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ABSTRACT

A recursive/adaptive least squares algorithm (MLRA) is pro-
posed to solve the joint blind channel identification and blind
symbol estimation problem. It is based on Deterministic
Maximum Likelihood methods (DML) which are pertinent
in this field. We prove that when the MLRA converges then
it converges towards the global minimum. The MLRA is
able to track variations of the system by the introduction
of an exponential forgetting factor in the DML criterion.
The link between the adaptive algorithm and a Soft Deci-
sion Feedback Equalizer is emphasized. Update strategies
of the filters can be either of a least squares type or of a
stochastic gradient type. Both of them are derived in the
paper. Numerical simulations show that the simplifications
involved result in small degradations on the performances.

1 Introduction

Blind identification is an important problem in many areas
and especially in wireless communications. Our work ad-
dresses Single Input Multiple Outputs (SIMO) systems.The
SIMO equalization problem can be solved using second-order
statistics only, as long as the sub-channels do not share any
common zeros. In a fast fading environment, the data rel-
evant to each channel are too few to build reliable statisti-
cal estimates. In that case, the problem may be solved by
treating the input as a deterministic variable. This paper fo-
cuses on this situation. More precisely, this paper deals with
Deterministic Maximum Likelihood (DML) methods. ML
methods are appealing since, asymptotically, the variance of
the estimator achieves the Cramer-Rao lower bound. Among
the major contributions to DML methods, we can cite the
Two Steps Maximum Likelihood (TSML) [1] and the Iter-
ative Quadratic Maximum Likelihood (IQML) [2]. These
algorithms have good convergence rate but their computa-
tional cost is too high for working with large data sequences.
One way of overcoming this drawback is usually to derive
recursive algorithms, which is quite complicated based on
this class of algorithms. Another DML based method is the
MLBA (Maximum Likelihood Block Algorithm) which was
proposed by the authors in [3]. Like the TSML or the IQML,
the MLBA is not suited for practical applications with large
data sequences. However the structure of the latter is well
adapted to derive easily a low cost recursive algorithm.

In this paper, we first recall several properties of the MLBA
[4, 3]. We lay particular stress on a test based on the stabil-
ity /instability of the global/local minimum over a recursive

procedure. Then, we derive a recursive version of the MLBA.
We prove that when the recursive algorithm converges then
it converges towards the global minimum. System adaptiv-
ity is then obtained by introducing an exponential weighting
factor in the criterion. The connection between this algo-
rithm and the structure of the Decision Feedback Equalizer
is emphasized. A low cost version of the recursive algorithm
is also presented.

2 Problem formulation

Consider a sequence of unknown binary symbols {5(k)}
transmitted through L unknown channels ﬁ,-, 1<¢< L. Let
#;(k) denote the output of the ** channel at time k, and
Xy(n) = [z1(n).zr(n)wzi(n — N+ 1).zr(n — N+ 1)]7
the LN-length vector obtained by interleaving the output of
the various channels. This output is modeled as:

Xy (n) = Tn (h)8n (n) + By (n) 1)

where h(k) = [h1(k)...hr (k)]” are the different channels and
Bnx(n) stands for the noise vector. The noise sequence on
each sensor is assumed to be 4.7.d. and the different sequences
are mutually uncorrelated. In (1), the operator 7Ty trans-
forms a sequence of channels h(k) = [h1(k)...hr(k)]T into
the following LN x (M+N) generalized Sylvester matrix:

h(0) ... h(M)
Tn(h) = . .
h(0) ... h(M)
Below, sy(n) = [s(n)...s(n — N — M + 1)]T denotes any
vector of M + N symbols, where M is the maximum order of
a channel. Let us introduce operator U which transforms a
vector sy (n) into a LNXL(M+1) matrix, ¢(sy(n)), in such
a way that [3]:
U(sy(n))h = Ty (h)sy(n), Vsn, Vh (2)
In the following, we assume that both matrices 'TN(l~1) and

U(sn) are full column rank, that M is known and that {s(k)}
has linear complexity 2M + 1 or greater [5].

3 A maximum likelihood block algorithm

The work presented here is based on the MLBA (Maximum
Likelihood Block Algorithm). So, the main results [6, 3,
4] about the latter are briefly recalled in this section. We
consider the minimization of the following criterion:

J(h,sy(n)) = [IX(n) - Tw (W)sn (n)]®
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Using (2), J can also be rewritten as:
J (h,sn(n)) = [ Xn(n) —U(sn(n)h®

The MLBA is obtained thanks to the dual expressions of the
criterion. After some initialization, one iterates the following
two steps until convergence:

B = ET™) UEE T UGY ) X () (3)
3 = [T )T Ty (09T T (B®) X (n)  (4)

where TN(ﬁ(k)) and u(§§5)) are assumed to be full column
rank. The following properties hold for the MLBA [4, 3]:

(P1) CONVERGENCE: Each step diminishes the value of
J and the MLBA converges possibly to a local minimum.

