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Abstract

Energy minimization methods are a very popular tool in image and signal processing. This
chapter deals with images defined on a discrete finite set. Energy minimization methods are pre-
sented from a non classical standpoint: we provide analytical results on their minimizers that reveal
salient features of the images recovered in this way, as a function of the shape of the energy itself.
The energies under consideration can be differentiable or not, convex or not. Examples and illus-
trations corroborate the presented results. Applications that take benefit from these results are
presented as well.

Index terms: Analysis of minimizers, Denoising, Edge restoration, Inverse problems, Image restora-
tion, Minimizer function, Non-convex analysis, Non-smooth analysis, Optimization, Perturbation anal-
ysis, Proximal analysis, Regularization, Signal and image processing, Signal restoration, Stability

analysis, Total variation, Variational methods.



1 Introduction

In numerous applications, an unknown image or a signal u, € RP is represented by data v € RY

according to an observation model, called also forward model
v = A(u,) ®n, (1)

where A : RP — RY is a (linear or non linear) transform and n represents perturbations acting via an
operation ®. When u is an m x n image, it is supposed that its pixels are arranged into a p-length real
vector!, where p = mn. Some typical applications are for instance denoising, deblurring, segmenta-
tion, zooming and super-resolution, reconstruction in inverse problems, coding and compression. In
all these cases, recovering a good estimate @ for u, needs to combine the observation along with a

prior and desiderata on the unknown wu,. A common way to define such an estimate is

Find @ such that F(a,v) = meilr}]-'(u,v), (3)
Flu,v) = Y(u,v)+ BP(w), (4)

where F : RP x R? — R is called an energy, U C RP? is a set of constraints, ¥ is a data-fidelity term,
® brings priors on u, and 5 > 0 is a parameter which controls the trade-off between ¥ and .

The term ¥ ensures that @ satisfies (1) quite faithfully according to an appropriate measure. The
noise n is random and a natural way to derive ¥ from (1) is to use probabilities; see e.g. [17,28,32,50].

More precisely, if w(v|u) is the likelihood of data v, the usual choice is
U(u,v) = —logm(v|u). (5)

For instance, if A is a linear operator and v = Au+ n where n is additive independent and identically

distributed (i. i. d.) zero-mean Gaussian noise one finds that

2
U (u,v) o [[Au — vlf3. (6)
!Consider an m x n image u. For instance, its columns can be concatenated, which can be seen as
[ w[l] wum+1 - o uf(n—=1Dm4+1]
ul2] um+2] - <o ul(n—=1)m+ 2]
afi—1] - (2)
uli —m] uli]
L ulm]  w2m] - - ulp]

In this case, the original u[i, j] is identified with u[(i — 1)m + j] in (2).



Convex PFs

¢'(0") =0 ¢'(07) >0

(f1) o(t) =t 1<a<2 (f5) o(t) =t

(2) o(t)=Va+P—ya

(f3)  ¢(t) = log(cosh(at))

(f4) o(t)=t/a—log(l+t/a)

Nonconvex PFs
¢ (0T)=0 #'(07) >0
(f6)  ¢(t) = min{at?, 1} (f10) o(t) =t* 0<a<1
at? at

(1)  o(t) = Tr a2 (f11) ¢(t) = 5 g
(f8)  ¢(t) = log(at? + 1) (f12)  o(t) = log (at + 1)
(f9)  ¢(t) =1 —exp (—at?) (f13) ¢(0) =0, ¢(t) =1ift#0

Table 1: Commonly used PFs ¢ : Ry — R where o > 0 is a parameter. Note that among the
nonconvex PFs, (f8), (f10) and (f12) are coercive while the remaining PFs, namely (f6), (f7), (9),
(f11) and (f13), are bounded.

This remains quite a common choice partly because it simplifies calculations.
The role of ® in (4) is to push the solution to exhibit some a priori known or desired features.
It is called prior term, or regularization, or penalty term, and so on. In many image processing

applications, ® is of the form

O(u) =Y &(|Dyull2), (7)
=1

where for any i € {1,--- ,r}, D; : R — R®, for s an integer s > 1, are linear operators. For instance,
the family {D;} = {Di e {1, ,r}} can represent the discrete approximation of the gradient or the
Laplacian operator on u, or finite differences of various orders, or the combination of any of these with
the synthesis operator of a frame transform. Note that s = 1 if {D;} are finite differences or a discrete

Laplacian; then

s=1 = ¢(|Diul2) = ¢(|Dsul).

In (7), ¢ : Ry +— R is quite a “general” function, often called a potential function (PF). A very

standard assumption is that

H1 ¢ : Ry — R is increasing and nonconstant on Ry, lower semi-continuous and for simplicity,

$(0) = 0.

Several typical examples for ¢ are given in Table 1 and their plots are seen in Fig. 1.



Remark 1 Note that if ¢'(07) > 0 the function t — ¢(|t|) is nonsmooth at zero in which case ® is

nonsmooth on Ul_,[w € R? : D;w = 0]. Conversely, ¢'(07) =0 leads to a smooth at zero t — ¢(|t|).
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Figure 1: Plots of the PFs given in Table 1. PFs with ¢/(07) =0 (- - -), PFs with ¢/(0%) > 0 (—).

According to the rules of human vision, an important requirement is that the prior, i.e. ® should

promote smoothing inside homogeneous regions but preserve sharp edges.

1.1 Background

Energy minimization methods, as described here, are at the crossroad of several well established

methodologies that are briefly sketched below.

e Bayesian mazimum a posteriori (MAP) estimation using Markov random field (MRF) priors.

Such an estimation is based on the maximization of the posterior distribution
w(ulv) = (vlu)r(u) /2,

where 7(u) is the prior model for u, and Z = m(v) can be seen as a constant. Equivalently, it

minimizes with respect to u the energy
F(u,v) = —Inm(v|ju) — Inw(u).

Identifying the first term above with ¥(-,v) and the second one with ® shows the fundamentals
of the equivalence. Key papers on MAP energies involving MRF priors are [11-13,17, 44, 50].



Since the pioneering work of Geman and Geman [50], various nonconvex PFs ¢ were explored

in order to produce images involving neat edges, see e.g. [48,49,63]. MAP energies involving
MREF priors are also considered in a large amount of books, such as [28,47,59,62]. A recent

pedagogical account is found in [96].

e Regularization for ill-posed inverse problems was initiated in the book of Tikhonov and Arsenin
[93] in 1977. The background idea can be stated in terms of the stabilization of this kind
of problems. Useful textbooks in this direction are e.g. [56,67,94] and especially the very
recent [88]. This methodology and its most recent achievements are nicely discussed from quite
a general point of view in the chapter “Regularization Methods for Ill-Posed problems” inside

this Handbook.

e Variational methods are originally related to PDE restoration methods and are naturally devel-
oped for signals and images defined on a continuous subset Q C R% d = 1,2,---. For images
d = 2. Originally, the data-fidelity term is of the form (6) for A = Id and ®(u) = [, (|| Dul|2)dz,

where ¢ is a convex function as those given in Table 1. Since the beginning of the 90s, a re-

markable effort was done to find heuristics on ¢ that enable to recover edges and breakpoints in

restored images and signals while smoothing the regions between them (see [5,10,22,27,62,86]

to name just a few from a huge literature) with a particular emphasis on convex PFs. Up to

now, the most successful seems to be the Total Variation (TV) regularization corresponding

to ¢(t) = t, which was proposed by Rudin, Osher and Fatemi in [86]. Variational methods
were rapidly applied along with various linear operators A and more generally, with various
data-fidelity terms . Among all important papers we evoke [22,27,53,71,82,92]. The use of
differential operators D* of orders k > 2 in the prior ® has been rarely investigated; see [19,24].
Let us remind that whenever D is a differential operator and ¢ is nonconvex, the minimization
problem on u : © C R* — R does not admit a solution and no convergence result can be exhib-
ited. More details on variational methods for image processing can be found in several textbooks

like [3,5,88].

For numerical implementation, the variational functional is discretized. Using a rearrangement
of a discretized finite u into a p-length vector, ® takes the form? of (7) where r = p and D; € R**P

fors=2,1<71<p.

’By a commonly used discretization (see e.g. [23]), using the representation of an image as a vector according to (2),
we have

IDeullz =/ (ali — uli — 1) + (alil — ali - 5] a



The equivalence between these approaches is considered in several seminal papers, see e.g. [32,60]

as well as the numerous references therein. The state of the art and the relationship among all these
methodologies is nicely outlined in the recent book of Scherzer, Grasmair et al. [88]. This book gives
a brief historical overview of these methodologies and attaches a great importance to the functional

analysis of the presented results.

1.2 The main features of the minimizers as a function of the energy

Pushing curiosity ahead leads to various additional questions. One observes that usually data-fidelity
and priors are modeled in a separate way. It is hence necessary to check if the minimizer 4 of F (-, v)
meets properly all information contained in the data production model ¥ as well as in the prior ®.
Hence the question: how the prior ® and the data-fidelity W are they effectively involved in u—a

minimizer of F(-,v). This leads to formulate the following backward modeling problem:

Analyze the mutual relationship between the salient features exhibited by

9)

the minimizers 4 of an energy F(-,v) and the shape of the energy itself.

This problem was posed in a systematic way and knowingly studied for the first time in [72,73]. The
point of view provided by (9) is actually adopted many authors. Problem (9) is totally general and

involves crucial stakes:
e (9) yields rigorous and strong results on the minimizers .
e Such a knowledge enables a real control on the solution—the reconstructed image or signal 4.

e Conversely, it opens new perspectives for modeling.

e It enables the conception of specialized energies F that meet the requirements in various appli-

cations.

e This kind of results can help to derive numerical schemes that use what is known about the

solution.

Problem (9) remains open and is intrinsically tortuous (which properties to look for, how to conduct
the analysis...) The results presented here concern images, signals and data living on finite grids. In

this practical framework, the results in this chapter are quite general since they hold for energies

along with appropriate boundary conditions. Other discretization approaches have also been considered, see e.g. [2,95].



