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Abstract. We consider signal and image restoration using convex cost-functions composed of a non-smooth data-
fidelity term and a smooth regularization term. We provide a convergent method to minimize such cost-functions.
In order to restore data corrupted with outliers and impulsive noise, we focus on cost-functions composed of an �1

data-fidelity term and an edge-preserving regularization term. The analysis of the minimizers of these cost-functions
provides a natural justification of the method. It is shown that, because of the �1 data-fidelity, these minimizers
involve an implicit detection of outliers. Uncorrupted (regular) data entries are fitted exactly while outliers are
replaced by estimates determined by the regularization term, independently of the exact value of the outliers. The
resultant method is accurate and stable, as demonstrated by the experiments. A crucial advantage over alternative
filtering methods is the possibility to convey adequate priors about the restored signals and images, such as the
presence of edges. Our variational method furnishes a new framework for the processing of data corrupted with
outliers and different kinds of impulse noise.

Keywords: image denoising, impulse noise removal, non-smooth analysis, non-smooth optimization, outliers,
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1. Introduction

We consider the problem where, given data y ∈ IRq ,
the estimate x̂ ∈ IRp of an image or signal is defined as
the minimizer of a convex cost-function Fy : IRp → IR
which combines a data-fidelity term �y and a regular-
ization term Q, weighted by a parameter β > 0:

Fy(x) = �y(x) + βQ(x), where

�y(x) =
q∑

i=1

ψi
(
aT

i x − yi
)
. (1)

Such cost-functions are classical in regularization and
Bayesian estimation [5, 12, 19, 28, 29]. If x∗ is the orig-
inal (unknown) image or signal, every yi can be seen
as a possibly noisy version of aT

i x∗, where ai ∈ IRp

and T stands for transpose. Via the choice of {ψi }, the
term �y encourages x̂ to be such that each aT

i x̂ is close
to yi , while Q pushes x̂ to exhibit some a priori ex-
pected features. The trade-off between these two goals
is controlled by β. Since [5, 15], a useful class of reg-

ularization functions are

Q(x) =
r∑

i=1

ϕ
(
gT

i x
)
, (2)

where gi ∈ IRp, for i = 1, . . . , r , are difference opera-
tors and ϕ : IR → IR is called a potential function. It is
frequently required that x̂ contains smoothly varying
regions and edges. The possibility that convex func-
tions ϕ give rise to minimizers x̂ involving large differ-
ences |gT

i x̂ | at the locations of edges has been studied
in [6, 7, 10, 22]. Examples of smooth and convex edge-
preserving potential functions are

ϕ(t) = |t |α, 1 < α ≤ 2, (3)

ϕ(t) =
√

α + t2, (4)

ϕ(t) = 1 + |t |/α − log (1 + |t |/α), (5)

ϕ(t) = log(cosh (t/α)), (6)

where α > 0 is a parameter.



100 Nikolova

We draw a particular attention to the choice of the
data-fidelity term �y . In signal and image restoration
and reconstruction, and in numerous inverse problems,
the most usual choice is ψi (t) = t2, for all i = 1, . . . , q
[10, 12, 28, 29, 32]. In a statistical setting this choice
corresponds with the assumption that data are corrupted
with white Gaussian noise. Other forms for�y arise e.g.
in computed tomography and in astronomy [8, 27]. Let
us emphasize that beyond a few exceptions [2, 3, 24],
the data-fidelity terms �y involved in cost-functions
of the form (1) are always smooth functions. In contrast,
this paper is devoted to non-smooth data-fidelity terms
as specified below.

H1. For every i = 1, . . . , q , the function ψi : IR → IR in
(1) is convex, C1 on IR\{0} and its left-side and right-
side derivatives at zero, denoted ψ ′

i (0
−) and ψ ′

i (0
+),

respectively, satisfy1 ψ ′
i (0

−) < 0 < ψ ′
i (0

+).

In Section 2 we provide a convergent method to mini-
mize the relevant non-smooth cost-functions. Inciden-
tally, the same method can be applied to the total-
variation cost-function for 1D signals.

Our interest in cost-functions having a non-smooth
data-fidelity term is due to the property that typically,
their minimizers x̂ fit exactly a certain number of the
data entries, i.e. that the set ĥ = {i : aT

i x̂ = yi } is
nonempty [24]. It easy to see that if all entries yi , for
i = 1, . . . , q, are noticeably corrupted, x̂ will be a
poor estimate: such cost-functions are not adapted to
deal with e.g. Gaussian, or Poisson, or Laplace mea-
surement noise. Instead, we suppose that data y are
corrupted so that

I1. A certain number of the data entries yi are uncor-
rupted (regular);

I2. The corrupted data entries (outliers) are dissimilar
with respect to their neighbors.

Typically, these are signals and images corrupted with
outliers or impulse noise. Such perturbations are of-
ten due to bit errors in transmission, faulty memory
locations, errors in analog-to-digital conversion, mal-
functioning pixel elements in camera sensors. If x∗

denotes the original signal or image, corrupted en-
tries usually take an arbitrary value in the interval
[mini x∗, maxi x∗], or in the set {mini x∗, maxi x∗}.
Cleaning such noise needs to smooth selectively out-
liers while preserving the local features of the original
signal or image and uncorrupted entries. Since [30],
many different order-statistic filters have been derived

in order to process outliers [4, 9, 13, 14, 20, 34, 35],
e.g. recursive median, weighted median, hybrid me-
dian, center-weighted median, permutation weighted
median. Being applied uniformly across the image,
these filters tend to alter both corrupted and regular pix-
els. Decision-based filters operate over small windows
where outliers are first detected and then selectively
smoothed [1, 11, 21, 25, 33]. Their success is closely
dependent on the reliability of the outlier decision rule
and on the window size.

Our approach is different. In Section 3, data cor-
rupted as mentioned in I1–I2 are denoised by mini-
mizing cost-functions of the form (1) where �y(x) =∑

i |xi − yi | and Q is of the form (2) whith an edge-
preserving ϕ. The minimizers of these cost-functions
are analyzed in order to justify the method. We show
that minimizers x̂ involve an implicit detection of out-
liers which is reliable and stable. Regular data entries
are kept unchanged (x̂i = yi ), whereas outliers incur
edge-preserving smoothing via continuous (implicit)
functions, based only on neighboring regular data en-
tries, independently of the exact value of the outliers.
The resultant method is robust and accurate. A criti-
cal advantage over order-statistic filtering methods is
that outliers are detected and smoothed based on ade-
quate priors on the sought-after image or signal. The
experiments in Section 4 show that it gives rise to sig-
nificant improvement in signal and image restoration
over usual filtering methods. Our variational method
provides a new framework for the processing of data
contaminated with outliers and different kinds of im-
pulse noise.

The proofs of all statements presented in this paper
are outlined in the Appendix.

2. Minimization Method

Now we focus on the calculation of the minimizers x̂ of
functions Fy of the form (1) where �y is non-smooth
as specified in H1. We will make some additional as-
sumptions which are presented below.

H2. The family {ai : i = 1, . . . , q} is linearly indepen-
dent.

This assumption is satisfied for denoising and many
missing-data problems. It allows Fy to be put into the
following form. If q < p, let us choose aq+i ∈ IRp, for
i = 1, . . . , p − q, so that {ai : i = 1, . . . , p} spans
IRp. Let A be the p × p matrix whose rows are aT

i , for
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i = 1, . . . , p. For every i = 1, . . . , p, let ei ∈ IRp

denote the i th vector of the canonical basis of
IRp (i.e., ei [i] = 1 and ei [ j] = 0 if j �= i). Us-
ing the change of variables z = Ax − ỹ, where
ỹ = ∑q

i=1 yi ei + ∑p
i=q+1 0 ei , we will consider

Fy(z) = Fy(A−1(z + ỹ)),

Fy(z) =
q∑

i=1

ψi (zi ) + βQy(z), (7)

where

Qy(z) = Q(A−1(z + ỹ)). (8)

Clearly, Fy reaches its minimum at x̂ ∈ IRp if, and only
if, Fy reaches its minimum at ẑ = Ax̂ − ỹ.

H3. For every y ∈ IRq , the function Fy : IRp → IR in
(7) is 0-coercive, i.e. Fy(z) → ∞ if ‖z‖ → ∞.

H4. The function Qy in (8) is convex and C1-
continuous. Moreover, for every y ∈ IRq , and for
every ρ > 0, there is η > 0 such that for every
i = 1, . . . , p,

Qy(z + tei ) − Qy(z) ≥ t Di Qy(z) + ηt2,

∀ z ∈ B̄(0, ρ), ∀ t ∈ [−ρ, ρ], (9)

where Di Qy denotes the i th partial derivative of Qy .

Although Qy is strongly convex [18] along each di-
rection span{ei }, for i = 1, . . . , p, globally it can be
non-strictly convex and non-coercive. Let us consider
H4 when Q is of the form (2). According to (8),

Qy(z) =
r∑

i=1

ϕ
(
bT

i (z + ỹ)
)
, where

bT
i = gT

i A−1, ∀ i = 1, . . . , r. (10)

Let B be the r×p matrix with rows bT
i , for i = 1, . . . , r .

Observe that all functions ϕ in (3)–(6) are strongly con-
vex on any bounded interval—for every δ > 0, there is
ηδ > 0, such that2

ϕ(t) − ϕ(τ ) ≥ ϕ′(τ ) (t − τ ) + ηδ(t − τ )2,

∀ t ∈ [−δ, δ], ∀ τ ∈ [−δ, δ]. (11)

Remark 1. Suppose that B does not contain zero-
valued columns. If ϕ is C1 and satisfies (11), then Qy in
(10) satisfies H4. The details are given in the Appendix.

