered. The support of u ∈ Rn is supp(u) :=
{
i ∈

I0n
∣∣ u[i] �= 0

}
. A vector u is said to be k-sparse if ‖u‖0 = � (supp(u)) � k.

Remark 1. For (Ck) we consider also the trivial case k = 0 because Fβ always has a strict (local) minimum

at û = 0 [30]. According to the value of β, û can be global minimizer of Fβ . ♦

For any ω ⊆ IN, we denote by Aω the M × � ω submatrix of A formed from the columns of A with

indexes in ω and similarly uω is the � ω-length restriction of u ∈ RN whose indexes are in ω:

Aω :=
(
Aω1 , . . . , Aω � ω

)
and uω :=

(
uω1 , . . . , uω � ω

)T
,

where the superscript T means transposed. We also set AT
ω := (Aω)

T. In view of Remark 1, we define

A∅ := [ ] ∈ RM×0 and rank (A∅) := 0 in order to handle the case û = 0. The identity operator on Rn
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is denoted by In; the index n is omitted when clear from the context. A vector or a matrix of zeros of

arbitrary dimension is denoted by 0.

The notation specific to problem (Ck) (resp., (Rβ)) is based on the letter “c” (resp., the letter “r”).

Lowercase (resp., uppercase) letters stand for optimal values (resp., optimal sets). Furthermore:

− L := min
{
k ∈ IN

∣∣ ck = 0
}
where ck is the optimal value of problem (Ck) defined in (4).

− Ωk := {ω ⊂ IN | � ω = k = rank (Aω)} – introduced in (17) (section 2).

− Ĉ :=
⋃L

k=0 Ĉk where Ĉk are he global minimizers of (Ck) defined in (5).

− R̂ :=
⋃

β>0 R̂β where R̂β is the optimal set of (Rβ) (the global minimizers of Fβ) given in (7).

− βk, β
U
k for k ∈ I0L – critical parameter values, Definition 3 (section 3).

− J (resp. JE) – all k ∈ I0L such that βk < βU
k (resp., βk = βU

k ), Definition 4 (section 3).

2 Joint optimality conditions for (Ck) and (Rβ)

In this section we shall derive necessary and sufficient conditions for the global minimizers of problem (Rβ)

only in terms of the global minimizers of problem (Ck). The obtained results enable us to compare the

optimal sets of these problems.

2.1 Preliminaries

We shall refer to the constrained quadratic optimization problem stated next. Given d ∈ RM and ω ⊆ IN,
problem (Pω) reads as:

(Pω)

min
u∈RN

‖Au− d‖2 subject to u[i] = 0 ∀ i ∈ I0N \ω
⇐⇒ ûω = arg min

v∈R � ω
‖Aωv − d‖2 and ûIN \ω = 0 .

(9)

The convex problem (Pω) is related to problems (Ck) and (Rβ). So problem (Pω) is a good tool for analyzing

the combinatorial problems (Ck) and (Rβ). This is used in sections 2 and 6. We remind that for any ω ⊂ I0N,
the solution of problem (Pω) is a (local) minimizer of the nonconvex objective Fβ in (3), see [30]. This fact

is independent of the value of β.

For clarity, we recall the following definitions:

Definition 2. For a function f : RN → R and a set S ⊆ RN, û is a strict (local) minimizer of the problem

min {f(u) | u ∈ S} if there is a neighborhood O ⊂ S containing û so that f(u) > f(û) for any u ∈ O \{û}.
Further, û is an isolated (local) minimizer if û is the only minimizer in an open subset O′ ⊂ O; see, e.g.,

[28].

An isolated minimizer is always a strict minimizer.

Remark 2. For any ω ⊂ IN such that rank(Aω) = � ω, it is readily seen from (9) that the solution û of

(Pω) is an isolated minimizer. Any solution of problems (Ck) and (Rβ) is a solution of problem (Pω) for a

particular ω; thus all strict minimizers discussed in this work are also isolated minimizers.
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2.2 On the global minimizers of problem (Ck)

We begin with a brief study of the optimal sets of problem (Ck) that are essential to develop the paper.

The proofs of all results in this subsection are given in Appendix A.1.

The list of the supports ω ∈ IN of all k-sparse vectors in RN is given bellow:

Σk :=
k⋃

n=0

{
ω ⊂ IN

∣∣∣ � ω = n
}
. (10)

Using this notation problem (Ck) in (2) also reads as

min
u∈RN

‖Au− d‖2 , subject to supp(u) ∈ Σk . (11)

The corresponding optimal set Ĉk given in (5) is

Ĉk =
{
u ∈ RN, supp(u) ∈ Σk

∣∣∣ ‖Au− d‖2 = ck

}
. (12)

It is straightforward that if û ∈ Ĉk then û solves (Pω) for ω := supp(û).

A central question is to know whether problem (Ck) admits an optimal solution.

Lemma 1. For any k ∈ I0N problem (Ck) has a global minimizer, i.e., Ĉk �= ∅.

Using (Pω) in (9) and (11), the optimal value ck of (Ck) is

ck = min
{
‖Aũ− d‖2 where ũ ∈ RN solves (Pω)

∣∣∣ ω ∈ Σk

}
. (13)

At this point, we need the following simple lemma.

Lemma 2. Let H1 hold. Then c0 = ‖d‖2 > 0 and {ck}k�0 is decreasing with ck = 0 ∀ k � M.

The next simple lemma has a pivotal role in this work.

Lemma 3. Let H1 hold. For k ∈ IM, assume that (Ck) has an optimal solution û obeying

‖û‖0 = k− n for n � 1 . (14)

Then Aû = d . Furthermore, cm = 0 and û ∈ Ĉm ∀ m � k− n .

Based on Lemma 3 and assuming that H1 holds, we introduce the constant

L := min
{
k ∈ IN | ck = 0

}
. (15)

L is uniquely defined since { ck} is decreasing with L � M (Lemma 2). We emphasize that L depends only

on d (Lemma 5(a)) and that L = M generically (Proposition 5(b) and Remark 9).

Example 1. One has L � M − 1 if d = Au for ‖u‖0 � M − 1. Then d belongs to a subspace of RM of

dimension ‖u‖0 which has null Lebesgue measure in RM. Usual data range on the whole RM and L = M.

Theorem 1. Let H1 hold and L be as in (15). One has:

(a) If k ∈ I0L, then
û ∈ Ĉk =⇒ ‖û‖0 = k = rank (Aσ̂) for σ̂ := supp(û) (16)

and the global minimizer û of problem (Ck) is strict.
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(b) If k � L+ 1 then ĈL ⊂ Ĉk.

Observe that û in (16) is a strict solution of problem (Ck) since û solves problem (Pσ̂) in (9) for

σ̂ := supp(û) where rank (Aσ̂) = � σ̂ (Lemma 10). Further, the graph {(k, ck) | k � L} is Pareto optimal

[23, Definition 1]: for any k � L, there is no u �∈ Ĉk that can decrease both ‖Au− d‖2 and ‖u‖0.

Theorem 1(a) gives necessary conditions for an optimal solution of (Ck) for k � L.

The optimal solutions of (Ck) for k � L are strict minimizers.

The algorithm aimed at solving (Ck) proposed in [5] was shown in [5, Lemma 6] to produce, under

certain conditions, solutions that fulfill this necessary condition.

Example 2. Let I2 be the 2× 2 identity matrix and set 1l2 := (1, 1)T.

• Consider that A = (I2, 1l2) and d = 1l2. There is an optimal solution û = (0, 0, 1)T with c1 = 0, hence

L = 1. Further, û = (1, 1, 0)T is a strict minimizer of (C2) because rank
(
Asupp(û)

)
= 2. One has ‖û‖0 = 3

for a continuum of optimal solutions of the form û = (x, x, 1− x)T where x ∈ R \ {0, 1}.
• Let now A = (I2, I2) and d = (1, 0)T. The optimal solutions of (C1) are (1, 0, 0, 0)T and (0, 0, 1, 0)T.

One has c1 = 0 and L = 1. For k � 2 all other optimal solutions are nonstrict and have the form

û = (x, y, 1− x,−y)T, x ∈ R \ {0, 1}. If y = 0 then ‖û‖0 = 2 and otherwise ‖û‖0 = 4. ♦

The optimal solutions of (Ck) for k > L have �0-norms in {L, . . . , k} and they can be nonstrict.

Remark 3. [On Assumption H1] This usual assumption ensures that A is rich enough to represent any

d ∈ RM. It is also needed to prove the pivotal Lemma 3 and to define L in (15). ♦

A direct and useful consequence of Theorem 1(a) is stated below.

Corollary 1. Let H1 hold. Then Ĉk ∩ Ĉn = ∅ for all (k, n) ∈ ( I0L )
2 such that k �= n.

If û solves optimally (Ck) for k � L, then û is not an optimal solution of (Cn) for n � L, n �= k.

By Theorem 1(a), many subsets in {Σk}Nk=0 are not the supports of optimal solutions of (Ck). Accord-

ingly, we focus only on the subsets ω ⊂ I0N with exactly k entries such that rank (Aω) = k:

Ωk :=
{

ω ⊂ IN | � ω = k = rank (Aω)
}

. (17)

Remark 4. From H1 and Theorem 1(a), the optimal value of problem (Ck) for any k ∈ I0L obeys

ck = min
{
‖Aũ− d‖2 where ũ ∈ RN solves (Pω)

∣∣∣ ω ∈ Ωk

}
(18)

and the corresponding set of optimal solutions satisfies

Ĉk =
{
u ∈ RN, supp(u) ∈ Ωk

∣∣∣ ‖Au− d‖2 = ck

}
. (19)

Let û ∈ Ĉk; for σ̂ := supp(û) one has σ̂ ∈ Ωk and û solves (Pσ̂), hence û is an isolated minimizer (Remark 2).