F which can be convex or non-convex, smooth or non-smooth, and results address local and global

minimizers.
1.3 Organization of the chapter

Some preliminary notions and results that help the reading of the chapter are sketched in Section 2.
Section 3 is devoted to the regularity of the (local) minimizers of F(-,v) with a special focus on
nonconvex regularization. Section 4 shows how edges are enhanced using non-convex regularization.
In section 5 it is shown that non-smooth regularization leads typically to minimizers involving constant
patches. Conversely, section 6 exhibits that the minimizers relevant to non-smooth data-fidelity achieve

an exact fit for numerous data samples. In all cases, illustrations and applications are presented.

2 Preliminaries

In this section we set the notations and recall some classical definitions and results on minimization

problems.
2.1 Notations

We systematically denote by @ a (local) minimizer of F(-,v). It is explicitly specified when @ is a

global minimizer. Below n is an integer bigger than one.
e D7—the differential operator of order n with respect to the jth component of a function.
e v[i|—the ith entry of vector v.
e Ali, j]—the component located at row i and column j of matrix A.
e #.J—the cardinality of the set J.
e J¢ =1\ J—the complement of J C I in I where I is a set.
e K1 — the orthogonal complement of a sub vector space K C R™.
e A* — transposed of a matrix (or a vector) where A is real-valued.
e A>0 (A > 0)—the matrix A is positive definite (positive semi-definite)
1 si z€X,

o xxn(z) = { 0 s 2d% the characteristic function of a set 3.

o 1, e R" with 1,,[i]] =1, 1 <i< n.



e [L"—the Lebesgue measure on R".

o Id—the identity operator.

||.||[,—a vector or a matrix p-norm.

R, €{tecR:t>00andR. € {teR : ¢t >0}

TV—Total Variation.

{e1,..., en}—the canonical basis of R", i.e. ¢;[i] =1 and ¢;[j] =0 if i # j.
2.2 Reminders and definitions

Definition 1 A function F : RP — R is coercive if lim F(u) = +o0.

flufl—o0
Definition 2 A function F on RP is proper if F : RP — (— o0, +00] and if it is not identically equal

to +o0.
A special attention being dedicated to non-smooth functions, we recall some basic facts.

Definition 3 Given v € RY, the function F(-,v) : RP — R admits at & € RP a one-sided derivative
in a direction w € RP, denoted 61F (u,v)(w), if the following limit exists:

51 F (1, v)(w) = }{% F(u+ tw,l;) - }'(u,v)’

where the index 1 in &1 specifies that we address derivatives with respect to the first variable of F.

In fact, 01 F (@, v)(w) is a right-side derivative; the relevant left-side derivative is —§1F (@, v)(—w). If

F(-,v) is differentiable at 4, then 01F (t,v)(w) = D1 F (4, v)w. In particular, for ¢ : R, — R we have

/0oty def o 0+ 1) = o(0)
¢'(07) = 69(0)(1) = }{%f

, 020 and (7)€ —5p(6)(—1).

Next we recall the classical necessary condition for a local minimum of a possibly non-smooth

function [55, 85].
Theorem 1 If F(-,v) has a local minimum at @ € RP, then 61 F(u,v)(w) = 0, for every w € RP.

If F(-,v) is Fréchet-differentiable at @, one easily deduce that D1 F(u,v) = 0 at a local minimizer .
Rademacher’s theorem states that if F is proper and Lipschitz continuous on RP, then the set of

points in RP at which F is not Fréchet-differentiable forms a set of Lebesgue measure zero [55, 85].

Hence F is differentiable at almost every u. However, when F (-, v) is non differentiable, its minimizers

are typically located at points where F (-, v) is non differentiable. See e.g. Example 1 and Fig. 2 below.



|
-1 0 1 -1 0 1

-1 0 1
B=1,v=-09 B=1,v=-02 B=1,v=05 B=1, v=095
Figure 2: For the set of values for v given above, F(-,v) is plotted with "—” while its minimizer @ is

marked with ”0”. In all these cases @ lies at a point where F (-, v) is non differentiable.

1
Example 1 Consider F(u,v) = §Hu —v||? + Blu| for B> 0 and u,v € R. The minimizer @ of F(-,v)

reads
v+ 8 if v< -0
= 0 if || <p (@ is shrunk w.r.t. v.)
v—03 if v>p

F(-,v) and u are plotted in Fig. 2 for several values of v.
The next corollary tells us what can happen if the necessary condition in Theorem 1 does not hold.
Corollary 1 Let F be differentiable on (RP x R?) \ ©¢ where
O o {(u,v) e RP x R?: Jw € RP| —01F(u,v)(—w) > 5 F(u,v)(w)}. (10)

Given v € R?, if 4 is a (local) minimizer of F(-,v) then

(a,v) & Op.

Proof. If 4 is a local minimizer, then by Theorem 1, §; F (4, v)(—w) > 0, hence
—01F (4, v)(—w) < 0 < 51 F(4,v)(w), Yw e RP. (11)
If (4,v) € Oy, the necessary condition (11) cannot hold. O

Example 2 Suppose that ¥ in (4) is a differentiable function for any v € RY. Let the PF ¢ be such
that for some positive numbers, say 01, - - - , 0y, its left-hand-side derivative is strictly higher than its
right-hand side derivative ie. ¢'(0;) > qS’(Oj), 1 < j < k for k finite, and that ¢ is differentiable

beyond this set of numbers. Given a (local) minimizer , denote

I={1,--,r} and Iy={iel:|Dyily=0;1<j<k}



Define F(ii,v) = ¥(i,v) + 8 Y ¢(|Dyilll2). Note that F(-,v) is differentiable at @. The energy
iel\I,
F(-,v) at 4 reads F(u,v) = F(u,v) +,82 ¢(||Dsai]|2). Applying the necessary condition (11) for
i€l
w = 4 yields

5 ¢ (IDidlly) < —DiF(a,v)(a) < B)_ ¢ (|IDidll3).

iEI@ 1;6[@
In particular, we must have 3, ;. ¢'(|[Ditlly) < >Z5c;. #'(||Dsii||3), which contradicts the assumption

on ¢. It follows that if 4 is a (local) minimizer of F(-,v), then I; = @ and hence
IDjilla #6;, 1< 5 <F.

A typical case is the PF (f6) in Table 1, namely ¢(t) = min{at? 1}. Then k =1 and 0 = 0; = ﬁ

Remind that (f6) is the discrete equivalent of the Mumford-Shah prior [14].

The following existence theorem can be find e.g. in [30].

Theorem 2 For v € R?, let U C RP be a non-empty and closed subset and F(-,v) : U — R a lower
semi-continuous (l.s.c.) proper function. If U is unbounded (with possibly U = RP), suppose that

F(-,v) is coercive. Then there exists u € U such that F(u,v) = inlf] F(u,v).
ue

We should emphasize that this theorem gives only sufficient conditions for the existence of a minimizer.

They are not necessary, as seen in the example below.
Example 3 Let F : R?2 x R? — R involve (f6) in Table 1 and read
Flu,v) = (u[l] = o[1])* + Bo(Ju[l] = u[2]|) for ¢(t) = max{at?, 1}, 0 < § < oo

For any v, it is obvious that F (-, v) is not coercive since it is bounded by 3 in the direction span{ (0, u[2])}.
Nevertheless, its global minimum is strict and is reached for a[1] = 4[2] = v[1]. At the global minimum,

F(-,v) gets its minimal value, namely F(i,v) = 0.

Most of the results summarized in this chapter exhibit the behavior of the minimizer points 4 of

F(-,v) under variations of v. In words, they deal with local minimizer functions.

Definition 4 Let F : RP x R? — R and O C R9. We say that U : O — RP is a local minimizer
function for the family of functions F(-,0) = {F(-,v) : v € O} if for any v € O, the function F(-,v)

reaches a strict local minimum at U(v).

When F(-,v) is proper, l.s.c. and convex, the standard results below can be evoked, see [30,43].

10



Theorem 3 Let F(-,v) : RP — R be proper, convez, l.s.c. and coercive for every v € R,

(i) Then F(-,v) has a unique (global) minimum which is reached for a conver and closed set of

minimizers {U(v)} = {ﬂ e RP: F(u,v) = inlf] ]:(u,v)};
— ue

(i1) If in addition F(-,v) is strictly convex, then the minimizer 4 = U(v) is unique.

Moreover, the minimizer function v — U(v) is unique (hence it is global) and it is continuous if

F is continuous [17, Lemmas 1-2, p. 307].

The next lemma, which can be found e.g. in [45], addresses the regularity of the local minimizer

functions when F is smooth. It can be seen as a variant of the Implicit functions theorem.

Lemma 1 Let F be C™, m > 2, on a neighborhood of (G,v) € RP x RY. Suppose that F(-,v) reaches
at . a local minimum such that D?F(a,v) = 0. Then there are a neighborhood O C R? containing v
and a unique C™ 1 local minimizer function U : O — RP, such that D?F(U(v),v) = 0 for every v € O
and U(v) = .

This lemma is extended in several directions in this chapter.
According to a fine analysis conducted in the 90s and nicely summarized in [5], ¢ preserves edges

if H1 holds as if H2, stated below, holds true as well:

=0.

/
H2 lim o'(t)
t—oo ¢

This assumption is satisfied by all PFs in Table 1 except for (f1) in case if @« = 2. We do not evoke
the numerous other heuristics for edge preservation as far as they will not be used explicitly in this

chapter.

Definition 5 Let ¢ : [0,+00) — R and m > 0 an integer. We say that ¢ is C™ on Ry, or equivalently
that ¢ € C™(R4.) if and only if the following conditions hold:

(i) ¢ is C™ on (0,+00);
(it) the function t — ¢(|t|) is C™ at zero.

Using this definition, for the PF (f1) in Table 1 we see that ¢ is C! on [0, +00), that ¢ € C2(R,) for
(f4), while for the other differentiable functions satisfying ¢/(07) = 0 we find ¢ € C®°(R,).

11



3 Regularity results

Here we focus on the regularity of the minimizers of F : RP x R? — R of the form

Fluv) = [|Au—v[3+5) ¢(IDsul2), (12)
iel

I = {1,---,r},

where A € R?7*P and for any i € I we have D; € R**P for s > 1. Let us denote by D the following

rs X p matrix:

When A in (12) is not injective, a standard assumption in order to have regularization is
H3 ker(A) Nnker(D) = {0}.

Notice that H3 trivially holds when rank A = p. In typical cases ker(D) = span(1,), whereas usually
A1, # 0, so H3 holds again. Examples for ¢ are seen in Table 1.