2.1. Conditions for a Minimum

Let us focus on the conditions for minimum of
cost-functions of the form (7). The following simple
lemma underlies many properties discussed in what
follows.

Lemma 1. Suppose that ψi satisfies H1. Then

t ≥ 0 ⇒ ψi (t) − ψi (0) ≥ ψ ′
i (0

+) t,

t ≤ 0 ⇒ ψi (t) − ψi (0) ≥ ψ ′
i (0

−) t.

Being convex by H1 and H4, and 0-coercive by H3,
the function Fy (and also Fy), does admit a minimum
for every y ∈ IRq . This minimum is both local and
global [18].

Theorem 1. Let Fy in (7) satisfy H1 and H4. Then
Fy reaches its minimum at ẑ ∈ IRp if, and only if,

−ψ ′
i (0

+) ≤ β Di Qy(ẑ) ≤ −ψ ′
i (0

−) if i ∈ ĥ, (12)

ψ ′
i (ẑi ) + β Di Qy(ẑ) = 0 if i ∈ ĥc, (13)

Di Qy(ẑ) = 0 if i ∈ {1, . . . , p}\(ĥc ∪ ĥ), (14)

where ĥ is defined by

ĥ = {i ∈ {1, . . . , q} : ẑi = 0}, (15)

and ĥc is its complement in {1, . . . , q}. Moreover, for
any i ∈ ĥc, we have

β Di Qy(ẑ − ẑi ei ) < −ψ ′
i (0

+) ⇒ ẑi > 0, (16)

β Di Qy(ẑ − ẑi ei ) > −ψ ′
i (0

−) ⇒ ẑi < 0. (17)

In Section 3 it is seen that ĥ is usually non-empty. The
example below illustrates that the minimum of Fy may
be non-strict. Since Fy is 0-coercive, all minimizers are
bounded.

Example 1. Consider the function Fy : IR2 → IR given
below

Fy(z) = |z1| + |z2| + β(z1 − z2 + y1 − y2)2,

subject to y1 − y2 < −1 − 1

2β
. (18)
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As shown in the Appendix, Fy reaches its minimum at
ẑ if, and only if ẑ ∈ Z , where Z reads

Z =
{

z ∈ IR2 : 0 ≤ z1 ≤ −(y1 − y2) − 1

2β
and

z2 = z1 + y1 − y2 + 1

2β

}
.

Notice that Z is bounded.

Classically, the minimum of Fy is strict if one of
the conditions hold: (i) p = q and {ψi }q

i=1 are strictly
convex; (ii) the function Qy is strictly convex. Let 1l ∈
IRr read 1li = 1 for all i = 1, . . . , r . If Q is as in (2)
and {gT

i }r
i=1 are difference operators, then gT

i 1l = 0
for all i , so (ii) fails. Moreover, in Section 3 we use
ψi (t) = |t |, in which case (i) fails as well.

Proposition 1. Let Fy be of the form (7) where Qy is
as given in (10). Let H1 and H4 be satisfied. Let ẑ ∈ IRp

satisfy (12), (13) and (14). Suppose also the following:

(i) ϕ is strictly convex on IR;
(ii) the set ĥ0 = {i ∈ ĥ such that (12) is strict} is

nonempty;
(iii) if u ∈ ker B, there is i ∈ ĥ0 such that ui �= 0.

Then Fy reaches its minimum at ẑ and the latter is
strict.

Assumption (i) holds for all functions ϕ in (3)–(6).
Although (ii) fails in Example 1, we see in Section 3
that it usually holds. When A is the identity and {gT

i }r
i=1

are first-order difference operators, ker B = span{1l},
hence (iii) holds. Usually, the minimum of Fy, and so
the minimum of Fy, is strict.

2.2. Relaxation-Based Minimization

Since Fy is non-smooth, the calculation of ẑ needs a
special care. Similar optimization problems arise along
with non-smooth regularization whereFy is of the form
(1) with �y smooth and Q as given in (2) with ϕ non-
smooth at zero. A popular choice is ϕ(t) = |t |, which
corresponds with total-variation methods, pioneered in
[26]. The non-convex function ϕ(t) = |t |/(α + |t |)
has been proposed in [16]. Gradient descent minimiza-
tion is well-known to fail when Fy is non-smooth [17,
18]. Since [31, 32], ϕ(t) = |t | is usually replaced by
ϕν(t) = √

t2 + ν, for ν > 0 “small enough”, and the

obtained solution is an approximation of the desired
one. In [16], the function which is minimized is a half-
quadratic smooth approximation of Fy . In [23], a con-
tinuation method is used for various non-smooth func-
tions ϕ: given ϕν—a smooth approximation of ϕ, with
limν↘0 ϕν → ϕ—a sequence of minimizers x̂ν for ν de-
creasing from 1 to 0 is tracked by local minimization.

We focus on relaxation-based minimization. Let
z(0) ∈ IRp be a starting point. At every iteration k =
1, 2, . . . , the new iterate z(k) is obtained from z(k−1)

by calculating successively each one of its entries z(k)
i

using one-dimensional minimization:
for any i = 1, . . . , p, find z(k)

i such that

∀ t ∈ IR, Fy
(
z(k)

1 , . . . , z(k)
i−1, z(k)

i , z(k−1)
i+1 , . . . , z(k−1)

p

)
≤ Fy

(
z(k)

1 , . . . , z(k)
i−1, t, z(k−1)

i+1 , . . . , z(k−1)
p

)
. (19)

Notice that the order of updating the entries z(k)
i , for

i ∈ {1, . . . , p}, can be any. If Fy is strictly convex,
coercive and C1, the sequence z(k) defined by (19) con-
verges to the unique minimizer of Fy [17]. If Fy is
non-smooth, z(k) may not converge to a minimizer of
Fy . Nevertheless, it is shown in [17] that if Fy is of the
form (7) where ψi (t) = αi |t |, with αi ≥ 0, for all i , and
Qy is strictly convex and 0-coercive, then z(k) reaches
the minimizer of Fy as k → ∞. We cannot apply this
result because in our context the functions ψi have a
more general form, and Qy may be non-strictly convex
and non-coercive.

According to (19), the solution obtained at step (i−1)
of iteration k is

(
z(k)

1 , . . . , z(k)
i−1, z(k−1)

i , z(k−1)
i+1 , . . . , z(k−1)

p

)
. (20)

Let H1, H3 and H4 hold. Then the function t →
Fy(z(k)

1 , z(k)
2 , . . . , z(k)

i−1, t, z(k−1)
i+1 , . . . , z(k−1)

p ) is strictly
convex and 0-coercive. Hence, z(k)

i in (19) is well
defined and unique [18]. Given the solution at step
(i − 1) of iteration k, the entry z(k)

i is determined using
Theorem 1:

• if i ∈ {1, . . . , q}, calculate
ξ

(k)
i = β Di Qy(z(k)

1 , . . . , z(k)
i−1, 0, z(k−1)

i+1 , . . . , z(k−1)
p );

if −ψ ′
i (0

+) ≤ ξ
(k)
i ≤ −ψ ′

i (0
−), then z(k)

i = 0;

(21)
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otherwise z(k)
i is the (unique) solution of

ψ ′
i

(
z(k)

i

) + β Di Qy(
z(k)

1 , . . . , z(k)
i−1, z(k)

i , z(k−1)
i+1 , . . . , z(k−1)

p

) = 0,

(22)

where {
z(k)

i > 0 if ξ
(k)
i < −ψ ′

i (0
+),

z(k)
i < 0 if ξ

(k)
i > −ψ ′

i (0
−);

• if q < p and i ∈ {q + 1, . . . , p}, then z(k)
i is the

(unique) solution of

Di Qy
(
z(k)

1 , . . . , z(k)
i−1, z(k)

i , z(k−1)
i+1 , . . . , z(k−1)

p

) = 0.

(23)

Knowing the sign of z(k)
i in (22) is crucial because ψ ′

i
is discontinuous at zero. Notice that if the minimum in
(19) occurs at a point where the function is non-smooth,
the minimizer is given exactly by (21).

Theorem 2. Let Fy : IRp → IR be of the form (7) and
suppose that H1, H2, H3 and H4 are satisfied. For
k →∞, the sequence z(k) defined by (19) converges to
a point ẑ such that Fy(ẑ) ≤ Fy(z), for all z ∈ IRp.

An important argument in the proof of this theorem
is the lemma given next.

Lemma 2. There is a constant η > 0 such that for
every k ∈ IN,

Fy
(
z(k)

1 , . . . , z(k)
i−1, z(k−1)

i , z(k−1)
i+1 , . . . , z(k−1)

p

)
− Fy

(
z(k)

1 , . . . , z(k)
i−1, z(k)

i , z(k−1)
i+1 , . . . , z(k−1)

p

)
≥ βη

(
z(k−1)

i − z(k)
i

)2
, ∀ i ∈ {1, . . . , p}.

2.3. Total Variation Cost-Function for 1D Signals

When x is an one-dimensional signal, the discrete form
of the total-variation cost-function reads

Fy(x) = ‖Ax − y‖2 + β

p−1∑
i=1

|xi − xi+1|,

where A ∈ IRr×p is given. Let the entries of G ∈ IRp×p

read Gi,i = 1, Gi,i+1 = −1 and Gi, j = 0 if j < i or
j > i + 1, for all i = 1, . . . , p − 1, and G p,i = 1/p,

for all i = 1, . . . , p. Using the change of variables
z = Gx ,

Fy(z) = Fy(G−1z) = β

p−1∑
i=1

|zi | + Qy(z),

where Qy(z) = ‖Bz − y‖2 and B = AG−1.

