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ON �1 DATA FITTING AND CONCAVE REGULARIZATION FOR
IMAGE RECOVERY∗
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Abstract. We propose a new family of cost functions for signal and image recovery: they
are composed of �1 data fitting terms combined with concave regularization. We exhibit when and
how to employ such cost functions. Our theoretical results show that the minimizers of these cost
functions are such that each one of their entries is involved either in an exact data fitting component
or in a null component of the regularization part. This is a strong and particular property that can
be useful for various image recovery problems. The minimization of such cost functions presents a
computational challenge. We propose a fast minimization algorithm to solve this numerical problem.
The experimental results show the effectiveness of the proposed algorithm. All illustrations and
numerical experiments give a flavor of the possibilities offered by the minimizers of this new family
of cost functions in solving specialized image processing tasks.
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1. Introduction. Digital image restoration and reconstruction plays an impor-
tant role in various fields such as medical and astronomical imaging, film restoration,
image and video coding, and many others [22, 19]. We consider data production
models where the observed data v ∈ Rq are related to the underlying n ×m image,
rearranged into a vector u ∈ Rp (p = mn), according to

(1) v = Au with perturbations,

where A is a q × p matrix which can, for instance, be the identity (A = I) or can
model optical blurring, distortion wavelets in seismic imaging, X-ray tomography (an
incomplete Radon transform), diffraction tomography (an underdetermined Fourier
transform), and so on.

In most of these applications, the information provided by the forward model (1)
alone is not sufficient to find an acceptable solution to this equation. Prior infor-
mation on the underlying image is needed to find a convenient solution to (1)—that
is, a solution which is close to (1) in an appropriate way and meets reasonable prior
requirements. A flexible means of defining such a solution is regularization (see, e.g.,
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A398 MILA NIKOLOVA, MICHAEL K. NG, CHI-PAN TAM

[6, 18, 2]), where the sought-after solution, denoted in what follows by û, is a minimizer
of a cost function of the form

(2) Θ(u) + βΦ(u),

where

(3) Φ(u) =
r∑
j=1

ϕ(‖Gju‖2).

In these expressions, Θ is called the data fitting term, and Φ the regularization (or
penalty) term. In fact, Θ forces closeness to data v in accordance with (1), Φ embodies
the priors, and β > 0 is a parameter that controls the trade-off between these two
terms. In (3), for every j ∈ {1, . . . , r}, Gj : Rp → Rs is a linear operator where s � 1
is an integer. For instance, the family {Gj} ≡ {Gj}rj=1 can generate the discrete
approximation of the gradient of an image u (then s = 2) or the Laplacian operator
on u (in which case s = 1), or finite differences of various orders (s = 1), or the
combination of any one of these with the synthesis operator of a frame transform.
The function

ϕ : R+ → R

is increasing. It is usually called a potential function (PF). Quite varied functions
ϕ have been used in the literature; a review can be found, for instance, in [8]. An
important requirement is that ϕ allow the recovery of both relevant edges and smooth
regions in the solution û. For two decades, one of the most popular PFs has been
ϕ(t) = t: when {Gj} yields a discrete approximation of the gradient of u, Φ amounts
to the discrete version of the convex nonsmooth total variation (TV) penalty [41]

(4) TV(u) =

r∑
j=1

‖Gju‖2.

The most frequent choice for assessing fitting to data is the �2-norm, Θ(·) = ‖ ·‖22;
see, e.g., the textbook [2]. We note that this quadratic data term Θ regularized with
a TV-term unavoidably entails a bias with respect to the original image [42]. In 2002,
some of the authors of this paper [32] showed that �1 data terms

(5) Θ(u) = ‖Au− v‖1
are useful in image processing if some data equations in the linear system (1) have
to be satisfied exactly. Such a property is precious, for instance if data are corrupted
with impulse noise [33, 4] or in hybrid restoration methods [12]. Continuum L1-TV
energies ‖u − v‖1 + βTV(u) for images of bounded variation, and more specifically
when data v is the characteristic functions of a bounded domain, were studied by
Chan and Esedoḡlu in [10]. They exhibited interesting contrast invariance properties
of the minimizers of L1-TV: small features in the image remain intact up to some
critical value of β, above which they suddenly disappear. Later on, L1-TV (or �1-
TV)-like energies were revealed to be successful in image decomposition [3, 14], for the
recovery of binary images [11] or in segmentation, in optical flow image registration
[38, 48, 45, 39], as well as in image restoration using hybrid methods [13]. Let us note
that their minimizers were proven to be nonstrict in general [13]. Fast algorithms
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�1 DATA FITTING AND CONCAVE REGULARIZATION A399

devoted to the minimization of cost functions involving an �1 data fitting of the
form (5) were developed; see, e.g., [15, 20, 13, 45].

Even though convex PFs give rise to feasible optimization problems [2], the nu-
merical results in the pioneering work of Geman and Geman [18] have shown that
nonconvex PFs ϕ offer richer possibilities for restoring high quality images. Since
[16, 17], concave PFs, jointly with an �2 data fitting Θ(·) = ‖ · ‖22, have been used
in the literature; see, e.g., [31, 5, 25, 24, 35, 28, 9, 36], especially in connection with
sparse recovery. A theoretical explanation of the interest of this form of cost functions
was furnished in [34]. A general study on local convergence of descent methods for
such nonconvex cost functions was recently provided in [1].

In this paper, we introduce a new class of cost functions: they combine an �1
data fitting, as given in (5), and a regularization term Φ of the form (3), defined using
increasing and strictly concave PFs ϕ. Such cost functions are obviously nonconvex
and nondifferentiable. Our goal is to explore the advantages of these cost functions.
In this direction, this work provides two main contributions. The theoretical one is
to prove that each entry û[k] of a (local) minimizer û of such a cost function ensures
that at least one data equation is fitted exactly, aiû = v[i], where ai is the ith row of
A, or in (at least) one vanishing operator Gj û = 0, or in both types of equations (see
section 2). In the simple case when A = I and {Gj} are discrete gradients or first-order
differences, minimizers are composed of (i) constant regions surrounded by closed
contours and (ii) restored samples equal to the relevant data entries. The second
main contribution of this article is to propose a fast algorithm for approximating
the global minimizer of these cost functions (section 3). Our experimental results
(section 4) clearly show the effectiveness and the efficiency of the proposed numerical
scheme as well as the interest of this new family of cost functions. Concluding remarks
are given in section 5.

2. Peculiar properties of minimizers. In this section, we study the main
properties of the (local) minimizers û of cost functions as defined by (2), (3), and
(5). We denote by ai ∈ R

1×p the ith row of A, for any i ∈ {1, . . . , q}. Then the ith
component of Au is

(
Au
)
[i] = aiu. Thus the cost functions F : Rp → R in which we

are interested read

(6)

v ∈ Rq, F(u) = ‖Au− v‖1 + βΦ(u)

=
∑
i∈I

∣∣aiu− v[i]
∣∣+ β

∑
j∈J

ϕ(‖Gju‖2), β > 0,

where I
def
= {1, . . . , q},

J
def
= {1, . . . , r}.

Without loss of generality, we assume that

ai �= 0 ∀i ∈ I and Gj �= 0 ∀j ∈ J .

The matrix composed of all Gj , denoted by G, reads

(7) G = [GT1 , . . . ,G
T
r ]
T ,

where the superscript “T ” stands for the transpose. Usually rankG < p. For instance,
if {Gj} yields the discrete approximation of the gradient of u, then kerG = span(1l),
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where 1l is the vector composed of ones. We adopt the standard assumption enabling
us to have regularization:

H1. kerA ∩ kerG = {0}.
The function ϕ in (6) is strictly increasing and concave on R+

def
= {c ∈ R | c � 0}.

Hence t→ ϕ(|t|) is nondifferentiable at zero. The precise assumptions on ϕ are listed
below.

H2. The function ϕ in (6) has the following properties:

(a) ϕ : R+ → R+ is C2 on R∗
+

def
= R+ \ {0} and ϕ(t) > ϕ(0) for all t > 0;

(b) ϕ′(0+) > 0 and ϕ′(t) > 0 on R∗
+;

(c) ϕ′′ is increasing on R∗
+, ϕ

′′(t) < 0 for all t > 0, and limt↘0 ϕ
′′(t) < 0 is well

defined and finite.
The condition that limt↘0 ϕ

′′(t) < 0 be finite in H2(c) implies that ϕ′(0+) > 0
in H2(b) is finite as well. Examples of functions ϕ satisfying H2 are given in Table 1
and plotted in Figure 1.

Table 1

Functions ϕ : R+ → R+ satisfying H2.

(f1) (f2) (f3) (f4)

ϕ(t)
α t

α t+ 1
1− αt ln(αt + 1) (t + ε)α

α > 0 0 < α < 1 α > 0 0 < α < 1, ε > 0

ϕ′(t) α
(αt+1)2

−αt lnα > 0 α
αt+1

α(t+ ε)α−1

ϕ′(0+) α − lnα > 0 α αεα−1

ϕ′′(t) −2α2

(αt+1)3
−αt(lnα)2 −α2

(αt+1)2
α(α − 1)(t + ε)α−2 < 0

lim
t↘0

ϕ′′(t) −2α2 −(lnα)2 −α2 α(α − 1)εα−2 < 0

0 10
0

1

0 10
0

1

0 10
0

2

0 10
0

1

(f1) (f2) (f3) (f4)

α = 4 α = 0.5 α = 2 α=0.3, ε=0.2

Fig. 1. Plots of the PFs ϕ given in Table 1. Note that (f1) and (f2) are bounded above, which
is not the case for (f3) and (f4).

