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Abstract. The Bayesian approach and especially the maximum a posteri-
ori (MAP) estimator is most widely used to solve various problems in signal
and image processing, such as denoising and deblurring, zooming, and recon-
struction. The reason is that it provides a coherent statistical framework to
combine observed (noisy) data with prior information on the unknown signal
or image which is optimal in a precise statistical sense. This paper presents
an objective critical analysis of the MAP approach. It shows that the MAP
solutions substantially deviate from both the data-acquisition model and the
prior model that underly the MAP estimator. This is explained theoretically
using several analytical properties of the MAP solutions and is illustrated using
examples and experiments. It follows that the MAP approach is not relevant
in the applications where the data-observation and the prior models are accu-
rate. The construction of solutions (estimators) that respect simultaneously
two such models remains an open question.

1. MAP estimators to combine noisy data and priors

We address a wide variety of inverse problems where an estimate x̂ ∈ R
p of an

original (unknown) X = x (e.g. an image, a signal or some parameters) is recovered
from a realization1 of noisy data Y = y ∈ R

q using a statistical model for their pro-
duction as well as a prior model for the original X . Typical applications are signal
and image restoration, segmentation, motion estimation, sequence processing, color
reproduction, optical imaging, tomography, seismic and nuclear imaging, and many
others. The likelihood function fY|X(y|x)—the distribution for the observed data
Y = y given an original X = x—is governed by physical considerations concerned
with the data-acquisition device. By far the most common models are of the form

(1) Y = AX +N,

where A : R
p → R

q is a linear operator (e.g. a blurring kernel, a Fourier or a Radon
transform, or a subsampling operator) and N is additive noise which is independent
of X . If the noise samples Ni, 1 ≤ i ≤ q are independent and identically distributed
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400 Mila Nikolova

(i.i.d.) with marginal distribution fN , then

(2) fY|X(y|x) =

q
∏

i=1

fN
(

aTi x− yi
)

,

where aTi , 1 ≤ i ≤ q are the rows of A. Frequently fN is a zero-mean Gaussian
density on R.

A meaningful solution x̂ can seldom be recovered based on the data-acquisition
model fY|X solely, without the help of prior information2 on the unknown X [61, 59,
15, 62]. Priors on X can take various forms [26, 59, 15, 60, 31, 62]. We will focus
on two approaches to model statistical priors fX on X . Markov random models
[8, 49, 23, 35, 9, 20, 30, 3] concentrate on the local characteristics of X , namely the
distribution for each pixel xi conditionally to its neighbors xj , j ∈ Ni:

fX(xi

∣

∣

∣
xj , j 6= i) = fX(xi

∣

∣

∣
xj , j ∈ Ni), ∀i ∈ {1, . . . , p}.

For a 2D image, Ni is often the set of the 4, or the 8 pixels adjacent to i. Assume
that the prior has the usual Gibbsian form

(3) fX(x) ∝ exp{−λΦ(x)},
where Φ is a prior energy function and λ > 0 is a parameter. The Hammersley-
Clifford theorem [8] is a powerful tool to conceive Markovian priors by factorizing
fX according to the set of the cliques involved in (3). A very useful class of priors
obtained in this way correspond to3 [9, 7, 34, 11]

(4) Φ(x) =
1

2

∑

i

∑

j∈Ni

ϕ(xi − xj),

where ϕ : R → R+ is a suitable symmetric function, increasing on R+, as those given
in Table 1. The fit of ϕ to the empirical distribution of the differences {xi − xj :
j ∈ Ni, 1 ≤ i ≤ p} in real-world images is considered e.g. in [52].

Another approach is to use wavelets or more generally frame expansions from the
outset. Let {wi : 1 ≤ i ≤ r} be a family of wavelet functions on R

p. In numerous
papers [36, 64, 56, 38, 33, 55, 37, 6, 60, 1, 10] the coefficients

(5) ui = 〈wi, x〉, 1 ≤ i ≤ r,

are assumed to be i.i.d. and their statistical distribution fU is described using priors
of the form

(6) fU (u) =
1

Z

r
∏

i=1

exp
(

− λiϕ(t)
)

,

where ϕ is a function as those given in Table 1 and λi > 0 for all i. In (6) and in
what follows, Z denotes a normalization constant.

2If A is the identity, the maximum-likelihood estimate—the maximizer of fY|X (y|.)—is useless
since it returns back the noisy data x̂ = y. When A is ill-conditioned, it is well known that any
maximizer x̂ of fY|X (y|.) is unstable with respect to the noise and the numerical errors.

3 For Φ of the form (4), Φ(x) = 0 if xi = xj for all i, j, so x → e−Φ(x) is non-integrable
on R

p and fX is an improper prior [9, 7, 19]. This impropriety can be easily removed either by
restricting x to belong to a bounded domain or by preventing x to shift up and down. As noticed
by many authors, this is hardly worthwhile since under quite general assumptions, the posterior
distribution fX|Y (x|y) is proper.

Notice that the set of the cliques involved in (4) reads {(i, j) : j ∈ Ni, 1 ≤ i ≤ p}.
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Convex functions ϕ

Smooth at zero functions ϕ Nonsmooth at zero functions ϕ

(f1) ϕ(t) = |t|α, 1<α≤2 (f8) ϕ(t) = |t|
(f2) ϕ(t) =

√
α + t2

(f3) ϕ(t) =

{

t2/2 if |t| ≤ α
αt − α2/2 else

Nonconvex functions ϕ

Smooth at zero functions ϕ Nonsmooth at zero functions ϕ

(f4) ϕ(t) = min{αt2, 1} (f9) ϕ(t) = |t|α, 0 < α < 1

(f5) ϕ(t) =
αt2

1 + αt2
(f10) ϕ(t) =

α|t|
1 + α|t|

(f6) ϕ(t) = log(αt2 + 1) (f11) ϕ(t) = log (α|t| + 1)
(f7) ϕ(t) = 1 − exp (−αt2) (f12) ϕ(0)=0, ϕ(t)=1 if t 6=0

Table 1. Commonly used functions ϕ where α > 0 is a parameter.
Some references for these functions are [40, 12, 24, 9, 27, 32, 48,
58, 21, 51, 13, 63, 52].

The posterior distribution fX|Y (x|y), given by the Bayesian chain rule,

fX|Y (x|y) = fY|X(y|x)fX(x)
1

Z
, Z = fY (y),

combines the information brought by the likelihood fY|X(y|.) with the prior fX .
Bayesian estimators are based on x→ fX|Y (x|y) and they realize a compromise be-

tween fY|X(y|.) and fX which is optimal with respect to a loss function4. Our focus
is on the most popular Bayesian estimator—the Maximum a Posteriori (MAP)—
which selects x̂ as the most likely solution given the observed data Y = y:

x̂ = argmax
x

fX|Y (x|y)

= argmin
x

(

− ln fY|X(y|x) − ln fX(x)
)

.