3.1 Some general results

We first check the conditions on F(-,v) in (12) that enable Theorems 2 and 3 to be applied. It is

useful to remind that since H1 holds, F(-,v) in (12) is Ls.c. and proper.

1. Note that F(-,v) in (12) is coercive for any v € R? at least one of the following cases:

e rank (A) = p and ¢ : R4 — R4 is non-decreasing;

e H1 and H3 hold and ¢ is coercive in addition (e.g. as (f1)-(f5), (f8), (f10) and (f12) in
Table 1).

In these cases, Theorem 2 can be applied and shows that F(-,v) does admit minimizers.

2. For any v € R?, the energy F(-,v) in (12) is convex and coercive if H1 and H3 hold for a convex ¢.

Then statement (i) of Theorem 3 holds true.

3. Furthermore, F(-,v) in (12) is strictly convex and coercive for any v € R? if ¢ satisfies H1 and

if one of the following assumptions holds true

e rank (A) = p and ¢ is convex ;

e H3 holds and ¢ is strictly convex.

12



Then statement (ii) of Theorem 3 can be applied. In particular, for any v € R?, F(-,v) has a
unique strict minimizer and there is a unique local minimizer function &/ : R? — RP which is

continuous (remind Definition 4 on p. 10).

However, the PFs involved in (12) used for signal and image processing are often nonconvex or
nondifferentiable. An extension of the standard results given above is hence necessary. This is the

goal of the subsequent § 3.2.
3.2 Stability of the minimizers of energies with possibly nonconvex priors
In this subsection the assumptions stated below are considered.

H4 The operator A in (12) satisfies rank A = p, i.e. A*A is invertible.

H5 The PF ¢ in (12) is C°(Ry) and C™, m > 2, on RY. with 0 < ¢/(07) < oo;
if ¢'(07) = 0 4t is required also that ¢ is C™ on Ry (see Definition 5).

Under H1 (p. 3), H2, H4 and H5, the prior (and hence F(-,v)) in (12) can be nonconvex and in

addition nonsmooth. Thanks to H1 and H3, Theorem 2 ensures that for any v € R?, F(-,v) admits a

global minimum. However, it can present numerous local minima.

Energies F with nonconvex and possibly non differentiable PFs ¢ are frequently used in engi-
neering problems since they were observed to give rise to high quality solutions . It is hence

critically important to have good knowledge on the stability of the obtained solutions.

Even though established under restrictions on A, the results summarized in this subsection provide
the state of the art on this subject. Further research is highly desirable to assess the stability of broader

classes of energies.
3.2.1 Local minimizers

The stability of local minimizers is a matter of critical importance in its own right for several reasons.
In many applications, the estimation of the original signal or image u, is performed by only locally
minimizing a nonconvex energy in the vicinity of some initial guess. Second, it is worth recalling that
minimization schemes that guarantee the finding of the global minimum of a nonconvex objective
function are exceptional. The practically obtained solutions are usually only local minimizers, hence
the importance of knowing their behavior.

The theorem below is a simplified version of the results established in [39].

13



Theorem 4 Let F(-,v) in (12) satisfy H1, H2, Hj and H5. Then there ezists a closed subset © C R?
whose Lebesgue measure is LI(©) = 0 such that for any v € RY\ O, there ezists an open subset O C RY

with v € O and a local minimizer function (see Definition 4, p. 10) U : O — RP which is C™~! on O

and meets 4 =U(v).

Related questions have been considered in critical point theory, sometimes in semi-definite pro-
gramming; the well-posedness of some classes of smooth optimization problems was addressed in [37].

A lot of results have been established on the stability of the local minimizers of general smooth ener-

gies [45]. It worths noting that these results are quite abstract to be applied directly to our energy
in (12).

Commentary on the assumptions. All assumptions H1, H2 and H5 bearing on the PF ¢ are non
restrictive at all since they address all nonconvex PF's in Table 1 except for (f13) which is discontinuous
at zero. The assumption H4 may, or may not, be satisfied—it depends on the application in mind.

This assumption is difficult to avoid, as seen in Example 4.

Example 4 Consider F : R? x R — R given by
F(u,0) = (ult] = u[2] = 0)? + |ul1]] + [u[2]].

where v = v[1]. The minimum is obtained after a simple computation.

1 ~ 1 [ 1]
v > 5 {UWw)} = <c, c—v+ 2> for any ce |0,v — 3 (non-strict minimizer);
lv| < 5 = 0 (unique minimizer)
1 P 1 1] L
v < —5 {UW)}=(ec,e—v— 5 for any c € |v+ 2 0| (non-strict minimizer).
In this case assumption H4 is violated and there is a local minimizer function only for v € 33|

Intermediate results. The derivations in [39] reveal a series of important intermediate results.

1. If ¢'(07) = 0 and ¢ is C}(R,)—remind Definition 5—then Vv € R?\ ©, every local minimizer
of F(-,v) is strict and D}F (1, v) = 0. Consequently, Lemma 1 is extended since the statement

holds true Yv € R?\ O.

For real data v—a random sample of R%—whenever F(-,v) is differentiable and satisfies
the assumptions of Theorem 4, it as almost sure that local minimizers 4 are strict and

their Hessians D?F (@i, v) are positive definite.

14



2. Using Corollary 1, p. 9, the statement of Theorem 4 holds true if ¢/(0%) = 0 and there is 7 > 0
such that ¢'(77) > ¢/(71). This is the case of the PF (f6) in Table 1 (p. 3) which is the discrete

version of the Mumford-Shah regularization.

3. If ¢/(0T) > 0, define

def

JEier : Dja=0} and K; ¥ {weR? : Duw=0, Vie J}.

Then Vv € R?\ ©, every local minimizer @ of F(-,v) is strict and

(a) D1F|k,(4,v) =0 and D3F| K ;(@,v) > 0—a sufficient condition for a strict minimum

on Kj ;
(b) 61 F(a,v)(w) >0, Ywe Kj \ {0}—a sufficient condition for a strict minimum on Kj-

Let us emphasize that (a) and (b) provide a sufficient condition for a strict (local) minimum
of F(-,v) at @ (a straightforward consequence of [78, Theorem 1] and Lemma 1). Hence

these conditions are satisfied at the (local) minimizers 4 of F (-, v) for almost every v € RY.

We can interpret all these results as it follows:

Under the assumptions H1, H2, H4 and H5, given real data v € RY, the chance to get a
nonstrict (local) minimizer or a (local) minimizer of the energy in (12) that does not result

from a C"™~ 1 local minimizer function, is null.

3.2.2 Global minimizers of energies with possibly nonconvex priors

An overview of the results on global minimizers for several classes of functions can be found in [37].

The setting being quite abstract, the results presented there are difficult to apply to the energy in

(12). The results on the global minimizers of (12) presented next are a extracted from [40].

Theorem 5 Assume that F(-,v) in (12) satisfy H1, H2, H4 and H5. Then there exists a subset
6 C R such that Lq(é) = 0 and the interior of Rq\é is dense in R4, and for any v € ]Rq\é) the energy

F(-,v) has a unique global minimizer. Furthermore, the global minimizer function U :R? \ O — RP is

C™ ! on an open subset of R\ © which is dense in RY.

This means that in a real-world problem there is no chance of getting data v such that the

energy F(-,v) has more than one global minimizer.

We anticipate mentioning that even though O is negligible, it plays a crucial role for the recovery

of edges; this issue is developed in section 4.
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3.3 Nonasymptotic bounds on minimizers

The aim here is to give nonasymptotic analytical bounds on the local and the global minimizers @ of
F(-,v) in (12) that hold for all PFs ¢ in Table 1. Related questions have mainly been considered in
particular situations, such as A = Id, for some particular ¢, or when v is a special noise-free function,
or in the context of the separable regularization of wavelet coefficients, or in asymptotic conditions
when one of the terms in (12) vanishes—Ilet us cite among others [4,69,91]. An outstanding paper [44]
explores the mean and the variance of the minimizers 4 for strictly convex and differentiable functions
¢. The bounds provided below are of practical interest for the initialization and the convergence

analysis of numerical schemes.

H6 ¢ is C° on Ry (cf. Definition 5) with $(0) =0 and ¢(t) > 0 for any t > 0.

H7 There are two alternative assumptions:
e ¢/(07) =0 and ¢ is C' on R\ Oy where the set Og = {t > 0: ¢'(t7) > ¢/'(t7)} is at most finite.
e ¢/(07) >0 and ¢ is C' on R%.

The conditions on ©g in this assumption allows us to address the PF given in (f6). Let us emphasize
that under H1 (p. 3), H6 and H7 the PF ¢ can be convex or nonconvex.

The statements given below were derived in [80] where one can find additional bounds and details.
Theorem 6 Consider F of the form (12), and let H1, H6 and H7 hold.
(1) Let one of the following assumptions hold:

(a) rank (A) =p

(b) ¢ is strictly increasing on Ry and H3 holds.
For every v € RY, if F(-,v) reaches a (local) minimum at @, then

JAdll < o]

(11) Assume that rank (A) = p > 2, ker(D) = span(1,) and ¢ is strictly increasing on Ry. There is
a closed set N C R? with LY(N) = 0 such that Vv € RI\ N, if F(-,v) reaches a (local) minimum
at 4, then

[Adllz < [lv]lo-
A full description of the set N can be found in [80].
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Comments on the results. If A is orthonormal (e.g. A =1d), the obtained results yield

@) = allz < llvfl2;

(@) = alls <2

These provide sharper bounds than the one available in [5].

2

When the least eigenvalue A7, of A*A is positive, it is obvious that

@) = lall < gl vl

min

(i) = llallz < Al o]z

In the case of noise-free data and rank (A) = p, one naturally wishes to recover the original
(unknown) w,. It is hence necessary that ||Aull2 = ||v||2. Comparing the results obtained in (i) and

(i) show that such a goal is unreachable if ¢ is strictly increasing on R..

It follows that exact recovery needs that ¢ is constant for ¢ > 7, for a constant 7 > 0.