For every i = 1, . . . , p, the i th column of B is denoted
bi and is supposed non-zero. Assumptions H1, H2, H3
and H4 clearly hold. The minimization scheme follows
from (21) and (22). For every k ∈ IN,

• if i ∈ {1, . . . , p − 1}, calculate ξ
(k)
i = −2bT

i y
2bT

i B(z(k)
1 , z(k)

2 , . . . , z(k)
i−1, 0, z(k−1)

i+1 , . . . , z(k−1)
p );

if
∣∣ξ (k)

i

∣∣ ≤ β, then z(k)
i = 0,

if ξ
(k)
i < −β, then z(k)

i = −ξ
(k)
i + β

2‖bi‖2
> 0,

if ξ
(k)
i > β, then z(k)

i = −ξ
(k)
i − β

2‖bi‖2
< 0;

• z(k)
p = − ξ (k)

p

2‖bp‖2
.

Notice that for images H2 is not satisfied, so this method
cannot be applied.

3. Detection and Smoothing of Outliers

3.1. Proposed Method

We will process data y ∈ IRp corrupted as mentioned
in I1–I2 in Section 1 by minimizing

Fy(x) =
p∑

i=1

|xi − yi | + βQ(x), where

Q(x) = 1

2

p∑
i=1

∑
j∈Ni

ϕ(xi − x j ). (24)

Here Ni denotes the set of the neighbors of i , for every
i = 1, . . . , p. As usually [5, 15], we have i �∈ Ni and
j ∈ Ni ⇔ i ∈ N j , for all i and j . If x is an 1D signal,
Ni = {i, i + 1}, if i = 2, . . . , p − 1; for a 2D image,
Ni is the set of the 4, or the 8 pixels adjacent to i . An
illustration is given in Fig. 1(a). Put

N = p
max
i=1

#Ni , (25)
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Figure 1. Neighborhoods. (a) The 4 nearest neighbors Ni (circles)
of a pixel i (bullet). (b) A connected subset ω (bullets) and its neigh-
borhood Nω (circles) with respect to the neighborhood {Ni } in (a).

where # stands for cardinality. We consider that #Ni =
N is constant for any i which is not on the boundaries
of x . The function ϕ in (24) is C1, convex, symmetric,
and edge-preserving, as those given in (3)–(6).

Suppose that Fy reaches its minimum at x̂ and put
ĥ = {i : x̂i = yi }. The idea of our method is that ev-
ery yi , for i ∈ ĥ, is uncorrupted (i.e. regular), since
x̂i = yi ; in contrast, every yi , for i ∈ ĥc, can be an
outlier since x̂i �= yi , in which case x̂i is an estimate of
the original entry. In particular, we define the outlier
detector function

y → ĥc = {i ∈ {1, . . . , p} : x̂i �= yi }, (26)

where x̂ is such that Fy(x̂) ≤ Fy(x), ∀ x ∈ IRp.

The rationale of this method relies on the properties
of the minimizers x̂ of Fy when y involves outliers.

3.2. Important Properties of x̂

Theorem 1 is straightforward to adapt to (24).

Corollary 1. For y ∈ IRp given, consider Fy of the
form (24), where ϕ is C1 and convex. The function Fy

reaches its minimum at x̂ ∈ IRp if, and only if,

i ∈ ĥ ⇒
∣∣∣∣∣
∑
j∈Ni

ϕ′(yi − x̂ j )

∣∣∣∣∣ ≤ 1

β
, (27)

i ∈ ĥc ⇒
∑
j∈Ni

ϕ′(x̂i − x̂ j ) = σi

β
, for

(28)

σi = sign

( ∑
j∈Ni

ϕ′(yi − x̂ j )

)
,

where

ĥ = {i ∈ {1, . . . , p} : x̂i = yi }. (29)

By (27), the subset Y∗ ⊂ IRp given below is the set
of all outlier-free data,

Y∗ =
{

y ∈ IRp :

∣∣∣∣∣
∑
j∈Ni

ϕ′(yi − y j )

∣∣∣∣∣ ≤ 1

β
,

∀ i = 1, . . . , p

}
, (30)

since Fy reaches its minimum at x̂ = y for every y ∈
Y∗. Observe that Y∗ is of dimension p and contains
signals or images with smoothly varying and textured
areas, and edges.

In (28), σi ∈ {−1, 1}, since (27) is false for every
i ∈ ĥc. Suppose there is an outlier at i , then x̂i satisfies
(28). Two situations can occur:

• yi is quite larger than its neighbors,
∑

j∈Ni

ϕ′(yi − x̂ j ) > 1
β

, which entails that σi = 1.
We can then write

∑
j∈Ni

ϕ′(yi − x̂ j ) > σi
β

=∑
j∈Ni

ϕ′(x̂i − x̂ j ). Since ϕ′ is increasing on IR, we
have x̂i < yi .

• yi is quite smaller than its neighbors,
∑

j∈Ni
ϕ′(yi −

x̂ j ) < − 1
β

, then σi = −1. In a similar way it is found
that now x̂i > yi .

In both cases yi incurs smoothing since x̂i is closer to
its neighbors x̂ j for j ∈ Ni than yi .

Lemma 3. Let Fy be as in Corollary 1. Let x̂, ĥ and
σi , for all i ∈ ĥc, read as there. Define Yx̂ by

Yx̂ =
{
γ ∈ IRp :

∣∣∣∣ γi = yi if i ∈ ĥ,

σiγi ≥ σi yi if i ∈ ĥc.

}
(31)

Then for every γ ∈ Yx̂ , the function Fγ reaches its
minimum at x̂ .

All functions Fγ for γ ∈ Yx̂ reach their minimum
at the same x̂ , even if γi → σi∞, for any i ∈ ĥc.
Thus, any x̂i for i ∈ ĥc (the estimate of an outlier) is
independent of the exact value of γi (the outlier).

In the following, given a vector v ∈ IRp and a subset
h = {h1, . . . , h#h} ⊂ {1, . . . , p}, we write vh ∈ IR#h for
the restriction of v to those entries of v whose indexes
are in h, i.e. vh[i] = v[hi ], for i = 1, . . . , #h. If data
are slightly corrupted (e.g., Fig. 2(a)), many outliers are
isolated—if yi is an outlier, its neighbors are not out-
liers. When data are highly corrupted (e.g., Fig 2(b)),
many outliers are neighbors and form patches. Then
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Figure 2. Locations of outliers in black, locations of regular data entries in white.

we expect that ĥc involves many indexes which are
neighbors. Let us represent ĥc as a union of connected
components,3 say ωk for k = 1, . . . , m, with respect to
{Ni }p

i=1. Given ω, a connected component of ĥc, let fy

be the function which for every xω ∈ IR#ω yields

fy(xω) =
∑
i∈ω

( ∑
j∈Ni ∩ĥ

ϕ(xi − y j )

+ 1

2

∑
j∈Ni ∩ω

ϕ(xi − x j ) − σi xi

β

)
. (32)

Let x̂ minimizesFy as given in (24) and ĥ be defined
as in (29). Let ω be a connected component of ĥc. By
(28), all entries x̂i , for i ∈ ω, are determined by the
following system of #ω equations:4

Di fy(x̂ω) = 0, ∀ i ∈ ω, (33)

where

σi = sign

( ∑
j∈Ni ∩ĥ

ϕ′(yi − y j ) +
∑

j∈Ni ∩ω

ϕ′(yi − x̂ j )

)
.

We see that all the influence of an yi for i ∈ ω (an
outlier) on the minimizer x̂ω of fy is reduced to the
binary value σi . Notice that x̂ω is a function of the
entries y j for j ∈ Nω, where Nω is the neighborhood
of ω with respect to {Ni } (see Fig. 1(b)):

Nω =
(⋃

i∈ω

Ni

) ∖
ω ⊂ ĥ, (34)

and that x̂ω is independent of all y j for j �∈ Nω ∪ ω.

Lemma 4. Suppose that ϕ is C1 and strictly convex.
Let ĥ ⊂ {1, . . . , p} and ĥc be nonempty. Consider ω a
connected component of ĥc. We have:

(a) For every γ ∈ IRp, the function fγ defined accord-
ing to (32) is strictly convex.

(b) Given y ∈ IRp, let x̂ω be such that (33) is satisfied.
Then there exists ξ > 0 and a continuous function
Xω such that γ ∈ B(y, ξ ) leads to Di fγ (Xω(γ )) =
0, for all i ∈ ω.

Hence, x̂ω results from a continuous minimizer func-
tion, namely xω , hence it is stable under perturbations
of y.

Theorem 3. For y ∈ IRp given, let Fy be of the form
(24), where ϕ is C1 and strictly convex. Let Fy reach
its minimum at x̂ . Define ĥ and σi , for every i ∈ ĥc, as
in Corollary 1. Suppose that ĥ is nonempty and that for
every i ∈ ĥ, the inequality in (27) is strict. Then there
is ρ > 0 such that if Yĥ reads

Yĥ =
{
γ ∈ IRp :

∣∣∣∣ |γi − yi | ≤ ρ ∀ i ∈ ĥ

σiγi ≥ σi yi − ρ ∀ i ∈ ĥc

}
,

then for every γ ∈ Yĥ, the relevant Fγ reaches its
minimum at an χ̂ ∈ IRp such that

{i ∈ {1, . . . , p} : χ̂i = γi } = ĥ (35)

and sign(
∑

j∈Ni
ϕ′(γi − χ̂ )) = σi , for every i ∈ ĥc.

By this theorem, IRp contains open domains Yĥ
corresponding to different ĥ. Real data do belong to
such domains and give rise to minimizers x̂ for which
ĥ = {i : x̂i = yi } is nonempty.
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3.3. Meaning of the Mathematical Results

Let us consider how outliers are processed in some
typical configurations.