Denoting by Πσ̂ the orthogonal projector onto range (Aσ̂), see e.g. [25], one has

ck = dT(I −Πσ̂) d where Πσ̂ = Aσ̂ (A
T

σ̂Aσ̂)
−1AT

σ̂ . (20)

From (18) and (20), the optimal value ck satisfies also ck = ‖d‖2 −max
{
dT Πω d

∣∣ ω ∈ Ωk

}
. ♦

The fact that �Ωk � �Σk might be useful.
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2.3 Necessary and sufficient conditions

Problem (Rβ) in (3) is equivalently given by the global minimization of

Fβ(u) = ‖Au− d‖2 + β � supp(u) .

We give two known results on its optimal sets (Theorems 2 and 3) needed in what follows. They hold for

any A ∈ RM×N with M < N.

Theorem 2 ([30] Theorem 4.4). Let Fβ read as in (3). The following statements hold:

(a) Fβ always has a global minimizer, i.e., R̂β �= ∅ for any β > 0 and any d ∈ RM.

(b) If û is a global minimizer of Fβ, then û is a strict minimizer.

The global minimizers of Fβ are strict. The strict (local) minimizers of Fβ are characterized next.

Theorem 3 ([30], Theorem 3.2). A point û ∈ RN is a strict (local) minimizer of Fβ if and only if

rank (Aσ̂) = � σ̂ where σ̂ := supp(û).

The global minimizers û of (Ck) for k � L and those of Fβ are strict and moreover isolated: they solve

problem (Pσ̂) in (9) for σ̂ := supp(û) such that rank(Aσ̂) = � σ̂ (Remark 2).

The proofs of the statements below (except for Theorem 5) are given in Appendix A.2.

Proposition 1 relates the optimal sets and the optimal values of problems (Ck) and (Rβ).

Proposition 1. Let H1 hold. The following statements hold:

(a) For any k ∈ I0L it holds that

Fβ(û) = ck + β k ∀ û ∈ Ĉk .

(b) û ∈ R̂β =⇒ û ∈ Ĉk where k := ‖û‖0 ∈ I0L .

(c) û ∈ R̂β =⇒ Ĉk ⊆ R̂β for k := ‖û‖0 ∈ I0L .

By (c), the global minimizers of Fβ are composed of some optimal sets Ĉk only for k � L.

The statements that follow are given in terms of the optimal sets Ĉk and R̂β , as defined in (5) and (7),

respectively. The claim in the next Lemma 4 is usually false for ordinary subsets C and R.

Lemma 4. Let H1 hold. For any β > 0 and for any k ∈ I0L one has

Ĉk �⊆ R̂β ⇐⇒ Ĉk ∩ R̂β = ∅ .

We denote by Ĉ the collection of all optimal solutions of problems (Ck) for k ∈ I0L and likewise, by R̂ –

the set of all global minimizers of Fβ for all β > 0:

Ĉ :=

L⋃
k=0

Ĉk and R̂ :=
⋃
β>0

R̂β . (21)

With this notation, Theorem 4 is a direct consequence of Proposition 1(b).

Theorem 4. Let H1 hold. Then R̂ ⊂ Ĉ .
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Theorem 4 shows that when β ranges on (0,+∞), Fβ can have at most L+1 different sets of global minimizers

which are optimal solutions of (Ck) for k ∈ {0, . . . , L}.

In view of Proposition 1(c) and Theorem 4, each global minimizer of (Rβ) can be composed out of the

optimal sets of several problems of the form of (Ck) or it can be equal to the optimal set of exactly one

problem (Ck). This is made explicit in the following remark:

Remark 5. Let β > 0 and k ∈ I0L. Since R̂β is the set of the global minimizers of Fβ , one has

Ĉk ⊆ R̂β ⇐⇒ Fβ(u) � Fβ(û) ∀ û ∈ Ĉk ∀ u ∈ RN ;

Ĉk = R̂β ⇐⇒ Fβ(u) > Fβ(û) ∀ û ∈ Ĉk ∀ u ∈ RN \ Ĉk .

The next theorem provides the basic tool to compare the optimal sets of problems (Ck) and (Rβ).

Theorem 5. Let H1 hold and let β > 0. For any k ∈ I0L the following holds:

(a) Ĉk ⊆ R̂β if and only if

Fβ(u)−Fβ(û) � 0 ∀ û ∈ Ĉk ∀ u ∈ Ĉ ; (22)

(b) Ĉk = R̂β if and only if

Fβ(u)−Fβ(û) > 0 ∀ û ∈ Ĉk ∀ u ∈ Ĉ \ Ĉk . (23)

Proof . From Remark 5 it is straightforward that

Ĉk ⊆ R̂β (resp., Ĉk = R̂β) =⇒ Fβ(u)−Fβ(û) � 0 ∀ u ∈ Ĉ (resp., > 0, ∀ u ∈ Ĉ \ Ĉk) ∀ û ∈ Ĉk .

The rest of the proof is by contraposition.

(a) Assume that Ĉk �⊆ R̂β . Then Ĉk∩ R̂β = ∅ by Lemma 4. Since R̂β �= ∅ (Theorem 2(a)), Proposition 1(c)

entails that there exists n ∈ I0L \ {k} such that Ĉn ⊆ R̂β . It follows that

Fβ(û) > Fβ(u) ∀ û ∈ Ĉk ∀ u ∈ Ĉn , (24)

a contradiction to (22).

(b) Let Ĉk �= R̂β . This, together with R̂β �= ∅, implies that there is u ∈ R̂β such that u �∈ Ĉk. Proposi-

tion 1(c) shows that Ĉn ⊆ R̂β for n := ‖u‖0 ∈ I0L where n �= k (Theorem 1(a)). Therefore

Fβ(û) � Fβ(u) ∀ û ∈ Ĉk ∀ u ∈ Ĉn ,

which contradicts (23). �

Theorem 5 is the key to finding the links between the optimal sets of (Ck) and (Rβ): it provides necessary

and sufficient conditions for optimality of (Rβ) only in terms of the optimal sets of {(Ck)}Lk=0.

A simple useful result is stated next.

Lemma 5. Let H1 hold. Let (k, k + p) ∈ ( I0L )2 for p � 1. The following implications hold:

Ĉk ⊆ R̂β

(
resp., Ĉk = R̂β

)
and Ĉk+p = R̂β′

(
resp., Ĉk+p ⊆ R̂β′

)
=⇒ β′ < β .

This lemma confirms the intuition that when β increases on (0,+∞), the optimal sets R̂β are given

by a subsequence of
{
Ĉk

}
with decreasing indexes.

9



3 Parameter values for equality between optimal sets

The links between the optimal solutions of problems (Ck) and (Rβ) are driven by the values of k and of β.

This section is devoted to parameter selection.

3.1 The entire list of critical parameter values

Based on the optimal values {ck}Lk=0 of problems (Ck)’s, see (20), for each k ∈ I0L we give explicit formulae

for the lower and the upper bounds of β that can enable an agreement between the optimal sets Ĉk and R̂β .

Definition 3. (Critical parameter values) Let L be as in (15). The parameters (βk, β
U
k ) are defined by

βk := max

{
ck − ck+n

n
| n ∈ {1, . . . , L− k}

}
∀ k ∈ I0L−1 and βL := 0 , (25)

βU
k := min

{
ck−n − ck

n
| n ∈ {1, . . . , k}

}
∀ k ∈ IL and βU

0 := +∞ . (26)

The superscript U in (26) suggests that βU
k can be an upper bound.

Remark 6. Since d �= 0, this definition indicates that βL = 0 < βU
L =

L
min
n=1

cL−n

n
and that β0 < βU

0 because

β0 is finite. The cases where βk < βU
k will be of particular interest, as seen in section 4 (Theorems 7 and 9).

However, this inequality can fail (see Discussion on Theorem 9). A simplification of these parameters is

derived in Proposition 3. Some insight can be gained from the numerical tests in section 7. ♦

In view of Definition 3, the intuition suggests that the set {k | βk = βU
k } should be “small”.

Proposition 2. Let H1 hold and {βk, βU
k }Lk=0 be as in Definition 3. There exists a finite union of vector

subspaces of dimension � M− 1, denoted by S, such that

d ∈ RM \S =⇒ βk �= βU
k ∀ k ∈ I0L .

Thus RM \S contains a dense open subset of RM. The proof is given in Appendix B.1.

Data generically live in RM \S. So βk �= βU
k ∀ k ∈ I0L in Definition 3 holds generically.

3.2 Conditions for agreement between the optimal sets of (Ck) and (Rβ)

Theorem 6 relates Theorem 5 and Definition 3. It provides a general mechanism for comparing the optimal

sets of problems (Ck) and (Rβ).

Theorem 6. Let H1 hold. Then ∀ k ∈ I0L it holds that

(a) Ĉk ⊆ R̂β if and only if

⎧⎪⎨⎪⎩
β0 � β < βU

0 for k = 0 ;

βk � β � βU
k for k ∈ {1, . . . , L− 1} ;

βL < β � βU
L for k = L .

(b) Ĉk = R̂β if and only if βk < β < βU
k .

Proof . The following equalities come from Proposition 1(a):

− If û ∈ Ĉk for k ∈ I0L−1, then

∀ n ∈ IL−k ∀ u ∈ Ĉk+n Fβ(u)−Fβ(û) = ck+n − ck + nβ = n

(
β − ck − ck+n

n

)
. (27)

10



− If û ∈ Ĉk for k ∈ IL, then

∀ n ∈ Ik ∀ u ∈ Ĉk−n Fβ(u)−Fβ(û) = ck−n − ck − nβ = n

(
ck−n − ck

n
− β

)
. (28)

(a) Using (27) together with (25) in Definition 3, for any k ∈ I0L−1 one has

Fβ(u) � Fβ(û) ∀ û ∈ Ĉk ∀ n ∈ IL−k ∀ u ∈ Ĉk+n ⇐⇒ β � ck − ck+n

n
∀ n ∈ IL−k ⇐⇒ β � βk .