If Ψ(x, y) ∝ − ln fY|X(y|x) and (3) holds, x̂ equivalently minimizes a posterior energy
Ey of the form

(7) Ey(x) = Ψ(x, y) + βΦ(x)

where β ensures that Ey ∝ − ln fX|Y (.|y) + const. Under the classical assumption
that the noise in (1) is i.i.d. and has a zero-mean Gaussian density with variance
σ2—which situation will be indicated by N ∼ Normal(0, σ2I) where I is the q × q
identity matrix—the MAP estimate x̂ minimizes

(8) Ey(x) = ‖Ax− y‖2 + βΦ(x) where β = 2σ2λ.

4For every y, a Bayesian estimate x̂ minimizes
∫

L(x̂, x)fX|Y (x|y)dx where L is a loss function.
The MAP estimator corresponds to

L(x̂, x) =

{

0 if x̂ = x

1 otherwise

Other Bayesian estimators are for instance the Posterior Mean which is defined by x̂ =
∫

xp(x|y)dx
and the Marginal Posterior Mean where x̂i =

∫

xip(xi|y)dx for 1 ≤ i ≤ p. They usually require
cumbersome numerical integration on R

p which considerably restricts their practical interest in
signal and image applications. By far, the MAP is the most widely used Bayesian estimator [53].
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Since [16], denoising of signals and images is efficiently dealt by restoring the noisy
wavelet coefficients 〈wi, y〉, 1 ≤ i ≤ r, with the aid of priors of the form (6). Such
methods were considered by many authors, e.g. [36, 64, 56, 38, 33, 55, 37, 6, 60, 1,
10], and they amount to calculating û = arg minu Ey(u) for

(9) Ey(u) =
∑

i

(

(ui − 〈wi, y〉)2 + λiϕ(|ui|)
)

.

The sought-after solution is then x̂ = W †û where W † is a left-inverse of {wi, 1 ≤
i ≤ r}.

Realistic statistical modeling of the physical phenomena in data-acquisition de-
vices on the one hand, and modeling of the priors for real-world images and signals
on the other hand, focuses more and more efforts in research and applications, and
the references are abundant [3, 7, 31, 52, 39, 57, 54, 25]. This is naturally done
with the expectation to obtain solutions x̂ that are coherent with all the two models
fY|X and fX . The adequacy of the most popular MAP estimator has essentially
been considered in asymptotical conditions when β ց 0, q → ∞, or β ր ∞, i.e.
when either fX or fY|X vanishes. Stronger results were derived in [18], namely the

distribution of the MAP estimator X̂ conditionally to an original image x, for priors
of the form (4) and ϕ as (f1) or (f2) in Table 1, and these results confirm what is
presented in the following. In regular (non-asymptotic) conditions, we exhibit im-
portant contradictions in the MAP approach since the MAP solutions substantially
deviate from the data-acquisition model fY|X on the one hand, and from the prior
model fX on the other hand. This gap between modeling and solution is first illus-
trated in section 2 using tractable examples that consider the ideal situation when
both the data-acquisition and the prior models are known exactly. The remaining of
the paper explains rigorously the reasons for this gap between models and solutions
for the main families of posterior distributions used in signal and image processing.
More precisely, we consider posterior energies involving non-smooth priors (section
3), or non-smooth likelihood functions (section 4), or non-convex prior energies (sec-
tion 5). For clarity, we skip some technical details but reference where they can be
found. The theoretical arguments come from several analytical properties charac-
terizing the MAP solutions as a function of the shape of fX|Y , or equivalently as a
function of the shape of Ey, see e.g. [42, 44, 47]. Relevant numerical experiments
are used to illustrate the gap between the goals of the modeling and the resultant
solutions. Obviously the MAP estimator deforms the information contained in both
the data-acquisition and the prior models. Even though MAP is optimal in a precise
statistical sense, the distortions it imposes on the data-acquisition and on the prior
models are embarrassing in many applications where these models are accurate.
It can hence not be recommended in such cases. We can conjecture that similar
problems arise along with other Bayesian estimators as far as the posterior fX|Y mix
these models. The conception of solutions that are coherent with two such models
remains an open problem.

2. Gaps between models and estimate

Let us consider a measurement model of the form (1)-(2) where the sought-after
X and the noise N have distributions fX and fN , respectively. In full rigor, an
estimator X̂ for X , based on data Y , can be said to be coherent with the underlying
models if X̂ ∼ fX (i.e. X̂ has the same distribution as the prior) and if the resultant

noise estimator N̂ = Y − AX̂ satisfies N̂ ∼ fN (i.e. it has the same distribution
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as the noise N). Usually, neither of the distributions f
X̂

nor f
N̂

can be calculated.
Below we calculate f

X̂
and f

N̂
for scalar variables with tractable distributions and

the result is illuminating.

2.1. Analytical example on R. Let us assume a scalar additive measurement
model

Y = X +N,

where the distribution of X is

(10) fX(x) =

{

λe−λx if x ≥ 0,
0 else,

and N ∼ Normal(0, σ2) (i.e. N ∼ fN for fN(n) = 1√
2πσ

e−
n2

2σ2 ). For every y ∈ R,

the MAP solution x̂ is the minimizer on [0,+∞) of Ey where

Ey(x) = (x− y)2 + βx for β = 2σ2λ.

It is easy to find that

x̂ =

{

0 if y < β
2 ,

y − β
2 > 0 if y ≥ β

2 .

After some calculations5, the (unconditional) distribution f
X̂

of X̂ reads

f
X̂

(x̂) = fX(x̂) ξ(x̂) + cδ(x̂),

where δ stands for Dirac distribution and

ξ(x̂) = e
λ
2
(λσ2−β)

∫ ∞

0

fN (x− x̂− β

2
+ λσ2)dx,

c =

∫ ∞

0

fX(x)

∫
β
2
−x

−∞
fN (n)dndx > 0.

The distribution of X̂ is fundamentally dissimilar to the prior fX since f
X̂

involves
a Dirac delta at zero while for every x̂ > 0 it is weighted by ξ(x̂). Furthermore, the
noise estimate n̂ = y − x̂ reads

y − x̂ =

{

y if y < β
2 ,

β
2 if y ≥ β

2 .

Its distribution is given by

f
N̂

(n̂) = fN (n̂) 1l(n̂ <
β

2
) ζ(n̂) + (1 − c) δ(n̂− β

2
),

ζ(n̂) =

∫ ∞

0

fX(x)e−
x2−2n̂x

2σ2 dx.

Unlike N , the distribution of N̂ is upper bounded by β
2 , presents a Dirac delta at β

2

and is deformed by ζ(n̂) on (−∞, β2 ). It follows that the MAP estimator does not
match the underlying model.

5First we compute f(x̂|x) and then f(x̂) =
∫

f(x̂|x)fX(x)dx. Similarly, f
N̂

(n̂) =
∫

f(n̂|x)fX(x)dx.
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2.2. Distribution of the MAP for generalized Gaussian priors. To see
the practical importance of the example below, one can think of the MAP restora-
tion of noisy wavelet coefficients that was sketched in (5)-(6) and (9). The statistical
distribution of the (noise-free) wavelet coefficients (5) in real-world image data has
been shown to be fairly described using generalized Gaussian (GG) distribution
laws [36, 37, 6]

(11) fX(x) =
1

Z
e−λ|x|

α

, x ∈ R,

for appropriate choices of the parameters λ > 0 and α > 0. Under the usual
assumption for i.i.d. Gaussian noise, the MAP estimate ûi of each noisy coefficient
〈wi, y〉 in (9) is done independently, by minimizing a scalar function Ey : R → R+

of the form

(12) Ey(x) = (x− y)2 + β|x|α for β = 2σ2λ,

where we identify x with ui, y with 〈wi, y〉 and λ with λi. This is a situation where
both the prior and the data-acquisition models are pertinent. It is then crucial
to know how accurately the MAP estimate x̂ fits these models. We address this
question with the aid of numerical experiments.