Example 2 (Constant area). Let i ∈ {1, . . . , p} be
such that no j ∈ Ni belongs to the boundaries of x .
Without loss of generality, consider that yk = 0 for all
k ∈ (

⋃
j∈Ni

N j ) ∪ Ni . Let θ > 0 be such that

ϕ′(θ ) = 1

βN
. (36)

Based on Corollary 1, it is easy to see that

|yi | ≤ θ ⇒ x̂ j = y j , ∀ j ∈ Ni ∪ {i},

|yi | > θ ⇒
{

x̂i = θ sign(yi ),

x̂ j = y j , ∀ j ∈ Ni .

Supposing that ϕ is C2 and admits 3 derivatives, and
noticing that ϕ′(0) = 0, we have ϕ′(x̂i ) = ϕ′′(0) x̂i +
x̂2

i ε(x̂i ), where ε(x̂i ) goes to zero as x̂i → 0. Then

x̂i = ϕ′(x̂i ) − x̂2
i ε(x̂i )

ϕ′′(0)
. (37)

Grossly speaking, the more ϕ′′(0) is large, the more
smoothing is improved, i.e. x̂i is closer to zero.

Example 3 (Breakpoint in an 1D signal). Let y ∈ IRp

be such that for some i ∈ {3, . . . , p − 2},

yi−2 = yi−1 = 0 and yi+1 = yi+2 = δ > 0.

We suppose that β < 1/ϕ′(δ). Let θ > 0 be the constant
such that

ϕ′(θ ) + ϕ′(θ − δ) = 1

β
. (38)

Notice that θ > δ. It is not difficult to check that

yi ∈ [0, θ ] ⇒




x̂i−1 = yi−1 = 0,

x̂i = yi ,

x̂i+1 = yi+1 = δ,

whereas

yi > θ ⇒




x̂i−1 = yi−1 = 0,

x̂i = θ ∈ (δ, yi ),

x̂i+1 = yi+1 = δ.

The conditions for an edge between two constant areas
in a 2D image are basically the same.

Several consequences of the theory presented in
Section 3.2 are worth to emphasize.

Detection of outliers. The inequality in (27) provides
the rule to decide whether an entry yi is an outlier or not.
It is important to notice that yi is compared only with
faithful neighbors—regular entries y j for j ∈ Ni ∩ ĥ
and estimates of outliers x̂ j for j ∈ Ni ∩ ĥc. This is
crucial for the reliability of the detection of outliers and
allows very restricted neighborhoods {Ni } to be used
(e.g. the four nearest neighbors in the case of images).
Since ϕ′ is increasing on IR and ϕ′(0) = 0, we see
that if yi is too dissimilar with respect to its neighbors,
(27) fails and yi is replaced by an x̂i satisfying (28).
The constant σi ∈ {−1, 1} gives the direction of the
deviation of yi . By Lemma 3, x̂i remains the same,
independently of the amplitude of this deviation. Hence
the robustness of x̂ . Theorem 3 shows that the detection
of outliers is stable: the set ĥc is constant under small
perturbations of regular data entries yi for i ∈ ĥ and
under arbitrary deviations of outliers yi for i ∈ ĥc in
their directions σi .

Restoration of sets of neighboring outliers. Let x̂
minimize Fy and ĥ read as in (29). If ω is a connected
component of ĥc, then x̂ω is the minimizer of a function
fy of the form (32). Observe that fy is a regularized
cost-function similar to (1). Its first term encourages
every boundary entry for ω, namely x̂i for an i ∈ ω

such that Ni ∩ ĥ �= ∅, to fit neighboring regular data
entries y j for j ∈ Ni ∩ ĥ. Its second term is a smooth-
ness constraint on x̂ω since it favors neighboring en-
tries for ω, say x̂i and x̂ j , with i, j ∈ ω and j ∈ Ni ,
to have similar values. This term is absent if #ω = 1.
The last term introduces a small bias. Based on the the-
ory of edge-preserving regularization, we can expect
that edges in x̂ω are well restored if ϕ is a good edge-
preserving function. By Lemma 4, x̂ω results from a
continuous minimizer functionXω which depends only
on the neighboring regular data entries yi for i ∈ Nω

and is independent of the value of the outliers yi for
i ∈ ω.

Stability of the minimizers x̂ of Fy . Theorem 3 shows
that the minimizer x̂ ofFy fits all regular data entries yi

for i ∈ ĥ when these incur weak perturbations, while
x̂ remains unchanged under arbitrary perturbations of
outliers yi for i ∈ ĥc in the directions determined by
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σi . Thus, the minimizers x̂ of Fy are stable and are not
contaminated by the amplitude of the outliers.

Bounds on β. Suppose that x∗ is composed of the
most typical configurations—smoothly varying and
textured areas, edges—for the signals and images
which are restored. By Corollary 1, the condition en-
suring that Fx∗ reaches its minimum at x∗ is β ≤
(maxp

i=1 | ∑ j∈Ni
ϕ′(x∗

i − x∗
j )|)−1. This bound for β

can be quite small—e.g., consider that x∗ is an im-
age with edges of high amplitude and contours with
sharp creases. Observe that by (36) and (38), decreas-
ing β increases the threshold θ over which a data en-
try is detected as an outlier, whereas by (38), for β

fixed, θ is higher at edges than in homogeneous re-
gions. Then outliers which are not dissimilar enough
with respect to their neighbors, and which are near to
edges, may be omitted. If β is larger than the bound
given above, some regular data entries yi which are
near to edges can falsely be detected as outliers and
yield i ∈ ĥc. Any such yi will be replaced by an x̂i

which minimizes an fy of the form (32). Neverthe-
less, if ϕ has good edge-preserving properties, this x̂i

will preserve the edges and the resultant error will be
small.

On the other hand, if data y ∈ IRp contain outliers,
we must have β > (maxp

i=1 | ∑ j∈Ni
ϕ′(yi − y j )|)−1,

since otherwise Corollary 1 shows that Fy reaches its
minimum at x̂ = y. Suppose that K among all p entries
of y are corrupted with outliers. In an ideal case when
outliers are isolated and located in completely homo-
geneous areas, we should take β = (| ∑ j∈NiK

ϕ′(yiK −
y j )|)−1, where {ik}p

k=1 is the rearrangement of the in-
dexes {1, . . . , p} defined by | ∑ j∈Ni1

ϕ′(yi1 − y j )| ≥
· · · ≥ | ∑ j∈Ni p

ϕ′(yi p − y j )|. However, in order to have
a good θ , even if outliers occur near to edges and form
patches, we need β > (| ∑ j∈NiK

ϕ′(yiK − y j )|)−1.

Why choosing ψ(t) = |t | in (24)? Let us consider
Fy(x) = ∑p

i=1 ψ(xi − yi ) + βQ(x), where Q is as in
(24). If ψ is smooth at zero, the set h is empty for al-
most all y ∈ IRp [24]. So consider that and ψ satisfies
H1 along with ψ(t) = ψ(−t) and ψ ′(0+) = 1. The
necessary and sufficient condition for minimum given
in Corollary 1 remains the same except that (28) now
reads

ψ ′(x̂i − yi ) + β
∑
j∈Ni

ϕ′(x̂i − x̂ j ) = 0, if i ∈ ĥc.

If ψ ′ is not constant on (−∞, 0) and (0, ∞), the es-
timate x̂i of an outlier yi depends on the exact value
of yi . In such a case, the important property stated in
Lemma 3 does not hold. The only convex and symmet-
ric ψ such that ψ ′ is constant on (−∞, 0) and (0, ∞),
is ψ(t) = λ|t |, for λ ∈ IR.

3.4. Minimization Algorithm

We calculate x̂ as x̂ = ẑ + y where ẑ minimizes Fy ,
the equivalent form for Fy introduced in (7):

Fy(z) =
p∑

i=1

|zi | + βQy(z), where

Qy(z) = 1

2

p∑
i=1

∑
j∈Ni

ϕ(zi + yi − z j − y j ).

Based on Theorem 3, we can expect that ẑi = 0 for
a certain number of indexes i . This suggests we ini-
tialize with z(0) = 0. At each iteration k, for every
i = 1, . . . , p, we calculate

ξ
(k)
i = β

∑
j∈Ni

ϕ′(yi − z j − y j ), where

Z = (
z(k)

1 , . . . , z(k)
i−1, 0, z(k−1)

i+1 , . . . , z(k−1)
p

)
; (39)

if |ξ (k)
i | ≤ 1, then z(k)

i = 0,
if |ξ (k)

i | > 1, then find z(k)
i by solving

β
∑

j∈Ni
ϕ′(z(k)

i + yi − z j − y j ) = sign(ξ (k)
i ),

knowing that sign(z(k)
i ) = −sign(ξ (k)

i ).

Remark 2. The calculation of each z(k)
i involves only

the entries whose indexes are in Ni . So, at each
step we can update simultaneously any subset of en-
tries {i1, . . . , iK } ⊂ {1, . . . , p} provided that i j ∩
Nik = ∅ for all j, k ∈ {1, . . . , K } with j �= k.
The minimization can be implemented in a parallel
way.

Figure 3. A simple example of signal contaminated with outliers.
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If ϕ is C1, symmetric and satisfies (11), Fy sat-
isfies all assumptions H1–H4. By Theorem 2, the
sequence ẑ(k) generated by (39) converges to the
sought ẑ.