Using (28) together with (26) in Definition 3, for any k ∈ IL one has

Fβ(u) � Fβ(û) ∀ û ∈ Ĉk ∀ n ∈ Ik ∀ u ∈ Ĉk−n ⇐⇒ β � ck−n − ck
n

∀ n ∈ Ik ⇐⇒ β � βU
k .

For k = 0 (resp., for k = L), β � β0 (resp., β � βU
L ) is equivalent to β0 � β < +∞ =: βU

0 (resp.,

βL := 0 < β � βU
L ). Combining the obtained results, one has

Fβ(u)−Fβ(û) � 0, ∀ û ∈ Ĉk, ∀ u ∈ Ĉ

if and only if βk � β � βU
k for k ∈ IL−1, β0 � β � βU

0 (resp., βL < β � βU
L ) for k = 0 (resp., for k = L).

Applying Theorem 5(a) proves statement (a).

(b) The proof of (b) follows the same recipe as above (nonstrict inequalities are replaced by strict inequal-

ities) and the conclusion is obtained using Theorem 5(b). �

The proof of Theorem 6 reveals how the critical parameters in Definition 3 were defined.

3.3 The effective parameters values

Since the global minimizers of Fβ are always in Ĉ (Theorem 4), we are interested in the indexes k for which

there exist values of β such that Fβ has global minimizers containing components of Ĉk. Their set, referred

to as effective parameter set, is obtained from Theorem 6.

Definition 4. Let {βk, βU
k }Lk=0 be as in Definition 3. The effective index set J ∪ JE is defined by

J :=
{
k ∈ I0L | βk < βU

k

}
and JE :=

{
m ∈ I0L | βm = βU

m

}
. (29)

The entries Jk of J are ordered as it follows:

J = {J0, J1, . . . , Jp} where p := � J− 1 and Jk−1 < Jk ∀ k . (30)

Using Definition 3 and Remark 6,

(J0 = 0, Jp = L) ∈ J2 with βJ−1 := βU
J0 ≡ βU

0 = +∞ and βJp ≡ βL = 0 . (31)

It worths emphasizing that the set J is always nonempty (Remark 6). The superscript E in JE evokes

equality.

The proofs of several statements in this subsection are delegated to Appendix B.2. The next claim is a

cautionary consequence of Theorems 4 and 6.

Lemma 6. Let H1 hold. One has R̂ ∩ Ĉk = ∅ if and only if k ∈ I0L \ {J ∪ JE} .

11



In words: for any β > 0, the optimal set R̂ of problem (Rβ) does not contain optimal solutions of (Ck),
k � L, unless k belongs to J ∪ JE. Thus R̂ =

⋃
k∈{J∪JE}̂

Ck .

A simplification of the parameters {βk, βU
k }k∈J∪JE is derived in Proposition 3.

Proposition 3. Let H1 hold, {βk, βU
k } and J be as in Definition 3 and Definition 4, respectively. Then

(a) βJk < βU
Jk

= βJk−1
∀ Jk ∈ J \ {J0} and βJU0

≡ βJ−1 = +∞ .

(b) βJk =
cJk − cJk+1

Jk+1 − Jk
∀ Jk ∈ J \ {Jp} and βJp ≡ βL = 0 .

(c) { βm | m ∈ JE} ⊂ {βJk ∣∣ Jk ∈ J \ {Jp}
}
.

Proof . (a)-(b) Let (Jk−1, Jk) ∈ J2. Applying Definition 3 for βJk−1
and for βU

Jk
yields

βU
Jk

�
cJk−1

− cJk
Jk − Jk−1

� βJk−1
. (32)

Assume that βU
Jk

< βJk−1
and that (m1, . . . ,mq) ∈ (JE)q satisfy βmi ∈ (βU

Jk
, βJk−1

), ∀ i ∈ Iq. Since R̂β �= ∅

∀ β > 0, Proposition 1(c) implies that for β ∈
(
βU
Jk
, βJk−1

)
\ {βmi}qi=1 there is n ∈ I0L \ {J ∪ JE} obeying

Ĉn ⊂ R̂β , in contradiction to Lemma 6. Therefore, βU
Jk

= βJk−1
. This, together with (32) and the formula

of J in (29) gives that

βJk < βU
Jk

=
cJk−1

− cJk
Jk − Jk−1

= βJk−1
.

(c) Let m ∈ JE. By Definition 4, βm > βJp = 0. From Theorem 6(b) and statement (a), βm �∈
(
βJk , βJk−1

)
for any Jk ∈ J. Consequently, there exists Jk ∈ J \ {Jp} such that βm = βJk . �

We emphasize that {βk}k∈J is strictly decreasing and that its first entry is β0.

In Example 3 we designed a decreasing sequence {ck}Lk=0 that illustrates several special cases.

Example 3. Let {ck}Lk=0 for L = 7 reads as

c0 = 48 c1 = 40 c2 = 30 c3 = 22 c4 = 14 c5 = 10 c6 = 4 c7 = 0 . (33)

According to Definition 3 the sequences {βk, βU
k }7k=0 are given by

β0 = 9 β1 = 10 β2 = 8 β3 = 8 β4 = 5 β5 = 6 β6 = 4 β7 = 0

βU
0 = +∞ βU

1 = 8 βU
2 = 9 βU

3 = 8 βU
4 = 8 βU

5 = 4 βU
6 = 5 βU

7 = 4
(34)

From Definition 4, p = 4, J = { J0 = 0, J1 = 2, J2 = 4, J3 = 6, J4 = 7} and JE = {3 } .

− One has βJk = βU
Jk+1

for any Jk ∈ J as asserted in Proposition 3(a).

− The formula in Proposition 3(b) is easy to verify.

− {β3 | 3 ∈ JE} yields β3 = βJ1 = 8 and thus {β3 | 3 ∈ JE} ⊂ {βJk | Jk ∈ J \ {J4}} (Proposition 3(c)).

− One has JE
βJ1

:= {m ∈ JE | βm = βJ1} = {3 ∈ JE | J1 < 3 < J2}, as seen in Lemma 7.

− Observe that J has the smallest indexes so that {βk}k∈J = { 9, 8, 5, 4, 0 } is the longest strictly decreas-

ing subsequence of {βk}7k=0 containing β0 – see Proposition 4. Another set yielding the same {βk}k∈J is

J′ := { 0, 3, 4, 6, 7}; however its indexes are larger than those of J: J′2 > J2. ♦
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The location of {βm |m ∈ JE} is given by the (probably empty) subsets

JE
βJk

:= {m ∈ JE | βm = βJk} . (35)

Lemma 7. Let H1 hold. The sets JE
βJk

in (35) fulfill JE
βJk

= ∅ for k = p, and for any k � p− 1

JE
βJk

= {m ∈ JE | Jk < m < Jk+1} . (36)

We want to know how J and {βk}k∈J are related to {βk}k∈I0L in (25), Definition 3. Both J and {βk}k∈J
are characterized in the following proposition:

Proposition 4. Let H1 hold, {βk}Lk=0 read as in Definition 3 and J as in Definition 4. Then 0 ∈ J and

J contains the smallest indexes such that {βk}k∈J is the longest strictly decreasing subsequence of {βk}Lk=0

containing β0.

In order to find the effective indexes J and values {βk}k∈J we need only {βk}Lk=0 in (25), Definition 3.

4 Equivalence relations between the optimal sets of (Ck) and (Rβ)

In this section we derive the main results of this paper. The most general relationship between the global

minimizers of (Ck) and (Rβ) is a partial equivalence formulated in Theorems 7 and 8 (subsection 4.1).

According to the content of the data d, quasi-complete equivalence can hold in the sense that the global

minimizers of both problems differ only at β = βk for k = 0, . . . , L−1. The result is presented in Theorem 9

(subsection 4.2).

4.1 Partial equivalence

The main result of this work can be stated in the following theorems. We recall that the set J cannot be

empty (Remark 6).

Theorem 7. Let H1 hold, {βk} be as in Definition 3 and J as in Definition 4. Then the following hold:{
R̂β

∣∣ β ∈ (βJk , βJk−1

)}
= ĈJk ∀ Jk ∈ J , (37)(

p⋃
n=1

[
βJk , βJk−1

]) ∪ [βJ0 , βJ−1

)
= [ 0,+∞) . (38)

Proof . From Proposition 3(a),
(
βJk , β

U
Jk

)
=
(
βJk , βJk−1

) �= ∅ for any Jk ∈ J. Then (37) is an immediate

consequence of Theorem 6(b). Definition 4 and Proposition 3(a) directly lead to (38). �

Discussion on Theorem 7. The theorem states that for any β �∈ {βk | k ∈ J
}
there is an optimal set Ĉk

of problem (Ck) that coincides with the optimal set R̂β of problem (Rβ) for a whole range of parameter

values β. More precisely, the effective parameter values
{
βJ0 , · · · , βJp−1

}
in Definition 4 partition the

positive axis (0,+∞) into � J proper intervals. For any β ∈ (βJk , βJk−1

)
the optimal set of problem (Rβ)

equals the optimal set of problem (Cn) for n = Jk. The agreement described above can be referred to as

partial equivalence because when I0L \ J is nonempty, the optimal sets (Ck) for k ∈ I0L \ J cannot be optimal

solutions of (Rβ) for any β > 0.
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Remark 7. Since
{
βk | k ∈ J \ {L}} is a finite set of isolated values in (0,∞), the selection of a β belonging

to this set can be considered as extremely exceptional (β �= βJk for any k is a generic property).

In spite of this remark, we will describe the optimal sets of problem (Rβ) for βk, k ∈ J.

Theorem 8. Let H1 hold. Let {βk} be as in Definition 3 and J as in Definition 4. Then

R̂βJk
= ĈJk ∪ ĈJk+1

∪
(⋃

m∈JEβJk
Ĉm

)
∀ Jk ∈ J \ {Jp} , (39)

where JE
βJk

obeys (36) and Ĉk ∩ Ĉn = ∅ for any (k, n) ∈ (J ∪ JE)2 , k �= n.