2.1. Motivation. Figures 2, 3, and 5 depict minimizers of F in (2) for one-
dimensional signals, where A = I, {Gj} are first-order differences (hence H1 holds
true) and different functions ϕ satisfying H2. These minimizers were obtained using
a continuation algorithm like the one presented in section 3 where initialization was
done with a null signal. In Figures 2, 3, and 5(b), F is of the form (6), so it reads

(8) F(u) = ‖u− v‖1 + β

p−1∑
i=1

ϕ(|u[i+ 1]− u[i]|).D
ow
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ϕ(t) =
αt

αt+ 1
for α = 4 ϕ(t) = ln(αt+ 1) for α = 2

71

0

10

71

0

5

(a) β = 100. (c) β = 1.

71

0

10

71

0

5

(b) β = 157. (d) β = 3.

Fig. 2. Minimizers of F in (8) for two functions ϕ obeying H2: (f1) for (a), (b) and (f3) for
different values of β for (c), (d) as given. Data samples v[i] are marked with (◦◦◦), samples û[i] of
the minimizer with (+++).

Figure 2 shows the minimizers for two different data vectors v ∈ R
80 and functions

ϕ and for different values of β. In the left column, ϕ is the function (f1) from Table 1.
The numerical tests have shown that for any β ∈ {1, . . . , 78} we have û = v and that
the solution in (a) is obtained for any β ∈ {80, . . . , 156}. Similarly, the minimizer
in (c) remains unchanged for any β ∈ 0.1 × {10, . . . , 14}, whereas we have û = v for
all β ∈ 0.1 × {1, . . . , 3}. In both cases one observes that when β decreases, more
data samples are fitted exactly, whereas when β increases, more piecewise constant
structures are formed; i.e., fitting to the prior model is reinforced. In the left column,
where data is piecewise constant, increasing β removes some small objects which for
a smaller β were equal to the relevant data entries. This effect can be related to the
contrast preservation of the widest constant objects in the data, studied theoretically
for binary images in [10]. In the right column, increasing β introduces constant zones
(i.e., where Gj û = 0) in locally variable regions in the data v and removes small
objects—e.g., both triangles are deleted in (d).

Figure 3 shows the results obtained by minimizing F in (8) along with all functions
ϕ given in Table 1. Since for all these functions ϕ the original signal (in green or
marked with − − −) matches the prior model in (8), we explore the possibility of
recovering it from the data v (in magenta or marked with ◦ ◦ ◦), which contain
Gaussian noise. We systematically selected the largest value of β enabling us to
restore the tiny gate-shaped feature1 ending at sample 71. All minimizers (marked
in black + + +) in the figure are piecewise constant. The zooms in Figure 4 show
that each constant piece fits at most one data entry. In particular, (a) and (b) in the
first row do not fit any data sample, and the restored level is quite precise; in (a) it

1Recall the experiment in Figure 2(a) and (b). In the present experiment, the tiny gate disappears
for a slightly larger value of β.
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5 20 53 71

0

10

5 20 53 71

0

10

(a) ϕ(t) = α t
α t+1 , α = 4, β = 3 (b) ϕ(t) = 1− αt, α = 0.1, β = 2.5

5 20 53 71

0

10

5 20 53 71

0

10

(c) ϕ(t) = ln(αt+ 1), α = 2, β = 1.3 (d) ϕ(t) = (t+ 0.1)α, α = 0.5, β = 1.4

Fig. 3. Minimizers of F as given in (8) for all functions ϕ evoked in Table 1. Data are corrupted
with Gaussian noise. Data samples v[i] are marked with (◦◦◦), samples û[i] of the minimizer with
(+++). The original signal is also recalled (−−−).

0

10

53 71

(a) (b) (c) (d)

5 20

12

11

12.5 (a) (b) (c) (d)

Fig. 4. Zooms of the plots in Figure 3. First row: samples 5–20. Second row: samples 53–
71. Constant pieces are indicated using a solid black line. Data points v[i] fitted exactly by the
corresponding minimizers û are shown using (�). Data samples v[i] are marked with (◦◦◦), and
samples û[i] of the minimizer with (+++). The original signal is also recalled (−−−).

seems to overlap the original one. These plots correspond to (f1) and (f2) in Table 1,
which are bounded above. Comparing all results in Figure 3 (as well as the zooms in
Figure 4), it appears that a faster increase of ϕ on R+ entails a degradation of the
restoration quality. Among all tested functions, (f4) has the fastest increase on R+,
and the corresponding minimizer in (d) provides the worst restoration. The bounded
above functions (f1) and (f2) seem to give rise to the best results.

In Figure 5 we compare �1 data fitting to quadratic �2 (smooth) fitting, using
the same function (f1) in Table 1. In accordance with the results proven in [32, 33],
one observes that even though the prior term is appropriate in both cases, quadratic
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71

0

10

71

0

10

(a) F(u) = ‖u− v‖22 + βΦ(u) (b) F(u) = ‖u− v‖1 + βΦ(u)

Fig. 5. In both cases, Φ(u) =
∑p−1

i=1 ϕ(|u[i + 1] − u[i]|) where ϕ(t) = α t
α t+1

for α = 4. Data

contain 20% impulse noise. Data samples v[i] are marked with (◦◦◦), samples û[i] of the minimizer
with (+++). The original signal is reminded in (−−−).

�2 data fitting does not enable a correct restoration of the original signal. A fully
satisfying recovery is provided by the cost function that we propose.

Figures 3 and 5 show that (f1) in Table 1 gives rise to the best results in all tests.
This is an important argument for using (f1) in the experiments in section 4.

Example 1 (scalar case). This example furnishes a first intuition on the reasons
underlying the phenomena observed in Figures 2, 3, and 5. Given v ∈ R, consider the
following function F : R → R:

(9) F(u) = |u− v|+ βϕ(|u|) for ϕ meeting H2.

The necessary conditions for F to have a (local) minimum at û �= 0 and û �= v
—that its first differential meets DF(û) = 0 and that its second differential obeys
D2F(û) � 0—do not hold:

û �∈ {0, v} ⇒
⎧⎨⎩

DF(û) = sign(û− v) + βϕ′(|û|)sign(û) = 0,

D2F(û) = βϕ′′(|û|) < 0,

where the last inequality comes from the concavity of ϕ on R∗
+; see H2(c). Hence, F

cannot have a minimizer such that û �= 0 and û �= v for any v ∈ R. Being coercive,
F does have minimizers. Consequently, any minimizer of F in (9) satisfies

(10) û ∈ {0, v}.

For ϕ(u) = αu
1+αu , the local and the global minimizers of F in (9) can be calculated

explicitly.2

The practical interest of cost functions of the form (6) can be appreciated thanks
to the experiments provided in section 4.

2Let ϕ in (9) read ϕ(u) = αu
1+αu

. Using (10), the two possible (local) minimizers are û1 =

0 ⇒ F(û1) = |v| and û2 = v ⇒ F(û2) = βϕ(|v|) = F(û2) = β α|v|
1+α|v| . In consequence, the global

minimizer û of F fulfills one of the following three options: (i) û = û1 = 0 ⇔ F(û1) < F(û2)

⇔ |v| < β
α|v|

1+α|v| ⇔ |v| < β − 1
α
, (ii) û = {0, v} ⇔ F(û1) = F(û2) ⇔ |v| = β − 1

α
, or (iii)

û = û2 = v ⇔ F(û1) > F(û2) ⇔ |v| > β − 1
α
. The cost function F has two distinct global

minimizers only for two values of v, namely v = β − 1
α

and v = −β + 1
α
. The set of these points is

closed, and its Lebesgue measure in the space of v, namely R1, is null. Observe also that if βα < 1,
we have û = v for any real v.
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2.2. Preliminary results. We first verify that cost functions F of the form (6)
do have minimizers.

Proposition 1. Let F read as in (6). Assume that H1 holds and that ϕ sat-

isfies H2. Then for any v the optimal set Û
def
= {û ∈ Rp | F(û) = infu∈Rp F(u)} is

nonempty.
The proof of this proposition is outlined in Appendix 6.1. Below it is illustrated

using a 3-pixels example.
Example 2. Let F be of the form (6) for p = 3 and q = 2, where

(11) A =

[
1 0 0
0 0 1

]
, v =

[
1
3

]
,

G1 = [1 −1 0],
G2 = [0 1 −1],

ϕ(t) =
α|t|

α|t|+ α
.

Thus F reads

F(u) =
∣∣u[1]− v[1]

∣∣+ ∣∣u[3]− v[2]
∣∣+ β

(
ϕ(|u[1]− u[2]|) + ϕ(|u[2]− u[3]|)

)
.

Note that rankA = rankG = 2 < p = 3 and that ϕ, obeying H2, is bounded above.
We have

kerA = {w ∈ R
3 | w = [0 c 0], c ∈ R} and kerG = c1l ∈ R

3, c ∈ R,

and hence H1 is satisfied since kerA∩ kerG = {0}. One computes (by hand) that for
α = 1 and β = 2 the global minimizer of F reads

(12) û = [1 1 3]T .

Given v ∈ Rq, with each û ∈ Rp we systematically associate the following subsets:

(13)

Î0
def
= {i ∈ I | aiû = v[i]} and Îc0

def
= I \ Î0 = {i ∈ I | aiû �= v[i]},

Ĵ0
def
= {i ∈ J | Giû = 0} and Ĵc0

def
= J \ Ĵ0 = {i ∈ J | Giû �= 0}.