For (α, λ) and σ fixed, we realize 10 000 independent trials. In each trial, an
original x ∈ R is sampled from fX and then y = x + n for n sampled from
fN =Normal(0, σ2). After this, the true MAP solution x̂ is calculated using (12).
According to the value of α, the posterior distribution fX|Y (., y) has one or two
modes.

(a) Case α ≥ 1. The results in Fig. 1 correspond to α = 1.2, λ = 0.5 and
σ = 0.6 which yields an SNR of 10 dB. The histograms of the samples x
drawn from fX and the samples n drawn from fN are shown in Figs. 1 (a)
and (b), respectively. For every y ∈ R, the function Ey is strictly convex and
has a unique minimizer x̂. Unlike the prior fX , the histogram of the MAP
estimates x̂ in all trials, plotted in Fig. 1 (c), is very concentrated in the
vicinity of zero (even though |x̂| < 10−3 for only 2.35% of the trials). The
histogram of the resultant noise estimates n̂ = y − x̂ seen in Fig. 1 (d) is far
from approximating fN : it is clearly bounded while its value in the vicinity of
zero is very small which means that almost all MAP solutions x̂ are biased.

(b) Case 0 < α < 1. Fig. 2 corresponds to α = 0.5, λ = 2 and σ = 0.8 in which
case the SNR is 10.3 dB. The samples drawn from fX and fN are represented in
Figs. 2(a) and (b), respectively. For every y 6= 0 the function Ey has two local

minimizers6, x̂1 = 0 and x̂2 such that |x̂2| > θ for θ =
(

2
α(1−α)β

)
1

α−2 ≈ 0.47,

and the global one is found by comparing Ey(x̂1) and Ey(x̂2). We deduce that
the distribution f

X̂
of the true MAP solution x̂ contains a Dirac-delta at zero

and is null on a subset containing
(

− θ, 0
)
⋃

(

0, θ). The empirical histogram
of all MAP estimates x̂, shown in 2(c), reflects these two special features: we
have x̂ = 0 in 77% of the trials while the smallest non-zero |x̂| is 0.77 > θ.
The shape of this histogram is essentially different from the prior fX . The
resultant estimate of the noise n̂ shown in (d) is clearly bounded on R. The

6 Since α ∈ (0, 1), we have ϕ′(0+) = +∞, hence for any y 6= 0, the subdifferential of Ey at
zero contains the point x̂1 = 0. One can show that x̂2 has the same sign as y 6= 0 and that it
satisfies ∂

∂x
Ey(x)|x̂2

= 0. Using that E ′′
y (x) < 0 if |x| ∈ (0, θ), no local minimizer can belong to

(−θ, 0) ∪ (0, θ), hence the inequality on x̂2.
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(a) Prior (11) for α = 1.2, λ = 0.5 (c) The true MAP x̂ by (12)

−2 0 2
0

500

1000

−2 0 2
0

500

1000

(b) Noise: Normal(0, σ2) for σ = 0.6 (d) The noise estimate n̂ = y − x̂

Figure 1. Histograms for 10 000 independent trials, case α ≥ 1.
Left column: realizations of the original models. Right column:
the relevant true MAP solutions.

samples near the origin are better than in the case of Fig. 1: this suggests
there are MAP solutions x̂ 6= 0 that are close to the relevant y.

Obviously, the MAP estimate does not fit neither the GG prior model nor the
additive Gaussian noise model. This is especially unfortunate in a case when these
models are accurate. We will see that the gap between the prior and the data-
acquisition models on the one hand, and the effective distributions realized by the
true MAP estimate on the other hand, is a permanent contradiction in Bayesian
MAP estimation.

3. Non-smooth at zero priors

This section is devoted to MAP solutions corresponding to Gibbsian priors (3)
where Φ is nonsmooth. We start with an example that gives a flavor of the kind of
contradictions entailed by such priors.

3.1. A Laplacian Markov chain corrupted with Gaussian noise. The
model for the true signal is a Markov chain with a Gibbsian distribution (3) where

(13) Φ(x) = λ

p−1
∑

i=1

|xi − xi+1|, λ > 0.

Then the differences Xi −Xi+1, 1 ≤ i ≤ p − 1 are i.i.d. with the same Laplacian
density:

(14) f∆X(t) =
λ

2
e−λ|t|, t ∈ R.

Inverse Problems and Imaging Volume 1, No. 2 (2007), 399–422
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(a) Prior (11) for α = 0.5, λ = 2 (c) True MAP x̂ by (12) and zoom

−3 0 3
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−3 0 3
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(b) Noise: Normal(0, σ2), σ = 0.8 (d) Noise estimate n̂ = y − x̂

Figure 2. Histograms for 10 000 independent trials, case 0 < α <
1. Left column: realizations of the original models. Right side: the
relevant true MAP solutions.

Since the prior defined by (13) is improper, any realization X = x involves an
arbitrary shifting constant which plays no role in what follows. The observed data
read Y = X +N where fN =Normal(0, σ2I). The posterior distribution fX|Y (x|y)
is proper and reads

fX|Y (x|y) = exp

(

− 1

2σ2
Ey(x)

)

1

Z
,

Ey(x) = ‖x− y‖2 + β

p−1
∑

i=1

∣

∣

∣
xi − xi+1

∣

∣

∣
, β = 2σ2λ.(15)

Coherence with the prior modeling done in (3) and (13) requires7 that the solution
x̂, when p = q is large enough, is such that the normalized empirical distribution
of its differences, x̂i − x̂i+1, 1 ≤ i ≤ p − 1, approximates f∆X in (14). Similarly,
the empirical distribution of the noise estimate n̂i = yi − x̂i, 1 ≤ i ≤ q, must
approximate fN .

The experiments presented next concern 500-length Laplacian Markov chains
corresponding to λ = 8 and σ = 0.5, in which case β = 4 in (15). Realizations
of an original X = x and data Y = y are shown in Fig. 3 (a). The solution x̂—
corresponding to the true parameters (λ, σ) used to generate x and y—is displayed

7 We can notice that this requirement involves an ergodicity assumption which is easily admitted
in this kind of modeling.
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0

5

100 400

0

5

(a) Original x (—) for λ = 8 in (14) and data (b) The true MAP x̂ (—) versus the original

x (- - -). y = x+ n (· · · ) for σ = 0.5.

Figure 3. The true MAP restoration of an original Laplacian
Markov chain corrupted with white Gaussian noise.