(P2) UNIQUENESS OF THE GLOBAL MINIMUM: Theo-
rem 1: If B,(n) = Oy, if TN(~) is full column rank
and if {s(k)} has lmear complezity 2M + 1 or greater
then ._7(h sv(n)) = 0 f 3 a such as h = ah and
Sny(n) =sn(n)/a (see [4] for the proof).

(P3) STABILITY OF THE ESTIMATES IN A RECURSIVE PRO-
CEDURE: The recursive procedure BGWT (Block Growing
Window Technique) is composed of the following steps:

e Step 0: Minimize J(h,sy) using the MLBA to obtain
(b3 ().

e Stepk=1,..., K—1, where K =3M +1: A new
symbol §(n + k) is transmitted. Then, the considered
criterion J (h,snyr) is defined over a block of size N +
k. This is the same criterion as previously except for
the size of the block. The minimizer of J(h,sy4x) is
(0™, 50, (n + k). Step k is initialized with h*~ Y.

At the end of these iterations, either the channel estimates
remain unchanged i.e. h® =h Vk, or not (3 ¢,k € [1,.., K]
such as h® #* ﬁ(i)). The consequences of these issues are
formalized below.

Theorem 2: Assume that Byyx(n + K) = Op(nvik)
and that the channel h is constant over the window
[n—N—-M+1,....,n+3M+1]. Assume also that Tn4x(h),
Tn+e(h), USNir(n + k), USN+r(n + k) are full column
rank Vk and that {S(k)} has linear complezity 2M + 1 or
greater.

If all along the procedure BGWT, we have h® = h
and ’s\g\’fik(n + k) = Snt+x(n + k) # Omin+r for any
k =0,...,K — 1 then (ﬁ,§N+K(n + K)) is the global
minimum of J(h,sn+x) up to a scalar factor. (see [3] for
the proof)

Theorem 2 proves that the global minimum is the only
stable point for K = 3M + 1 consecutive steps. This remark
justifies our choice to develop recursive algorithms. The pro-
cedure BGWT is not practical for a great number of data.
In the next section, we propose a lower cost algorithm.

4 Maximum Likelihood Recursive Algorithm

4.1 Derivation of the recursive algorithm

Now, we derive a recursive algorithm where the updated es-
timates of the symbols at iteration i are calculated based
on both their least-squares estimates at iteration ¢ — 1 and

a newly arrived datum. The MLRA (ML Recursive Algo-
rithm) follows from the following simplifications :

(S1) The iterative minimization w.r.t. the joint variable
in BGWT is replaced by a minimization w.r.t. each variable
separately. So, at step ¢, we calculate:

Sihin+i) =argmin (", svs) 5)

h® = arg mln J(h, sN_H(n +1)) (6)
These relations coincide with the first iteration of BGWT.

(S2) At iteration i, the BGWT procedure computes N +1
symbols. Hence, the computational complexity of equation
(5) increases quickly with i. To avoid that problem, and
considering that it is unlikely that the most recent received
samples have a strong impact on the estimate of the sym-
bols that have been emitted long ago, we update only the
last P symbols. Hence, P is a fundamental parameter to be
determined, which will drive a complexity/efficiency trade-
off. Implicitly, the others symbols are thus supposed to be
correctly estimated. The minimization w.r.t. the symbols
reduces to:

88w (n+i) = argmingccpia [Xpp (n+i)

~ Z
TeaE) | oo fop oy |1
0

(S3) The estimated channel h® is updated recursively
from h®~Y which is done without any approximation.

Finally, the estimated symbols at iteration i read:
S0 +i) = AL (07Y) [Xppa(n + )
~Bpia (B V)E D (nti-P-1)] (@)

where the superscript # denotes Mogrg—Penrose pseudo-
inverse and Apy1(h® V) and Bpi1(h@ ) are the sub-
matrices of TP+1(h(i71)) defined as:

Trra (b)) = AP+1(h(l_ )) : Bpii(h hO~ 1)) 1 (8)

Pi1 M

The filter h® is updated thanks to the equation below:
h® =H0D 4 [ (z)] {L{ /S\g)+1 (n+14)) [Xpi1(n+1)
—UEEy (n+DROV] U G (i 1)
x [Xp(n+i— 1)~ UE(n+i— 1))ﬁ<@'—1>]} (9)

where R%) = L{("(” ;(n+ z'))HZ,{(’s\g\,)_i_Z (n +19)). RR is com-
puted from Rg 2 using:

RY =Ry V+UEY,, (n+0)"UEY,, (n+ 1))
—UEE V(n+i—1))TUEE Y (n+i—1))

The recursive update of [R%)]_1 is then obtained by apply-
ing twice the matrix inversion lemma. Eq. (9) combined
with the recursive update of [R%)]_1 form the MLRA. A
fast calculation scheme for eq. (9) can be obtained similarly
to the fast RLS. We leave this point for future work. The
following convergence result holds for the MLRA:
Theorem 3: If the assumptions of theorem 1 are met and
if the MLRA converges then, it converges towards the global
The proof of theorem 3 has been relegated to section A.