Note that Giû = 0 ∈ Rs is equivalent to ‖Giû‖2 = 0; for s = 1 it is the same as
|Giû| = 0.

Example 3. Let us consider Example 2 yet again. Clearly I = {1, 2} and J =
{1, 2}. For the global minimizer û in (12) one finds that

(14)
Î0 = {1, 2} = I and Îc0 = ∅,

Ĵ0 = {1} and Ĵc0 = {2}.

Remark 1. If v = 0, it is clear that F in (6) is minimized by û = v = 0 since

F(û) = rβϕ(0) is the least possible value of F . For this trivial solution, Î0 = I and

Ĵ0 = J , so Îc0 = Ĵc0 = ∅.
In what follows, we consider that v �= 0, without further reminder.
For (u, v) ∈ Rp × Rq, define

ψi(u)
def
=
∣∣aiu− v[i]

∣∣, i ∈ I,(15)

φi(u)
def
= ϕ(‖Giu‖2), i ∈ J.(16)
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Lemma 1. Let F read as in (6). For a û ∈ Rp we adopt the notation in (13) and

assume that Îc0 ∪ Ĵc0 �= ∅. Put

ρ
def
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min

{
min
i∈̂Ic0

|aiû− v[i]|
‖ai‖2 , min

j∈ ̂Jc
0

‖Gjû‖2
‖Gj‖2

}
if Îc0 �= ∅ and Ĵc0 �= ∅;

min

{
1, min

j∈ ̂Jc
0

‖Gj û‖2
‖Gj‖2

}
if Îc0 = ∅ and Ĵc0 �= ∅;

min

{
min
i∈̂Ic0

|aiû− v[i]|
‖ai‖2 , 1

}
if Îc0 �= ∅ and Ĵc0 = ∅.

Clearly ρ > 0. Let u ∈ B(û, ρ)
def
= {w ∈ Rp | ‖w − û‖2 < ρ}. Then

i ∈ Îc0 �= ∅ ⇒ ψi(u) ∈ C2
(
B(û, ρ)

)
;(17)

j ∈ Ĵc0 �= ∅ ⇒ φj(u) ∈ C2
(
B(û, ρ)

)
.(18)

In words, ψi for all i ∈ Îc0 and φj for all j ∈ Ĵc0 , as given in (15) and (16),
respectively, are C2-smooth on the open ball B(û, ρ). This easy lemma is proven in
Appendix 6.2.

The next remark furnishes some standard calculations that are needed for later
use.

Remark 2. Let F be of the form (6) and let assumption H2 hold. For a û ∈ R
p

consider the notation in (13). Then for any w ∈ Rp we have3

(a) i ∈ Îc0 =⇒
{
Dψi(û)w = sign

(
aiû− v[i]

)
aiw,

〈D2ψi(û)w,w〉 = 0,

(b) j ∈ Ĵc0 =⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Dφj(û)w = ϕ′(‖Gj û‖2) 〈Gj û,Gjw〉

‖Gj û‖2
,

〈D2φj(û)w,w〉 = ϕ′′(‖Gj û‖2)
( 〈Gj û,Gjw〉

‖Gj û‖2

)2
+ϕ′(‖Gj û‖2)‖Gjw‖2

2‖Gj û‖2
2−〈Gj û,Gjw〉2

‖Gj û‖3
2

;

(b′) j ∈ Ĵc0 and Gj ∈ R1×p by (b)
=⇒

{
Dφj(û)w = ϕ′(|Gj û|)

∣∣Gjw∣∣,
〈D2φj(û)w,w〉 = ϕ′′(|Gj û|) (Gjw)2.

The next proposition justifies the notation introduced in (13) when analyzing the
cost functions proposed in this work.

Proposition 2. For F as in (6) satisfying H2, let û be a (local) minimizer of
F . Then (

Î0 ∪ Ĵ0
) �= ∅.

Proof. Suppose, on the contrary, that

(19) Î0 = ∅ and Ĵ0 = ∅.

3Note that if i ∈ Îc0, then 〈D2ψi(û)w,w〉 = limt→0
sign

(
ai(û+tw)−v[i]

)
aiw−sign

(
aiû−v[i]

)
aiw

t
= 0.
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By Lemma 1, F is C2 on a neighborhood of û since Îc0 = I and Ĵc0 = J . Using
Remark 2, for w = û one finds that4

〈D2F(û, v)û , û〉 =
∑
i∈I

〈D2ψi(û)û, û〉+
∑
j∈J

〈D2φj(û)û, û〉

=
∑
j∈J

(
ϕ′′(‖Gj û‖2)

( 〈Gj û,Gj û〉
‖Gj û‖2

)2

+ϕ′(‖Gj û‖2)‖Gjû‖
2
2‖Gjû‖22 − 〈Gj û,Gj û〉2

‖Gjû‖32

)
=
∑
j∈J

ϕ′′(‖Gj û‖2)
( 〈Gj û,Gj û〉

‖Gjû‖2

)2

< 0,

where the last inequality is due to assumption H2(c). It shows that û is not a (local)
minimizer of F (see, e.g., [40]). Consequently, the assumption in (19) is false. Hence
the statement of the proposition.

When rankG < p—an usual case—a user would not like to get (local) minimizers
û of F that belong to kerG since these are meaningless solutions. A sufficient condition
for avoiding such situations is given in the lemma stated next.

Lemma 2. Let F in (6) meet H2 and rankG < p. Assume that data v ∈ Rq

satisfy

(20) w ∈ kerG \ {0} ⇒ aiw �= v[i] ∀i ∈ I.

Let û �= 0 be such that Î0 �= ∅. Then

(21) Ĵc0 �= ∅.

Proof. Suppose on the contrary that

(22) Ĵ0 = J.

Then û ∈ kerG \ {0}, and (20) leads to Î0 = ∅. Hence a contradiction with the

assumption that Î0 �= ∅. This entails (21), where the equivalence relation comes from
(13).

It is worth emphasizing that the assumption in (20) is typically satisfied.5 For
instance, consider that G corresponds to first-order differences or a discrete gradient.
Then kerG = span(1l) and (20) means that v �= cA1l for any real c.

If kerG = {0}, it is clear that (21) is satisfied if û �= 0.

2.3. Discarding perilous nonminimizer points. Given v ∈ Rq, with any û ∈
Rp, we systematically associate the following linear manifolds by using the notation
in (13):

Kû = {w ∈ R
p | aiw = v[i] ∀i ∈ Î0 and Giw = 0 ∀i ∈ Ĵ0},(23)

Kû = {w ∈ R
p | aiw = 0 ∀i ∈ Î0 and Giw = 0 ∀i ∈ Ĵ0}.(24)

4If s = 1, i.e., Gj ∈ R1×p for all j ∈ J , Remark 2(a)–(b′) and H2(c) show that for any w ∈ Rp

〈D2F(û, v)w ,w〉 = ∑
j∈J ϕ

′′(|Gj û|) (Gjw)
2 < 0.

5A little effort is needed to show that data v that fail (20) belong to a closed subset of Lebesgue
measure zero in Rq , since the dimension of kerG is typically very small compared to min{p, q}.
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Since

û ∈ Kû,
we have Kû �= ∅. Note that Kû is the vector subspace tangent to Kû; hence
(25) û+ w ∈ Kû ∀w ∈ Kû.

Remark 3. Proposition 2 tells us that any (local) minimizer û of F belongs to a
nonempty manifold Kû of the form (23).

Nevertheless, there may be other points û ∈ Rp that also give rise to a nonempty
Kû but which are not (local) minimizers of F . In this subsection, we describe the
latter kind of (dangerous) points. To this end, we examine the restriction of F to the

manifold Kû, say F def
= F |Kû

,

F : Kû → R,

F (u) =
∑
i∈̂Ic0

|aiu− v[i]|+ β
∑
j∈ ̂Jc

0

ϕ(‖Gju‖2).(26)

According to Lemma 1, F is C2 on a neighborhood of û.
Using the notation in (13), we also suppose that the following holds.

H3. The point û ∈ Rp is such that Î0 �= ∅ and that 6

(27) w ∈ kerG \ {0} ⇒ ∃i ∈ Î0 such that aiw �= 0.

The assumption in (27) might seem tricky. However, it can be seen as a restriction
of a more general assumption, namely,

(28) w ∈ kerG \ {0} ⇒ aiw �= 0 ∀i ∈ I.

The latter holds true in most of the applications. A relevant example is when A and
G are the discrete versions of an integral and a differential operator, respectively. For
example, if kerG = span(1l), (28) means that ai1l �= 0 for all i ∈ I.

Lemma 3. For û ∈ Rp, we posit the definitions of Î0 and Ĵc0 (see (13)), as well

as the one of Kû in (24). Let H3 hold and Ĵc0 �= ∅. Suppose that the dimension of
Kû satisfies dimKû � 1. Then

w ∈ Kû \ {0} ⇒ Ĵc0(w)
def
= {j ∈ Ĵc0 | Gjw �= 0} �= ∅.

Proof. If kerG = {0}, the result is obvious. Let rankG < p. The proof is
conducted by contradiction. So suppose that

(29) ∃w ∈ Kû \ {0} such that Gjw = 0 ∀j ∈ Ĵc0 .

Combining (29) and the definition of Kû shows that Gjw = 0 for all j ∈ Ĵc0 ∪ Ĵ0; that
is,

w ∈ kerG \ {0}.

Using H3, there exists i ∈ Î0 obeying aiw �= 0. But the definition of Kû shows that
w �∈ Kû. It follows that (29) is false. Hence the result.