−0.5 0 0.5
0

10000

−0.5 0 0.5
0

10000

(a) 40×499 differences xi − xi+1 (b) The differences x̂i − x̂i+1

sampled from (14) for λ = 8. of the true MAP solutions.

Figure 4. Histograms for 40 trials with 500-length signals: the
differences sampled from the prior f∆X and the differences of the
true MAP solutions.

in Fig. 3 (b). Even though the original x has some slightly homogeneous regions, the
restored x̂ has a very different aspect since it is constant on many regions—almost
92% of its differences are null, |x̂i − x̂i+1| < 10−30. Visually, x̂ is far from fitting
the prior model. Next we repeat the same experiment 40 times. The histogram of
all original differences xi−xi+1, for all trials, is shown in Fig. 4 (a). The histogram
of all restored differences x̂i − x̂i+1 in all trials is shown in Fig. 4 (b). It is quite
dissimilar to the prior model since it contains a huge spike at zero—87% of all
restored differences are null (their magnitude is less than 10−30). Obviously, the
MAP solution is far from fitting the prior.

The observed incoherence between the models fX and fY|X on the one hand, and

the estimator X̂ on the other hand, is inherent since it originates from the analytical
properties of the MAP solution corresponding to nonsmooth prior energies combined
with smooth data-acquisition models [42, 46]. This will be explained below.

Inverse Problems and Imaging Volume 1, No. 2 (2007), 399–422



408 Mila Nikolova

3.2. Analytical results on the MAP and their statistical meaning. Let
us more generally consider Gibbsian priors (3) where

(16) Φ(x) = λ

r
∑

i=1

ϕ(‖Gix‖),

Gi, 1 ≤ i ≤ r, are linear operators (e.g. they can yield the finite differences or
discrete derivatives of x) and ϕ : R+ → R+ is an increasing Cm-function such that

ϕ′(0) > 0.

By the latter condition, Φ is nonsmooth at any x such that Gix = 0 for some
i ∈ {1, . . . , r}. Examples of such functions ϕ are (f8)-(f12) in Table 1. The prior
model corresponding to (16) reads

fX(x) ∝
r

∏

i=1

e−λϕ(‖Gix‖).

Suppose that the observed data Y correspond to a likelihood fY|X(y|x) ∝ e−Ψ(x,y)

where Ψ is a Cm-function, m ≥ 2, such that the posterior distribution fX|Y (.|y) is
proper. The likelihood fY|X can for instance be of the form (2) for a Cm function

fN . The MAP estimator X̂ then minimizes

Ey(x) = Ψ(x, y) + λΦ(x).

The result below comes from [42] and [46] (Theorems 6.1 and 2, respectively).
In the following, δEy(x)(u) will denote the one-sided derivative8 of Ey at x in the
direction of u 6= 0.

Theorem 3.1. Given y ∈ R
q, let x̂ ∈ R

p be such that if we put

J =
{

i ∈ {1, . . . , r} : Gix̂ = 0
}

,

KJ =
{

u ∈ R
p : Giu = 0, ∀i ∈ J

}

,(17)

we have

(a) δEy(x̂)(u) > 0 for every u ∈ K⊥
J \ {0};

(b) DEy|KJ
(x̂)u = 0 and D2Ey|KJ

(x̂)(u, u) > 0, for every u ∈ KJ \ {0}.
Then Ey has a strict (local) minimum at x̂. Moreover, there are a neighborhood

OJ of y and a continuous function X : OJ → R
p such that X (y) = x̂ and that for

every y′ ∈ OJ , Ey′ has a (local) minimum at x̂′ = X (y′) satisfying

Gix̂
′ = 0, ∀i ∈ J,

or equivalently, that x̂′ ∈ KJ for every y′ ∈ OJ .

Conditions (a) and (b) ensure that Ey has a strict local minimum at x̂. They
are quite general, as confirmed by the following result considering a linear Gaussian
measurement model (see Proposition 2 and 3 in [17]).

Proposition 1. Let Ψ(x, y) = 1
2σ2 ‖Ax− y‖2 with ATA invertible. Define Ω ⊂ R

q

to be such that if y ∈ Ω then every (local) minimizer x̂ of Ey is strict, and that (a)
and (b) in Theorem 3.1 hold. Then

8The one-sided derivative δEy(x)(u) exists if the following limit (possibly infinite) exists:

δEy(x)(u) = limt↓0
Ey(x+tu)−Ey(x)

t
. This holds under mild conditions [28, 50] that are satis-

fied by the energies used in practice. If Ey is differentiable at x, then δEy(x)(u) = DEy(x)u for

any u.
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(i) Ωc (the complement of Ω in R
q) is of Lebesgue measure zero;

(ii) if in addition limt→∞ ϕ′(t)/t = 0, then the closure of Ωc is of Lebesgue measure
zero as well.

The requirement on ϕ′ in (ii) is standard for edge-preserving signal and image
restoration methods, see for instance [14, 2]. It holds for all functions ϕ in Table 1,
except for (f1) with α = 2 which is not edge-preserving.

It is essential to notice that OJ contains an open subset of R
q and that the

theorem addresses many nonempty J . By Theorem 3.1,

(18) y ∈ OJ and x̂ = arg max
x∈Rp

fX|Y (x|y) ⇒ Gix̂ = 0, ∀i ∈ J,

or equivalently x̂ ∈ KJ . Then the probability to have X̂ ∈ KJ satisfies

Pr(X̂ ∈ KJ) ≥ Pr(Y ∈ OJ ) =

∫

OJ

fY (y)dy > 0.

The strict positivity of the integral above comes from the facts that OJ contains an
open subset of R

q and that

(19) fY (y) =

∫

fY|X(y|x)fX(x)dx =
1

Z

∫

e−Ey(x)dx > 0, ∀y ∈ R
q.

The model on the unknown X which is effectively realized by the MAP estimator X̂
hence corresponds to images and signals such that GiX̂ = 0 for a certain number of
indexes i. If {Gi} are first-order differences or discrete gradients, then we have an
effective prior model for locally constant images and signals. This is in contradiction
with the prior model fX involved in Ey. The function fX being continuous, for any
nonempty J ⊂ {1, . . . , r} the probability that X ∈ KJ is null:

Pr(X ∈ KJ) =

∫

KJ

fX(x)dx = 0,

since KJ ⊂ R
p is a subspace of R

p of dimension strictly smaller than p.

Laplacian Markov chain. In the case of a linear Gaussian measurement model
with A invertible and a Laplacian Markov chain prior as in (13), we have fX|Y (x|y) ∝
exp (−Ey(x)) + const for

(20) Ey(x) = ‖Ax− y‖2 + β

p−1
∑

i=1

|xi − xi+1|, β = 2σ2λ.

The following striking phenomena then occur (see [46] for details):

(a) for every x̂ ∈ R
p, there is a polyhedron Qx̂ ⊂ R

q of dimension #J for J =
{i : Gix̂ = 0}, such that for every y ∈ Qx̂, the same point x̂ is the unique
minimizer of E(., y);

(b) for every J ⊂ {1, . . . , p−1}, there is a subset ÕJ ⊂ R
q, composed of 2n−#J−1

unbounded polyhedra of R
q, such that for every y ∈ ÕJ , the minimizer x̂ of

Ey satisfies x̂i = x̂i+1 for all i ∈ J and x̂i 6= x̂i+1 for all i ∈ Jc. Moreover,
their closure forms a covering of R

q.