4. Experiments

4.1. Explanatory Experiment

This simple experiment illustrates the main features
of the minimizers of cost-functions of the form (24).
We consider an Fy where Ni = {i, i + 1} and ϕ(t) =√

α + t2. The original signal x∗, shown in Fig. 3(a),
contains sharp edges and slightly textured zones. The
data y, plotted in Fig. 3(b), contain 7 outliers. The
minimizers x̂ of Fy are presented in Fig. 4, where

Figure 4. Minimizers x̂ of Fy where ϕ(t) = √
α + t2 and Ni = {i − 1, i + 1}: restored signal x̂ “—”, original signal x∗ “...”, locations of

outliers in y “o”, estimated locations of outliers ĥc = {i : ẑi �= 0} “∗”.

Figure 5. Piece-wise polynomial signal in 45% random-valued noise.

each column corresponds to a different value of α.
According to (27), β ≤ 0.5 yields x̂ = y, since
| ∑ j∈Ni

ϕ′(yi − y j )| < 2 supt∈IR |ϕ′(t)| = 2 ≤ 1/β,
for all i . The solutions displayed in (a), (b) and (c) cor-
respond to the “smallest” β leading to a minimizer x̂
such that x̂i �= yi if, and only if, yi is an outlier, i.e.
ĥc = {i : x̂i �= yi } = {i : yi �= x∗

i }. Outliers are better
smoothed when α is small—as in (c)—which corre-
sponds to a large value for ϕ′′(0), as suggested by (37).
Comparing the first and the second row of Fig. 4 shows
that for α fixed, smoothing of outliers is improved by
increasing β. The set ĥc, corresponding to (d), (e) and
(f), contains all outliers in y plus 12 regular entries of y
which are “erroneously” smoothed. When α is large—
as in (d)—this entails blurring of edges. When α is
small, as in (f), edges are well preserved and the error
|x̂i − x∗

i | is small.
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Figure 6. Restoration using different methods: restored signal “—”, original signal “· · ·”.

4.2. Signal with 45% Random-Valued Impulse Noise

The original signal x∗ is shown in Fig. 5(a). Data
y in Fig. 5(b) are corrupted with 45% impulse
noise with values uniformly distributed on
[min1≤i≤p x∗

i , max1≤i≤p x∗
i ]. The results in Fig. 6(a)

and (b) are obtained by minimizing classical cost-
functions Fy(x) = ‖x − y‖2 + β

∑p−1
i=1 |xi − xi+1|α .

The minimizer in (a) corresponds to α = 1.3 and
β = 100, the one in (b) to α = 1 (total-variation reg-
ularization) and β = 120. Cost-functions of this kind
cannot deal with outliers. We present experiments with
several order-statistic (OS) filters: median filter, center-
weighted median (CWM) filter5 and permutation-
weighted (PWM) filter [9].6 For each method,
the parameters (window size, number of iterations,
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Figure 7. Original picture and data with random-valued noise.

recursivity, other parameters) are tuned to yield the best
result. The solution in Fig. 6(c) is calculated with a
9-window recursive median filter. The result in (d)
is obtained with a 9-window recursive CWM for
α = 2. The one in (e) correspond to a 9-window
PWM filter for α = 4. All solutions obtained us-
ing OS filters—(c), (d) and (e)—exhibit important
defects. The solution in (f) is the minimizer of
Fy(x) = ∑p

i=1 |xi − yi | + 0.65
∑

i (
∑

j∈Ni
ϕ(xi −

x j )+0.6
∑

j∈N ′
i
ϕ(xi −x j )), whereNi = {i −1, i +1},

N ′
i = {i −2, i +2} and ϕ(t) = √

0.2 + t2. Our method
provides significant improvement over the other
methods.

4.3. Picture with 10% Random-Valued
Impulse Noise

The original image x∗ is shown in Fig. 7(a). In Fig. 7(b),
10% of the pixels have random values uniformly dis-
tributed on [mini x∗, maxi x∗]. Denoising results using
different methods are displayed in Fig. 8, where all pa-
rameters are finely tuned. The restoration in Fig. 8(a)
corresponds to one iteration of a 3 × 3 window me-
dian filter. The image in (b) is calculated using a 3 × 3
window recursive CWM for α = 3. The result in
(c) corresponds to a 3 × 3 window PWM filter for
α = 4. These images are slightly blurred, the tex-

ture of the sea is deformed, and several outliers still
remain.

The image x̂ in (d) is the minimizer x̂ of Fy as
given in (24), with ϕ(t) = |t |1.1, Ni the set of the
4 adjacent neighbors and β = 0.3. All details are
well preserved and the image is difficult to distinguish
from the original x∗. Indeed, for 85% of the pixels,∣∣x̂i − x∗

i

∣∣ /� ≤ 2%, where � = maxi x∗ − mini x∗.
Based on the experiments in Section 4.1, one can ex-
pect that a smaller β can reduce the number of regular
data entries erroneously detected as outliers, but that
detected outliers are not smoothed enough. The min-
imizer x̂ of Fy for β = 0.24 is shown in Fig. 9(a).
Now, for 90% of the pixels, |x̂i − x∗

i |/� ≤ 2%.
The image in (b), denoted x̃ , is obtained using con-
ditional median on ĥc. More precisely, x̃i = yi for
all i ∈ ĥ. For every i ∈ ĥc with Ni ⊂ ĥ, we take
x̃i = median{y j : j ∈ Ni }. For every i belonging to a
larger connected component ω ⊂ ĥc, we take x̃i equal
to the median of the 2 nearest y j ∈ Nω ⊂ ĥ, where Nω

is as in (34). This solution is almost undistinguishable
from Fig. 8(d).

4.4. Picture with 45% Salt-and-Pepper Noise

45% of the entries in Fig. 10(a), with locations uni-
formly distributed over the grid of the image, are equal
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Figure 8. Restoration from a picture with 10% random-valued noise.

either to mini x∗, of to maxi x∗, with probability 1/2.
The image in Fig. 10(b) is obtained after 2 iterations
of a 3 × 3 window recursive median filter. This im-
age has a poor resolution and exhibits a stair-case
effect. The result in (c) is calculated using a 5 × 5
window recursive CWM filter for α = 7. The image
in (d) results from a 7 × 7 window PWM filter for
α = 14. Although the images in (c) and (d) are bet-
ter restored, the resolution is poor, there are artifacts

along the edges and the texture of the sea is destroyed.
The images in Fig. 11 are the minimizers of Fy as
given in (24) where ϕ(t) = |t |1.3 and Ni is the set
of the 4 adjacent neighbors. The image in (a) corre-
sponds to β = 0.18 and the one in (b) to β = 0.2.
The quality of these restorations is clearly improved:
the contours are neater, the texture of the sea in bet-
ter preserved and some details on the boat can be
distinguished.
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Figure 9. A variation of the proposed method.

Figure 10. Picture with 45% salt-and-pepper noise.
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Figure 11. The minimizer x̂ of Fy .

Appendix

For x∗ ∈ IRp and ρ > 0, we denote B(x∗, ρ) = {x ∈
IRp : ‖x∗ − x‖ < ρ} where ‖·‖ is the Euclidian norm
on IRp. Furthermore, B(x∗, ρ) is the relevant closed
ball.

Calculations relevant to Remark 1. Put
b∞ = maxp

i=1 ‖b j‖. For any ρ > 0, we have

z ∈ B̄(0, ρ), t ∈ [−ρ, ρ] ⇒ ∣∣bT
j (z + tei + ỹ)

∣∣
≤ b∞(2ρ + ‖ỹ‖), ∀ i, j ∈ {1, . . . , p}.

Let ηδ > 0 be the constant in (11) corresponding to
δ = b∞(2ρ + ‖ỹ‖). For every z ∈ B̄(0, ρ) and t ∈
[−ρ, ρ], and for all i = 1, . . . , p,

Qy(z + tei ) − Qy(z)

=
r∑

j=1

(
ϕ
(
bT

j (z + tei + ỹ)
) − ϕ

(
bT

j (z + ỹ)
))

≥ t
r∑

j=1

ϕ′(bT
j (z + ỹ)

)(
bT

j ei
) + t2ηδ

r∑
j=1

(
bT

j ei
)2

= t Di Qy(z) + ηt2,

where η = minp
i=1 ηδ

∑r
j=1(bT

j ei )2 > 0 since B does
not involve zero-valued columns.

Proof of Lemma 1: If t = 0, the result is trivial. So
consider that t > 0. Let τ ∈ (0, t), then t−τ/t ∈ (0, 1).
Since ψi is convex,

ψi (τ ) = ψi

(
t − τ

t
0 + τ

t
t

)
≤ t − τ

t
ψi (0) + τ

t
ψi (t)

= ψi (0) + ψi (t) − ψi (0)

t
τ.

It follows that

ψi (τ ) − ψi (0)

τ
≤ ψi (t) − ψi (0)

t
. (40)

Since ψ ′
i (0

+) is well defined and finite,

ψ ′
i (0

+) = lim
τ↘0

ψi (τ ) − ψi (0)

τ
≤ ψi (t) − ψi (0)

t
.

The result for t < 0 is obtained in a symmetric way.

Proof of Theorem 1: Let Fy reach its minimum at ẑ.
Then for every t > 0 and τ > 0,

Fy(ẑ − tei ) − Fy(ẑ)

−t
≤ 0 ≤ Fy(ẑ + τei ) − Fy(ẑ)

τ
,

∀ i = 1, . . . , p. (41)
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Using (7), for every i = 1, . . . , q , and for every t > 0
and τ > 0, we have

ψi (ẑi − t) − ψi (ẑi )

−t
+ β

Qy(ẑ − tei ) − Qy(ẑ)

−t
≤ 0

≤ ψi (ẑi + τ ) − ψi (ẑi )

τ
+ β

Qy(ẑ + τei ) − Qy(ẑ)

τ
.