6Note that if rankG = p, the implication in (27) is trivial.
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The cases when all operators Gj are one-dimensional row vectors and when {Gj}
contains some matrices Gj ∈ Rs×p for s � 2 are considered separately. The former
case is much easier to study.

Lemma 4. Consider F in (6), where Gj ∈ R
1×p for all j ∈ J (i.e., s = 1) and

H2 holds. Let û ∈ R
p satisfy H3 and Ĵc0 �= ∅. Suppose that dimKû � 1, where Kû is

defined according to (24). Then the restricted function F
def
= F |Kû

(see (26)) satisfies

〈D2F (û)w,w〉 < 0 ∀w ∈ Kû \ {0}.

Proof. Using Remark 2(a)–(b′), Lemma 3, and H2(c), it is straightforward that

w ∈ Kû \ {0} ⇒ 〈D2F (û)w,w〉 = β
∑

j∈ ̂Jc
0 (w)

ϕ′′(|Gj û|) (Gjw)2 < 0.

The proof is complete.

The connection with Example 1 is obvious from the fact that F is the smooth
part of F .

Remark 4. When Gj û �= 0 and Gjw �= 0 for w ∈ Kû \ {0}, we have

‖Gjw‖22‖Gj û‖22
〈Gj û,Gjw〉2 > 1.

Indeed, û ∈ Kû and w ∈ Kû \ {0}, so Kû �= Kû, in which case Schwarz’s inequality
yields |〈Gj û,Gjw〉| < ‖Gjw‖2‖Gj û‖2.

This remark is behind the additional assumptions (a)–(b) in the next lemma.

Lemma 5. Let F be of the form (6), where {Gj} contains some matrices Gj ∈
Rs×p for s � 2, and let H2 hold. Suppose that û meets Ĵc0 �= ∅ and H3. We denote

τ0
def
= min

j∈ ̂Jc
0

‖Gj û‖2 > 0 and τ1
def
= max

j∈ ̂Jc
0

‖Gj û‖2 > 0.

Consider that (a) and (b) stated below are verified:

(a) There is a constant C > 1 such that

w ∈ Kû \ {0} ⇒ ‖Gjw‖22‖Gj û‖22
〈Gj û,Gjw〉2 � C ∀j ∈ Ĵc0(w),

where Ĵc0(w) is described in Lemma 3.
(b) The function ϕ is such that

ϕ′′(t) + (C − 1)
ϕ′(t)
t

< 0, either ∀t � τ0 or ∀t � τ1.

Assume that dimKû � 1 for Kû, as given in (24). Then F
def
= F |Kû

(see (26))
satisfies

〈D2F (û)w,w〉 < 0 ∀w ∈ Kû \ {0}.

Proof. Using Remark 2 and Lemma 3, as well as H2(c), the following chain of

D
ow

nl
oa

de
d 

11
/0

8/
14

 to
 1

94
.1

99
.9

0.
57

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

�1 DATA FITTING AND CONCAVE REGULARIZATION A409

inequalities is derived:

〈D2F (û)w,w〉

= β
∑
j∈ ̂Jc

0

ϕ′′(‖Gj û‖2)
( 〈Gj û,Gjw〉

‖Gjû‖2

)2

+ β
∑
j∈ ̂Jc

0

ϕ′(‖Gj û‖2)‖Gjw‖
2
2‖Gj û‖22 − 〈Gj û,Gjw〉2

‖Gj û‖32

(Lemma 3) = β
∑

j∈ ̂Jc
0 (w)

ϕ′′(‖Gj û‖2)
( 〈Gj û,Gjw〉

‖Gj û‖2

)2

+β
∑

j∈ ̂Jc
0 (w)

(
ϕ′(‖Gj û‖2)
‖Gjû‖2

‖Gjw‖22‖Gjû‖22
〈Gj û,Gjw〉2 − ϕ′(‖Gj û‖2)

‖Gj û‖2

)( 〈Gj û,Gjw〉
‖Gjû‖2

)2

by (a) � β
∑

j∈ ̂Jc
0 (w)

(
ϕ′′(‖Gj û‖2) + ϕ′(‖Gj û‖2)

‖Gj û‖2 (C − 1)

)( 〈Gj û,Gjw〉
‖Gjû‖2

)2

by (b) < 0 ∀w ∈ Kû \ {0}.
The proof is complete.

Below we discuss the additional assumption (b) in Lemma 5.
Remark 5. The inequality required in (b) can be controlled using the parameter α

used to define ϕ (see Table 1). For instance, if C = 2, the assumption is satisfied by the
PF (f1) in Table 1 for t � τ0 > 1/α and by the PF (f2) for t � τ0 > 1/(− lnα) > 0.
These PFs are bounded above. This assumption is satisfied by the PFs (f3) for
t � τ1 < 1− 1/α and by (f4) for t � τ1 < (1/1− α)1/α.

Proposition 3. Consider F as given in (6) where H2 is verified. Let û be such

that Ĵc0 �= ∅ and H3 holds true. If {Gj} contains some matrices Gj ∈ Rs×p for s � 2,
we also adopt assumptions (a)–(b) in Lemma 5. Suppose that

(30) dimKû � 1,

where Kû reads according to (24). Then û is not a (local) minimizer of F .
Proof. The proof of the proposition is conducted by contradiction. So suppose

that

(31) û is a (local) minimizer of F .
The cost function F in (6) can be rewritten as

(32) F(û) =
∑
i∈̂I0

∣∣aiû− v[i]
∣∣+ β

∑
i∈ ̂J0

ϕ(‖Giû‖2) + F (û),

where F
def
= F |Kû

. The first two sums in the equation above are null, so

F(û) = F (û).

From the definition of Kû in (24), we have

(33) w ∈ Kû ⇒
{
ai(û+ w) = aiû = v[i] ∀i ∈ Î0,

‖Gj(û+ w)‖2 = ‖Gj û‖2 = 0 ∀j ∈ Ĵ0.
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Hence,

w ∈ Kû ⇒ F(û+ w) =
∑
i∈̂Ic0

∣∣ai(û + w)− v[i]
∣∣+ β

∑
i∈ ̂Jc

0

ϕ(‖Gi(û+ w)‖2)

= F (û+ w).(34)

Since F has a (local) minimum at û by (31), there is � > 0 such that

w ∈ Kû ∩B(0, �) ⇒ F(û) � F(û+ w).

Combining this with (34) yields

(35) w ∈ Kû ∩B(0, �) ⇒ F (û) = F(û) � F(û+ w) = F (û+ w).

Hence F should have a (local) minimum at û and should in particular satisfy the
second-order necessary condition for a (local) minimum7 〈D2F (û)w,w〉 � 0 for all
w ∈ Kû. However, Lemmas 4 and 5 tell us that if (30) holds, then û is not a (local)
minimizer of F because

(36) 〈D2F (û)w,w〉 < 0 ∀w ∈ Kû \ {0}.

Hence (31) is false, which proves the statement of the proposition.
Now we can draw an important conclusion.
Remark 6. According to Proposition 2, any minimizer û of F in (6) belongs to

a nonempty manifold of the form Kû, as given in (23). All points û described in
Proposition 3 belong to nonempty manifolds of the form Kû; however, they are not
(local) minimizers of F . The reason is that the vector spaceKû, tangent to Kû, meets
dimKû � 1.

2.4. The (local) minimizers of F : Exact fitting results. From Proposi-
tion 1 we know that F has minimizers. Based on Remark 6, one can guess that if û is
a (local) minimizer of F , then the relevant vector subspace Kû has a null dimension.
This is made explicit in the theorem below.

Theorem 1. Consider F , as given in (6), satisfying H1 and H2. Let û be a

(local) minimizer of F meeting Ĵc0 �= ∅ and H3. If {Gj} contains some matrices
Gj ∈ Rs×p for s � 2, we also assume (a)–(b) in Lemma 5. Then

(i) Kû = {û} and Kû = {0}, where Kû and Kû read according to (23) and (24),
respectively.

(ii) û is the unique solution of the full column rank linear system given by

(37)

{
aiw = v[i] ∀i ∈ Î0,

Gjw = 0 ∀j ∈ Ĵ0.

Proof. Since û is a (local) minimizer of F , it follows from Proposition 3 that8

dimKû = 0, and hence

(38) Kû = {0}
7It may be useful to recall that F is C2 near û according to Lemma 1.
8Indeed, (35) and (36) show that the only possibility for û to be a (local) minimizer of F is that

w = 0 for all w ∈ Kû.

D
ow

nl
oa

de
d 

11
/0

8/
14

 to
 1

94
.1

99
.9

0.
57

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

�1 DATA FITTING AND CONCAVE REGULARIZATION A411

(recall that Kû is a vector subspace of Rp). Substituting (38) into (25) shows that

Kû = {û}.
Thus claim (i) is proven.

Let the components of Î0 and Ĵ0 read as

Î0 = {i1, . . . , i#̂I0
} and Ĵ0 = {j1, . . . , j# ̂J0

}.
Define the following p-column matrices:

A0 =

⎡⎢⎣ ai1
...

a#̂I0

⎤⎥⎦ and G0 =

⎡⎢⎣ Gj1
...

G# ̂J0

⎤⎥⎦
as well as

(39) H0 =

[
A0

G0

]
.

Using the definition of Kû in (24) along with the result in (38) shows that

(40) {0} = Kû = {w ∈ R
p | H0w = 0} = kerH0.

Hence

rankH0 = p.

Define also the column vector v0 by

v0 =
[
v[i1], . . . , v[#Î0], O

T
m

]T
,

where m is the number of rows in G0 (e.g., m = #Ĵ0 if s = 1) and Om is the m-length
column vector composed of zeros. Consequently, û is the unique solution of the matrix
equation given by

(41) H0w = v0.