As a consequence, for every J ⊂ {1, . . . , p− 1} we have

Pr
(

X̂i = X̂i+1, ∀i ∈ J
)

≥ Pr
(

Y ∈ ÕJ
)

> 0.

These are solutions composed of constant pieces. However, the prior model involved
in (20) yields Pr

(

Xi = Xi+1

)

= 0 for every i ∈ {1, . . . , p− 1}.
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4. Non-smooth at zero noise models

Consider a linear measurement model (1) corrupted with i.i.d. additive noise N
as in (2) where

(21) fN (t) =
1

Z
e−σψ(t), t ∈ R,

σ > 0 is a parameter and ψ : R → R is Cm, m ≥ 2, on R \ {0} and nonsmooth at
zero, such that

(22) 0 < ψ′(0+) = −ψ′(0−) <∞.

By (2), the likelihood function is fY|X(y|x) ∝ exp(−σΨ(x, y)) where

(23) Ψ(x, y) =

q
∑

i=1

ψ(aTi x− yi).

Then Ψ is nonsmooth at any (x, y) such that aTi x = yi for some i ∈ {1, . . . , q}.
If N is Laplacian i.i.d. noise, ψ(t) = |t| which leads to an ℓ1 data-fidelity term
Ψ(x, y) = ‖Ax − y‖1. We can notice that even though ψ is non-smooth, fN is a
continuous function, hence Pr

(

Ni = 0
)

= 0 for every i ∈ {1, . . . , q}.
Furthermore, let X correspond to a Gibbsian prior (3) where Φ : R

p → R is a
Cm-function. For instance, Φ can be of the form (4) or (16) where ϕ is any Cm
function in Table 1. Given y ∈ R

q, the MAP solution x̂ minimizes Ey given below

(24) Ey(x) = Ψ(x, y) + βΦ(x), β =
λ

σ
.

We will start with a numerical example.

4.1. Generalized Gaussian Markov chain under Laplace noise. Let X be
a 100-length Markov chain whose differences Xi −Xi+1 ∼ f∆X , 1 ≤ i ≤ p − 1 are
i.i.d. and f∆X is a GG density

(25) f∆X(t) =
1

Z
e−λ|t|

α

, t ∈ R.

Suppose we have data Y = X + N where Ni, 1 ≤ i ≤ p are i.i.d. with marginal
density

(26) fN(t) =
σ

2
e−σ|t|, t ∈ R.

The posterior distribution fX|Y is proper and reads

fX|Y (x|y) = exp
(

− σEy(x)
) 1

Z
,

Ey(x) =

p
∑

i=1

∣

∣xi − yi
∣

∣ + β

p−1
∑

i=1

|xi − xi+1|α where β =
λ

σ
.

The experiments presented next correspond to α = 1.2, λ = 1 and σ = 2.5 in which
case β = 0.4 and fX|Y (., y) has a unique mode. Realizations of an original X = x
and data Y = y are shown in Fig. 5 (a) while the noise N = n contained in the data
is plotted in Fig. 5 (b). Notice that xi 6= yi for all i (more precisely, |xi− yi| > 0.04
for all i ∈ {1, . . . , 100} in this experiment). The MAP solution x̂ obtained for the
true value of β, shown in Fig. 5 (c), contains 93% samples satisfying x̂i = yi.
Obviously, x̂ does not have the aspect of a GG Markov chain. Correspondingly, the
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(a) GG Markov chain x (—) for α=1.2, λ=1 (c) The true MAP x̂ (—)

in (25), data y = x+ n (· · · ) versus the original x (· · · )

1 50 100

−1

1
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−1

1

(b) Laplacian i.i.d. noise n for σ = 2.5 in (26) (d) The noise estimate n̂ = y − x̂.

Figure 5. The true MAP restoration of an original GG Markov
chain x from data y = x+n corrupted with white Laplacian noise.

estimate of the noise n̂ = y − x̂, shown in Fig. 5 (d), is far from approximating a
Laplacian noise since it involves only 7% non-zero samples.

Next, we repeat the same experiment 1000 times. Fig. 6 (a) shows the histogram
of all 99×103 differences xi − xi+1 sampled from f∆X in (25) for α = 1.2 and λ = 1
in order to form 1000 original GG Markov chains x. Below in Fig. 6 (b) one can
see the histogram of all the 104 Laplacian noise samples ni generated by fN in
(26) for σ = 2.5, used to form 1000 noise vectors n. The true MAP solution x̂
is then computed for each data set y = x + n. The histogram of all differences
x̂i − x̂i+1 of the MAP solutions in all trials is shown in Fig. 6 (c), while the
histogram of the samples n̂i = yi − n̂i of the resultant noise estimates is seen in
Fig. 6 (d). For 87% of the samples in all trials, x̂i = yi, hence the huge spike at
zero in Fig. 6 (d). This means that most of the samples x̂i of the MAP solution
keep the noise intact. Correspondingly, many differences of the MAP solutions read
x̂i − x̂i+1 = xi − xi+1 + ni − ni+1: even if originally xi − xi+1 ≈ 0, for the MAP
x̂i − x̂i+1 is no longer close to zero. Hence the flattening of the histogram in Fig. 6
(c) near the origin.

4.2. Main analytical result and statistical interpretation. We consider
posterior energies of the form (24) and posit the assumptions made in the introduc-
tion of section 4. The result stated next, established in [44], is the key to explain
the behavior observed in Figs. 5 and 6.

Theorem 4.1. Given y ∈ R
q, suppose that x̂ ∈ R

p is such that if we put

J =
{

i ∈ {1, . . . , q} : aTi x̂ = yi
}

,

KJ = {u ∈ R
p : aTi u = 0, ∀i ∈ J},
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(a) All original differences xi − xi+1 sampled (c) The differences x̂i − x̂i+1 of the

from f∆X in (25) for α = 1.2 and λ = 1 true MAP solutions x̂.
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(b) Laplacian i.i.d. noise by (26) for σ = 2.5. (d) All the residuals y − x̂.

Figure 6. Histograms for 1000 independent trials with 100-length
signals. Left column: samples from the original models f∆X and
fN . Right column: the models effectively realized by the MAP—x̂
and the resultant noise estimate n̂ = y − x̂.

we have:

(a) the set {ai : i ∈ J} is linearly independent;
(b) DEy|x̂+KJ

(x̂)u = 0 and D2Ey|x̂+KJ
(x̂)(u, u) > 0, for every u ∈ KJ \ {0};

(c) δEy(x̂)(u) > 0, for every u ∈ K⊥
J \ {0}.

Then Ey has a strict (local) minimum at x̂. Moreover, there are a neighborhood
OJ ⊂ R

q containing y and a Cm−1 function X : OJ → R
p such that for every

y′ ∈ OJ , the function Ey′ has a (local) minimum at x̂′ = X (y′) and

(27)
aTi x̂

′ = y′i if i ∈ J,

aTi x̂
′ 6= y′i if i ∈ Jc.