The mean of restored data. In many applications, the noise corrupting the data can be supposed
to have a mean equal to zero. When A = Id, it is well known that mean(a) =mean(v), see e.g. [5]. It

is shown in [80, Proposition 2| that for a general A

Al o 1, (14)

= mean(a) =mean(v). (15)

However, (14) is quite a restrictive requirement. In the simple case when ¢(t) = t2, ker(D) = 1,.; and
A is square and invertible, it is easy to see that the restrictive requirement (14) is also sufficient [80,
Remark 2]|. It turns out that if A is no longer equal to Id, the natural requirement (15) is generally
false. A way to remedy for this situation is to minimize F(-,v) under the explicit constraint derived

from (15).

The residuals for edge-preserving regularization. The goal here is to provide bounds that
characterize the data-fidelity term at a (local) minimizer @ of F(-,v). More precisely, the focus is on

edge-preserving PF's satisfying

def _
HS  [l¢f]] max{supw(t*)\, sup |/ (¢ )} < 0.
t>0 t>0
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Comparing with H2 shows that ¢ under HS is edge-preserving. Observe that except for (f1) and (f13),
all PFs given in Table 1 satisfy H8. Even though (f13) is edge-preserving, ¢’ is not well defined at
zero. Note that when ¢'(0") > 0 is finite we usually have ||¢/||c = ¢'(07).

The statement given below is established in [80, Theorem 3.1.].

Theorem 7 Consider F of the form (12) where rank (A) = g < p and let H1, H6, H7 and H8 hold.

Suppose that ||¢'||co = 1. Then for every v € RY, if F(-,v) has a (local) minimum at 4, we have

N p o
142 = vlloo < 5116/ lloo[I(AA") " Alloc|DIl1- (16)

In particular, if A = Id and D corresponds to the discrete gradient operator on a two-dimensional
image, ||D||; = 4 and we find
lv = dlloc < 286 ||oc-

The result of this theorem may seem surprising. In a statistical setting, the quadratic data-fidelity

term ||Au — v||3 in (12) corresponds to white Gaussian noise on the data, which noise is unbounded.

However, if ¢ is edge-preserving with ||¢'||c bounded, the (local) minimizers @ of F(-,v) give rise to

noise estimates (v — A4)[i], 1 <1 < ¢ that are tightly bounded as stated in (16).

Hence the assumption for Gaussian noise on the data v is distorted by the solution .

The proof of the theorem reveals that this behavior is due to the boundedness of the gradient of

the regularization term. Let us emphasize that the bound in (16) is independent of data v and that

it is satisfied for any local or global minimizer @ of F(-,v).

4 Non-convex regularization

4.1 Motivation

A permanent requirement is that the energy F favors the recovery of neat edges. Since the pioneering
work of Geman & Geman [50], various nonconvex & in (4) have been proposed [12,48,49,62,66,70,82].
Indeed, the relevant minimizers exhibit neat edges between homogeneous regions. However, they are
tiresome to control and to reach (only a few algorithms are proved to find the global minimizer of
particular energies within an acceptable time). In order to avoid the numerical intricacies arising

with nonconvex regularization, since [52,61,90] in the 1990s, an important effort was done to derive

3Let us remind that for any m x n real matrix C' with components C[i,j], 1 < m, 1 < j < n, we have

Clli = me Cli,j]] and ||C|oc = mz Cli, j]l, see e.g. [1].
1€l mj@XZI [i, 4] and [|Cllec = max Y _ |C[i, |, see e.g. [51]

i=1 j=1
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convex edge-preserving PFs, see e.g. [17,27,62,86] and [5] for an excellent account. The most popular
convex edge-preserving PF was derived by Rudin, Osher and Fatemy [86]: it amounts to ¢ = ¢, for
{D;} yielding the discrete gradient operator (see (2) and (8)) and the relevant ® is called the Total

Variation (TV) regularization.

1 100 1 100 1 100
Datav=u+n (—) Convex regularization ¢(t) =t (TV) Non-convex regularization
Original u, (dashed line) Original u, (- - -), minimizer @ (—) o(t) = at/(1+ at)

Figure 3: Minimizers of F(u,v) = |Ju —v|3 + 83—} ¢(|uli] — ufi +1]]).

Fig. 3 nicely shows that the hight of the edges is much more faithful when ¢ is nonconvex,
compared to the convex TV regularization. The same effect can also be observed e.g. in Figs. 8, 9

and 11.

This section is devoted to explain why edges are nicely recovered using a nonconvex ¢.
4.2 Assumptions on potential functions ¢
Consider F(-,v) of the form (12) where D; : R?P = R', i € I = {1,--- |7}, i.e.
F(u,v) = [|[Au =[5+ 5 &(|Diul), (17)
i€l

where ¢ : Ry — R, satisfies H1 (p. 3), H6 (p. 16) and H9 given below

H9 ¢ isC? on R, ¢/(07) >0Vt >0, inf ¢"(t) <0 and lim ¢"(t) = 0;
teRY t—o00

as well as one of the following assumptions:

H10 If ¢'(07) = 0, then 37 > 0 and 3T € (1,00) such that ¢"(t*) > 0, Vt € [0, 7], while ¢"(t) <

0, Vt > 7, ¢" strictly decreases on (1,7T] and increases on [T,00);

H11 If ¢'(07) > 0 then }{% @"(t) < 0 is well defined and ¢ (t) < 0 is increasing on (0,00).
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¢'(07) =0 (@ differentiable) ¢'(07) > 0 (@ non differentiable)

(H1, H6, H9 and H10) (H1, H6, H9 and H11)
at?
o) =75 at
1+ at? t) =
o(t) 1+at
>0 1 9 .
@' (t) ¢/ (t) increases, <0
T T
’ \<0— increases, <0 ¢"(0) <0

Figure 4: Illustration of the assumptions in two typical cases.

These assumptions are illustrated in Fig. 4. Even though they might seem tricky, they hold true
for all nonconvex PFs in Table 1, except for (f6) and (f13). The “irregular cases” (f6) and f(13) are
considered separately.

The results presented below are published in [79].

4.3 How it works on R

This example shows the main phenomena underlying the theory on edge-enhancement using

nonconvex ¢ satisfying H1, H6 and H9 along with either H10 or H11.

Let F : R x R — R read (see [Sec. 2, p. 963] [79]).
) B>—1/¢"(T) if ¢(07)=0 (HL, H6, H and H10)
Fu,v) = 2 (0= v)? + B6(u) for
2 B> —1/lm¢"(t) if ¢/(07)>0 (HL HG, HO and H11)
The (local) minimality conditions for 4 of F(-,v) read
o 16 ¢/(07) = 0 or |¢/(0%) > 0 and @ 0| : -+ A¢/(a) = v and 1+ 86" (@) > 0 ;
e If ¢(07)>0and a=0: |v| < B¢(0T).

To simplify, we assume that v > 0. Define

o = inf Cg and 67 = sup Cp,

for  Cp={ueR}:DiF(u,v) <0} ={ueR::¢"(u)<-1/8}.

We have 6y =0 if ¢/(07) >0 and 0 < 6y <7 < 6y if ¢'(0") = 0. After some calculations one finds:
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F(u,v) for ¢(t) £ F(u,v) for ¢(t) = -4

a+t2 a+t
! u+ 3¢ (u) ! u+t B¢’ (u)
&
) 3
50 f() -
Oy 0
" % 01 (6 =0y =0)
¢'(07) =0 \ ¢'(0%) >0
Minimizer if : 4 + 8¢/ (1) = v Minimizer at 0 : [v] < 8¢/ (07)
and 1+ 3¢"(a) >0 Else : 4+ B¢/'(1) = v and 1+ 3¢"(a) > 0

Figure 5: The curve of u +— (D1 F(u,v) —v) on R\ {0}. Note that all assumptions mentioned before
do hold.

1. For every v € R4 no minimizer lives in (6p,01) (cf. Fig. 5);

2. One computes 0 < & < & such that (¢f. Fig. 5)
(a) if 0 < v < &, F(-,v) has a (local) minimizer 4y € [0, 6], hence g is subject to a strong
smoothing;
(b) if v > &y, F(-,v) has a (local) minimizer @; > 61, hence 4; is subject to a weak smoothing;
(c) if v € [£,&1] then F(-,v) has two local minimizers, iy and uy;
3. There is £ € (&, &1) such that F(-, &) has two global minimizers, F (g, &) = F(i1,&), as seen in
Fig. 6;
(a) if 0 < v < & the unique global minimizer is 4 = 4y ;

(b) if v > £ the unique global minimizer is 4 = 1

4. The global minimizer function v + U(v) is discontinuous at ¢ and Cl-smooth on Ry \ {¢}.

Item 1 is the key for the recovery either of homogeneous regions or of high edges. The minimizer
G (see Items 2a, 3a) corresponds to the restoration of homogeneous regions, while 4; (see Items 2b,
3b) corresponds to edges. Item 3 corresponds to a decision for the presence of an edge at the global
minimizer. Since {¢} is closed and L'{¢} = 0, Item 4 confirms the results of § 3.2.2. The detailed
calculations are outlined in [79, sec. 2.].

The theory presented next is a generalization of these facts.
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<2 >
Petede 2SS
,’;ztzgggzz:., — ,,z§;§§§_2zg., —
7 ﬁ;’"” -
90 >0 01 () “i' =0 01 U
2
(b(u) = (ligu?) ¢(u> = ligu

Figure 6: Each curve represents F(u,v) = 3(u — v)? + 3¢(u) for an increasing sequence v € [0,&1).

The global minimizer of each F(-,v) is emphasized with “e”. Observe that no (local) minimizer lives

in (90, 91)

4.4 Either smoothing or edge enhancement
We adopt the hypotheses formulated in § 4.2. Given v, let 4 be a local (or global) minimizer of F (-, v).
The results presented here are extracted essentially from [79, section 3.
(A) Case ¢’(0T) = 0. The theorem below as well as Proposition 1 are established in [79, § 3.1].
Theorem 8 Let H1, H6, H9 and H10 hold. Let {D; : i € I} be linearly independent and

1Y max |[D*(DD*)Le; .

1<i<r !

2u° || A*All

T8>

minimizer of F(-,v), then

, there are 6y € (1,7) and 61 € (T,00) such that Yv € RY, if 4 is a (local)

either |D;u| <6y, or |Dija|>60,, Viel. (18)

In imaging problems, {D;} are generally not linearly independents. Note that if {D;} are linearly
dependent, the result (18) holds true for all (local) minimizers @ that are locally homogeneous on
connected regions?.  However, if this is not the case, one recovers both high edges and smooth
transitions, as seen in Fig. 9(a). When ¢ is convex, all edges are smoothed, as one can observe in Fig.
8(a).