This equation is the same as (37). This establishes (ii).
A significant outcome of Theorem 1 is formulated next.
Remark 7. Theorem 1 furnishes an important necessary condition for a (local)

minimizer û of F : the corresponding linear system in (37) must have full column
rank.

The examples below illustrate Theorem 1.
Example 4. Let us focus yet again on Example 2. From the ingredients of F

given in (11), the minimizer in (12), and the relevant Î0 and Ĵ0 described in (14), the
set Kû satisfies

Kû = {w ∈ R
3 | a1w = v[1], a2w = v[2], g1w = 0}

= {w ∈ R
3 | w[1] = v[1], w[3] = v[2], w[1]− w[2] = 0}

= {w ∈ R
3 | w[1] = v[1], w[3] = v[2], w[2] = w[1]}

= {w ∈ R
3 | w[1] = w[2] = v[1], w[3] = v[2]}

= {w ∈ R
3 | w[1] = 1, w[2] = 1, w[3] = 3}

= {û}.
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Then Kû = {0}. Furthermore, the linear system defined according to (37) has a
unique solution. Indeed, the corresponding matrix H0 (see (39)) reads

H0 =

⎡⎣ 1 0 0
0 0 1
1 −1 0

⎤⎦ .
Clearly, H0 has full column rank since rankH0 = 3.

Example 5. The data vector v in Figure 2 is of length 80. One can check that
the minimizer depicted in Figure 2(b) satisfies

Îc0 = (28, 29, 30, 31, 69, 70) and Ĵc0 = (4, 20, 44, 59).

Then the corresponding matrix H0 is of size 149× 80. It satisfies rankH0 = 80.
We can now formulate an important practical conclusion: each pixel of a (local)

minimizer û of F is involved in (at least) one data equation that is fitted exactly,
aiû = v[i], or in (at least) one vanishing differential operator, ‖Gj û‖2 = 0, or in both
types of equations. The formal statement of this is given next.

Theorem 2. Consider F , as given in (6), satisfying H1 and H2. For v ∈ Rq\{0},
let û be a (local) minimizer of F meeting Ĵc0 �= ∅ and H3. If {Gj} contains some
matrices Gj ∈ Rs×p for s � 2, then (a)–(b) in Lemma 5 are assumed as well. Then

(42) 1 � k � p ⇒
⎧⎨⎩

∃i ∈ I obeying aiû = v[i] such that ai[k] �= 0,
or

∃j ∈ J obeying Gj û = 0 such that Gj(k) �= 0,

where Gj(k) ∈ Rs is the kth column of the matrix Gj ∈ Rs×p.
Proof. For û, let Î0 and Ĵ0 be defined according to (13). Then (42) is equivalent

to

(43) 1 � k � p ⇒
⎧⎨⎩

∃i ∈ Î0 such that ai[k] �= 0,
or

∃j ∈ Ĵ0 such that Gj(k) �= 0.

We shall prove (43) by contradiction. So suppose that there is a k ∈ {1, . . . , p} such
that

(44)

⎧⎨⎩
ai[k] = 0 ∀i ∈ Î0,

Gj(k) = 0 ∀j ∈ Ĵ0.

Then the kth column of the matrix H0 in (39) is null; hence (40) fails to hold. This
entails that the vector subspace Kû, defined according to (24), satisfies

dimKû � 1.

Then Proposition 3 tells us that û is not a (local) minimizer of F . This conclusion
contradicts the fact that û is a (local) minimizer of F . Hence the assumption in (44)
is false. Consequently, (43) and the statement of the theorem (42) hold true.

In the simple case when A = I and {Gj} yield either discrete gradients or first-
order finite differences between adjacent samples, the result stated in (42) means that
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a (local) minimizer is composed partly of constant patches and partly of pixels that
fit data samples exactly, as seen, e.g., in Figures 2 and 3.

Remark 8 (on the role of the regularization parameter β > 0). The linear system
in (37) that a (local) minimizer û of F solves (Theorem 1) does not make an explicit
reference to the regularization parameter β. Implicitly, β helps the selection of the
subsets Î0 and Ĵ0 in (37). Usually F has numerous (local) minimizers. According
to the same theorem, each one of them is the unique solution of a linear system of
the form given there. Any other (local) minimizer û′ corresponds to different subsets

Î ′0 ⊂ I and Ĵ ′
0 ⊂ J and, in general, F(û) �= F(û′). So the ordering of the (local)

minimizers û of F according to their value F(û), as well as the selection of the global
minimizer of F , are controlled by β.

3. Minimization method.

3.1. A continuation approach. The minimization of nonconvex nonsmooth
cost function F of the form (6) involves several intrinsic difficulties that drastically
restrict the numerical methods that can be envisaged. Since ϕ is concave, F typically
exhibits a certain number of local minima which are not global. What is more, The-
orem 1 in section 2 tells us that at any (local) minimizer û, F is nonsmooth in all
directions in Rp. Thus usual gradient-based methods are inappropriate even for local
minimization. Note also that often the matrix A has numerous off-diagonal nonzero
elements and is ill-conditioned, which is a hard test for any numerical scheme. In
[35, 36], a nonsmooth continuation GNC9-like approach was proposed to minimize
cost functions combining an �2 quadratic data fitting and regularization defined using
concave functions ϕ in our cost function F in (6). The experimental results there
showed that the resultant numerical method provides better performance with signifi-
cantly lower computational cost compared to stochastic algorithms such as simulated
annealing. We shall apply a similar nonsmooth continuation idea to dealing with both
nonsmooth terms of our cost functions F in (6).

The concave function ϕ can be approximated by a family of functions ϕε : R+ →
R+, parameterized by ε ∈ [0, 1], so that ϕ0 is convex, ϕε continuously goes to ϕ
as ε increases from 0 to 1, and ϕ1 = ϕ. Correspondingly, the cost function F is
approximated by a family Fε given by

(45) Fε(u) = ‖Au− v‖1 + β
∑
j∈J

ϕε(‖Gju‖2), ε ∈ [0, 1].

Thus F0 is convex, Fε continuously goes to F when ε increases from 0 to 1, and we
have F1 = F . The main heuristic behind continuation [44] is that if u(0) minimizes the
convex F1, the family of local minimizers u(ε) of Fε converges to a good approximation
of the global minimizer of the original F = F1 as ε increases. Thus a reasonable
requirement is that the approximations ϕε share the same features as the original ϕ:
so ϕε shall be constructed so that

(46) ϕε satisfy assumption H2 ∀ε ∈ (0, 1] and ϕ0(t) = t.

So ϕε are concave for every ε ∈ (0, 1], and ϕ′′
ε (t) < 0 continuously decreases towards

ϕ′′(t) < 0 for every t ∈ R+. Since ϕε meets H2, each ϕε can be decomposed as

(47) ϕε(t) = ψε(t) + αεt, where αε = ϕ′
ε(0

+).

9GNC stands for graduated nonconvexity, a method proposed by Blake and Zisserman [7] for
solving computer vision problems (where A = I) using the discrete version of the Mumford–Shah
functional.
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Then Fε in (45) equivalently reads10

Fε(u) = ‖Au− v‖1 + βαε
∑
j∈J

‖Gju‖2 + βΨε(u),(48)

where Ψε(u) =
∑
j∈J

ψε(‖Gju‖2).

This formulation of Fε can be handled more easily than the one in (45):

• The first two terms in (48) are convex and nondifferentiable;
• Ψε is nonconvex (ψε in (47) is the difference between a nonconvex function
and a linear function), and it is differentiable on Rp because ψ′

ε(0
+) = 0 and

limt↘0
ψ′

ε(t)
t is finite by assumption H2.

In practice, a strictly increasing sequence

(49) ε0 = 0 < ε1 < · · · < εk < · · · < εn = 1

is selected, and for any k ∈ {1, . . . , n} one computes the minimizer u(k) of the corre-
sponding Fεk , which is initialized with the previously obtained u(k−1).

To simplify the notation, we shall write ε for εk whenever this is clear from the
context.

3.2. Penalization scheme to fit ‖Au− v‖1 and ‖Gu‖2. In this subsection,
we develop a numerical method to minimize Fε in (48) for every ε ∈ [0, 1]. It is based
on variable-splitting and penalty techniques. The idea is to transfer the nonsmooth
terms ‖Au − v‖1 and ‖Gu‖2 out of Fε in such a way that the minimization steps
relevant to these convex nonsmooth terms can be done using shrinkage operations,
as proposed in [47]. To this end, we consider an augmented cost function Jε,γ :
Rp × Rq × Rsp → R which involves a fitting of the auxiliary variables z ∈ Rsp and
w ∈ Rq to Gu and to Au, respectively, weighted by a penalty parameter γ > 0:

(50) Jε,γ(u,w, z) = γ‖Au−w‖22+ ‖w− v‖1+βΨε(u)+ γ‖Gu− z‖22+βαε
∑
j∈J

‖zj‖2.

Clearly, zj ∈ Rs for all j ∈ J . For any ε ∈ [0, 1], we propose an iterative algorithm
where γ is increased progressively. Indeed,

lim
γ→∞Jε,γ(u,w, z) = Fε(u) ∀ε ∈ [0, 1],

where Fε(u) reads as in (48). When γ is large enough, we have w ≈ Au and z ≈ Gu.