4.2 Initialization

The MLRA, like the TSML [1] and the IQML [2], needs to
start from a reliable initialization point. Here, we propose
to initialize the MLRA with (ﬁ(o),§§3)(n)) defined as the
stationary point of the MLBA (cf. section 3). The choice of
N reflects a tradeoff between the accuracy of the estimates
and the involved computational cost. Experience show that
choosing N about 10M leads to a reasonable compromise.

5 Adaptive algorithm

The algorithm must be able to track the variations in a
non-stationary environment. So, we introduce a weighting
factor in J to ensure that data in the distant past are
forgotten. =~ The MLAA (ML Adaptive Algorithm) is
derived from the MLRA by replacing J with Jy defined as:

n+1i

Yo ATTAX() - Ti(h)sy))?

t=n—N+1

I(hysyyi) =

where A € [0;1] is a forgetting factor. Using a matrix formu-
lation, Jx(h,sn+;) reads:

Ta(bysnti) = AN [Xvti(n+14) — Tari(B)sni] |12

where Ay = diag([1 )\ ALt ANFITL AN e

replace J with 7, in paragraph 4.1 and the MLAA is ob-
tained in the same way as the MLRA. Then, the estimated
symbols at iteration i read:

59 _y(n+d) =Ch (D) [A},/jlxm (n+1)
—Dp+1(ﬁ(i’l))’s\((]i_l)(n+i—P—1)] (10)
The filter h® is updated thanks to the equation below:
h® =k 4+ [RY] {u G, (n+8)Apt1 [Xpii(n +1)
“NUEDy (0 + DRI Ap] —UT GV (i -1)
x [Xp(n+i— 1) —UEE D (n+i- 1))}7“"”]} (11)

where}_{g) = u(Agyﬂ(ni NEAY? UEY,,(n + i) and
Cpt1(h V) and Dpiq1(hC~Y) are the sub-matrices of
Tp41(h(~Y) defined as:

AL T (B70) = [ Cpia(B)) © Dpya(B7)) ] (12)
Pt Y,

We can notice that the MLAA is closely related to a DFE.

This question is explored in the next section.

6 Link with a Soft Decision Feedback Equalizer

n [6], Gesbert has proposed the Channel Symbol Algorithm
(CSA), based on least squares techniques which aims at min-
imizing J\. The channels and symbols are updated alter-
nately. For each iteration, we have:

3(n+1) = arg min [[X1(n + 1)
SRED) | iy | I (13)
8(n +1) = g(3(n + 1)) (14)

h® wpdated via RLS

S(n+1) =

5(n + 1) —5(n+i—0)

[Tj delay

Figure 1: Update of the symbols in the CS algorithm

The operator g(.) stands for a decision device. The link
between the CSA and the DFE structure is emphasized in
[6] and is summarized below. Using the notations in (12),
an explicit expression for §(n + ) is obtained:

cH (hi-D) (Xl(n i) — Dl(ﬁ(i_l))’s‘o(n—l-i—l))
CH( h(— 1))C1( hG- 1))

(15)

The decision feedback structure of eq. (15) and (14) is shown
in fig. (1). The main difference between the structure of the
CSA and of the DFE is : the presence of a feed-forward filter
in the DFE and the presence, in the CSA, of a “spatial” filter
A (V) which combines the signals before the decision.
Gesbert has also underlined the similarities between our cri-
terion Jx(h,sn+i) and a decision directed criterion Jpp [7]
defined as: Jpp =Y pF¢_ . A"T7!||5(t) — 5(t)||” Replacing
(15) in the previous relation, we obtain:

2

nti ) H ({G-1) .
T :Z )\n+lft Cl (h ) (X1(t) _ 7—1(}1(171))’5‘1 (t))
t=n_N41 lIcx (hG=D)||2

The difference between the criterion Jpp and J lies only
cH (RG-1)

llcy (hG=10))12°

The CSA computes, at each iteration, one and only one sym-
bol whereas the MLAA updates the P + 1 first symbols in
the delay line (cf. fig. (2)). Therefore, possible errors made
during the first estimation can be corrected and the error
propagation phenomenon frequently observed in the DFE is
contained. The absence of cell of decision in the MLAA per-
mits to preserve a linear estimation of the data.