The PF ¢(t) = min{at?,1} (the discrete version of Mumford-Shah functional), (f6) in Table 1,
does not satisfy assumptions H9 and H10. In particular,

20/a = ¢ (1_> > (1+> —0.
va Va

“More precisely, connected with respect to {D;}.
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A straightforward consequence of Corollary 1 (p. 9) is that for any (local) minimizer u of F(-,v) we

have

1

Propositions 1 and 2 below address only global minimizers under specific conditions on {D;}.

Proposition 1 Let ¢(t) = min{at? 1}, the set {D; : i € I} be linearly independent and rank (A) >

p—r > 1. Assume that F(-,v) has a global minimizer at 4. Then

| Be:ll3

either |D;a| < I L2 1
Dl 1Bl + ap

i, or |Dsl> for T;= <1, Viel, (19)

1 1
Va Vary
where B is a matriz® depending only on A and D. Moreover, the inequalities in (19) are strict if the
global minimizer 4 of F(-,v) is unique.

In the case when u is an one-dimensional signal, the following result is exhibited in [74].

Proposition 2 Let ¢(t) = min{at?,1}, Dju = ufi] —u[i +1], 1 < i < p—1 and Al, # 0 with

rank (A) > 1. Then for any global minimizer @ of F(-,v) we have

either |D;al < Ly, or |Diul > Viel, (20)

1 1
Va varly’

where F o HBZ] =i+1 eJH%
HBZ] _in &l +ab

and B is a matria® depending only on A. Moreover, the inequalities in (20) are strict if the global

minimizer 4 of F(-,v) is unique.

for def max['; < 1.

1
Vay i€l

In both Propositions 1 and 2, set g = — and 0 =

E

Let us define the following subsets:
2 def N s def 2 .
Jo={iel : |Dju| <6y} and Jy = I\ Jo={iel : |D;ul > 6:}. (21)

Using these notations, one can unify the interpretation of Theorem 8 and Propositions 1 and 2.

SFrom the assumptions, 7 < p in all cases. If r = p, we have B = Id. If r < p, we choose matrices H € R"*?,
H, € RP*P7" and D, € RP""*P such that for any u € R? we have u = HDu + H,Dqu and rank (AH,) = p — r. Denote
M, = AH, € R?*P~", Then B = Id — M, (M; M,)" ' M.

51n this case, B reads
AL, T3 A*
A" (Id - %) A.
AL, 13
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Since 0y < 61, a natural interpretation of the results of Theorem 8, and Propositions 1 and 2,
is that [|D;a| : i€ j()] are homogeneous regions with respect to {D;} while {|D;a| : i € J;}
are break points in D;u.

In particular, if {D;} correspond to first-order differences, Jo addresses smoothly varying regions

while J; corresponds to edges higher than 6; — 6.

(B) Case ¢’(01) > 0. Here the results are stronger without any assumption on {D;}. The next

Theorem 9 and Proposition 3 are proven in [79, §3.2.].
202 || A* Al

| lime 0 ¢ ()]
depending only on {D;}. Then 301 > 0 such that Vv € R, every (local) minimizer 4 of F(-,v)

Theorem 9 Let Hi, H6, H9 and HI11 hold. Let 3 > where p > 0 is a constant

satisfies

either |D;a| =0, or |Dju|>6,, VYiel. (22)

The “0-1”7 PF (f13) in Table 1, ¢(0) = 0, ¢(t) = 1 if ¢ > 0 does not satisfy assumptions H6, H9

and H11 since it is discontinuous at 0.

Proposition 3 Let ¢ be the “0-17 PF, i.e. (f13) in Table 1, the set {D; : i € I} be linearly independent

and rank A > p—r > 1. If F(-,v) has a global minimum at 4, then

either |Dyul =0 or |D;ul> VB ,
| Beil|2

Viel, (23)

where B is the same as in Proposition 1. The inequality in (23) is strict if F(-,v) has a unique global

minimaizer.

Let

Note that (23) holds true if we set #; = min VB .
iel || Bei|

Jo ¥ fi . Dl =0} and J; I\ Jo={i ¢ [Ditt| =01} .

With the help of these notations, the results established in Theorem 9 and Proposition 3 allow the

relevant solutions @ to be characterized as stated below.

By Theorem 9 and Proposition 3, the set Jo addresses regions in & that can be called strongly
homogeneous as far as [ [D;a| =0 < i€ jo] while .J; addresses break-points in | Dy larger
than 64 since [ ID;a| > 6, & ic jl]

If D corresponds to first order differences or discrete gradients, @ is neatly segmented with
respect to {D;}: Jo corresponds to constant regions while Jy describes all edges and the latter

are higher than 6;.
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(a) Original image (b) Data v = blur + noise

Figure 7: Data v = a *x u, + n, where a is a blur and n is white Gaussian noise, 20 dB of SNR.

Let us remind that direct segmentation of an image from data transformed via a general (non
diagonal) operator A remains a tortuous task using standard methods. The result in (22), Theorem 9,
tells us that such a segmentation is naturally involved in the minimizer @ of F(-,v) in the context of

this theorem. Let us emphasize that this segmentation effect holds for any operator A. This can be

observed, e.g., on Figs. 9b,d and 12d.

(C) Illustration: Deblurring of an image from noisy data. The original image u, in Fig. 7(a)
presents smoothly varying regions, constant regions and sharp edges. Data in Fig. 7(b) correspond
to v = a * u, + n, where a is a blur with entries a; ; = exp (—(z’2 +j2)/12.5) for —4 < 4,5 < 4, and
n is white Gaussian noise yielding 20 dB of SNR. The amplitudes of the original image are in the
range of [0,1.32] and those of the data in [—5,50]. In all restored images, {D;} correspond to the
first-order differences of each pixel with its 8 nearest neighbors. In all figures, the obtained minimizers
are displayed on the top. Just below, the sections corresponding to rows 54 and 90 of the restored
images are compared with the same rows of the original image. Note that these rows cross the delicate
locations of the eyes and the mouth in the image.

The restorations in Fig. 8 are obtained using convex PFs ¢ while those in Fig. 9 using nonconvex
PFs ¢. According to the theory presented in paragraphs (A) and (B) here above, edges are sharp
and high in Fig. 9 where ¢ is nonconvex while they are underestimated in Fig. 8 where ¢ is convex.

In Fig. 9(b) and (d) ¢ is nonconvex and ¢'(0") > 0 in addition. As stated in Theorem 9, in spite of

the fact that A is nondiagonal (and ill-conditionned), the restored images are fully segmented and the
edges between constant pieces are high. Even though Proposition 3 assumes that {D;} are linearly

independent, the segmentation effect using linearly dependent {D;} as described above is often neat.
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¢'(07) =0 ¢'(07) >0

(a) ¢(t) =t* for a = 1.4, 3 = 40 (b) ¢(t) =t for g =100
Figure 8: Restoration using convex PF's.

4.5 Selection for the global minimum

Let the original image u, be of the form

Uo = NxXx, N >0, (24)

where the sets ¥ C {1,...,p} and X¢ are nonempty and yx € RP is the characteristic function of 3,
i.e.
. 1 if i€,
=910 ie e
Let data read

v = Au, = Anxs.

Consider that F(-, A nxx) is of the form (17) and focus on its global minimizer 4,. The question

discussed here is:
How to characterize the global minimizer 4, of F(-, A nxx) according to the value of n > 07?

The results sketched below were established in [79, section 4]. In order to answer the question

formulated above, two additional assumption may be taken into account.
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¢'(07) =0 ¢'(07) >0

at
(b) o(t) = 15t for a = 20, 8 =100

Row 54 Row 54

Row 90 Row 90

(c) ¢(t) = min{at?,1} for « =60, 3=10 (d) ¢(0) =0, ¢(t) =1, t >0 for 3 =25

Figure 9: Restoration using non-convex PFs.
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H12 For any i € I, D; yields (possibly weighted) pairwise differences and ker(D) = span(1,);
H13 For anyt € R, there is a constant’ 0 < ¢ < +oo such that o(t) < c; for simplicity, fix c = 1.

Moreover, it is assumed that A satisfies H4 (p. 13). Remind that by H4 and H1 (p. 3), F(-,v) admits
a global minimum and that the latter is reached.

From now on, we denote
Ji = {z e {1,....,r} : [Diuo| = Dinxs| > o} and JE =1\ Ji. (25)

Note that J; addresses the edges in u, = nxs.

Proposition 4 (¢/(07) =0, F(-,v) is C*(R})) . Assume H1 (p. 3), H4, H6 (p. 16), H9, H10, H12
and H13. Let every (local) minimizer of F (-, Anxs) satisfies the property stated in (18) (p. 22). Then

there are two constants no > 0 and n; > ng such that

nel0,m) = |Dity| <6y, Yiel (u, is fully smooth) (26)

whereas
’Dian| < by, Vi € ch,

Didy| > 61, Vi€, (the edges in U, are correct).

n=m

This result corroborates the interpretation of 6y and #; as thresholds for the detection of smooth

differences and edges, respectively—see (21) and the comments following this equation.

Proposition 5 (Truncated quadratic PF) Let ¢(t) = min{at?, 1} —see (f6) in Table 1. Assume
that Hf and H13 are satisfied. Define wy, € RP by

ws = (A* A+ faD*D) "' A* Axs. (27)
Then there are ng > 0 and n; > ng such that

nel0,n) = d,=nws, (U is fully smooth) (28)

n=m = Uy=nxs, (exact recovery, U, = u,) (29)

Moreover, @, in (28) and (29) is the unique global minimizer of the relevant F(-,nAxs).

Observe that nws; in (28) is the regularized least-squares solution, hence it does not involve edges. For

1 = m the global minimizer 4, is equal to the original u,.

"Note that H1 and H13 entail tlim @' (t) = 0. Then the edge-preservation necessary condition H2 (p. 11) is trivially
[ — OO
satisfied.
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Proposition 6 (0 < ¢'(07) < +o0) Assume HI, Hj, H6 (p. 16), HI, H11, H12 and H13. Let every
(local) minimizer of F(-, Anxx) satisfies the property stated in (22) (p. 24). Then there exist ng > 0
and n1 > no such that

Al)*A
nel0,m) = u,=n¢1l, where (= (10)73@ (G, is constant) (30)
[ AT, I3
whereas
B L e
n>m = Dty =0, Vi€ Jr, (G, is piecewise constant with correct edges)

|D11AL,7| > 64, Vi € J1.