Hence X (y′) ∈ x̂+KJ for every y′ ∈ OJ .

It is shown in [44] that for any A ∈ R
q×p the assumption (a) holds for all y ∈ R

q

except those included in a subspace of dimension strictly smaller than q. Hence the
probability that (a) fails is null. Noticing that Ey|x̂+KJ

is Cm near (x̂, y), (b) is the
classical sufficient condition for a strict local minimum of a smooth function. Next,
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(c) is a weak condition ensuring that Ey has a strict local minimum at x̂ along all
non-zero directions in K⊥

J .
A crucial consequence is that OJ contains an open subset of R

q and that we have
many nonempty J when y ranges on R

q. By Theorem 4.1, the distribution of the
MAP estimator X̂ is such that

Pr
(

aTi X̂ − Yi = 0
)

≥ Pr (Y ∈ OJ ) =

∫

OJ

fY (y)dy > 0, ∀i ∈ J,

where the last inequality comes from (19). For all i ∈ J , the prior has no influence
on the solution and the noise remains intact. This result contradicts the model for
the noise assumed in (21) since by the continuity of ψ we have

Pr
(

aTi X − Yi = 0
)

= Pr (Ni = 0) = 0, ∀i ∈ {1, . . . , q}.
For simplicity, consider now that A is invertible and that Φ is of the form (16).

Define O∞ ⊂ R
p by

O∞ =
{

y ∈ R
p : ‖DΦ(A−1y)‖ < ψ′(0+)

β
min
‖u‖=1

p
∑

i=1

|aTi u|
}

.

The set O∞ is clearly non-empty and contains an open subset of R
q. Consequently,

Pr(AX̂ = Y ) ≥ Pr(Y ∈ O∞) > 0.

It is amazing to see that9

y ∈ O∞ ⇒ aTi x̂ = yi, ∀i ∈ {1 . . . , n},
i.e. that x̂ = A−1y which means that the prior has no influence on the solution.
This property violates the prior model.

4.3. A Laplace noise model to remove impulse noise. We confine our at-
tention to an important class of posterior energies for denoising (then p = q). For
any y ∈ R

p, let us consider the minimization of Ey below:

(28) Ey(x) =

p
∑

i=1

|xi − yi| +
β

2

∑

i

∑

j∈Ni

ϕ(xi − xj),

where ϕ is a symmetric C1 strictly convex edge-preserving function, e.g. (f1)-(f3)
in Table 1. From a Bayesian standpoint, the ℓ1 data-fidelity in (28) corresponds to
data Y = X+N where N is Laplacian white noise, fY|X(x|y) =

∏p
i=1 fN(yi−xi) for

fN as in (26), while the prior distribution is of the form (3) for β = λ/σ. However,
Theorem 4.1 and the example in § 4.1 have shown that the MAP solution x̂ cannot
efficiently clean Laplacian noise since all x̂i such that x̂i = yi keep the noise intact,
x̂i = xi + ni while ni 6= 0 almost surely. Instead, we will describe the noise model
which is effectively realized by the MAP estimator defined by (28).

Our reasoning is based upon the conditions for a minimum of Ey. More precisely,

Ey reaches its minimum10 at a point x̂ ∈ R
p if, and only if, for J =

{

i ∈ {1, . . . , p} :

9Assumption (a) of Theorem 4.1 holds, (b) is void since K⊥
J

= R
p for J = {1, . . . , q} and (c)

is satisfied since ∀y ∈ O∞, x̂ = A−1y and ‖u‖ = 1, hence δEy(x̂)(u) = ψ′(0+)
∑q

i=1 |aT
i u| +

βDΦ(x̂)u ≥ ψ′(0+) min‖u‖=1

∑q
i=1 |aT

i u| + βDΦ(x̂)u > β‖DΦ(x̂)‖ ‖u‖ + βDΦ(x̂)u ≥ 0.
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x̂i = yi

}

we have

i ∈ J ⇒
∣

∣

∣

∑

j∈Ni

ϕ′(yi − x̂j)
∣

∣

∣
≤ 1

β
,(29)

i ∈ Jc ⇒
∑

j∈Ni

ϕ′(x̂i − x̂j) =
σi
β
,(30)

σi = sign
(

∑

j∈Ni

ϕ′(yi − x̂j)
)

∈ {−1, 1}.(31)

The details can be found in [45] (see Theorem 1 and Corollary 1 there). These
conditions underly the next Proposition 2 which reinforces the result of Theorem
4.1 in the context of (28). Its proof is outlined in the Appendix.

Proposition 2. Let β > 1 and ϕ′′(t) > 0 for all t ∈ R. Choose a nonempty
J ⊂ {1, . . . , p} as well as σi ∈ {−1, 1} for every i ∈ Jc. Then there are y ∈ R

p and
ρ > 0 such that if OJ reads

OJ =

{

y′ ∈ R
p :

∣

∣

∣

∣

|y′i − yi| ≤ ρ ∀i ∈ J
σiy

′
i ≥ σiyi − ρ ∀i ∈ Jc

}

,

then for every y′ ∈ OJ the function Ey′ reaches its minimum at an x̂′ ∈ R
p such

that

x̂′i = y′i, ∀i ∈ J,(32)

x̂′i = Xi({y′i : i ∈ J}), ∀i ∈ Jc,(33)

where Xi, i ∈ Jc are continuous functions that depend only on
{

y′i : i ∈ J
}

.

For every J ∈ {1, . . . , p} the set OJ contains an open subset of R
p, hence Pr(Y ∈

OJ) > 0. Using that the sets OJ are disjoint, we can write that

Pr(X̂i − Yi = 0) ≥
∑

{J:i∈J}
Pr(Y ∈ OJ) > 0, ∀i ∈ {1, . . . , p}.

This result contradicts the Laplacian noise model involved in (28) since the latter
implies

Pr(Xi − Yi = 0) = 0, ∀i ∈ {1, . . . , p}.
By (32), the data samples y′i, i ∈ J are fitted exactly, hence they must be free of
noise in the effective noise model realized by the MAP solution. These data samples
y′i, i ∈ J satisfy (29). Since ϕ′ is increasing and ϕ′(0) = 0, and since OJ is open,
(29) shows that a noise-free sample y′i for i ∈ J can be dissimilar with respect to
its neighbors only up to some degree that depends on β. Otherwise, if y′i is too
dissimilar with respect to its neighbors, then i ∈ Jc and according to (30) its value
is replaced by the estimate x̂′i = Xi({y′i : i ∈ J}) which depends only on the noise-
free data samples. The samples y′i for i ∈ Jc are hence outliers that can take any
value on the half-line contained in OJ . In conclusion, the MAP estimator defined
by (28) corresponds in fact to an impulse noise model on the data.

By way of illustration, let us consider again the GG Markov chain x plotted in
Fig. 5 in § 4.1 along with data y containing 10% random-valued impulse noise in the
range [mini xi,maxi xi]. Both x and y are plotted in Fig. 7 (a), the former with a
solid line and the latter with a dashed line. The minimizer x̂ of Ey in (28) for β = 0.4

10One can show that the minimizer x̂ is unique if J is nonempty and that it is reached on a
bounded subset if J = ∅.
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(a) Original x (—), data y (- - -) (b) The minimizer x̂ of Ey for β = 0.4 (—),

with 10% random valued impulse noise. the original x (- - -), and yi 6= xi (⋄) .