Let us consider this expression at the limit when t ↘ 0
and τ ↘ 0. If ẑi = 0, we find

ψ ′
i (0

−) + β Di Qy(ẑ) ≤ 0 ≤ ψ ′
i (0

+) + β Di Qy(ẑ),

and hence (12). It ẑi �= 0, we get

ψ ′
i (ẑi ) + β Di Qy(ẑ) ≤ 0 ≤ ψ ′

i (ẑi ) + β Di Qy(ẑ),

which leads to (13). If q < p, for every i ∈ {q +
1, . . . , p}, the expression in (41) reads

β
Qy(ẑ − tei ) − Qy(ẑ)

− t
≤ 0 ≤ β

Qy(ẑ + τei ) − Qy(ẑ)

τ
.

For t ↘ 0 and τ ↘ 0, we find (14).
Reciprocally, let ẑ satisfy (12), (13) and (14). For

any u ∈ IRp, let us consider �(u) given by

�(u) = Fy(ẑ + u) − Fy(ẑ)

=
∑
i∈ĥ

(ψi (ui )−ψi (0)) +
∑
i∈ĥc

(ψi (ẑi +ui ) − ψi (ẑi ))

+ β(Qy(ẑ+u)−Qy(ẑ)). (42)

When ĥc is nonempty, put

ζ = 1

2
min
i∈ĥc

|ẑi |;

then ζ > 0 by (15). Since for every i ∈ ĥc, the function
ψi is convex and C1 on B(ẑi , ζ ),

ψi (ẑi+ui )−ψi (ẑi ) ≥ uiψ
′
i (ẑi ), ∀ u ∈ B(0, ζ ), ∀ i ∈ ĥc.

(43)
Similarly, since Qy is convex and C1,

Qy(ẑ + u) − Qy(ẑ) ≥
p∑

i=1

ui Di Qy(ẑ), ∀ u ∈ IRp.

(44)

Introducing (43) and (44) into (42) shows that for all
u ∈ B(0, ζ ),

�(u) ≥
∑
i∈ĥ

(ψi (ui ) − ψi (0) + βui Di Qy(ẑ)) (45)

+
∑
i∈ĥc

ui (ψ
′
i (ẑi ) + β Di Qy(ẑ)

)
(46)

+ β

p∑
i=q+1

ui Di Qy(ẑ). (47)

Consider first that ĥ is non-empty. Applying Lemma 1
and (12) for every i ∈ ĥ yields

ui ≥ 0 ⇒ ψi (ui ) − ψi (0) + βui Di Qy(ẑ)
≥ ψ ′

i (0
+) ui + βui Di Qy(ẑ) ≥ 0,

ui ≤ 0 ⇒ ψi (ui ) − ψi (0) + βui Di Qy(ẑ)
≥ ψ ′

i (0
−) ui + βui Di Qy(ẑ) ≥ 0.

(48)

Then the term on the right side of (45) is non-negative.
If ĥ is empty, this term is absent. If ĥc is nonempty,
(13) implies that (46) is null; otherwise (46) is absent.
If p > q, (47) is null by (14), otherwise it is absent. In
all cases, �(u) ≥ 0, for all u ∈ B(0, ζ ). It follows that
Fy reaches its minimum at ẑ.

• Since t → β Di Qy(z + (t − zi )ei ) is increasing on
IR by H2 and ψi is convex, if τ < 0 < t , we have

ψ ′
i (τ ) + β Di Qy(ẑ + (τ − ẑi )ei )

≤ ψ ′
i (0

−) + β Di Qy(ẑ − ẑi ei )

< ψ ′
i (0

+) + β Di Qy(ẑ − ẑi ei )

≤ ψ ′
i (t) + β Di Qy(ẑ + (t − ẑi )ei ).

If (16) holds, i.e. if ψ ′
i (0

+)+β Di Qy(ẑ − ẑi ei ) < 0, we
see that (13) cannot be reached unless ẑi ≥ 0. Since
ẑi �= 0, it follows that ẑi > 0. In the same way we
find (17).

Example 1 (details). We have p = q. We first check
that the conditions of Theorem 1 hold for ẑ = (0, y1 −
y2 + 1

2β
∈ Z . In this case, ĥ = {1}. The condition on y

in (18) shows that ẑ2 < 0. Then

β D1 Qy(ẑ) = 2β(ẑ1 − ẑ2 + y1 − y2) = −1,

ψ ′(ẑ2) + β D2 Qy(ẑ) = −1 + 2β(−ẑ1 + ẑ2 − y1 + y2)
= 0.

So, (12) and (13) are satisfied. Let us now consider
ẑ = (−(y1 − y2) − 1

2β
, 0) ∈ Z , which corresponds to
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ĥ = {2}. Since ẑ1 > 0,

ψ ′(ẑ1) + β D1 Qy(ẑ) = 1 + 2β(ẑ1 − ẑ2 + y1 − y2) = 0,

β D2 Qy(ẑ) = 2β(−ẑ1 + ẑ2 − y1 + y2) = 1.

Now again, (12) and (13) are satisfied. Notice that in
both cases, (12) is non-strict.

Next we consider all ẑ ∈ Z such that 0 < ẑ1 <

−(y1 − y2) − 1
2β

, in which case ẑ1 > 0 and ẑ2 < 0.
We have ĥ = {∅} and (12) is empty. We see that (13)
is satisfied since

ψ ′(ẑ1) + β D1 Qy(ẑ) = 1 + 2β(ẑ1 − ẑ2 + y1 − y2) = 0,

ψ ′(ẑ2) + β D2 Qy(ẑ) = −1 + 2β( − ẑ1 + ẑ2 − y1 + y2)

= 0.

It is not difficult to verify that (12) and (13) cannot
be satisfied if ẑ �∈ Z .

Proof of Proposition 1: Let us consider �(u) as
given in (42) for any u ∈ IRp.

• Let j ∈ {1, . . . , r} be such that bT
j u �= 0. By (i) we

have ϕ(bT
j (ẑ+u+y))−ϕ(bT

j (ẑ+y)) > (bT
j u)ϕ′(bT

j (ẑ+
y)). Using (i) again,

Qy(ẑ + u) − Qy(ẑ)

=
r∑

i=1

(
ϕ
(
bT

i (ẑ + u + y)
) − ϕ

(
bT

i (ẑ + y)
))

>

r∑
i=1

(
bT

i u
)
ϕ′(bT

i (ẑ + y)
)
.

Inserting this result into (45)–(47) shows that �(u) > 0.

• Let u ∈ ker B. Using (ii), let j ∈ ĥ0 be such
that u j �= 0. Since (12) is strict for this j , (48)
becomes ψ j (u j ) − ψ j (0) + βu j D j Qy(ẑ) > 0. Hence
�(u) ≥ ψ j (u j ) − ψ j (0) + βu j D j Qy(ẑ) > 0.

Proof of Theorem 2: For any i = 1, . . . , p, let z(k)
[i]

denote the intermediate solution at step i of iteration k,

z(k)
[i] = (

z(k)
1 , z(k)

2 , . . . , z(k)
i−1, z(k)

i , z(k−1)
i+1 , . . . , z(k−1)

p

)
.

(49)

For i = 0, put z(k)
[0] = z(k−1). Notice that z(k)

[p] = z(k). For
every k ∈ IN, (19) shows that Fy(z(k)

[i] ) ≤ Fy(z(k)
[i−1]), for

every i = 1, . . . , p. Hence,

Fy
(
z(k)

) ≤ Fy
(
z(k−1)

)
, ∀ k ∈ IN. (50)

The sequence Fy(z(k)) is monotonically decreasing and
bounded below by Fy(ẑ), hence it converges. In partic-
ular, there is a radius δ > 0 such that

z(k) ∈ B(0, δ), ∀ k ∈ IN. (51)

For every k ∈ IN we can write

Fy
(
z(k−1)

) − Fy
(
z(k)

)
=

p∑
i=1

(
Fy

(
z(k)

[i−1]

) − Fy
(
z(k)

[i]

))
(52)

≥ βη

p∑
i=1

(
z(k−1)

i − z(k)
i

)2
, (53)

where the inequality in (53) is obtained by applying
Lemma 2 to every term on the right side of (52). It
follows that the sequence z(k) is convergent. Put

ẑ = lim
k→∞

z(k) and ĥ = {i ∈ {1, . . . , q} : ẑi = 0} .

We will show that ẑ satisfies the conditions for
minimum given in Theorem 1.

• If ĥ is nonempty, for every i ∈ ĥ, the convergence
of z(k)

i to 0 can be produced in two different ways.

– Consider that there is an integer ni such that
z(k)

i = 0, for all k ≥ ni . Using (21),

−ψ ′
i (0

+)

≤ β Di Qy
(
z(k)

1 , . . . , z(k)
i−1, 0, z(k−1)

i+1 , . . . , z(k−1)
p

)
≤ −ψi (0

−), ∀ k ≥ ni .

Since Di Qy is continuous, we get (12) when
k → ∞.

– Otherwise, there is a subsequence, for simplicity
denoted z(k)

i , such that z(k)
i �= 0, for all k ∈ IN. Any

such z(k)
i satisfies (22), so we have

β Di Qy
(
z(k)

1 , . . . , z(k)
i−1, z(k)

i , z(k−1)
i+1 , . . . , z(k−1)

p

)
+ ψi

(
z(k)

i

) = 0, ∀ k ∈ IN. (54)

We will show that there is an integer ni and a
constant σi ∈ {−1, 1} such that

k ≥ ni ⇒ sign
(
z(k)

i

) = σi . (55)
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Suppose the contrary: for every k there is jk >

k so that sign(z( jk )
i ) = −sign(z(k)

i ). Then there
is a subsequence, denoted z(k)

i again, such that
sign(z(k)

i ) = (−1)k , for all k ∈ IN. Using (22)
and H1,

k odd ⇒
β Di Qy

(
z(k)

1 , . . . , z(k)
i−1, z(k)

i , z(k−1)
i+1 , . . . , z(k−1)

p

)
= −ψ ′

i

(
z(k)

i

) ≥ −ψ ′
i (0

−),

k even ⇒
β Di Qy

(
z(k)

1 , . . . , z(k)
i−1, z(k)

i , z(k−1)
i+1 , . . . , z(k−1)

p

)
= −ψ ′

i

(
z(k)

i

) ≤ −ψ ′
i (0

+).