If n is small, the global solution 1, is constant, while for 7 large enough, 4, has the same edges
and the same constant regions as the original u, = nyy. Moreover, if 3 and YX¢ are connected with

respect to {D; : i € I'}, there are §, € (0,n] and ¢, € R such that

Gy = yxs + énl,,  (asymptotically exact recovery, i, ' —. ) (31)

and 8, — n and ¢, — 0 as n — oo. Hence #,, provides a faithful restoration of the original u, = nxs.

Proposition 7 (“0-1” PF) Let ¢ be given by (f13) in Table 1. Assume that H4 and H12 are satisfied.

Then there are ng > 0 and m > ng such that

nel0,m) = a,=n¢1, (i, is constant), (32)

n>m = U,=nXxx, (exact recovery, Uy, = u,) (33)

where ¢ is given in (30). Moreover, iy, in (32) and (33) is the unique global minimizer of F(-, Anxx).

By way of conclusion, non convexity and boundedness of ¢ can ensure correct edge recovery

as well as (possibly asymptotically) correct recovery of wu,.

The results presented here can be extended to other forms of finite differences. At this stage,
the assumption H4 (i.e. that A*A is invertible) seems difficult to avoid. A further development is

necessary to characterize the global minimizer 4, when data are corrupted with some perturbations.

5 Minimizers under non-smooth regularization

Observe that the minimizers corresponding to ¢/(0") > 0 (non smooth regularization) in
Figs. 3 (b)-(c), 8(b), and 9(b) and (d), 11(a), (b) and (c), 12(d), are constant on numer-

ous regions. This section is aimed to explain and to generalize this phenomenon.
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Consider
Flu,v) = ¥(u,v)+ P(u) (34)
ow) = > ¢(|[Diul,), (35)
i=1

where W : RP x R? — R is any explicit or implicit C"™-smooth function for m > 2 and D; : RP — R?,

vie {1,---,r} are general linear operators for any integer s > 1. It is assumed that ¢ satisfies

H1 (p. 3) and H6 (p. 16) along with

H14 ¢ is C?-smooth on R% and ¢/(07) > 0.

It worths emphasizing that ¥ and ¢ can be convex or nonconvex. Let us define the set-valued function

J on R? by

T (u) = {2 eI : |Diuls = 0}. (36)

Given u € RP, J(u) indicates all regions where D;u = 0. Such regions are called® strongly
homogeneous with respect to {D;}. In particular, if {D;} correspond to first-order differences between

neighboring samples of u or to discrete gradients, J(u) indicates all constant regions in wu.
5.1 Main theoretical result

The results presented below are extracted from [78].

Theorem 10 Given v € RY, assume that F(-,v) in (34)-(35) is such that ¥ is C™, m > 2 on RP xRY,
and that ¢ satisfies H1, H6 and H14. Let i € RP be a (local) minimizer of F(-,v). For J o J(u), let
K ; be the vector subspace
Kj:{uERp:Diu:(),Viej}. (37)

Suppose also that

(a) 01 F(t,v)(w) >0, for every w € Kj \ {0};

(b) there is an open subset ij C R? such that F|x (., Of]) has a local minimizer function U O} —

K ; which is C™! continuous at v and @ =U;(v).

Then there is an open neighborhood O ; C O} of v such that F(-,0;) admits a C™ 1 local minimizer

functionU : O ; — RP which satisfies U(v) = 4, U|k, =U; and

veO; = DUW)=0, foralicJ. (38)

8The adverb “strongly” is used in order to emphasize the difference with just “homogeneous regions” that are char-
acterized by ||D;ull2 ~ 0.
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It can be shown that the results of Theorem 10 hold true also for irregular functions ¢ of the form

(f13) in Table 1. Remind that J and K 7 are the same as those introduced in (13).

Commentary on the assumptions. Since F(-,v) has a local minimum at @, Theorem 1 (p. 8) tells
us that §1F(a,v)(w) > 0, for all w € K j‘ and this inequality cannot be strict unless F is non-smooth.
When @ is non-smooth as specified above, it is easy to see that (a) is not a strong requirement. By
Lemma 1, condition (b) holds if ‘/T’Kj is C™ on a neighborhood of (@, v) belonging to K ; x R?, and
if D1(F|k;)(@,v) =0 and D%(f|Kj)('&/,U) > 0, which is the classical sufficient condition for a strict
(local) minimizer.

If F is (possibly nonconvex) of the form (12) and assumption H4 (p. 13) holds as well, the in-
termediate results given in item 3 next to Theorem 4 (p. 14) show that (a) and (b) are satisfied for
any v € R?\ © where O is closed and L?(0©) = 0. In these conditions, real-world data have no real

chance® to belong to © so they lead to (local) minimizers that satisfy conditions (a) and (b).

Significance of the results. Using the definition of 7 in (36), the conclusion of the theorem can
be reformulated as

veO; = JUW)2J & U EK;. (39)

Minimizers involving large subsets J are observed in Figs. 3 (b)-(c), 8(b), and 9(b) and (d), 11(a),
(b) and (c), 12(d). It was seen in Examples 1 and 4, as well as in § 4.3 (case ¢/(0%) > 0), that .J
is nonempty for data v living in an open O;. An analytical example will be presented in § 5.2. So
consider that M . Then (39) is a severe restriction since K ; is a closed and negligible subset of
RP whereas data v vary on open subsets O ; of R?. (The converse situation where a local minimizer
@ of F(-,v) satisfies D;u # 0, for all ¢ seems quite natural, especially for noisy data.) Note also that
there is an open subset Oj C Oj such that J (U(v)) = J for all v € Oj.

Focus on a (local) minimizer function U : O — RP for F(-, O) and put J = J(U(v)) for some
v € 0. By Theorem 10, the sets O ; and O ;7 are of positive measure in RY. The chance that random
points v (namely noisy data) come across O3, or O g 18 real'®.  When data v range over O, the
set-valued function (J o U) generally takes several distinct values, say {J;}. Thus, with a (local)

minimizer function I, defined on an open set O, there is associated a family of subsets {O Jj} which

9More precisely, the probability that real data (a random sample of R?) do belong to © is null.
10The reason for this claim is that probability that v € Oj;, or that v € Oy, is strictly positive.
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Figure 10: Data v = u,+n (—) corresponding to the original u, (-.-.) contaminated with two different
noise samples n on the left and on the right.

form a covering of O. When v € O J;» we find a minimizer 4 = U(v) satisfying J(4) = J;. This

underlies the conclusion stated next:

Energies with non-smooth regularization terms as those considered here, exhibit local minimiz-
ers which generically satisfy constraints of the form J(4) # @.

In particular, if {D;} are discrete gradients or first-order difference operators, minimizers 4 are
typically constant on many regions. E.g., if ¢(t) = t, we have ®(u) = TV(u) and this explains

the stair-casing effect observed in TV methods on discrete images and signals [26, 34].

Restoration of a noisy signal. In Figs. 10 and 11 we consider the restoration of a piecewise

constant signal u, from noisy data v = u, + n by minimizing F(u,v) = [|u — v||? + 8322} ¢(Juli] —
ul[i + 1]]). In order to evaluate the ability of different functions ¢ to recover, and to conserve, the
locally constant zones yielded by minimizing the relevant F(-,v), we process in the same numerical
conditions two data sets, contaminated by two very different noise realizations plotted in Fig. 10. The
minimizers shown in Figs. 11(a), (b) and (c) correspond to functions ¢ such that ¢’'(07) > 0. In
accordance with the above theoretical results, they are constant on large segments. In each one of
these figures, the reader is invited to compare the subsets where the minimizers corresponding to the
two data sets (Fig 10) are constant. In contrast, the function ¢ in Fig. 11(d) satisfies ¢'(0") = 0 and

the resultant minimizers are nowhere constant.

5.2 The 1D TV regularization

The example below describes the sets Oy, for every J C {1,...,r}, in the context of the one-

dimensional discrete TV regularization. It provides a rich geometric interpretation of Theorem 10.
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(b) ¢(t) = (t +)? (here ¢'(07) = 20)

(@ ¢<t>={3 s

2 here ¢’ (07)=0
at—% if t>a (here ¢/(07)=0)

Figure 11: Restoration using different functions ¢. Original u, (-.-.), minimizer 4 (—). Each figure
from (a) to (d) shows the two minimizers @ corresponding to the two data sets in Fig. 10 (left and
right), while the shape of ¢ is plotted in the middle.

Let F: RP x R? — R be given by

p—1
Flu,v) = | Au— 0|3+ 8 |uli] —ufi+1]], (40)
=1

where A € RP*P is invertible and 8 > 0. It is easy to see that there is a unique minimizer function U

for F(-,RP). We have two striking phenomena (see [78] for details):

1. For every point 4 € RP, there is a polyhedron Q; C R? of dimension #.7 (4), such that for every

v € Qg, the same point U(v) = 4 is the unique minimizer of F(-,v);

2. For every J C {1,...,p — 1}, there is a subset Oy C RP, composed of 2P~#7=1 ynbounded
polyhedra (of dimension p) of R?, such that for every v € Oy, the minimizer 4 of F(-,v) satisfies
U; = U;4q for all i € J and 4; # 4,41 for all ¢ € J¢ A description of these polyhedra is given in

the appendix of [78]. Moreover, their closure forms a covering of RP.

Remark 2 The energy in (40) has a straightforward Bayesian interpretation in terms of mazimum
a posteriori (MAP) estimation (see p. 4). The quadratic data-fidelity term corresponds to a forward

model of the form v = Au, + n where n is independent identically distributed (i.i.d.) Gaussian noise
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1
with mean zero and variance denoted by o*. The likelihood reads (v|u) = exp <—22||Au - v||%)
o

The regularization term corresponds to an i.i.d. Laplacian prior on each difference uli] — u[i + 1],

g

1 < i < p— 1. More precisely, each difference has a distribution of the form exp (—\|t|) for A = 257"
o
Since this density is continuous on R, the probability to get a null sample t = uli] — ufi + 1] = 0,

is equal to zero. However, the results presented above show that for the minimizer 4 of F(-,v), the

probability to have u[i] — a[i + 1] = 0 for a certain amount of indexes i is strictly positive. This

means that the Laplacian prior on the differences u[i| — uli 4+ 1] is far from being incorporated in the
MAP solution 4. On the other hand, given that ||¢'|c = 1 and that |D||; = 2, Theorem 7 tells us
that ||Al — v|leo < B||(AA*) 1 A| s, hence the recovered noise (At — v)[i], 1 < i < q is bounded.
However, the noise n in the forward model is unbounded. The distribution of the original noise n is

not incorporated in the MAP estimate U neither.