For u and w fixed, the function z �→ Jε,γ(u,w, z) is convex and nondifferentiable
because of the term

∑
j ‖zj‖2. For u and z fixed, w �→ Jε,γ(u,w, z) is convex and

nondifferentiable because of the term ‖w − v‖1. Given w and z, the function u �→
Jε,γ(u,w, z) is twice differentiable and nonconvex so that it can be minimized by

10Note that according to (46) we have the implication [ψ0(t) = 0 ⇒ Ψ0(u) = 0].
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gradient-based methods. The computational steps are given as follows:

z(l,k) = arg min
z∈Rsp

Jε,γ(u(l−1,k), w(l−1,k), z)

= arg min
z∈Rsp

⎧⎨⎩∑
j∈J

(
γ‖Gju(l−1,k) − zj‖22 + βαε‖zj‖2

)⎫⎬⎭ ,(51)

w(l,k) = arg min
w∈Rq

Jε,γ(u(l−1,k), w, z(l,k))

= arg min
w∈Rq

{
γ‖Au(l−1,k) − w‖22 + ‖w − v‖1

}
,(52)

u(l,k) = arg min
u∈Rp

Jε,γ(u,w(l,k), z(l,k))

= arg min
u∈Rp

{
γ‖Au− w(l,k)‖22 + γ‖Gu− z(l,k)‖22 + βΨε(u)

}
.(53)

In this case, we initialize with u(0,k)
def
= uεk−1

, where uεk−1
results from the mini-

mization of Jεk−1
with respect to u. We remark that w(l−1,k) is not required in the

computation in (51). Problems (52) and (53) will be solved in an exact and fast way
using multidimensional shrinkage11 according to [47, p. 577].

Computation of z(l,k) according to (51). Solving (51) amounts to solving p inde-
pendent problems:

(54) z
(l,k)
i = arg min

zj∈Rs

{
γ‖Gju(l−1,k) − zj‖22 + βαε‖zj‖2

}
∀i ∈ J.

As shown in [47, p. 577] (see also the footnote below), each one of the problems in
(54) can be solved efficiently using s-dimensional shrinkage:

(55) z
(l,k)
i =

Giu
(l−1,k)

‖Giu(l−1,k)‖2 max

{
‖Giu(l−1,k)‖2 − βαε

2γ
, 0

}
∀i ∈ J.

Computation of w(l,k) according to (52). The task is similar to the computation
of z(l,k). The solution in (52) can be found (see footnote below):

(56) w
(l,k)
i =

Au(l−1,k) − v

‖Au(l−1,k) − v‖2 max

{
‖Au(l−1,k) − v‖2 − 1

2γ
, 0

}
∀i ∈ I.

Computation of u(l,k) according to (53). For ε0 = 0, the finding of u(l,0) amounts
to minimizing the convex quadratic function:

min
u∈Rp

{
γ‖Au− w(l,0)‖22 + γ‖Gu− z(l,0)‖22

}
.

For ε > 0, a quasi-Newton method shall be used to solve (53). The gradient vector

∇uJε,γ def
= ∇uJε,γ(u,w(l,k), z(l,k)) as well as the Hessian matrix ∇2

uJε,γ def
=

∇2
uJε,γ(u,w(l,k), z(l,k)) of the function u �→ Jε,γ(u,w(l,k), z(l,k)) read

∇uJε,γ = 2γAT (Au− w(l,k)) + 2γ(GTGu− z(l,k)) + β∇uΨεk(u),(57)

∇2
uJε,γ = 2γATA+ 2γGTG+ β∇2

uΨεk(u).(58)

11Let (x, y) ∈ Rn ×Rn for any integer n � 1 and κ > 0. The multidimensional shrinkage formula
reads argminx∈Rn(‖x‖2 + κ‖x− y‖22) = max

{‖y‖2 − 1
2κ
, 0

} y
‖y‖2 .
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Since ∇2
uΨε(u) is negative definite for ε ∈ (0, 1], the Hessian ∇2

uJε,γ may not be
positive definite. This may prevent the quasi-Newton method from converging, as the
resultant search direction may not be a descent direction. We can obtain a descent
direction by using only the positive definite part of the Hessian matrix in the mini-
mization procedure. Thanks to H1, the coefficient matrix 2γATA+2γGTG is always
positive definite. The solution can then be updated according to

u(l,k) = u(l−1,k) + τΔu(l,k),

where τ > 0 is the step-size and Δu(l,k) is found by solving

(59) (2γATA+ 2γGTG)Δu(l,k) = −∇uJε,γ .

In image restoration problems A is often a blurring matrix generated by a symmetric
point spread function. Then the computational cost of the method is dominated
by three fast discrete transforms in solving the linear system in (59); see [30]. The
computational cost for each fast transform is only O(p log p) for a p×p blurring matrix
A [30].

Three strategies to determine the step-size τ were tested: the Armijo rule, the
Goldstein rule, and a fixed τ [37, Chapter 3]. The experimental results have shown
that the numerical schemes based on these three rules converge to the same solu-
tion, but the use of the first two rules requires a heavy additional computation cost.
Therefore, we fixed τ = 1 in all our experiments.

3.3. Algorithm.
Set ε0 = 0 and Δε = 1/n, and initialize u(0,0).
For k = 0 → n,

Set l = 1, initial value of γ, and relerr = tol + 1.
While relerr > tol do

Obtain z(l,k) by computing (55) and w(l,k) by computing (56);
If k = 0,

Solve (2γATA+2γ
∑

j∈J G
T
j Gj)u

(l,k) = ATw(l,k) +

γ
∑

j∈J G
T
j z

(l,k);
Otherwise

Solve (2γATA+ 2γ
∑

j∈J G
T
j Gj)Δu

(l,k) = −∇uJεk ;
Update u(l,k) = u(l−1,k) + τΔu(l,k);

End If;
Compute relerr = ‖u(l,k) − u(l−1,k)‖2/‖u(l,k)‖2;

End While.
Increase γ (e.g., by multiplying γ with a factor greater than 1) and set
l = l + 1;
Set u(0,k+1) = u(l,k) (for the initial guess of the next outer loop);
Update εk+1 = εk +Δε;

End For.
In the next section, we will test the performance of the proposed method for

different imaging problems.

4. Numerical experiments. We shall present the experimental results in high-
resolution image reconstruction [29], magnetic resonance (MR) image reconstruction
from highly undersampled noisy data, and deblurring under impulse noise to test
the effectiveness of the proposed algorithm as well as the possibilities offered by the
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family of cost functions in (6) satisfying assumption H2. All original images used in
our experiments are normalized in the range between 0 and 1. Peak signal-to-noise
ratio12 (PSNR) is used to evaluate the quality of the recovered images, while CPU
time is also used to evaluate the efficiency of the method. The parameter tol is set to
be 10−4 in the proposed algorithm. The initial value of γ is set to 0.1, and its value
is updated by 1.2γ at each iteration. The PF used in all the illustrations is (f1) in
Table 1, and our choice for ϕε is

(60) ϕε(t) =
αt

1 + εαt
, 0 � ε � 1.

As required in subsection 3.1, ϕε satisfies assumption H2 for any ε ∈ (0, 1]. It is
obvious that ϕ0 is convex and that ϕ1 = ϕ. By (60), we have αε = α for any
ε ∈ (0, 1]. In the tests, we use α ∈ {0.5, 1}.

All the computational tasks are performed using MATLAB on a computer with
Corel2 CPU with 2.66 GHz and 1.98GB of RAM.

In what follows, our method—the minimization of F in (6) using the numerical
scheme proposed in section 3.3—is compared to other variational image reconstruc-
tion methods. Systematically, for all competing methods and for each data set, the
parameter values are selected manually to reach the best performance level in terms
of PSNR.

4.1. High-resolution image reconstruction. In the first experiment, we use
the proposed algorithm to generate a high-resolution image from a low-resolution
image. The aim is to demonstrate that the pixel value of a high-resolution image
can fit the pixel value of a low-resolution image exactly at the same location. The
original image—the picture of Lena of size 256×256—and the low-resolution 128×128
observed image v are as shown in Figure 6 (top row). The data image v is generated
from the original image by downsampling of factor 2, and its gray values are rescaled
in [0, 1]. Two restorations û based on the low-resolution 128× 128 image v are shown
in the bottom row in Figure 6. Let ûJ denote the subset of all 1282 restored pixels
that correspond to the data pixels v. The bicubic method does not fit data samples
correctly, since mean(ûJ−v) = 1.8×10−2 and ‖ûJ−v‖∞ = 2.6×10−1. We applied our
algorithm to minimize F in (6) where all operators {Gj} correspond to the discrete
form of the Laplacian operator given by

(61)

⎡⎣ 0 −1 0
−1 4 −1
0 −1 0

⎤⎦ .
All data pixels are fitted with a remarkable numerical precision since mean(ûJ − v) =
1.7 × 10−6 and ‖ûJ − v‖∞ = 3.6 × 10−5, which matches the precision given by the
parameter tol. This result corroborates with the theory in section 2.

4.2. MR image reconstruction from highly undersampled data. Our
goal is to explore the ability of the proposed method to solve highly underdetermined,
ill-posed inverse problems when relevant prior on the sought-after solution is available.
We focus on MR image recovery from a very few samples in the k-space (i.e., individual
noisy Fourier coefficients). This problem can be related to compressed sensing in MRI;
see, e.g., [26, 27].

12Noticing that our original images are normalized on [0, 1], the PSNR = 10 log10
p

‖û−uo‖22
, where

uo is the original image and p is the number of pixels that it contains.