This result contradicts the fact that since Qy is C1,

lim
k→∞

Di Qy
(
z(k)

1 , . . . , z(k)
i−1, z(k)

i , z(k−1)
i+1 , . . . , z(k−1)

p

)
= Di Qy(ẑ).

If σi = 1, we have z(k)
i > 0, for all k ≥ ni . For k →

∞, we have z(k)
i ↘ 0 and thus ψ ′

i (z
(k)
i ) ↘ ψ ′

i (0
+).

Combining this with (54) shows that for k → ∞
we get ψ ′

i (0
+) + β Di Qy(ẑ) = 0. If σi = −1, in a

similar way we obtain ψ ′
i (0

−) + β Di Qy(ẑ) = 0.
In both cases, (12) is satisfied.

• If ĥc is nonempty, (22) shows that for all k ∈ IN,

β Di Qy
(
z(k)

1 , . . . , z(k)
i−1, z(k)

i , z(k−1)
i+1 , . . . , z(k−1)

p

)
+ ψ ′

i

(
z(k)

i

) = 0, ∀ i ∈ ĥc.

Put

ζ := 1

2
min
i∈ĥc

|ẑi |.

There is n ∈ IN such that z(k) ∈ B(ẑ, ζ ), for all
k ≥ n. Since for every i ∈ ĥc, the function z →
ψ ′

i (zi ) +β Di Q(z) is continuous on B(ẑ, ζ ), at the
limit k → ∞ we find (13).

• If q < p, for all k ∈ IN we have

Di Qy
(
z(k)

1 , . . . , z(k)
i−1, z(k)

i , z(k−1)
i+1 , . . . , z(k−1)

p

)
= 0, ∀ i ∈ {q + 1, . . . , p}.

When k → ∞, we find (14).

Proof of Lemma 2.2: Let δ > 0 be the radius men-
tioned in (51). Then for all k ∈ IN and i = 1, . . . , p,

z(k)
[i] ∈ B̄(0, δ) and

∣∣z(k−1)
i − z(k)

i

∣∣ ≤ 2δ.

Let η > 0 be the constant mentioned in H2 relevant to
ρ = 2δ. Noticing that by (49)

z(k)
[i−1] = z(k)

[i] + (
z(k−1)

i − z(k)
i

)
ei ,

the inequality in (9) shows that for all k ∈ IN and i ∈
{1, . . . , p},

Qy
(
z(k)

[i−1]

) − Qy
(
z(k)

[i]

) ≥ (
z(k−1)

i − z(k)
i

)
Di Qy

(
z(k)

[i]

)
+ η

(
z(k−1)

i − z(k)
i

)2
. (56)

If q < p and i ∈ {q + 1, . . . , p},

Fy
(
z(k)

[i−1]

) − Fy
(
z(k)

[i]

) = β
(
Qy

(
z(k)

[i−1]

) − Qy
(
z(k)

[i]

))
.

In this case, Di Qy(z(k)
[i] ) = 0. Introducing this and (56)

in the expression above shows the statement.
Using (56), for all k ∈ IN and i ∈ {1, . . . , q},

Fy
(
z(k)

[i−1]

) − Fy
(
z(k)

[i]

)
= ψi

(
z(k−1)

i

) − ψi
(
z(k)

i

) + β
(
Qy

(
z(k)

[i−1]

) − Qy
(
z(k)

[i]

))
≥ � + βη

(
z(k−1)

i − z(k)
i

)2
, (57)

where

� = ψi
(
z(k−1)

i

) − ψi
(
z(k)

i

)
+ β

(
z(k−1)

i − z(k)
i

)
Di Qy

(
z(k)

[i]

)
. (58)

Observe that for any i ∈ {1, . . . , q},

t �= 0 and τ sign(t) ≥ 0

⇒ ψi (τ ) − ψi (t) ≥ ψ ′
i (t) (τ − t). (59)

Indeed, the inequality is evident if τ sign(t) > 0 and it
remains true when τ → 0.

Several cases arise according to the position of z(k)
i

and z(k−1)
i with respect to zero.

• z(k)
i = 0 and z(k−1)

i ≥ 0. Using Lemma 1,
ψi (z

(k−1)
i ) − ψi (z

(k)
i ) ≥ ψ ′

i (0
+)(z(k−1)

i − z(k)
i ). Intro-

ducing this into (58) yields

� ≥ (
z(k−1)

i − z(k)
i

)(
ψ ′

i (0
+) + β Di Qy

(
z(k)

[i]

))
.

Using (21), the term among the large parentheses is
non-negative, hence � ≥ 0.

• z(k)
i = 0 and z(k−1)

i ≤ 0. We just replace ψ ′
i (0

+) by
ψ ′

i (0
−) in the expressions above and find that � ≥ 0.
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• z(k)
i �= 0 and sign(z(k−1)

i z(k)
i ) ≥ 0. Using (59),

ψi (z
(k−1)
i ) − ψi (z

(k)
i ) ≥ ψ ′

i (z
(k)
i )(z(k−1)

i − z(k)
i ). Then

� ≥ (
z(k−1)

i − z(k)
i

)(
ψ ′

i

(
z(k)

i

) + β Di Qy
(
z(k)

[i]

))
.

Using (22) we see that that ψ ′
i (z

(k)
i )+β Di Qy(z(k)

[i] ) =
0, hence � = 0.

• z(k)
i < 0 and z(k−1)

i > 0. We consider ψi on the
intervals (z(k)

i , 0) and on (0, z(k−1)
i ) separately. Ap-

plying Lemma 1 to ψi (z
(k−1)
i ) − ψi (0), and (59) to

ψi (0) − ψi (z
(k)
i ), yields

ψi
(
z(k−1)

i

) − ψi
(
z(k)

i

)
= (

ψi
(
z(k−1)

i

) − ψi (0)
) + (

ψi (0) − ψi
(
z(k)

i

))
≥ ψ ′

i (0
+)z(k−1)

i − ψ ′
i

(
z(k)

i

)
z(k)

i

= ψ ′
i

(
z(k)

i

)(
z(k−1)

i − z(k)
i

)
+ (

ψ ′
i (0

+) − ψ ′
i

(
z(k)

i

))
z(k−1)

i .

Since z(k)
i < 0 we have ψ ′

i (z
(k)
i ) < 0; then (ψ ′

i (0
+) −

ψ ′
i (z

(k)
i ))z(k−1)

i > 0. Hence,

ψi
(
z(k−1)

i

) − ψi
(
z(k)

i

)
> ψ ′

i

(
z(k)

i

)(
z(k−1)

i − z(k)
i

)
.

Inserting the last inequality into (58) shows that

� >
(
z(k−1)

i − z(k)
i

)(
ψ ′

i

(
z(k)

i

) + β Di Qy
(
z(k)

[i]

))
. (60)

According to (22), the term between the large paren-
theses is null, hence � > 0.

• z(k)
i > 0 and z(k−1)

i < 0. Similarly, we consider
(z(k−1)

i , 0) and (0, z(k)
i ) separately. We only have to

replace ψ ′(0+) with ψ ′(0−) in the expressions above
and find that � > 0.

In all cases, � ≥ 0. Introducing this into (57) shows
the lemma.

Proof of Lemma 3: Consider an arbitrary i ∈
ĥc. Since yi does not satisfy (27), we have

σi

∑
j∈Ni

ϕ′(yi − x̂ j ) >
1

β
> 0. Since ϕ′ is increasing on

IR,

σiγi ≥ σi yi ⇒ σi

∑
j∈Ni

ϕ′(γi − x̂ j ) >
1

β
> 0.

Hence sign(
∑

j∈Ni
ϕ′(γi − x̂ j )) = σi , for all i ∈ ĥc.

Combining this with the fact that γi = yi , for all i ∈ ĥ,

shows that x̂ satisfies both conditions (27) and (28)
with respect to Fγ .

Proof of Lemma 4: To prove (a), we show that for all
γ ∈ IRp, the function xω → (Di fγ (xω) : i ∈ ω) is
strictly monotone [18]. For arbitrary xω and vω �= 0,
consider � as given below

� =
∑
i∈ω

(Di fγ (xω + vω) − Di fγ (xω))vi

=
∑
i∈ω

vi

( ∑
j∈Ni ∩ĥ

(ϕ′(xi + vi − γ j ) − ϕ′(xi − γ j ))

+
∑

j∈Ni ∩ω

(ϕ′(xi − x j + vi − v j ) − ϕ′(xi − x j ))

)

=
∑
i∈ω

( ∑
j∈Ni ∩ĥ

vi (ϕ
′(xi + vi − γ j ) − ϕ′(xi − γ j ))

+ 1

2

∑
j∈Ni ∩ω

(vi − v j )(ϕ
′(xi − x j + vi − v j )

− ϕ′(xi − x j ))

)
.