5.3 An application to Computed Tomography

The concentration of an isotope in a part of the body provides an image characterizing metabolic
functions and local blood flow [18,54,58]. In Emission Computed Tomography (ECT), a radioactive
drug is introduced in a region of the body and the emitted photons are recorded around it. Data are
formed by the number of photons v[i] > 0 reaching each detector, ¢ = 1,--- ,¢. The observed photon
counts v have a Poissonian distribution [18,87]. Their mean is determined using projection operators
{a;, i=1,2,...,q} and a constant p > 0. The data-fidelity ¥ derived from the log-likelihood function
is non strictly convex and reads:
q q
U (u,v) :p<Zai, u> = ofi] In({a;, u)). (41)
i=1 i=1
Fig. 12 presents image reconstruction from simulated ECT data by minimizing and energy of the form
(34)-(35) where WV is given by (41) and {D;} yield the first-order differences between each pixel and its
8 nearest neighbors. One observes, yet again, that a PF ¢ which is nonconvex with ¢/(07) > 0 leads

to a nicely segmented piecewise constant reconstruction.

6 Minimizers relevant to non-smooth data-fidelity

Fig. 13 shows that there is a striking distinction in the behavior of the minimizers relevant
to nonsmooth data-fidelity terms (b) with respect to non-smooth regularization (a). More
precisely, many data samples are fitted exactly when the data-fidelity term is nonsmooth. This

particular behavior is explained and generalized in the present section.
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) ECT sumulated data
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(c) ¢'(0) =0, edge-preserving (d) ¢(t)=t/(a+1) (¢'(07) > 0, non convex)

Figure 12: ECT. F(u,v) = ¥(u,v) + Y ;c; ¢(|Diul).

F(u,v) = Ju=vl3+ BDully  F(u,v) = lu—vlly + B[Dullf  F(u,v) = [lu—v|3 + 8]Dul3
(a) Stair-casing (b) Exact data-fit (c)

Figure 13: D is a first-order difference operator, i.e. Dju = uf[i] —u[i +1], 1 <i < p— 1. Data (- -
-), Restored signal (—). Constant pieces in (a) are emphasized using “+” while data samples that are
equal to the relevant samples of the minimizer in (b) are emphasized using “o”

Consider
Flu,v) = ¥(u,v)+ P(u), (42)
U(u,v) = Zq)b (Kai, u) —v[il]), (43)
i=1
where a; € RP for all i € {1,--- ,¢q} and ¥ : R4 — R} is a function satisfying

H15 ¢(0) =0, ¢ is increasing and not identically null on Ry, and 1 € CO(R,).

Remind that the later condition means that ¢ — (|t|) is continuous on R (¢f. Definition 5, p. 11).
Let A € R?*? denote the matrix such that for any ¢ = 1,--- , g, its ¢th row reads a;.
Recall that many papers are dedicated to the minimization of ¥(u,v) = |[[Au — v||f alone i.e.,

F = W, mainly for p = 2 (least-squares problems) [57], often for p = 1 (least absolute deviations) [15],
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but also for p € (0,00] [83,84]. Nonsmooth data-fidelity terms ¥ in energies of the form (42)-(43)

were introduced in image processing in 2003 [75].

6.1 General theory

Here we present some results on the minimizers @ of F as given in (42)-(43), where ¥ is non differentiable,

obtained in [76,77]. Additional assumptions are that
H16 ¢ is C™, m > 2 on RY and ¢'(07) > 0 is finite.
H17 The regularization term ® : RP — R in (42) is C™, m > 2.

Note that ® in (42) can be convex or nonconvex.

To analyze the phenomenon observed in Fig. 13(b), the following set-valued function J will be

useful:
(u,v) € (RP x RY) +—  J(u,v) = {z e{l,....q}: {(aj,u) = v[z]} (44)

Given v and a (local) minimizer 4 of F(-,v), the set of all data entries v[i] that are fitted exactly by

(Ad)[i] reads J = J(@,v). Its complement is J¢ = {1,--- ¢} \ J.

Theorem 11 Let F be of the form (42)-(43) where assumptions H15, H16 and H17 hold true. Given
v eRY let @ € RP be a (local) minimizer of F(-,v). For J = J(a,y), where J is defined according to
(44), let

K;i(v) ={u € RP: (a;,u) =v[i] Vi € J and {a;,u) # v[i] Vi € J°},

and let K; be its tangent. Suppose the following:

(a) The set {a; :i € J} is linearly independent;

(b) Vw € K ; \ {0} we have Dl(F|m)(ﬂ,v)w =0 and D%(J’:bcj(v))(@,v)(w,w) > 0;
(c) Yw € Kj- \ {0} we have 61 F (0, v)(w) > 0.

Then there are a neighborhood O ; C R? containing v and a C™ ! local minimizer functionU : O; — RP

relevant to F(-,0;), yielding in particular @ = U(v), and

(as,UWw)) = v[i] if ielJ,

(ag, U(W)) £ v[i] if ieJe (45)

I/EOj = {

The latter means that J(U(v),v) = J is constant on O;.
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Note that for every v and J # &, the set K ;(v) is a finite union of connected components, whereas

its closure K ;(v) is an affine subspace. Its tangent K ; reads
K;={ueRP: (a,u)=0VieJ}

A comparison with K; in (37) may be instructive. Compare also (b)-(c) in Theorem 11 with (a)-(b)
in Theorem 10, p. 30. By the way, conditions (b)-(c) in Theorem 11 ensure that F(-,v) reaches a
strict minimum at 4 [76, Proposition 1]. Observe that this sufficient condition for strict minimum
involves the behavior of F(-,v) on two orthogonal subspaces separately. This occurs because of the

nonsmoothness of ¢ — 1 (|t|) at zero. It can be useful to note that at a minimizer 4,

51 F (i, v) (w) = ' (0) Y [azw)| + 3 o/ ({as, @) — oli])(a;, w) + fDB(@)w >0,  (46)

ieJ iee

for any w € RP.

Commentary on the assumptions. Assumption (a) does not require the independence of the
whole set {a; : i € {1,...,¢}}. It is shown (Remark 6 in [76]) that this assumption fails to hold only
for some v is included in a subspace of dimension strictly smaller than ¢. Hence, assumption (a) is
satisfied for almost all v € R? and the theorem addresses any matrix A, whether it be singular or
invertible.

Assumption (b) is the classical sufficient condition for a strict local minimum of a smooth function
over an affine subspace. If an arbitrary function F(-,v) : R? — R has a minimum at 1, then necessarily
NF(G,v)(w) = 0 for all w € K f, see Theorem 1. In comparison, (c) requires only that the latter
inequality be strict.

It will be interesting to characterize the sets of data v for which (b) and (c) may fail at some (local)

minimizers. Some ideas from § 3.2.1 might provide a starting point.

Corollary 2 Let F be of the form (42)-(43) where p = q, and H15, H16 and H17 hold true. Given

v €RY let 4 € RP be a (local) minimizer of F(-,v). Suppose the following:

(a) The set {a;: 1< i< q} is linearly independent;

q
(b) Yw € RY satisfying ||wl|z = 1 we have 3| D®(a)w| < ¢'(0) Z [{a;, w)]|.
i=1

Then
j:{lj... .q}
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and there are a neighborhood O ; C R containing v and a C™ 1 local minimizer function U O; — RP

relevant to F(-,0;), yielding in particular @ = U(v), and
veO; = (aUw)=vi] VYieJ={1--q} (47)
More precisely, U(v) = A~'v for any v € Oj;.

Note that in the context of Corollary 2, A is invertible. Combining this with (46) and (b) shows
that

Ki(w) = {ueRP: Au=v}=A""v,
K; = ker(A)={0}.

Then

q

{v eR?: |D<I>(A71v)w} < ' (0) Z [{a;,w)|, Yw € RT\ {0}, ||w|2 = 1} CO0;=0q.,.q-
i=1

The subset on the left contains an open subset of R? by the continuity of v — D®(A~v) combined

with (b).

Significance of the results. Consider that #.J > 1. The result in (45) means that the set-valued
function v — J(U(v),v) is constant on O}, i.e., that J is constant under small perturbations of v.
Equivalently, all residuals (a;,(v)) —vli] for i € J are null on O j- Intuitively, this may seem unlikely,
especially for noisy data.

Theorem 11 shows that RY contains volumes of positive measure composed of data that lead to
local minimizers which fit exactly the data entries belonging to the same set. In general, there are
volumes corresponding to various J so that noisy data come across them. That is why non-smooth

data-fidelity terms generically yield minimizers fitting exactly a certain number of the data entries.

The resultant numerical effect is observed in Fig. 13(b) as well as in Figs. 15 and 16.

Remark 3 (stability of minimizers) The fact that there is a C"™~! local minimizer function shows
that, in spite of the non-smoothness of ¥ (and hence of F), for any v, all the local minimizers of
F(-,v) which satisfy the conditions of the theorem are stable under weak perturbations of data v. This

result extends Lemma 1.
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Example. Let F read

q

F(u,v) = Z ‘u[z] — v[zH +

i=1

@

q
> (li])?, B> 0.

i=1

It is easy to compute (see [76, p. 978.]) that there is a local minimizer function & whose entries read

U(v)[i]:;sign(v[i]) it [oli]] >

U)[i] =ofi] if |ofi]] <

)

Condition (c¢) in Theorem 11 fails to hold only for {v eRY: |v[i]| =1, Vie j} The latter set is of

1
57
Lebesgue measure zero in RY.