in the presence of the term

X(n) X G -

ch™)

Figure 2: Update of the symbols in the MLAA

7 Further simplifications

In this section, we simplify eq. (9) in order to reduce the

computational cost of the MLRA. By construction, R(’) =
diag[S; -..... Si] and each block §; is a matrix filled w1th
symbols estimated at iteration ¢. We assume that the se-
quence {5 (k)} is ergodic then, limi_,ooﬁ ELFN S =
Covir+1(8%) where Covari1(8®) is the covariance matrix
of {5)}. We proved in section 4.1 that, for i after the con-
vergence, 's\%)_‘_l(n +1i) =snti(n+1)/a, a € C*, which leads
to Covar1(8®) = WCOVM.H (8). It is generally assumed

that {s(k)} is a sequence of i.7.d., complex, circular, random



variables with zero mean:

E[3(k)] =0 BB*)'3()] = 02d(k —j)  EBRk)3(7)] =0

For i large enough Covary1(8%) =~ uzz_ﬁfIM+1 and Rg) ~
2

US”—OJX"’Q'QIL(M_H). So, eq. (9) is now a stochastic gradient

based method with decreasing stepsize.

In the case of the MLAA, we cannot evaluate lim; . R
The consequence is that we cannot prove that the MLAA is
equivalent to a stochastic gradient method. However, sim-
ulations show that replacing (11) by a stochastic gradient
with constant stepsize result in almost no degradations on
the performances. This point is not addressed in this paper,
but the corresponding results will be reported in [8].

(@)
e

8 Simulations

We first investigate the influence of the parameter P in the
MLRA then, we compare the performances of the MLRA,
the MLAA and the BGWT procedure. We present the re-
sults on the symbols. For both simulations {s(k)} is a QPSK
modulation and h is a mixed-phase channel with L = 3 sub-
channels each of order M = 3. In fig. (3), the MSE on the
symbols against the SNR is plotted for different values of P.
The MSE is averaged over 50 independent noise realizations.
The lines corresponding to P = 1 and P = 2 are incomplete
because, at low SNR, the MLRA diverges for some runs. It
is clearly seen that choosing P > 3 do not really improve
the performances. Here the channel order is M = 3. There-
fore the update of the filter depends only on the symbols in
the delay line. In fig. (4), the SNR is set to 10dB and all
the algorithms are initialized with (ﬂ(o),gg\?)) obtained from
the MLBA with N = 50. The degradation on the symbol
estimation for the MLAA and the MLRA compared to the
BGWT procedure remains small (< 2 dB).

9 Conclusion

In this paper, a recursive algorithm (MLRA) based on least-
squares techniques is derived. The MLRA follows from vari-
ous approximations applied to the BGWT procedure in order
to diminish the computational complexity. Simulations illus-
trate that the resulting degradation on the estimates remains
reasonably small. Moreover, we proved that when this algo-
rithm converges then it converges towards the global min-
imum. We can remark that both algorithms are strongly
connected with a RLS. So, fast versions could be obtained
using techniques similar as for a fast RLS. Furthermore, the
update of the filters in the MLRA and the MLAA can be
simplified by stochastic gradient techniques. Derivation of
the algorithms is straightforward.
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Figure 3: MSE for the symbols vs SNR for the MLRA
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Figure 4: MSE for the symbols vs the iteration number —
(1) MLRA P=10, (2) MLAA P=10 and A = 1 —

(3) BGWT proc.
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A Proof of theorem 3

If the MLRA converges then, 3 no such as Vk > no h® =
h(™0) and ’s\g\],”lk(n+k) =Sntk- At iteration k, the estimated
filter satisfy the following relation:
~(k ~(k T
UK (n + B) UG (n -+ k)R® = (16)
UG (n + k) X si(n +k)
Using the fact that eq. (16) is also verified at iteration k-1,
eq. (16) reduces to:

Ui (n+ k) [u(gl(n +E)h™) — Xy (n + k)] =0 (17)

Matrix L{(’s\gk)(n—l—k))H is full column rank as long as sgk)(n+
k) # Oar41 then the equation above is equivalent to:

UG (n+ kD™ — X (n+k) =0 (18)

Eq. (18) holds V k > no. Then, we stack the equations
obtained for k, k+1,..k+K with K > 3M + 1 and we get:

UGK)E™ — Xx(n+ K) =0

which is equivalent to 7 (h(™®) Sx) = 0. Since the conditions

of theorem 1 are satisfied, then h(™) and Sk are the true
values of the parameters up to a scalar factor.
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