Figure 7. Restoration of a GG Markov chain corrupted with im-
pulse noise by minimizing an energy Ey involving an ℓ1 data-fidelity
term (a Laplacian noise model).

is presented in Fig. 7 (b) with a solid line. Almost all noisy samples are restored
well while x̂i = yi for 89 among all the 90 noise-free samples (i.e. 99%). Indeed,
the restoration of images corrupted with impulse noise using energy functions with
an ℓ1 data-fidelity term was considered in [45, 4, 5].

5. Priors with non-convex energies

Let us now consider a linear model for the data (1) with N ∼ Normal(0, σ2I)
and a Gibbsian prior (3) with a nonconvex prior energy Φ

(34) Φ(x) =

r
∑

i=1

ϕ(gTi x),

where gi ∈ R
p, 1 ≤ i ≤ r, are difference operators and ϕ : R → R+ is nonconvex,

see Table 1 for examples. More precisely, we will assume that ϕ is symmetric, C2

and increasing on (0,+∞) with a strict minimum at zero, and that there is θ > 0
such that ϕ′′(θ) < 0 and lim

t→∞
ϕ′′(t) = 0. Given y ∈ R

q, the MAP solution x̂ is the

(global) minimizer x̂ of a posterior energy Ey of the form

(35) Ey(x) = ‖Ax− y‖2 + βΦ(x), where β = 2σ2λ.

Since the inaugural work of Geman and Geman [23], nonconvex functions ϕ are used
to produce solutions x̂ comprising well smoothed regions and sharp edges. Various
nonconvex prior energies have been considered in the literature, e.g. [24, 41, 9, 48,
21, 22, 34, 11, 2].

5.1. Piecewise Gaussian Markov chain in Gaussian noise. A famous prior
model, that was the object of a huge amount of studies during the last 20 years, is the
piecewise Gaussian Markov chain [23], known also as the discrete one-dimensional
Mumford-Shah model [40], or the weak-string model [12]. According to this model,
X is such that its differences Xi+1 −Xi, 1 ≤ i ≤ p− 1, are i.i.d. with distribution
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f∆X(t) ∝ e−λϕ(t) where

(36) ϕ(t) =

{

αt2 if |t| <
√

1
α
,

1 else.

In a closed form, ϕ(t) = min{αt2, 1}. This ϕ does not satisfy the general assump-
tions stated in the beginning of this section. By (36), f∆X describes a Gaussian dis-

tribution truncated on
(

−
√

1
α
,
√

1
α

)

and a uniform distribution on
(

−γ,−
√

1
α

)

∪
(
√

1
α
, γ

)

for an arbitrarily fixed γ >
√

1
α
. The histogram of 200×299 random

variables sampled from f∆X for α = 1, λ = 5 and γ = 15 is seen in Fig. 8. The
posterior energy Ey is of the form (35) where Φ reads

Φ(x) =

p−1
∑

i=1

ϕ(xi − xi+1).

Our reasoning is based on the following result (see [43] for the details).

Theorem 5.1. For every i ∈ {1, . . . , p−1}, define ui ∈ R
p by ui[j] = 0 if 1 ≤ j ≤ i

and ui[j] = 1 if i+1 ≤ j ≤ m. Let P = I− A1l1lTAT

‖A1l‖2 denote the orthogonal projector

onto {1l}⊥.
If Ey reaches its global minimum at x̂, then for every i ∈ {1, . . . , p− 1} we have:

(37) either |x̂i − x̂i+1| ≤
1√
α

Γi or |x̂i − x̂i+1| ≥
1√
α Γi

,

where

Γi =

√

‖PAui‖2

‖PAui‖2 + αβ
< 1.

In particular, x̂i − x̂i+1 = 0 if PAui = 0.

By the theorem, for any realization Y = y, no difference X̂i − X̂i+1 of the MAP
solution can have its magnitude in the interval ( Γi√

α
, 1√

αΓi
), hence

Pr

(

Γi√
α
< |X̂i − X̂i+1| <

1√
αΓi

)

= 0, ∀i ∈ {1, . . . , p− 1}.

The sample space of each X̂i − X̂i+1 is disconnected since it is included in

R \
{

(− 1√
αΓi

,− Γi√
α
) ∪ ( Γi√

α
, 1√

αΓi
)
}

. The distribution of the MAP estimator X̂ is

definitely dissimilar to the prior model fX since for the latter11

(38) Pr

(

Γi√
α
< |Xi −Xi+1| <

1√
αΓi

)

> 0, ∀i ∈ {1, . . . , p− 1}.

To illustrate the theorem, we repeat 200 times the following experiment. We
generate an original X = x of length p = 300 whose differences xi − xi+1, 1 ≤
i ≤ p − 1 are sampled from f∆X for α = 1, λ = 5 and γ = 15. The histogram

11More precisely, (36) yields Pr
(

Γi√
α
< |Xi−Xi+1|≤ 1√

α

)

= 2
Z

∫ 1√
α

Γi√
α

e−λαt2dt >0 and

Pr
(

1√
α
< |Xi−Xi+1|< 1√

αΓi

)

= 2e−λ

Z
√

α

(

1
Γi

−1
)

>0, where Z = 2
(

e−λ
(

γ− 1√
α

)

+

∫ 1√
α

0
e−αλt2dt

)

.

Hence the inequality in (38).
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Figure 8. First row: Distribution of the differences xi − xi+1 of
the original signals (left) and of the global minimizers x̂i − x̂i+1

(right). Second row: Zoom of the above distributions.

of all original differences xi − xi+1 in all trials is shown in Fig. 8(a). For each
original x we generate y = x + n where n is sampled from Normal(0, σ2I) with
σ = 4. Then the global minimizer x̂ of Ey is computed for the true value of the
parameter β = 2σ2λ = 160. As predicted by Theorem 5.1, no difference of any MAP

solution x̂ has its magnitude |x̂i − x̂i+1| in
(

Γi/
√
α, (

√
αΓi)

−1
)

. The histogram of

the differences x̂i − x̂i+1 of all MAP solutions in all trials, shown in Fig. 8(b), is
very different from the prior. If we define

θ0 =
Γmax√
α

and θ1 =
1√

αΓmax
where Γmax = max

1≤i≤p−1
Γi < 1,

(37) implies that for every i ∈ {1, . . . , r} we have either |x̂i − x̂i+1| ≤ θ0 or |x̂i −
x̂i+1| ≥ θ1. For our choice of the parameters, θ0 = 0.56 and θ1 = 1.77 and the
histogram shows that latter inequalities are strongly satisfied. One can also observe
that most of the differences satisfy |x̂i−x̂i+1| ≤ θ0 since they belong to homogeneous
zones in x̂.