For any J € {1,--- ,q} put

R =

g

Obviously, every v € O gives rise to a minimizer 4 satisfying

Oy = {veRq:‘v[iH gl, Vie J and |v[i]] > =, ViEJC}.
uli) = vli], YieJ and afi] #v[i], Vie JC

Note that for every J C {1,---,q}, the set O; has a positive Lebesque measure in RY. Moreover,

the union of all Oy when J ranges on all subsets J C {1,---,q} (including the empty set) forms a

partition of RY.

Numerical experiment. The original image u, in Fig. 14(a) can be supposed to be a noisy version

of an ideal piecewise constant image. Data v in Fig. 14(b) are obtained by replacing some pixels of

Uy, Whose locations are seen in Fig. 17-left, by aberrant impulsions, called outliers. In all Figs. 15,

16, 18 and 19, {D;} correspond to the first-order differences between each pixel and its four nearest
neighbors. The image in Fig. 15(a) corresponds to an ¢; data-fidelity term for 8 = 0.14. The outliers
are well visible although their amplitudes are clearly reduced. The image of the residuals v — @, shown
in Fig. 15(b), is null everywhere except at the positions of the outliers in v. The pixels corresponding
to non-zero residuals (i.e. the elements of J ¢) provide a faithful estimate of the locations of the outliers
in v, as seen in Fig. 17-middle. Next, in Fig. 16(a) we show a minimizer @ of the same F (-, v) obtained
for § = 0.25. This minimizer does not contain visible outliers and is very close to the original image
to. The image of the residuals v — @ in Fig. 16(b) is null only on restricted areas, but has a very small
magnitude everywhere beyond the outliers. However, applying the above detection rule now leads to

numerous false detections, as seen in Fig. 17-right.
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The minimizers of two different cost-function F involving a smooth data-fidelity term ¥, shown in
Figs. 18 and 19, do not fit any data entry. In particular, the restoration in Fig. 19 corresponds to a

nonsmooth regularization and it is constant over large regions; this effect was explained in section 5.

(a) Original u,. (b) Data v = w-outliers.

Figure 14: Original u, and data v degraded by outliers.

(a) Restoration @ for = 0.14. (b) Residual v — .

Figure 15: Restoration using F(u,v) = >, [uli] — v[i]| + B >,c; [Diu|* oo = 1.1 and 3 = 0.14.

(a) Restoration @ for § = 0.25. (b) Residual v — 4.
Figure 16: Restoration using F(u,v) = >, [uli] — v[i]| + 8> ,c; [Diu|® for « = 1.1 and 8 = 0.25.
More details and information can be found in [76].

6.2 Applications

The possibility to keep some data samples unchanged by using nonsmooth data fidelity is a precious

property in various application fields. Non-smooth data-fidelities are good to detect and smooth

outliers. This was applied to impulse noise removal in [77] and to separate impulse from Gaussian noise
in [81]. This property was extensively exploited for deblurring under impulse noise contamination, see

e.g. [79].
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Figure 17: Left: the locations of the outliers in v. Next—the locations of the pixels of a minimizer u
at which a[i] # v[i]. Middle: these locations for the minimizer obtained for 8 = 0.14, Fig. 15. Right:
the same locations for the minimizer relevant to 5 = 0.25, see Fig. 16.
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(a) Restoration @ for = 0.2.

Figure 18: Restoration using a smooth cost-function, F(u,v) = >_.(u[i]—v[i])*+8>,(|D;ul)?, 8 = 0.2.

Denoising of frame coefficients. Consider the recovery of an original (unknown) u, € RP— a

signal or an image containing smooth zones and edges—from noisy data
V= 1Up + N,

where n represents a perturbation. As discussed in section 4, a systematic default of the images and
signals restored using convex edge-preserving PFs ¢ is that the amplitude of edges is underestimated.

Shrinkage estimators operate on a decomposition of data v into a frame of ¢2, say {w; : i € J}
where J is a set of indexes. Let W be the corresponding frame operator, i.e. (Wv)[i] = (v, w;), Vi € J,
and W be a left inverse of W, giving rise to the dual frame {w; : i € J}. The frame coefficients of v

read y = Wwo and are contaminated with noise Wn. The inaugural work of Donoho and Johnstone [35]

(a) Restoration @ for = 0.2. (b) Residual v — 4.
Figure 19: Restoration using non-smooth regularization F(u,v) = Z(u[z] —o[i))*+ Z |Djul, B =
i

i

0.2.
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considers two different shrinkage estimators: given T" > 0, hard thresholding corresponds to

4 y[z] if i€ Jq, Jo = {Z eJ: |y[z” <T};
yrli] { 0 if iedJg, ~here Jio= J\Jo, (48)

while in soft-thresholding one takes yp[i] = y[i] — T'sign(y[i]) if i € J; and yp[i] = 0 if ¢ € Jy. Both
soft and hard thresholding are asymptotically optimal in the minimax sense if n is white Gaussian

noise of standard deviation o and
T = o0+/2log, p. (49)

This threshold is difficult to use in practice because it increases with the size of u. Numerous other
drawbacks were found and important improvements were realized, see e.g. [4, 10,20, 29, 33,64, 68, 89].
In all these cases, the main problem is that smoothing large coefficients oversmooths edges while
thresholding small coefficients can generate Gibs-like oscillations near edges, see Fig. 20(c) and (d). If
shrinkage is weak, noisy coefficients (outliers) remain almost unchanged and produce artifacts having
the shape of {w;}, see Fig. 20(c), (d), (e).

In order to alleviate these difficulties, several authors proposed hybrid methods where the informa-

tion contained in important coefficients y[i] is combined with priors in the domain of the sough-after
signal or image [16, 21, 31, 38,46, 65]. A critical analysis of these preexisting methods is presented
in [41].

The key idea in [41] is to construct a specialized hybrid method involving ¢; data fidelity on
frame coefficients. More precisely, data are initially hard-thresholded—see (48)—using a suboptimal
threshold 7" in order to keep as much as possible information. (The use of another more sophisticated

shrinkage estimator would alter all coefficients, that is why a hard-thresholding is preferred.) Then

1. Jy is composed of

e large coefficients bearing the main features of u, that one wishes to preserve intact;

e aberrant coefficients (outliers) that must be restored using the regularization term.
2. Jp is composed of

e noise coefficients that must be kept null;

e coefficients yli] corresponding to edges and other details in u,—these need to be restored

in accordance with the prior incorporated in the regularization term.

The theory in [41] is developed for signals and images defined on a subset of R where d = 1 or d = 2,

respectively, and for frames of L2. To ensure coherence of the chapter, the approach is presented in
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the discrete setting. In order to reach the goals formulated in 1 and 2 above, denoised coefficients &
are defined as a minimizer of the hybrid energy F'(.,y) given below:

Fa,y) =My [olil = ylil| + 20 Y |2[i]] + Y ¢(IDiWz]2), Aox >0, (50)

1€J1 i€Jo i€l
where ¢ is convex and edge-preserving. Then the sought after denoised image or signal is
u=Wz= w; i)
icJ

Several important properties relevant to the minimizers of F' in (50), the parameters \;, i € {0,1} and
the solution u are outlined in [41].

Noisy data v are shown along with the original u, in Fig. 20(a). The restoration in Fig. 20
(b) minimizes F(u) = ||Au — v||3 + B3, ¢(||[Dsull2) where ¢(t) = Va+12 for « = 0.1, § = 100—
homogeneous regions remain noisy, edges are smoothed and spikes are eroded. Fig. 20(c) is obtained
using the sure-shrink method [36] form the toolbox WaveLab. The other restorations use thresholded
Daubechies wavelet coefficients with 8 vanishing moments. The optimal value for the hard thresholding
obtained using (49) is T' = 35. The relevant restoration—Fig. 20 (d)—exhibits important Gibbs-like
oscillations as well as wavelet-shaped artifacts.

The threshold chosen in [41] is 7" = 23. The corresponding coefficients have a richer information
content but WyT, shown in Fig. 20 (e) manifests Gibbs artifacts and many wavelet-shaped artifacts.
Introducing the thresholded coefficients of Fig. 20 (e) in (50) leads to Fig. 20 (f) : edges are clean and

piecewise polynomial parts are well recovered.

6.3 The L;-TV case

For discrete signals of finite length, energies of the form F(u,v) = ||lu — v|j1 + 525;11 luli + 1] — ult]|
were considered by Alliney in 1992 [1]. These were exhibited to provide a variational formulation to
digital filtering problems.
Following [1,76,77], S. Esedoglu and T. Chan explored in [25] the minimizers of the L1-TV func-
tional given below
F(u,v) = /Rd lu(z) — v(z)|dx +ﬁ/Rd |Vu(z)|dz, (51)
where the sought-after minimizer @ belongs to the space of bounded variation functions on R¢. The
main focus is on images, i.e. d = 2. The analysis in [25] is based on a representation of F in (51)
in terms of the level sets of u and v. Most of the results are established for data v given by the

characteristic function yx of a bounded domain ¥ C R?. Theorem 5.2. in [25] says that if v = xyx,
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Figure 20: Methods to restorer the noisy signal in (a). Restored signal (—), Original signal (- -).

where ¥ C R? is bounded, then F(-,v) admits a minimizer of the form @& = xy (with possibly S £%).
Furthermore, Corollary 5.3. in [25] states that if in addition 3 is convex, then for almost every 8 > 0,
F(-,v) admits a unique minimizer and 4 = x4 with 3. C 3. Moreover, it is shown that small features
in the image maintain their contrast intact up to some value of # while for a larger ¢ they suddenly
disappear.

Recently, L1-TV energies were revealed very successful in image decomposition, see e.g. [6,42].

7 Conclusion

In this chapter we provided some theoretical results relating the shape of the energy F to minimize
and the salient features of its minimizers 4, see (9). These results can serve as a kind of backward
modeling: given an inverse problem along with our requirements (priors) on its solution, they guide
us how to construct an energy functional whose minimizers properly incorporate all this information.
The theoretical results are illustrated using numerical examples. Various application fields can take
a benefit from these results. The problematic of such a backward modeling remains open because of

the infinite diversity of the inverse problems to solve and the possible energy functionals.
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Cross-references

e Inverse Scattering

e Large Scale Inverse Problems

e Learning, Classification, Data Mining

e Linear Inverse Problems

e Numerical Methods for Variational Approach in Image Analysis
e Regularization Methods for Ill-Posed Problems

e Segmentation with Priors

e Tomography

e Total Variation in Imaging
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