Proof . For any k � p − 1, Proposition 3(a) and Theorem 6(a) show that ĈJk ⊆ R̂β ∀ β ∈ [βJk , βJk−1
] and

that ĈJk+1
⊆ R̂β ∀ β ∈ [βJk+1

, βJk ]. Therefore, ĈJk ∪ ĈJk+1
⊆ R̂βJk

. In addition, βm = βJk for any m ∈ JE
βJk

(Proposition 3(c) and (35)) which yields
⋃

m∈JEβJk
Ĉm ⊆ R̂βJk

. The conditions in Theorem 6 for β = βJk

can be satisfied only for n ∈
{
Jk ∪ JE

βJk

}
because {βJk} is strictly decreasing (Proposition 3(a)). Hence

the equality in (39). The set JE
βJk

satisfies (36) by Lemma 7. The result on the intersection of the sets Ĉn

comes from Corollary 1. �

Example 4. [Example 3, continued] Let {βk}7k=0, J and JE be as in Example 3. We recall that J =

{0, 2, 4, 6, 7} and that JE = { 3 }, so JE
2 = {3} and JE

k=∅ otherwise. By Theorems 7 and 8 one has

{ R̂β | β > 9} = Ĉ0 { R̂β | β ∈ (8, 9)} = Ĉ2 { R̂β | β ∈ (5, 8)} = Ĉ4 { R̂β | β ∈ (4, 5)} = Ĉ6 { R̂β | β ∈ (0, 4)} = Ĉ7

and R̂β=9 = Ĉ0 ∪ Ĉ2 R̂β=8 = Ĉ2 ∪ Ĉ3 ∪ Ĉ4 R̂β=5 = Ĉ4 ∪ Ĉ6 R̂β=4 = Ĉ6 ∪ Ĉ7 .

Discussion on Theorem 8. Proposition 2 have proved that the sets JE
βJk

are empty with an overwhelming

probability. So (39) in Theorem 7 shows that for β ∈ {βk | k ∈ J \ {L}}, the optimal set of problem (Rβ)

is normally composed out of two optimal sets of problem (Ck), namely R̂βJk
= ĈJk ∪ ĈJk+1

. Further, if an

JE
βJk

is nonempty, we know from Lemma 7 that the optimal set of (Rβ) for β = βJk can involve at most

Jk+1 − Jk − 1 additional optimal sets Ĉm where m ∈ (Jk, Jk+1).

A partial equivalence between problems (Ck) and (Rβ) always exists.

For the � J− 1 isolated values
{
βk | k ∈ J \ {L}} problem (Rβk

) has normally two optimal sets.

4.2 Quasi-complete equivalence

Here we explore the conditions enabling the equivalence results in Theorem 7 to hold for any k � L.

Lemma 8. Let H1 hold. Let J be as in Definition 4. Then the following hold:

(a) If the sequence {βk}Lk=0 in Definition 3 is strictly decreasing, then its entries read as

βk = ck − ck+1 ∀ k ∈ I0L−1 and βL = 0, β−1 := βU
0 = +∞ . (40)

(b) If the sequence {βk}Lk=0 in (40) is strictly decreasing then J = I0L.
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Proof . (a) Since {βk}Lk=0 is strictly decreasing, Proposition 4 implies that the set J in (29) obeys J = I0L.
Applying Proposition 3(b) with Jk = k and Jk+1 = k + 1 delivers the formula in (40).

(b) Let {βk}Lk=0 in (40) be strictly decreasing. Then βk in (40) satisfies Proposition 3(b) for any k ∈ J = I0L.
By setting βU

k := βk−1, one has J = I0L according to Definition 4. �

Theorem 9. Let H1 hold. Let {βk}Lk=0 in (40) be strictly decreasing. Then{
R̂β

∣∣ β ∈ (βk, βk−1)
}
= Ĉk ∀ k ∈ I0L (41)

R̂βk
= Ĉk ∪ Ĉk+1 with Ĉk ∩ Ĉk+1 = ∅ ∀ k ∈ I0L−1 . (42)

Proof . Since {βk}Lk=0 in (40) is strictly decreasing, one has J = I0L by Lemma 8(b). So, JE = ∅ in

Definition 4 and JE
k = ∅ in (35). Then the statement follows from Theorems 7 and 8. �

Discussion on Theorem 9. The condition that {βk}Lk=0 in (40) is strictly decreasing reads as

βk−1 > βk ∀ k ∈ IL−1 ⇐⇒ ck−1 − ck > ck − ck+1 ∀ k ∈ IL−1 . (43)

For generic data, {ck} is strictly decreasing (Proposition 5(b)). For such generic data and k � L − 1, let

u, û and ũ be optimal solutions of problems (Ck−1), (Ck) and (Ck+1), respectively. Denote σ := supp(u),

û := supp(û) and σ̃ := supp(ũ). The condition on the right hand side in (43) reads

dT (Πσ̂ −Πσ) d > dT (Πσ̃ −Πσ̂) d (44)

where both sides in the inequality above are positive. It is reasonable to expect that there are data d such

that the above condition holds for any k � L. Note such data would belong to an open subset of RM where

(44) is satisfied. Given a series of numerical tests on 5× 10 matrices (see section 7) the realization of (43)

essentially depends on d.

Theorem 9 shows that it is possible to have equivalence between problems (Ck) and (Rβ), except for the

isolated parameter values {βk}Lk=0. If the matrix A is specified and if there are assumptions on the data,

one could infer knowledge whether the context of Theorem 9 is a regular regime or not. If the answer turns

to be positive, this can be used in the development of numerical schemes.

A mid-way scenario appears as an immediate consequence of Proposition 3(b), (35) and Theorem 7.

Remark 8. Let H1 hold, {βk, βU
k } and J be as in Definition 3 and Definition 4, respectively. Suppose that

for m � 0 and n � 1 the entries of J satisfy

J′ := {Jm, . . . , Jm+n} = {Jm, Jm + 1, Jm + 2, . . . , Jm + n} .

Then

βJm+k
= cJm+k − cJm+k+1

{
R̂β

∣∣ β ∈ (βJm+k
, βJm+k−1

)}
= ĈJm+k and JE

βJk
= ∅ 0 � k � n− 1 .

If the subset J′ contains all sparsity levels of interest in a given situation, we are again in the setup of

Theorem 9 and the comments given after it.

15



5 On the optimal values of (Ck) and (Rβ)

The proofs of the statements in this section are outlined in Appendix C.

Using the definition of Ωk in (17), we introduce the subsets of RM given below:

Ek :=
⋃

ω∈Ωk

range (Aω)
⊥ and Gk :=

⋃
ω∈Ωk

range (Aω) . (45)

Clearly, E0 = GM = RM and EM = G0 = {0} by H1.

The next Proposition 5 gives results on {ck}Mk=0 in connection with d ∈ RM.

Proposition 5. Let H1 hold. Let L′ � M be arbitrarily fixed. Then

(a) ck > 0 ∀ k � L′ − 1 ⇐⇒ d ∈ RM \GL′−1 ;

(b) d ∈ RM \ (E2 ∪GL′−1) =⇒ ck−1 > ck ∀ k ∈ IL′ .

Proposition 5(a) shows that the constant L in (15) corresponds to d ∈ GL \GL−1.

Remark 9. The subsets E2 and GM−1 are finite unions of vector subspaces of dimensions M−2 and M−1,

respectively. Hence, d ∈ RM \ (E2 ∪GM−1) is a generic property (Definition 1).

Therefore, {ck}Mk=0 is strictly decreasing and L = M generically. ♦

By Proposition 1(a) and Theorem 4, for any β > 0 the optimal value function of problem (Rβ) in (6),

β �→ rβ = inf
{Fβ(u) | u ∈ RN

}
, equivalently reads as

rβ = min
{
ck + β k | k ∈ I0L

}
. (46)

From this observation and Theorems 7 and 8 one infers the following:

Corollary 2. Let H1 hold and J be as in Definition 4. The application β �→ rβ : (0,+∞)→ R fulfills

(a)

{
rβ = cJk + β Jk

= Fβ(û) ∀ û ∈ ĈJk

if and only if β ∈

⎧⎪⎨⎪⎩
[βJ0 , +∞) for J0 = 0 ;[
βJk , βJk−1

]
for Jk ∈ J \ {0, L} ;(

0, βJp−1

]
for Jp = L .

(b) β �→ rβ is continuous and concave.

(c) rβJk−1
> rβJk

∀ Jk ∈ J , rβJ0
= cJ0 = rβ ∀ β � βJ0 and rβJ0

> rβ ∀ β < βJ0.

β �→ rβ is affine increasing on each interval
(
βJk , βJk−1

)
with upward kinks at βJk for any Jk ∈ J \ {L}

and bounded by c0.

Example 5. [Continuation of Example 3] Let us consider again {ck}7k=0 in (33) along with {βk}7k=0 and J

in (34). From Corollary 2, the mapping β �→ rβ is given by

β ∈ (0, 4] rβ = c7 + 7β = 7β rβ=4 = 28
β ∈ [4, 5] rβ = c6 + 6β = 4 + 6β rβ=5 = 34
β ∈ [5, 8] rβ = c4 + 4β = 14 + 4β rβ=8 = 46
β ∈ [8, 9] rβ = c2 + 2β = 30 + 2β rβ=9 = 48
β ∈ [9,+∞) rβ = c0 + 0β = 48
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6 Cardinality of the optimal sets of (Rβ) and of (Ck)
For the convex surrogates of problems (Ck) and (Rβ) where ‖u‖0 is replaced by ‖u‖1, it is well known that

the optimal sets are convex closed with possibly a continuum of solutions.

Proposition 6. Let H1 hold. For any β > 0 and for any k � L, the optimal sets R̂β and Ĉk are finite.