5.2. MAP for smooth at zero functions ϕ. We posit the assumptions given
in the introduction of this section 5. We suppose in addition that ϕ is C2 and that
there are τ > 0 and T ∈ (τ,∞) such that ϕ′′(t) ≥ 0 if t ∈ [0, τ ] and ϕ′′(t) ≤ 0
if t ≥ τ , where ϕ′′ is decreasing on (τ, T ) and increasing on (T ,∞) (in fact T
is the point where ϕ′′ reaches its minimum on R+ and ϕ′′ is never positive for
t > T .) These assumptions are satisfied by all smooth non-convex functions ϕ used
in practice, such as (f4)-(f7) in Table 1. The MAP energy Ey is as defined by (34)
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and (35). In the following, G will denote the r × p matrix whose rows are gTi ,
1 ≤ i ≤ r. Notice that rankG = r ≤ m means that gi, 1 ≤ i ≤ r are linearly
independent. We will write ei for the ith vector of the canonical basis of R

p. The
result given below exhibits an important feature of the minimizers x̂ of Ey in this
context (details can be found in [47]).

Theorem 5.2. Assume that rankG = r and that β > 2µ2 ‖ATA‖
|ϕ′′(T )| where µ =

max1≤i≤r ‖GT (GGT )−1ei‖. Then there are θ0 ∈ (τ, T ) and θ1 ∈ (T ,∞) such that
for every y ∈ R

q, every minimizer x̂ of Ey satisfies

(39) either |gTi x̂| ≤ θ0 or |gTi x̂| ≥ θ1, ∀i ∈ {1, . . . , r}.
This result is qualitatively similar to (37), but it holds for a wide range of func-

tions ϕ and concerns any local minimizer x̂ of Ey. In particular, for any realization
Y = y, if x̂ is the MAP solution, then |gTi x̂| 6∈ (θ0, θ1) for every i ∈ {1, . . . , r}. It

follows that the distribution of the MAP estimator X̂ is such that

Pr
(

θ0 < |gTi X̂ | < θ1

)

= 0, ∀i ∈ {1, . . . , r}.

The prior model effectively realized by the MAP estimator corresponds to images
and signals whose differences are either smaller than θ0 or larger than θ1. Nothing
similar holds for the prior model fX involved in Ey since for the latter,

Pr
(

θ0 < |gTi X | < θ1

)

> 0, ∀i ∈ {1, . . . , r}.

5.3. MAP for non-smooth at zero functions ϕ. Beyond the assumptions
made in the introduction of section 5, we assume also that ϕ′(0+) > 0 and that ϕ′′

is increasing on (0,∞) with ϕ′′(t) ≤ 0, for all t > 0. This additional assumption is
general enough and is satisfied by all nonsmooth at zero nonconvex functions ϕ in
Table 1. The MAP energy Ey has the form defined by (34) and (35). Notice that
the theorem below does not involve any assumption on {gi : 1 ≤ i ≤ r}.

Theorem 5.3. There is a constant µ > 0 such that if β >
2µ2 ‖ATA‖
|ϕ′′(0+)| , then there

exists θ1 > 0 such that for every y ∈ R
q, every minimizer x̂ of Ey satisfies

(40) either |gTi x̂| = 0 or |gTi x̂| ≥ θ1, ∀i ∈ {1, . . . , r}.
The constant µ is described in [47]. If |ϕ′′(0+)| = ∞—as with (f9) in Table

1—the condition on β in the theorem is simplified to β > 0. Observe that the
alternative (40) holds for any realization Y = y. It follows that the distribution of

the MAP estimator X̂ is such that for every i ∈ {1, . . . , r} we have

Pr
(

|gTi X̂| = 0
)

> 0,

Pr
(

0 < |gTi X̂| < θ1

)

= 0.

Hence the sample space of X̂ is disconnected and semi-discrete. If {gi, 1 ≤ i ≤ r}
correspond to the first-order differences between neighboring samples, (40) shows
that every minimizer x̂ of Ey is composed out of constant patches separated by
edges higher than θ1. This is the effective prior model on X realized by the MAP
estimator X̂. This result is in clear disagreement with the prior model fX for which

Pr
(

|gTi X | = 0
)

= 0 and Pr
(

0 < |gTi X | < θ1

)

> 0.
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(a) Original x (—) by (41) for α = 10, λ = 1 (b) The true MAP x̂ (—)

data y=x+n (· · · ), N∼Normal(0, σ2I), σ = 5. versus the original x (· · · ).

Figure 9. The true MAP restoration of a Markov chain with a
nonsmooth nonconvex prior energy from data y = x+ n corrupted
with white Gaussian noise.

The generalized Gaussian model for 0 < α < 1, considered in item (b) in § 2.2,
provides a first illustration of Theorem 5.3. Other practical consequences are illus-
trated next. The original x, plotted in Fig. 9(a) with a solid line, is a realization of
a 100-length Markov chain whose differences Xi −Xi+1, 1 ≤ i ≤ p− 1, are i.i.d. on
[−γ, γ] with density

(41) f∆X(t) ∝ e−λϕ(t), ϕ(t) =
α|t|

1 + α|t| ,

for α = 10, λ = 1 and γ = 4. The model for the data is Y = X + N where N ∼
Normal(0, σ2I). A realization Y = y for σ = 5 is plotted in the same Fig. 9(a) with
a dotted line, and the resultant SNR is 10.65 dB. The MAP solution x̂ corresponds

to the minimum of Ey(x) = ‖x − y‖2 + β
∑p−1

i=1 ϕ(xi − xi+1) for β = 2σ2λ. It is
plotted in Fig. 9(b) with a solid line. As predicted by Theorem 5.3, x̂ is constant on
many pieces which are separated by large edges. Its visual aspect is fundamentally
different from the original x since the latter does not involve constant zones and its
differences take any value on [−γ, γ].

6. Conclusion

We have shown both experimentally and theoretically that MAP estimators do
not match the underlying models for the production of the data and for the prior.
Even though MAP is optimal in a precise statistical sense, the distortions of the
data-acquisition and the prior models it introduces are embarrassing in many ap-
plications where these models are accurate. Instead, based on some analytical
properties of the MAP solutions, we partially characterize the models that are ef-
fectively realized by the MAP solutions. The latter are qualitatively different from
the models that underly the posterior energy Ey. Conversely, the obtained results
suggest that our analytical approach can be at the basis of a rigorous way to define
solutions that realize a priori expected features.
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7. Appendix

Proof of Proposition 2. For any y ∈ R
q, put x̂i = yi for all i ∈ Ĵ . All

equations in (30) thus depend only on {yi, i ∈ Ĵ} and are independent of {yci , i ∈ Ĵ}.
According to Lemma 4 in [45], there are continuous functions Xi : R

q → R, for

i ∈ Ĵc, such that for every y ∈ R
q, (30) is solved by x̂i = Xi(y), i ∈ Ĵc and x̂i = yi,

i ∈ Ĵ . Since ϕ′(0) = 0 and ϕ′ is continuous, the continuity of Xi, i ∈ Ĵc shows that

there are yi : i ∈ Ĵ such that all the inequalities in (29) are strict. Last, we can

easily find yi, i ∈ Ĵc, such that (31) holds as well. The ultimate results comes from
Theorem 3 in [45].
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