D
ow

nl
oa

de
d 

11
/0

8/
14

 to
 1

94
.1

99
.9

0.
57

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A418 MILA NIKOLOVA, MICHAEL K. NG, CHI-PAN TAM

The original image Low-resolution 128× 128 data v,
256× 256 v[i, j] ∈ [0, 1], ∀(i, j) ∈ J

Bicubic method The proposed method
mean(ûJ − v) = 1.8× 10−2 mean(ûJ − v) = 1.7× 10−6

‖ûJ − v‖∞ = 2.6× 10−1 ‖ûJ − v‖∞ = 3.6× 10−5

PSNR = 26.11dB PSNR = 28.93dB

Fig. 6. High-resolution image reconstruction. In our method, the operators {Gj} correspond
to the discrete Laplacian operator in (61); data samples are fitted with a remarkable numerical
precision. This clearly does not hold for the bicubic method.

Experiments are done with the 128 × 128 Shepp–Logan phantom in Figure 7,
normalized on [0, 1].

Two data vectors are considered: they contain only 7% and 5% randomly chosen
samples in the k-space, contaminated with SNR = 37 dB white centered Gaussian
noise.

The Shepp–Logan phantom being locally constant with oval shapes, the linear
operators {Gj} in our cost function (6) yield the usual discrete gradient of the image,13

so that the regularization term provides a correct prior. Indeed, Guoriginal is the
sparsest linear transform for this image, the PFs in our cost function (6) promote
sparsity in this transformed domain, and the terms Gju are rotation invariant (in a
discrete sense). Clearly, A is the undersampled Fourier transform corresponding to

13In other words, each Gj is a 2 × p matrix for p the number of pixels, along with appropriate
boundary conditions. The potential function ϕ—(f1) in Table 1—is applied to ‖Gju‖2 for all j ∈ J .
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Fig. 7. Original image: the Shepp–Logan phantom with gray-scale range in [0, 1].

Table 2

PSNR and CPU time for our method applied to the 7% data vector as a function of the value
of the parameter β.

β PSNR (dB) CPU time (seconds)
2.19× 10−6 14.45 12.61
4.38× 10−6 15.33 26.73
8.75× 10−6 16.94 39.38
1.75× 10−5 20.24 49.27
3.50× 10−5 26.22 49.86
7.00 × 10−4 75.64 48.94
1.40× 10−4 71.52 36.33
2.80× 10−4 21.20 97.11
5.60× 10−4 13.44 1.22
1.12× 10−3 13.44 1.11
2.24× 10−3 13.44 1.14

the 7% or 5% randomly chosen k-samples.

Table 2 shows the PSNR and the computational time to run our algorithm (see
section 3.3) for the first data set (7% random noisy samples) for different values of
β. One observes that the highest PSNR is obtained for β = 7.00 × 10−4, which
requires nearly 49 seconds. The best CPU time—1.11 seconds—corresponds to β =
1.12× 10−3, but the PSNR is the worst.

Our method—the minimization of F in (6) using the numerical scheme proposed
in section 3.3—is compared to four other variational image reconstruction methods.
In all cases, A is as described above, and regularization is applied to the discrete
gradient of the image, as in our method.

�1-NN via e-BFGS. Recently the BFGS (Broyden–Fletcher–Goldfarb–Shanno)
minimization method was extended in [23] to handle nonsmooth, not necessarily con-
vex problems (called e-BFGS). We applied this e-BFGS numerical scheme to minimize
the �1-nonsmooth nonconvex cost function F proposed in (6). To this end we used
the MATLAB package HANSO developed by the authors and freely available.14

�2-TV. For Gaussian noise, an �2 quadratic data fitting term is a classical
choice.15 TV regularization—see (4)—is well known to give rise to images containing
constant regions with edges. The �2-TV cost function

(62) ‖Au− v‖22 + βTV(u)

14See http://www.cs.nyu.edu/overton/software/hanso/.
15This choice is well justified in a statistical framework.
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is a common tool for solving various image reconstruction problems; see, e.g., the text-
book [2]. Let us notice that �2-TV is a typical ingredient in compressed sensing MRI
reconstruction [27]. The solution was computed using the alternating minimization
algorithm conceived in [43].

�1-TV. Some MR image registration problems have been successfully solved us-
ing an �1-TV cost function; see, e.g., [38, 21]. We will test this cost function for our
MRI problem as far as it can be seen as a predecessor of the cost functions we propose
in this paper. The numerical results are obtained using the method described16 in
[20].

�2-NN. Since [16, 17], nonsmooth nonconvex cost functions composed of an �2
quadratic data fitting term, as in (62), and a regularization term, as in (6), for ϕ the
function (f1) in Table 1 have been successfully used to solve various ill-posed inverse
problems. In our experiments, the global minimizer is approximated using the recent
Algorithm II in [36, pp. 3079–3080].

For each data vector, all numerical schemes were initialized using the correspond-
ing zero-filling Fourier reconstruction. Note that the latter contains normal random
noise, so it satisfies the initialization requirements for the e-BFGS method [23]. We
also tried purely random initializations for both data vectors: �1-NN via e-BFGS
converged to meaningless solutions, which are not shown.

The reconstruction results based on the 7% data vector are depicted in Figure 8,
and the relevant PSNR values and CPU times are tabulated in Table 3. The zero-
filling Fourier reconstruction in (a) shows that the data are really poor. The �1-NN
via e-BFGS method converges to a miserable solution. The residuals (uoriginal − û)
for all other methods are shown in Figure 9. It is quite surprising that �1-TV (see
Figures 8(d) and 9(b)) gives better visual and quantitative results (see Table 3) than
the widely used �2-TV (see Figures 8(c) and 9(a)). In Figure 8 (bottom row), the
�2-NN and our method seem to provide somewhat similar results. Nevertheless the
residuals in Figures 9 and 10, as well as the quantitative assessment in Table 3,
demonstrate that our method is much more precise than �2-NN.

Table 3

PSNR and CPU time for all methods in Figures 8 relevant to 7% noisy data samples.

Method �1-NN via e-BFGS �2-TV �1-TV �2-NN Our method

PSNR (dB)
CPU time (seconds)

14.23
2.88

27.47
8.11

30.58
2.61

45.48
33.48

75.64
48.94

Reconstructions from the 5% noisy data vector are naturally more sensitive, as
seen in Figure 11. The corresponding PSNR values and CPU times are presented
in Table 4. The �1-NN via e-BFGS method in Figure 11(b) converges to an inane
solution. The solutions produced by the convex methods �2-TV and �1-TV—see Fig-
ure 11(c)–(d)—recover up to some degree the outer shape of the phantom image, but
its content is insignificant. The �2-NN and our method (Figure 11, bottom row) re-
cover quite correctly all shapes17 in the phantom image. However, the contrast in the
�2-NN reconstruction is underestimated, unlike that in the solution provided by our
method.18 Indeed, the PSNR values in Table 4 confirm a nearly 44dB improvement

16Note that the method in [20] is in fact the very first step (ε = 0 and k = 0) in our numerical
scheme in section 3.3.

17The success of �2-NN can be explained by the dominant constant patches in the original image.
18We have already observed in Figure 5 that �1-NN keeps a faithful contrast much better than

�2-NN does.
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(a) Zero-filling Fourier recovery. (b) �1-NN via e-BFGS.

(c) �2-TV. (d) �1-TV.

(e) �2-NN. (f) Our method.

Fig. 8. Reconstructed images from 7% noisy randomly selected samples in the k-space using
the different methods indicated.

for our method compared to �2-NN. This quantitative evaluation is well corroborated
by the error plots in Figure 12.

For both data vectors, our method outperforms its competitors both visually and
quantitatively, as revealed by the figures and the PSNR values, respectively. Even
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−0.15

0

0.2

−0.15

0

0.2

Residual for �2-TV. Residual for �1-TV.

−0.15

0

0.2

−0.15

0

0.2

Residual for �2-NN. Residual for our method.

Fig. 9. Residuals (reconstructed image − recovered image) from 7% noisy randomly selected
samples in the k-space for all successful methods in Figure 8. Recall that the gray-scale range of the
original image is in [0, 1].

−0.03

0

0.03

−0.03

0

0.03

Residual for �2-NN. Residual for our method.

Fig. 10. Zoom along the z-axis of the residuals in Figure 9 for the �2-NN and our method.

though it requires a higher computation load than the other methods, it remains
comparatively reasonable. The pivotal improvement in the precision of MR image
reconstructions enabled by our method justifies this increase in CPU time.
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(a) Zero-filling Fourier recovery. (b) �1-NN via e-BFGS.

(c) �2-TV. (d) �1-TV.

(e) �2-NN. (f) Our method.

Fig. 11. Reconstructed images from 5% noisy randomly selected samples in the k-space using
different methods.

4.3. Image deblurring under impulse noise. Data are generated as follows:
the original image is blurred using a two-dimensional truncated Gaussian function,

(63) h(s, t) = exp

(−s2 − t2

2σ2

)
for − 3 � s, t � 3 and σ = 1.5.
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Table 4

PSNR and CPU time for all methods in Figure 11 corresponding to 5% noisy data samples.

Method �1-NN via e-BFGS �2-TV �1-TV �2-NN Our method

PSNR (dB)
CPU time (seconds)

13.89
2.05

18.82
5.59

19.32
2.23

36.64
85.61

80.45
105.61

−0.06

0

0.08

−0.06

0

0.08

Residual for �2-NN. Residual for our method.

Fig. 12. Residuals (reconstructed image − recovered image) from 5% noisy randomly selected
samples in the k-space for the �2-NN and for our methods in Figure 11. Recall that the gray-scale
range of the original image is in [0, 1].