Proof . From Remark 4, each û ∈ Ĉk is the unique minimizer of problem (Pω) for ω := supp(û) where ω ∈ Ωk

(Theorem 1(a) and the notation in (17)). Therefore, � Ĉk is finite (with � Ĉk � �Ωk). This, together with

Theorem 7 and Theorem 8, shows that � R̂β is finite for every β > 0. �

For any β > 0 and k ∈ I0L the optimal sets of problems (Ck) and (Rβ) are composed out of a certain

finite number of isolated (hence strict) minimizers.

6.1 Uniqueness of the global minimizers of (Ck) and (Rβ)

If L = M, Remark 4 shows that � ĈM = �ΩM.

Let k � min{L,M − 1} and (û, ũ) ∈
(
Ĉk

)2
for û �= ũ. Set σ̂ := supp(û) and σ̃ := supp(ũ). By

Theorem 1(a), (σ̂, σ̃) ∈ (Ωk)
2. Then

ck = ‖Aσ̂ûσ̂ − d‖2 = ‖Aσ̃ũσ̃ − d‖2 where σ̂ �= σ̃ .

The expression for ck in (20) shows that

‖Aσ̂ûσ̂ − d‖2 − ‖Aσ̃ũσ̃ − d‖2 = dT (Πσ̃ −Πσ̂) d = 0 . (47)

The last equality in (47) suggests that Ĉk could be a singleton under the assumption H� below.

H�. For K � min{M− 1, L} fixed, A ∈ RM×N obeys Πω �= Πω ∀ (ω, ω) ∈ (Ωk)
2 , ω �= ω ∀ k ∈ IK .

H� is a generic property of all matrices in RM×N [30, Theorem 5.3]. Under H�, the set ΔK below

ΔK :=
⋃K

k=1

⋃
(ω,ω)∈(Ωk)

2

{
g ∈ RM

∣∣ ω �= ω and g ∈ ker (Πω −Πω)
}

is a finite union of vector subspaces of dimension � M− 1, so data generically live in RM \ΔK.

Remark 10. Let the two generic assumptions, A satisfies H� and d ∈ RM \ΔK, hold. From (47), problem

(Ck) ∀ k ∈ IK has a unique optimal solution. Using that {βk}k∈J is strictly decreasing, we set K′ :=

max {k ∈ J | k � K}. Then Theorems 7 and 8 show that problem (Rβ) has a unique optimal solution for

any β ∈ (βK′ ,+∞) \ {βk}k∈J and hence generically for any β > βK′ by Remark 7. ♦

For any k � min{M− 1, L} and for any β > βkp−1 problems (Ck) and (Rβ)

generically have a unique global minimizer.

For the sake of generality, we did not consider the assumptions evoked in this subsection.

7 Numerical tests

Here we present two kind of experiments using matrices A ∈ RM×N for (M,N) = (5, 10), original vectors

uo ∈ RN and data samples d = Auo(+noise) with two different goals:

• to get a rough idea on behaviour of the parameters βk in Definitions 3 and 4;

• to verify and illustrate our theoretical findings.

All results were calculated using an exhaustive combinatorial search.
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7.1 Monte Carlo experiments for (M,N) = (5, 10)

We realized two experiments, each one composed of 105 trials with (M,N) = (5, 10). In each trial, the

“original” uo ∈ RN had a random support on {1, . . . ,N} satisfying ‖uo‖0 � M − 1 = 4 with mean 3.79.

The coefficients of each A and the non-zero entries of each uo were independent and identically distributed

(i.i.d.). Data were obtained as d = Auo+ i.i.d. centered Gaussian noise. In each trial we computed the

exact optimal values {ck} and then computed (βk, β
U
k ) according to Definition 3. We considered two different

distributions for A and for the non-zero entries of uo.

− Experiment N (0,10). All coefficients of each A and all non-zero entries of uo had a normal distribution

with mean 0 and variance 10. The SNR in dB was in [10, 61] with mean value 33.75 dB.

− Experiment Uni [0,10]. The coefficients of A and of uosupp(uo) were uniform on [0, 10]. We had SNR

in [20, 55] with a mean of 28.95 dB.

In these experiments, the following facts were observed:

• We had L = M in each trial which confirms Proposition 5(b) and Remark 9;

• {ck}Mk=0 was always strictly decreasing – as expected from Proposition 5;

• We never found βm = βU
m, so the set JE in (29) was always empty; see Proposition 2.

• For every A there were data d so that the sequence {ck − ck−1}Lk=0, see (40), was strictly decreasing.

The other results in percentage are shown in Table 1 where Nk reads as

Nk := �
{
k ∈ I0M | βk > βk−1

}
. (48)

In both experiments, the sequence {βk}Mk=0 in Definition 3 was strictly decreasing in a huge amount of cases;

Table 1: Results on the behaviour of {βk} in Definition 3 for two experiments, each one composed of 105

random trials. For k � 3 we had Nk = 0.

βk < βk−1, ∀ k ∈ I0M Nk = 1 Nk = 2 mean(SNR)

N (0, 10) 93.681 % 6.254 % 0.065 % 33.75

Uni [0, 10] 98.783 % 1.216 % 0.001 % 28.95

by Lemma 8(a) in all these cases {βk}Mk=0 equals the sequence in (40) and the quasi-complete equivalence

in Theorem 9 holds. One should suppose that these percentages are high because of the small size of the

matrices. Anyway, these percentages clearly depend on the distribution of the coefficients of (A, d).

7.2 Tests on (partial) equivalence with a selected matrix and selected data

Next we present in detail three experiments for (M,N) = (5, 10) where

A =

⎛⎜⎜⎜⎝
13.94 16.36 4.88 −3.09 −15.42 1.31 −3.18 −12.13 −4.26 −10.09
7.06 −6.48 −9.07 −8.37 −2.72 −17.42 −5.83 −3.81 3.87 −1.80
11.63 6.73 −4.75 −6.28 3.42 6.68 −1.64 13.23 9.03 −20.27
−7.54 12.74 −6.66 5.01 4.84 8.98 −9.35 3.85 7.18 4.09
3.22 −10.40 −5.02 16.70 9.53 −5.49 11.88 −3.62 17.36 7.34

⎞⎟⎟⎟⎠
uo =

(
0 4 0 0 0 9 0 0 3 0

)T
. (49)
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The entries of A follow a nearly normal distribution. The coefficients of A, uo, and d in (50), (52) and (54)

are exact. H1 holds since rank(A) = M = 5. Problem (CM) has �ΩM = 252 optimal solutions; none of them

is shown. We have β0 < βU
0 = +∞ (Remark 6), so Ĉ0 =

{
R̂β |β > β0

}
in all cases (Theorem 6). In the

tests presented below the optimal set of (Ck) for k � M− 1 is a singleton (see subsection 6.1).

In order to illustrate various cases of partial or quasi-complete equivalence, we selected a couple (A, uo) in

(49) that behaves differently compared to Table 1: it does not favor quasi-complete equivalence as seen from

the 105 random trials summarized in Table 2.

Table 2: The behaviour of {βk} in Definition 3 for an experiment with 105 trials where A and uo are given
by (49) d = Auo+ i.i.d. centered Gaussian noise. We had Nk = 0, ∀ k � 3.

βk < βk−1, ∀ k ∈ I0M Nk = 1 Nk = 2 mean(SNR)

A, uo in (49) 29.41 % 70.59 % 0 % 36.25

Noise-free data According to (49), data read as

d = Auo =
(
64.45 −171.09 114.13 153.32 −38.93 )T . (50)

Since data are noise-free and ‖uo‖0 = 3, clearly û = uo is an optimal solution to problems (Ck) with ck = 0

for k ∈ {3, 4, 5} and L = 3. The other optimal values ck are seen in Table 3. By Theorem 4, any û ∈ R̂

obeys ‖û‖0 � 3. The critical parameters {βk} by Definition 3 are

β3 = 0 < βU
3 = β1 = 3872.46 < βU

1 = β0 = 63729 and β2 = 3968 > βU
2 = 3776.82 . (51)

βk > βU
k only for k = 2, so J = {0, 1, 3} in (29). By Lemma 6, R̂ ∩ Ĉk = ∅ for k = 2. By Theorem 7,

Ĉ3 =
{
R̂β | β ∈ (β3, β1)

}
and Ĉ1 =

{
R̂β | β ∈ (β1, β0)

}
. The numerical results are seen in Table 3.

Table 3: The optimal values ck and the optimal sets of (Ck) for k ∈ I03 where d is as in (50). The values of

βk are given in (51). We recall that R̂β is the optimal set of problem (Rβ).

k ck Ĉk = the optimal solution of (Ck), singleton Ĉk = R̂β

3
2
1
0

0
3968
7745
71474

0 4 0 0 0 9 0 0 3 0
0 3.25 0 0 0 9.29 0 0 0 0
0 0 0 0 0 11.76 0 0 0 0
0 0 0 0 0 0 0 0 0 0

β ∈ (β3, β1)
no

β ∈ (β1, β0)
β > β0

Noisy data 1. Data are corrupted with nearly normal, centered, i.i.d. noise and SNR= 32.32 dB:

d =
(
69.13 −171.95 113.74 150.27 −36.09 )T . (52)

The optimal values ck of problems (Ck) in Table 4 with c5 = 0 yield L = M = 5. From Definition 3,

β5 = 0 < βU
5 = β4 = 0.068 < βU

4 = β3 = 36.25 < βU
3 = β1 = 3987.68 < βU

1 = β0 = 63154 , (53)

while β2 = 4002.83 > βU
2 = 3972.54. Hence, J = I05 \ {2} in (29) and {βk}k∈J confirms Propositions 3

and 4. By Lemma 6, R̂ ∩ Ĉ2 = ∅ and by Theorem 7, Ĉ5 =
{
R̂β |β ∈ (0, β4)

}
, Ĉ4 =

{
R̂β |β ∈ (β4, β3)

}
,

Ĉ3 =
{
R̂β |β ∈ (β3, β1)