Since ϕ is strictly convex,

(ϕ′(t + ε) − ϕ′(t)) ε > 0, ∀ t ∈ IR, ∀ ε �= 0. (61)

Then � ≥ 0 since all the terms in the last expression
for � are non-negative. If #ω = 1, let ω = {i}. Then
Ni ⊂ ĥ and, using (61),

� =
∑
j∈Ni

vi (ϕ
′(xi + vi − γ j ) − ϕ′(xi − γ j )) > 0,

since vi �= 0. Consider now that #ω > 1. If there are
i ∈ ω and j ∈ ω, such that vi �= v j ,

� ≥ 1

2
(vi − v j )(ϕ

′(xi − x j + vi − v j )

− ϕ′(xi − x j )) > 0.

Otherwise, there is c �= 0 such that vi = c, for all i ∈ ω.
Since ĥ �= ∅, there is i ∈ ω such that Ni ∩ ĥ �= ∅.
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Then

� ≥
∑

j∈Ni ∩ĥ

c(ϕ′(xi + c − γ j ) − ϕ′(xi − γ j )) > 0.

Hence (a).
Combining (a) with (33) shows that fy reaches its

minimum at x̂ω and that the latter is strict. For an arbi-
trary δ > 0, define

µ = min{ fy(xω) − fy(x̂ω) : xω ∈ S(x̂ω, δ)}, where

S(x̂ω, δ) = {xω : ‖xω − x̂ω‖ = δ}. (62)

Notice that (xω, γ ) → fγ (xω) is C1. Since S(x̂ω, δ) is
compact, µ > 0. Moreover, there is ξ > 0 such that

γ ∈ B(y, ξ ) ⇒ | fγ (xω) − fy(xω)| ≤ µ

2
,

∀ xω ∈ B̄(x̂ω, δ). (63)

Then we find that if γ ∈ B(y, ξ ),

xω ∈ S(x̂ω, δ) ⇒ fγ (xω) − fγ (x̂ω) = ( fγ (xω)

− fy(xω)) + ( fy(xω) − fy(x̂ω))

≥ −µ

2
+ µ,

where the inequality comes from (63) and (62). Hence,
for every γ ∈ B(y, ξ ), the function fγ reaches its
minimum at a point χ̂ω which lies in the interior of
B(x̂ω, δ); this minimum is strict according to (a). Using
[7], there is a unique, continuous minimizer function
Xω : B(y, ξ ) → IR#ω, such that for every γ ∈ B(y, ξ ),
the function fγ reaches its minimum at Xω(γ ), and
such that x̂ω = Xω(y). Hence,

γ ∈ B(y, ξ ) ⇒ Di fγ (Xω(γ )) = 0, ∀ i ∈ ω.

Proof of Theorem 3: For every i ∈ {1, . . . , p}, let
�i : IRp × IRp → IR be the function

�i (x, γ ) =
∑

j∈Ni ∩ĥ

ϕ′(γi − γ j ) +
∑

j∈Ni ∩ĥc

ϕ′(γi − x j ).

Consider first that ĥ = {1, . . . , p}. Since ĥc = ∅, for
every i = 1, . . . , p, we have

�i (x, γ ) = �i (0, γ ) =
∑
j∈Ni

ϕ′(γi − γ j )

and |�i (0, γ )| < 1/β because (27) is strict by assump-
tion. Put

µ1 = p
max
i=1

|�i (0, y)|,

then µ1 <
1

β
. Since {�i }p

i=1 are continuous functions,

there is ρ > 0 such that

γ ∈ B(y, ρ) ⇒ |�i (0, γ ) − �i (0, y)|
<

1

β
− µ1, ∀ i ∈ {1, . . . , p}.

Then for every i ∈ {1, . . . , p},

γ ∈ B(y, ρ) ⇒ |�i (0, γ )| ≤ |�i (0, y)|
+ |�i (0, γ ) − �i (0, y)| < µ1 + 1

β
− µ1.

Equivalently, for every γ ∈ B(y, ρ), (27) is satisfied
by χ̂ = γ . Hence Fγ reaches its minimum at χ̂ = γ .

Consider now that ĥc is nonempty. Let the connected
components of ĥc read ωk for k = 1, . . . , m. For every
k ∈ {1, . . . , m}, let ξk > 0 and Xωk : B(y, ξk) → IR#ωk

be as in Lemma 4. Put ρ1 = minm
k=1 ξk . For every i ∈

ĥ, put Xi (γ ) = γi . The resultant X is a continuous
function from B(y, ρ1) to IRp which satisfies X (y) = x̂
and

∑
j∈Ni ∩ĥ

ϕ′(Xi (γ ) − γ j ) +
∑

j∈Ni ∩ĥc

ϕ′(Xi (γ ) − X j (γ ))

= σi

β
, ∀ i ∈ ĥc. (64)

Define the constants µ1 and µ2 by

µ1 = max
i∈ĥ

|�i (x̂, y)|, µ2 = min
i∈ĥc

|�i (x̂, y)| . (65)

The inequality (27) is strict for every i ∈ ĥ, so µ1 <

1/β, and it is false for every i ∈ ĥc, so µ2 > 1/β. By
the continuity of X and {�i }p

i=1, there is ρ2 ∈ (0, ρ1]
such that for every γ ∈ B(y, ρ2), we have

|�i (X (γ ), γ ) − �i (x̂, y)| <
1

β
− µ1, ∀ i ∈ ĥ,

|�i (X (γ ), γ ) − �i (x̂, y)| < µ2 − 1

β
, ∀ i ∈ ĥc.
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For every i ∈ ĥ we have Xi (γ ) = γi and

γ ∈ B(y, ρ2) ⇒
∣∣∣∣∣
∑
j∈Ni

ϕ′(γi − X j (γ ))

∣∣∣∣∣
= |�i (X (γ ), γ )| ≤ |�i (X (γ ), γ )

− �i (x̂, y)| + |�i (x̂, y)| <
1

β
,

where the last inequality comes from (66) and (65).
Hence, X (γ ) satisfies (27) for every i ∈ ĥ. Further-
more, for every i ∈ ĥc we have

γ ∈ B(y, ρ2) ⇒ |�i (X (γ ), γ )| ≥ |�i (x̂, y)|
− |�i (X (γ ), γ ) − �i (x̂, y)| >

1

β
,

where the last inequality is due to (66) and (65). By the
continuity of {�i }p

i=1 and X , we deduce that

γ ∈ B(y, ρ2) ⇒ sign(�i (X (γ ), γ )) = σi , ∀ i ∈ ĥc.

(66)

Combining this with (64) shows that X (γ ) satisfies
(28), for every i ∈ ĥc. By Corollary 1, Fγ reaches its
minimum at χ̂ = X (γ ) and the latter satisfies (35).
Hence B(y, ρ2) ∈ Yĥ .

If ρ > 0 is such that |γi − yi | ≤ ρ, for all i ∈
{1, . . . , p}, then ‖γ − y‖ < ρ2. Let γ ∈ Yĥ satisfy

|γi − yi | ≤ ρ if i ∈ ĥ,

γi = yi − σiρ if i ∈ ĥc.

Then Fγ reaches its minimum at an χ̂ = X (γ ) which
satisfies (35). By Lemma 3.2, for any y′ such that y′

i =
γi if i ∈ ĥ, andσi y′

i ≥ σi yi−ρ if i ∈ ĥc, the relevantFy′

reaches its minimum at the same χ̂ . It follows that the
equality on the right side of (66) and (35) are satisfied
for all γ ∈ Yĥ .

Notes

1. Since ψi is convex, ψi (0+) = limε↘0(ψi (ε) − ψi (0))/ε and
ψi (0−) = limε↘0(ψi (−ε) − ψi (0))/(−ε) are well defined and
finite [18]. We write ε ↘ 0 to specify that ε goes to zero by
positive values.

2. Ifϕ isC2 andϕ′′(t) > 0, for all t ∈ IR, putηδ = (1/2) min|t |≤δ ϕ′′(t),
then ηδ > 0. Using a Taylor expansion, ϕ(t) − ϕ(τ ) = ϕ′(τ )(t −
τ ) + (t −τ )2

∫ 1
0 (1−s)ϕ′′(τ +s(t −τ ))ds ≥ ϕ′(τ )(t −τ ) + ηδ(t −

τ )2, for all t ∈ [−δ, δ] and τ ∈ [−δ, δ].

3. ω is a singleton, say ω = {i}, if Ni ⊂ ĥ. Otherwise, for every
i, j ∈ ω there are i j ∈ ω, for j = 1, . . . , n, such that i1 ∈
Ni , i2 ∈ Ni1 , . . . , j ∈ Nin , and for every i ∈ ω; moreover, if
Ni ∩ ĥc is nonempty, then Ni ∩ ĥc ⊂ ω.

4. Let ω = {i1, . . . , in}, then xω = {xi1 , . . . , xin }. To avoid ambi-

guity, let us precise that Di fy (xω) = ∂ fy

∂xi j

(x̂ω) if i = i j .

5. CWM filter is defined using a window Ni ∪ {i} and a replication
parameter α ∈ IN. The output at i is the median of the set of all
y j , for j ∈ Ni , and the current entry yi replicated α times. Thus,
α is the weight of the central entry.

6. PWM filter is defined using a windowNi ∪{i} and a rank threshold
α. The output at i is yi if the rank of yi among all entries in the
window is rated between α and #Ni − α; otherwise, it is the
median of all y j for j ∈ Ni ∪ {i}.
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Vol. 1427, École d’Été de Probabilités de Saint-Flour XVIII—
1988, Springer-Verlag, Lecture Notes in Mathematics ed., 1990,
pp. 117–193.

16. D. Geman and C. Yang, “Nonlinear image recovery with half-
quadratic regularization,” IEEE Transactions on Image Process-
ing, Vol. IP-4, pp. 932–946, 1995.

17. R. Glowinski, J. Lions, and R. Trémolières, Analyse numérique
des inéquations variationnelles, Vol. 1, 1st edition Dunod: Paris,
1976.

18. J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and
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