Data are produced by corrupting 30% of the pixels of the blurred image with salt-
and-pepper (SP) impulse noise. The underlying image is the same as in Figure 7(a),
and it is recalled for comparison reasons in Figure 7(f); the degraded image is shown
in Figure 13(a).

The random degradation in the observed image affects only a part of the data
samples. Hence the other part of data equations should be satisfied exactly. In a
variational framework, the latter requires that the data fitting term be nonsmooth
[32, 33]. So in this application we consider only �1 data fitting. The regularization
term is defined as in the MRI example in subsection 4.2.

Our method is collated to the �1-NN via e-BFGS and the �1-TV methods as
described in subsection 4.2. Deblurring of images corrupted with impulse noise using
�1-TV was recently explored in [46]. We also replaced all steps between “While relerr
> tol do” and “End While” in our algorithm (section 3.3), intended to solve (48) for
any ε, by e-BFGS minimization [23]. The resultant new algorithm is called �1-NN
via GNC & e-BFGS.

Initialization of any e-BFGS-based numerical scheme with the observed image is
now inappropriate as far as the condition that the cost function be differentiable at
the starting point [23] is not satisfied.19 So we used a fully random initialization for
both �1-NN via e-BFGS and �1-NN via GNC & e-BFGS numerical schemes. The
other methods—�1-TV and ours—were initialized with the observed image.

All restoration results are presented in Figure 13, while the relevant PSNR values
and CPU times are seen in Table 5.

The �1-NN via GNC & e-BFGS in (c) is better than the �1-NN via e-BFGS

19Nevertheless, we tried both e-BFGS based schemes using the observed image, but the results
were indeed pitiful.
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(a) Blur and 30% SP noise. (b) �1-NN via e-BFGS. (c) �1-NN via GNC & e-BFGS.

(d) �1-TV. (e) Our method. (f) The original image.

Fig. 13. The degraded image is shown in (a) and the underlying image in (f). Restorations of
the latter image using different methods (b)–(e).

Table 5

PSNR and CPU time for all methods in Figure 13.

Method �1-NN via e-BFGS �1-NN via GNC & e-BFGS �1-TV Our method

PSNR (dB)
CPU time (seconds)

15.58
5.82

23.37
314.41

29.22
12.48

44.89
141.11

scheme—see (b)—but visual results are worse than with the �1-TV and our method,
and �1-NN via GNC & e-BFGS needs the highest CPU time among all restoration
methods in Figure 13. The �1-TV method in (d) recovers the main features of the
underlying image well. However, a careful examination brings to light several artifacts
near the interior boundary of the phantom and surrounding the right ellipsoid. Our
method appears to be much more precise, as seen in Figure 13(e) and especially in
the error plots in Figure 14.

We applied our method also using various initializations—e.g., a random or a flat
image—and the obtained reconstruction results are almost the same. The method
should be insensitive to initialization because the very first approximation solves a
convex problem and the subsequent approximations are well-defined local minimizers.

In this applicative example, yet again, the method we propose (minimize F in (6)
using the algorithm in section 3.3) outperforms all competitors both visually and in
terms of PSNR. The proposed method enables a much higher precision, especially in
regions containing fine features.

5. Concluding remarks. In this paper, we proposed image reconstruction and
image restoration using �1 data fitting combined with nonconvex nonsmooth regu-
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−0.5

0

0.5

−0.5

0

0.5

Residual for �1-TV. Residual for our method.

Fig. 14. Residuals (reconstructed image − recovered image) from 30% impulse noise. We recall
that the original image is normalized on [0, 1].

larization defined using strictly concave potential functions. Our theoretical results
show that the solutions of the corresponding minimization problem are such that any
pixel is involved in a data equation that is fitted exactly or in a null component of the
regularization term. This remarkable property can be used in different ways in vari-
ous imaging problems. From a practical side, we conceived a fast numerical scheme
to solve this difficult minimization problem. Experimental results have shown the
effectiveness of the proposed numerical scheme. To the best of our knowledge, this
work is the first exploring this kind of cost function: the combination of �1 data fitting
and nonconvex nonsmooth regularization. Naturally, many questions need a deeper
exploration. These concern all aspects of the problem—theory, numerical issues, and
other well-suited applications.

6. Appendix.

6.1. Proof of Proposition 1. It is important to notice that

(64) F in (6) is continuous and bounded below.

With the aim of good pedagogy, we start with an easy particular case. Let one
of the following conditions be verified:

• rankA = p;
• H1 holds and limt→+∞ ϕ(t) = +∞;
• kerG = {0} and limt→+∞ ϕ(t) = +∞.

In each one of these cases it is obvious that F is coercive for any v ∈ Rq. This,
combined with (64), shows the result; see, e.g., [40].

Consider next the general case when rankA and rankG are arbitrary and ϕ can
be bounded above. Let u ∈ Rp be arbitrarily fixed and w ∈ Rp \ {0} an arbitrary
direction. According to H1, three cases arise for the direction w.

(a) Let w ∈ kerG \ {0} if dimkerG � 1. By H1, w �∈ kerA. Then Aw �= 0; hence

(65) F(u + w) = ‖A(u+ w) − v‖1 ‖w‖→+∞−→ +∞.

(b) Suppose that w ∈ kerA \ {0}. Set

ν
def
= max

j∈J
‖Gju‖2.

By H1,

(66) w �∈ kerG.
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Then there exists a nonempty subset J̃ ⊂ J such that

J̃
def
= {j ∈ J | Gjw �= 0}.

Using (66) and the fact that kerA is a vector subspace, there exists μw > 0
such that

‖w‖2 > μw and j ∈ J̃ ⇒ ‖Gjw‖2 � 2ν + 1.

Then, using the definition of ν and the triangle inequality, we have

‖w‖2 > μw and j ∈ J̃ ⇒ ‖Gjw‖2 � 2‖Gju‖2 + 1(67)

⇒ ‖Gjw‖2 > ‖Gju‖2
⇒ ‖Gj(u + w)‖2 � ‖Gjw‖2 − ‖Gju‖2 > 0

⇒ ‖Gj(u + w)‖2 �
∣∣ ‖Gjw‖2 − ‖Gju‖2

∣∣.(68)

Assumptions H2(a) and H2(b) show that ϕ is strictly increasing on R+. Com-
bining this property with (67) and (68) shows that

‖w‖2 > μw and j ∈ J̃ ⇒ ϕ(‖Gj(u+ w)‖2) � ϕ
(∣∣ ‖Gjw‖2 − ‖Gju‖2

∣∣)
� ϕ

(∣∣ 2‖Gju‖2 + 1− ‖Gju‖2
∣∣)

= ϕ(‖Gju‖2 + 1)

> ϕ(‖Gju‖2).

Inserting the latter result into the expression of F shows that

‖w‖2 > μw ⇒ F(u+ w) = ‖A(u+ w)− v‖1 + β
∑
j∈J

ϕ(‖Gj(u+ w)‖2)

= ‖Au− v‖1 + β
∑
j∈J

ϕ(‖Gj(u+ w)‖2)

> ‖Au− v‖1 + β
∑
j∈J

ϕ(‖Gju‖2) = F(u).(69)

(c) Last, consider that w ∈ Rp \ {kerA ∪ kerG}, w �= 0. Then Aw �= 0, so

(70) F(u+ w) = ‖A(u+ w)− v‖1 + β
∑
j∈J

ϕ(‖Gj(u+ w)‖2) ‖w‖→+∞−→ +∞.

The results obtained in (65), (69), and (70) show that F is asymptotically strictly
increasing in any direction w ∈ Rp. Consequently,

inf
u′∈Rp

F(u′) � F(u) < F(u+ w) as ‖w‖2 → +∞ ∀w ∈ R
p.

This fact, combined with (64), shows that for all v ∈ Rq the optimal set Û is nonempty.

6.2. Proof of Lemma 1. Saying that u ∈ B(û, ρ) is equivalent to u = û + w
for ‖w‖2 < ρ. Consider an arbitrary w ∈ B(0, ρ).
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Let Îc0 �= ∅. Since ρ � mini∈̂Ic0

|aiû−v[i]|
‖ai‖2

, we have ‖w‖2 < mini∈̂Ic0

|aiû−v[i]|
‖ai‖2

. Then

i ∈ Îc0 ⇒ ψi(û+ w) =
∣∣ai(û+ w) − v[i]

∣∣ � ∣∣aiû− v[i]
∣∣− ∣∣aiw∣∣

�
∣∣aiû− v[i]

∣∣− ‖ai‖2‖w‖2

= ‖ai‖2
(∣∣aiû− v[i]

∣∣
‖ai‖2 − ‖w‖2

)

� ‖ai‖2
(
min
i∈̂Ic0

∣∣aiû− v[i]
∣∣

‖ai‖2 − ‖w‖2
)
> 0.

Hence (17).

Consider that Ĵc0 �= ∅. Since ρ � minj∈ ̂Jc
0

‖Gj û‖2

‖Gj‖2
, then ‖w‖2 < minj∈ ̂Jc

0

‖Gj û‖2

‖Gj‖2
.

In a similar way as above,

j ∈ Ĵc0 ⇒ ‖Gj(û+ w)‖2 � ‖Gj û‖2 − ‖Gjw‖2 � ‖Gjû‖2 − ‖Gj‖2‖w‖2
= ‖Gj‖2

(‖Gjû‖2
‖Gj‖2 − ‖w‖2

)
� ‖Gj‖2

(
min
j∈ ̂J0

‖Gj û‖2
‖Gj‖2 − ‖w‖2

)
> 0.

Combining this result with the fact that ϕ in (16) is C2 on R∗
+, by H2(a), leads to

(18).
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