}
and Ĉ1 =

{
R̂β |β ∈ (β1, β0)

}
. The numerical tests are shown in Table 4.
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Table 4: The optimal values ck and the optimal solutions of (Ck) for k ∈ I04 where d is given in (52). The

values of βk are given in (53). We recall that R̂β is the set of the global minimizers of Fβ .

k ck Ĉk = the optimal solution of (Ck), singleton Ĉk = R̂β

4
3
2
1
0

0.068
36.3141
4039

8011.68
71166

0 4.40 0 0 0 8.71 0.54 0 2.95 0
0 4.09 0 0 0 8.88 0 0 3.01 0
0 3.33 0 0 0 9.17 0 0 0 0
0 0 0 0 0 11.71 0 0 0 0
0 0 0 0 0 0 0 0 0 0

β ∈ (β4, β3)
β ∈ (β3, β1)

no
β ∈ (β1, β0)

β > β0

Noisy data 2. The noise is nearly normal, centered, i.i.d., SNR= 25.74 dB:

d =
(
66.67 −169.08 101.56 149.38 −39.50 )T . (54)

The optimal values {ck} in Table 5 show that L = M. The sequence {βk} by Definition 3 reads as

β0 = 60287 β1 = 3825 β2 = 3037.1 β3 = 72.734 β4 = 0.0259 β5 = 0 . (55)

This {βk} is strictly decreasing and equals {βk} in (40), as claimed in Lemma 8(a). From Theorem 9,

problems (Ck) and (Rβ) are quasi-completely equivalent. This is confirmed by the tests reported in Table 5.

Table 5: The optimal values and solutions of (Ck) for k ∈ I4 where d is given in (54). Here {βk} is strictly
decreasing, see (55), so (Ck) and (Rβ) are quasi-completely equivalent.

k ck Ĉk = the optimal solution of (Ck), singleton Ĉk = R̂β

4
3
2
1
0

0.0259
72.7601
3109.86
6934.85
67222

0 8.54 0 0 4.59 4.90 2.73 0 0 0
0 3.93 0 0 0 8.70 0 0 2.63 0
0 3.27 0 0 0 8.95 0 0 0 0
0 0 0 0 0 11.44 0 0 0 0
0 0 0 0 0 0 0 0 0 0

β ∈ (β4, β3)
β ∈ (β3, β2)
β ∈ (β2, β1)
β ∈ (β1, β0)

β > β0

8 Conclusions and future directions

We have derived the precise mechanism of the relationship between the global minimizers of least-squares

constrained by k-sparsity (problem (Ck) in (2)) and regularized by ‖ · ‖0 via a parameter β > 0 (problem

(Rβ) in (3)). Subsection 1.2 (Main contributions) made several claims regarding the obtained new results.

Let us summarize.

(a) The constant L is the smallest number such that the optimal value of problem (CL) is null; this L depends

on the data but generically L = M. We have shown that for any k � L, any global minimizer of (Ck)
is isolated and has exactly k non-zero entries. When β ranges on (0,+∞), problem (Rβ) has at most

L+1 different sets of global minimizers which are global minimizers of problems (Ck) for k ∈ {0, . . . , L}.
(b) Using the optimal values of problem (Ck) we proposed a sequence of critical parameters {βk}Lk=0 with

βL = 0 in Definition 3. Its largest strictly decreasing subsequence containing β0 and having the smallest

indexes J ⊂ {0, . . . , L} is denoted by {βJk}Jk∈J. For any Jk ∈ J the global minimizers of problem (CJk)
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and problem (Rβ) for β ∈ (βJk , βJk−1

)
coincide. For the isolated values βJk , the global minimizers of

problem
(
RβJk

)
contains those of problems (CJk) and

(CJk+1

)
.

(c) When the whole sequence {βk}Lk=0 in Definition 3 is strictly decreasing, it follows that problem (Ck)
and problem (Rβ) for all β ∈ (βk, βk−1) have the same set of global minimizers, for any k ∈ {0, . . . , L}.
Then the sparsity constrained problem (Ck) and the regularized problem (Rβ) are quasi-completely

equivalent.

(d) The global minimizers of (Ck) and of (Rβ) are generically unique.

(e) The Monte-Carlo tests (subsection 7.1) have shown that the degree of partial equivalence, i.e., the length

of the effective critical sequence {βk}, depends on the distribution of the coefficients of the matrix A

and the data d.

The agreement between the optimal sets of problems (Ck) and (Rβ) is driven by the critical parameters

{βk}Lk=0 which depend on the data d via the optimal values of problem (Ck). The cases when β takes a

critical value βk ∈ (0,+∞) can be ignored – there are at most L such values (Remark 7). This, together with

(d), tells us that the optimal sets of problems (Ck) and (Rβ) are singletons (except for highly improbable

data which can be ignored in practice).

Our theoretical findings pose intriguing questions, of both a theoretical and practical flavor.

• If one can solve problem (Ck) for all sparsity levels k, claims (b) and (c) shows that one will immediately

deduce all possible global minimizers of problem (Rβ). This suggests that a unifying framework for both

problems might be developed.

• The results in (a) can clarify a proper choice between models (Ck) and (Rβ) in applications. If one

needs optimal solutions with a fixed number of nonzero entries, (Ck) is obviously the best choice. If only

information on the perturbations is available, (Rβ) is a more flexible model.

• Many algorithms have been built on good knowledge on the optimal solutions. One can expect our

detailed results to give rise to innovative and efficient algorithms using (b) and (c).

• In the numerical tests, the quasi-complete equivalence scenario (c) was encountered in more than 93 %

of the tests. This percentage may depend on the size of the tests, on the scaling of (A, d) and certainly

on the distribution of the coefficients of (A, d). The question deserves a deeper exploration.

• By specifying a class of matrices A and assumptions on data d, one might want to infer statistical

knowledge on the optimal values ck’s of problems (Ck) and thus on the critical parameters {βk}. In the

partial equivalence context (b), it would be intriguing to see if problem (Rβ) is able to eliminate some

uninteresting optimal solutions of problem (Ck). If the quasi-complete equivalence case (c) has appeared

to be the main regime, there would be important practical challenges.

Such a research direction is promising and various theoretical and practical results could be expected.

• Finally, we mention some useful extensions of our results.

− Considering matrices A and data d with complex entries should not present inherent difficulties;

however this is important in many applications (e.g., tomography, phase retrieval).

− Extensions to penalties of the form ‖Du‖0 for D a linear operator are important in many applications

(structured sparsity, imaging). However, preliminary research on the minimizers of the adaptations of

problems (Ck) and (Rβ) to these more complex penalties must be conducted.
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Readers may be interested in the relationship between the local minimizers of problems (Ck) and (Rβ).

Notice that every global minimizer is also a local minimizer.

Remark 11. From [30], for any support ω ⊂ {0, 1, . . . ,M} the least squares solution ûω of ‖Aωv − d‖2,
completed with ûk = 0 for all k �∈ ω (i.e., the solution of problem (Pω) in (9)), is always a local minimizer of

problem (Rβ), independently of the value of β. Following the equivalent formulation of problem (Ck) given
in (10) and (11), any such û is also a local minimizer of problem (Ck) for k = � supp(û) � � ω. Enumerating

all supports ω ⊂ {0, 1, . . . ,M} shows that problem (Rβ) (for some β > 0) and the family of problems (Ck)
for k ∈ {0, 1, . . . ,M} have the same sets of local minimizers. ♦

A similar statement on the strict local minimizers of problems (Ck) and (Rβ) can also be obtained.

From (b) and this remark, it is easy to deduce that when the index set J of the parameters {βJk}Jk∈J is

strictly smaller than L, all optimal sets of problem (Ck) that cannot be global minimizers of problem (Rβ)

for any β > 0, are strict local minimizers of (Rβ).

Remark 11 leads to new research directions. A crucial point is that the regularization parameter β will

not play any role for the theoretical comparison between the sets of the local minimizers of problems (Ck)
and (Rβ). Useful information on the number of local (and not global) minimizers of these problems could be

inferred. Other important results would concern algorithms that are known to converge to local minimizers.

A Proofs for joint optimality conditions for (Ck) and (Rβ), section 2

A.1 On the optimal solutions of problem (Ck), subsection 2.2

Proof of Lemma 1. Using (Pω) in (9) and (11), the optimal value of (Ck) for any k is given by

ck = inf
{
‖Aũ− d‖2 where ũ ∈ RN solves (Pω)

∣∣∣ ω ∈ Σk

}
.

For k ∈ I0N and ω ∈ Σk, define cω � 0 by

cω := ‖Aũ− d‖2 where ũ solves (Pω) for ω ∈ Σk . (56)

The set of numbers {cω | ω ∈ Σk} is nonempty and finite. Then ck = min{cω | ω ∈ Σk} is well defined. By

(56) there exists û ∈ RN such that ‖Aû− d‖2 = ck. Hence û ∈ Ĉk and thus Ĉk �= ∅.

Proof of Lemma 2 Since Σk−n ⊂ Σk, ∀ n ∈ I0k it follows from (9) and (13) that

ck � ‖Au− d‖2 ∀ u ∈ RN such that supp(u) ∈ Σk−n, ∀ n ∈ I0k . (57)

Hence ck � ck−n, ∀ n ∈ Ik. By H1, there is ω ∈ ΣM so that rank (Aω) = M = � ω. Then ‖Aû−d‖2 = cM = 0

for û given by ûω = (Aω)
−1d and ûIN \ω = 0.

Proof of Lemma 3 Since n � 1, û solves the problem minu ‖Au − d‖2 subject to ‖û‖0 < k. This is an

unconstrained problem, therefore the gradient of u �→ ‖Au− d‖2 must be null at û:

AT(Aû− d) = 0 .

By H1 we immediately get that Aû − d = Aσ̂ûσ̂ − d = 0 and ‖Aû − d‖2 = 0. This combined with

supp(û) ∈ Σk−n yields ck−n = 0 and û ∈ Ĉk−n. For any m � n−k one has cm = 0 by Lemma 2 and û ∈ Ĉm

because Σm ⊃ Σk−n.

In order to prove Theorem 1(a) we need some auxiliary results.
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Corollary 3. Let H1 hold. Then
[
k ∈ I0L and û ∈ Ĉk =⇒ ‖û‖0 = k

]
.

Proof . The case k = 0 being trivial we focus on k ∈ IL. Assume that ‖û‖0= k−n for n � 1. Then ck−n = 0

by Lemma 3 which contradicts the definition of L in (15) Hence n = 0. �

Lemma 9. Let H1 hold. Consider that û ∈ Ĉk for k ∈ I0L. Set σ̂ := supp(û). Then

rank (Aσ̂) = � σ̂ ≡ ‖û‖0 . (58)

Proof . One has ‖û‖0 = k by Corollary 3. For k = 0 (58) is obvious. Suppose that (58) fails for k � 1:

rank (Aσ̂) � � σ̂ − 1 . (59)

The rank-nullity theorem [25] entails that dim ker (Aσ̂) = � σ̂ − rank (Aσ̂) � 1 . Take an arbitrary vσ̂ ∈
ker (Aσ̂) \ {0}, set vIN \ σ̂ := 0 and select an i ∈ σ̂ in order to define ũ by

ũ := û− ûi
v

vi
.

Then ũi = 0 and ûi �= 0 , so σ̃ := supp (ũ) � σ̂, which leads to

‖ũ‖0 = k− n for n := ‖û‖0 − ‖ũ‖0 � 1 . (60)

From vσ̂
ûi
vi
∈ ker (Aσ̂) one has Aû = Aσ̂ûσ̂ = Aσ̂

(
ûσ̂ − vσ̂

ûi
vi

)
= Aσ̂ũσ̂ = Aσ̃ũσ̃ = Aũ . Then

ck = ‖Aû− d‖2 = ‖Aũ− d‖2 . (61)

This, together with the fact supp(ũ) ∈ Σk shows that ũ ∈ Ĉk. Thus ũ ∈ Ĉk and ‖ũ‖0 � k−1 by (60), hence

ck−1 = 0 by Lemma 3, in contradiction to the definition of L in (15). So (59) fails. �

Lemma 10. Let H1 hold and let û be a solution of problem (Ck) such that rank (Aσ̂) = � σ̂ for σ̂ := supp(û).

Then û is a strict minimizer of problem (Ck).
Proof . Observe that û solves the problem min

{‖Au− d‖2 | u ∈ S
}
where S =

{
v ∈ RN : supp(v) = σ̂

}
.

The case û = 0 being trivial, we focus on û �= 0. Define B :=

{
v ∈ RN | ‖v‖∞ < min

i∈σ̂
|ûi|
}

which is

nonempty. Noticing that û ∈ S, one has

û+ v ∈ S ∀ v ∈ S ∩B . (62)

Since rank (Aσ̂) = � σ̂, the mapping ûσ̂ �→ ‖Aσ̂ûσ̂ − d‖2 is strictly convex and has a unique solution ûσ̂.

This, combined with (62) shows that ‖A(û+ v)− d‖2 > ‖Aû− d‖2 for any v ∈ S ∩ B \ {0}. Hence û is a

strict minimizer of problem (Ck) (Definition 2). �

Proof of Theorem 1. (a) Let û ∈ Ĉk for k ∈ I0L. By Corollary 3 and Lemma 9, rank (Aσ̂) = k = ‖û‖0
where σ̂ := supp(û), which proves (16). Since û solves problem (Pσ̂) in (9) where rank (Aσ̂) = � σ̂ it follows

by Lemma 10 that û is a strict minimizer.

(b) From Lemma 3 and the definition of L in (15) one finds ĈL ⊂ Ĉk for any k � L+ 1.

Proof of Corollary 1 Let û ∈ Ĉk and u ∈ Ĉn for (k, n) ∈ ( I0L )
2, k �= n. By Theorem 1(a), ‖û‖0 = k and

‖u‖0 = n, hence the result.
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A.2 Proofs for necessary and sufficient conditions, subsection 2.3

From Theorems 2 and 3 all global minimizers û of Fβ satisfy ‖û‖0 � M.

Corollary 4, Lemmas 11, 12 and 13 below help to prove Proposition 1.

Corollary 4 ([30] Corollary 3.3). Let û solve (Pω) for ω ∈ Ωk where k ∈ I0M. Then û is a strict (local)

minimizer of Fβ for any β > 0.

With the notation in (17), it is suitable to set

Ω :=
M⋃
k=0

Ωk .

Lemma 11. Let d ∈ RM and β > 0. Then

û is a strict (local) minimizer of Fβ ⇐⇒ û ∈ U :=
⋃
ω∈Ω

{ũ ∈ RN solves (Pω) for ω ∈ Ω}. (63)

Proof . Let û be a strict (local) minimizers of Fβ . Then û solves (Pω) for ω := supp(û). By Theorem 3

ω ∈ Ω and thus û ∈ U. Conversely, any û ∈ U is a strict (local) minimizer of Fβ by Corollary 4. �

Now we partition U in (63) as follows:

U =
M⋃
k=0

Uk where Uk :=
⋃
ω∈Ω

{
ũ ∈ RN solves (Pω) for ω ∈ Ω and ‖ũ‖0 = k

}
. (64)

Lemma 12. Let H1 be satisfied and L be as in (15). Then Ĉk ⊂ Uk ∀ k ∈ I0L .

Proof . Let û ∈ Ĉk for k ∈ I0L. Set ω := supp(û). The expression for Ĉk in (19) and Theorem 1(a) show

that û solves (Pω) for ω ∈ Ωk ⊂ Ω and that ‖û‖0 = k. Hence û ∈ Uk. �

Lemma 13. Let H1 hold, L be as in (15) and let β > 0.

(a) Let k ∈ I0L. Then

Fβ(û) = ck + β k ∀ û ∈ Ĉk ; (65)

Fβ(ũ) > Fβ(û) ∀ ũ ∈ Uk \ Ĉk . (66)

(b) Let û ∈ ĈL. If L � M− 1, then

Fβ(ũ) > cL + β L = Fβ(û) ∀ ũ ∈ Un ∀ n ∈ {L+ 1, · · · ,M} ; (67)

and thus any ũ ∈ Un for n ∈ {L+ 1, · · · ,M} obeys ũ �∈ R̂β for any β > 0.

Proof . From the definition of Uk in (64), if Uk �= ∅, then ‖ũ‖0 = k for any ũ ∈ Uk.

(a) Since k ∈ I0L, Ĉk ⊂ Uk by Lemma 12. Any û ∈ Ĉk yields ‖Aû− d‖2 = ck, hence (65). Any ũ ∈ Uk \ Ĉk

is not an optimal solution of (Ck), so ‖Aũ− d‖2 > ck. Then Fβ(ũ) = ‖Aũ− d‖2 + β k > ck + β k = Fβ(û) .
(b) By the definition of L, cn = cL = 0, ∀ n � L. It follows that for any ũ ∈ Un, ∀ n � L + 1 one has

Fβ(ũ) = ‖Aũ− d‖2 + βn > cL + βL = βL . Such a ũ is not a global minimizer of Fβ . �
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Proof of Proposition 1. (a) follows from Lemma 13(a).

(b)-(c) Let û ∈ R̂β. Then û is a strict minimizer of Fβ (Theorem 2(b)) and û ∈ U by Lemma 11. Set

k := ‖û‖0; then û ∈ Uk according to (64). In addition, k � L because otherwise û �∈ R̂β by Lemma 13(b).

Also, û ∈ R̂β means that Fβ(û) is the optimal value of problem (Rβ). Then û ∈ Ĉk by Lemma 13(a).

Further, û �→ Fβ(û) is constant for any û ∈ Ĉk; see (65). Therefore, Ĉk ⊆ R̂β .

Proof of Lemma 4. The backward implication is obvious. We focus on the forward one. Let k ∈ I0L; we
proceed by contraposition. Assume that Ĉk ∩ R̂β �= ∅, i.e., there exists û ∈ Ĉk ∩ R̂β . Then Ĉk ⊆ R̂β by

Proposition 1(c), a contradiction to the fact that Ĉk �⊆ R̂β .

Proof of Theorem 4. By Proposition 1(b), any û ∈ R̂β satisfies û ∈ Ĉk for k � L and thus û ∈ Ĉ.

Therefore, R̂β ⊂ Ĉ. The same holds for any β > 0 which proves the theorem.

Proof of Lemma 5 By Remark 5, Ĉk ⊆ R̂β implies Fβ(û) � Fβ(u) ∀ û ∈ Ĉk ∀ u ∈ Ĉk+p . Using

Proposition 1(a) this inequality reads as ck + β k � ck+p + β (k + p) , which leads to

β � ck − ck+p

p
. (68)

On the other hand, Ĉk+p = R̂β′ entails Fβ′(u) < Fβ′(û) ∀ u ∈ Ĉk+p ∀ û ∈ Ĉk . Therefore

ck+p + β′ (k + p) < ck + β′ k ⇒ β′ <
ck − ck+p

p
. (69)

Comparing (69) and (68) proves the first part of the lemma. The proof of second one is similar.

B Proofs for parameter values for equality between optimal sets, sec-
tion 3

B.1 Proofs for the entire list of critical parameters values, subsection 3.1

Proof of Proposition 2 For k ∈ {0, L} one has βk < βU
k by Remark 6. We recall the notation Ωk

introduced in (17) and that Πω is the orthogonal projector onto range(Aω) given in Remark 4.

From Definition 3, there exists n ∈ IL−k such that βk =
ck − ck+n

n
. By Theorem 1, there are ω ∈ Ωk

and ω ∈ Ωk+n obeying ck = dT(I − Πω) d and ck+n = dT(I − Πω) d. Similarly, there is m ∈ Ik satisfying

βU
k =

ck−m − ck
m

and ω̂ ∈ Ωk−m such that ck−m = dT(I −Πω̂) d. Then βk − βU
k reads as

βk − βU
k =

dT(Πω −Πω)d

n
− dT(Πω −Πω̂)d

m
(70)

=
dT
(
mΠω + nΠω̂ − (m + n)Πω

)
d

nm
. (71)

It follows that all d ∈ RM leading to βk − βU
k = 0 for some k ∈ IL−1 belong to the set S given below:

S :=
L−1⋃
k=1

Sk where Sk :=
L−k⋃
n=1

k⋃
m=1

⋃
ω∈Ωk

⋃
ω∈Ωk+n

⋃
ω̂∈Ωk−m

ker
(
mΠω + nΠω̂ − (n + m)Πω

)
. (72)
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Let k ∈ IL−1. Since rank (Πω) = k + n, the SVD of Πω yields an orthonormal matrix Q ∈ RM×M so that

QTΠωQ =

⎡⎢⎢⎣ Ik+n
... 0

· · · · · ·
0

... 0

⎤⎥⎥⎦ .
Observe that QTΠωQ is symmetric semi-positive definite. By setting

P :=
n

m
QTΠω̂Q =

⎡⎢⎢⎣ P0
... P1

· · · · · ·
PT
1

... P2

⎤⎥⎥⎦
where P0 is the first (k + n)× (k + n) principal minor of P , we have

rank(mΠω + nΠω̂) = rank
(
Πω +

n

m
Πω̂

)
= rank

(
QT

(
Πω +

n

m
Πω̂

)
Q
)

= rank

⎡⎢⎢⎣ Ik+n + P0
... P1

· · · · · ·
PT
1

... P2

⎤⎥⎥⎦ � k + n . (73)

The rank inequality above comes from the fact that P0 is positive semidefinite and thus Ik+n+P0 is positive

definite; see [24]. This, together with the facts that rank ((n + m) (Πω)) = k and that n � 1 in (73) gives

that mΠω + nΠω̂ − (n + m)Πω �= 0; hence dim
(
ker (mΠω + nΠω̂ − (n + m)Πω)

)
� M− 1. Therefore, S is

a finite union of vector subspaces of dimension � M− 1.

Finally, if d ∈ RM \ S, then βk − βU
k �= 0 in (70) because the term in (71) in non-null.

B.2 Proofs for effective parameters values, subsection 3.3

Proof of Lemma 6 The definition of J and JE in (29) shows that

k ∈ I0L and βk > βU
k ⇐⇒ k ∈ I0L \ {J ∪ JE} .

By Theorem 6(a), one has Ĉk �⊆ R̂β , ∀ β > 0, if and only if k ∈ I0L \ {J ∪ JE}. By Lemma 4, Ĉk �⊆ R̂β

means Ĉk ∩ R̂β = ∅, ∀ β > 0.

Proof of Lemma 7 Let m ∈ JE. Theorem 6(a) shows that Ĉm ⊂ R̂βm . By Theorem 6(b) and

Proposition 3(a), ĈJk = R̂β if and only if βJk < β < βJk−1
. Assume that m < Jk. Then Lemma 5 shows

that βm > β for any β ∈ (βJk , βJk−1

)
. It follows that βm �= βJk . This, together with (35), yields

{m ∈ JE | m < Jk} ∩ JE
βJk

= ∅ . (74)

Using the same statements, ĈJk+1
= R̂β if and only if β ∈ (βJk+1

, βJk
)
. Consider that m > Jk+1. From

Lemma 5, βm < β for any β ∈ (βJk+1
, βJk

)
and thus βm �= βJk . Hence

{m ∈ JE | m > Jk+1} ∩ JE
βJk

= ∅ . (75)

Jointly (74), (75) and J ∩ JE = ∅ prove (36). Finally, βkp ≡ βL = 0 in (31) shows that JE
βL

= ∅.
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Proof of Proposition 4 From Definition 4 one has 0 ∈ J and from Proposition 3(a) {βk}k∈J is strictly

decreasing. By Lemma 7 it holds that Jk < m for any m satisfying βJk = βm. Hence J contains the smallest

indexes.

If J = I0L, the result is proved. Consider that J � I0L. Suppose that there is m ∈ IL \ J such that {βk}k∈J∗
is strictly decreasing where J∗ denotes the increasingly ordered {J ∪ {m}}. By Proposition 3(c), m �∈ JE.

Then m ∈ I0L \ {J ∪ JE}. Since βJk < βJk−1
, ∀ Jk ∈ J, there are (Jk−1, Jk) such that Jk−1 < m < Jk and

βJk < βm < βJk−1
. From Theorem 6(b) and Proposition 3(a), R̂β = ĈJk if and only if β ∈ (βJk , βJk−1

)
.

Since βm ∈
(
βJk , βJk−1

)
one has

Fβm(u) > Fβm(û) ∀ u ∈ Ĉm ∀ û ∈ ĈJk ,

which yields cm + βmm > cJk + βm Jk (see Proposition 1(a)). Consequently,

βm <
cm − cJk
Jk −m

.

However, using that Jk > m, Definition 3 shows that βm � cm − cJk
Jk −m

, a contradiction.

C Proofs for optimal values of (Ck) and (Rβ), section 5

In order to prove Proposition 5 we shall use Lemmas 14 and 15 given below.

Lemma 14. Let H1 hold and let k ∈ {1, . . . ,M− 1}. Then

d ∈ RM \Gk ⇐⇒ ck > 0 .

Proof . Let d ∈ RM \Gk and let û ∈ Ĉk. Set σ̂ := supp(û). By Theorem 1(a) and the notation Ωk in (17),

σ̂ ∈ Ωk. Since (I −Πσ̂) is the orthogonal projector onto (range(Aσ̂))
⊥, one has

d ∈ RM \Gk =⇒ d �∈ range(Aσ̂) and d �= 0 =⇒ ck = ‖Aû− d‖2 = dT(I −Πσ̂) d > 0 .

Conversely, let ck > 0. If d ∈ Gk, there is ω ∈ Ωk meeting d ∈ range(Aω). For uω = (AT
ωAω)

−1AT
ωd one has

‖Aωuω − d‖2 = dT(I −Πω) d = 0, a contradiction to ck > 0. �

Lemma 15. Let H1 hold and let Ek be given by (45). For any k � 1 such that ck−1 > 0 one has

ck−1 > ck ∀ d ∈ RM \Ek .

Proof . From H1, there is n ∈ IN meeting 〈An, d〉 �= 0. Set ûn = argmin
v∈R

‖An v − d‖2. Then

ûn =
〈An, d〉
‖An‖2 �= 0 and c1 � ‖An ûn − d‖2 = ‖d‖2 − 〈An, d〉2

‖An‖2 < c0 = ‖d‖2 .

Consider that k � 2. Let û ∈ Ĉk−1 and ck−1 > 0. Set σ̂ := supp(û) and denote by Bσ̂ a matrix whose

columns form an orthonormal basis for Aσ̂. From Theorem 1(a), σ̂ ∈ Ω k−1. By H1, there is n ∈ IN \ σ̂ such

that ω := σ̂∪{ n} ∈ Ωk . Then there is bk ∈ range(Aω) such that Bω = (Bσ̂ , bk) forms an orthonormal basis

for Aω (Gram-Schmidt theorem, see, e.g., [20]). The orthogonal projectors onto range(Aσ̂) and range(Aω)

are Πσ̂ = Bσ̂B
T

σ̂ and Πω = BωB
T
ω = Bσ̂B

T

σ̂ + bkb
T
k , respectively. Then ck � ζ k := dT(I − Πω) d. Applying

(20) yields

ck−1 − ck � ck−1 − ζ k = dT (Πω −Πσ̂) d = 〈bk, d〉2 .

Since d ∈ RM \Ek, one has d �∈ (range( (Bσ̂ , bk)
))⊥

. Hence 〈bk, d〉2 > 0. �
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Proof of Proposition 5 (a) Let d ∈ RM \GL′−1. By Lemma 14, cL′−1 > 0. Since {ck} is decreasing

(Lemma 2), one has ck > 0 ∀ k � L′ − 1. Conversely, if d �∈ RM \GL′−1, then cL′−1 = 0 by Lemma 14.

(b) Using (a)

d ∈ RM \ (E2 ∪GL′−1) =⇒ ck > 0 ∀ k ∈ I0L′−1 . (76)

Let k ∈ IL′ . For any ω ∈ Ωk and ω � ω with � ω = k − 1 one has ω ∈ Ωk−1 and range(Aω) � range(Aω).

Since (range(Aω))
⊥ � (range(Aω))

⊥ we obtain
(
RM \Ek

)
�
(
RM \Ek−1

)
for any k ∈ {2, . . . , L′}. Using

Lemma 15 together with (76) shows that

d ∈ RM \ (E2 ∪GL′−1) =⇒ ck−1 > ck > 0 ∀ k ∈ IL′−1 and cL′−1 > cL′ .

Proof of Corollary 2. (a) follows from Theorem 7 and Proposition 1(a).

(b) By (46), rβ is the lower envelope of L+ 1 affine increasing functions. Hence (b).

(c) One has βJk(Jk+1 − Jk) = cJk − cJk+1
and {βJk}pk=0 strictly decreasing by Proposition 3. Then

rβJk
− rβJk+1

= cJk − cJk+1
+ βJkJk −

(
βJk −

(
βJk − βJk+1

))
Jk+1 (77)

= cJk − cJk+1
+ βJk(Jk − Jk+1) +

(
βJk − βJk+1

)
Jk+1 =

(
βJk − βJk+1

)
Jk+1 > 0 .

Since J0 = 0, see (31), rβJ0
= cJ0 = rβ , ∀ β � βJ0 . Using (a) and (77) yields rβJ0

> rβ , ∀ β < βJ0 .
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