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Abstract. Many estimation problems amount to minimizing a piecewise Cm ob-
jective function, with m ≥ 2, composed of a quadratic data-fidelity term and a
general regularization term. It is widely accepted that the minimizers obtained us-
ing non-convex and possibly non-smooth regularization terms are frequently good
estimates. However, few facts are known on the ways to control properties of
these minimizers. This work is dedicated to the stability of the minimizers of such
objective functions with respect to variations of the data. It consists of two parts:
first we consider all local minimizers, whereas in a second part we derive results
on global minimizers. In this part we focus on data points such that every local
minimizer is isolated and results from a Cm−1 local minimizer function, defined on
some neighborhood. We demonstrate that all data points for which this fails form a
set whose closure is negligible.
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1. Introduction

This is the first of two papers devoted to the stability of minimizers of regularized least
squares objective functions as customarily used in signal and image reconstruction. In
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this part we deal with the behavior of local minimizers, whereas in the second part we
draw conclusions about global minimizers.

In various inverse problems such as denoising, deblurring, segmentation or recon-
struction, a sought-after object x̂ ∈ R

p (such as an image or a signal) is estimated
from recorded data y ∈ R

q by minimizing with respect to x an objective function
E : Rp × Rq → R,

x̂ := arg min
x∈O
E(x, y), (1)

where O ⊂ R
p is an open domain where E(·, y) has local minimizers. In general, x̂ ∈ Rp

is a local minimizer of E(·, y) over Rp. This work is dedicated to objective functions of
the form

E(x, y) := ‖Lx − y‖2 +�(x), (2)

where L: Rp → R
q is a linear operator, ‖·‖ denotes the Euclidean norm and�: Rp → R

is a piecewise Cm-smooth regularization term. More precisely,

�(x) :=
r∑

i=1

ϕi (Gi x), (3)

where for every i ∈ {1, . . . , r}, the function ϕi : Rs → R is continuous on Rs and
Cm-smooth everywhere except possibly at a given θi ∈ Rs , and Gi : Rp → R

s is a linear
operator. Since the publication of [45], objective functions of this form are customarily
used for the restoration and the reconstruction of signals and images from noisy data y
obtained at the output of a linear system L [23], [7]. The operator L can represent the
blur undergone by a signal or an image, a Fourier transform on an irregular lattice in
tomography, a wavelet in seismology, as well as other observation systems. The quadratic
term in (2) thus accounts for the closeness of the unknown x to data y. The operators
Gi in the regularization term � usually provide the differences between neighboring
samples of x . For instance, if x is a one-dimensional signal, usually Gi x = xi+1 − xi or
in some cases Gi x = xi+1 − 2xi + xi−1. Typically, for all i ∈ {1, . . . , r}, we have θi = 0
and ϕi reads

ϕi (z) = φ(‖z‖), ∀i ∈ {1, . . . , r}, (4)

where φ: R+ → R is an increasing function, often called the potential function (PF).
Several examples among the most popular, are the following [23], [6], [24], [38], [25],
[41], [10], [44], [8]:

Lα φ(t) = |t |α, 1 ≤ α < 2,
Lorentzian φ(t) = αt2/(1 + αt2),

Concave φ(t) = α|t |/(1 + α|t |),
Gaussian φ(t) = 1 − exp (−αt2),

Truncated quadratic φ(t) = min{αt2, 1},
Huber φ(t) =

{
t2 if |t | ≤ α,

α(α + 2|t − α|) if |t | > α.

(5)

Objective functions as specified above are either defined in a variational setting [38],
[41], [3], [12], [11], [46] or rely on probabilistic considerations [23], [6], [7], [17].
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Most of the potential functions cited in (5) are non-convex and in some cases non-
smooth. Indeed, several authors pointed out the possibility of getting signals involving
jumps and images with sharp edges by using non-convex regularization functions [34],
[24], [38], [4]. On the other hand, non-smooth regularization has been shown to avoid
Gibbs artifacts and to enforce local homogeneity [22], [19], [2], [36]. In spite of this, a
few facts are known about the features of the local minimizers relevant to non-convex
objective functions. We focus on the stability of the local minimizers x̂ of objective
functions E(·, y) of the form (2)–(3) under variations of data y. Our goal is to show that
if E is piecewise Cm , the local and the global minimizer functions are Cm−1 everywhere
except on a closed negligible subset of Rq .

Related questions have been considered in critical point theory. Conditions ensuring
that the local minimizers of continuous objective functions defined on metric spaces are
at the bottom of a “potential well” are considered in [27] and [16]. In such a case a local
minimizer is stable under a class of homotopies of the objective function which do not
introduce new critical points in a neighborhood of this local minimizer. An approach
related to ours is used in studies where different concepts relevant to properties of
the optimal solutions are demonstrated to hold generically. We can evoke some works
on semi-definite programming [42], [1], [37], as well as on the well-posedness of some
classes of optimization problems [20]. Many results have been established on the stability
of the local minimizers of general smooth objective functions subject to constraints [21],
[29], [28], [26]. When E is smooth, our results can be deduced from these references.
Let us notice that in spite of the popularity of non-convex objective functions of the form
(2)–(3) in image and signal restoration, and in many inverse problems—e.g. [23], [34],
[6], [31], [24], [30], [7], [38], [22], [35]—the regularity of their minimizers have never
been studied in a systematic way.

2. Motivation and Definitions

Studying the stability of local minimizers (rather than restricting our interest to global
minimizers only) is a matter of critical importance in its own right for several reasons.
In many applications, smoothing is performed by only locally minimizing a non-convex
objective function in the vicinity of some initial solution. Moreover, it is worth recalling
that no minimization algorithm guarantees the finding of the global minimum of a general
non-convex objective function. Some algorithms allow the finding of the global minimum
only with high probability, under demanding requirements (e.g. simulated annealing)
[23], [22]. Others allow the finding of a local minimum which is expected to be close
to the global minimum [9], [14], [35]. The practically obtained solutions are frequently
only local minimizers, hence the importance of knowing their behavior.

The first question is to know whether, and in what circumstances, E(·, y) has local
minimizers which give rise to smooth local minimizer functions as defined below.

Definition 1. A functionX : O → R
p, where O is an open domain inRq , is said to be

a minimizer function relevant to E if every X (y) is a strict (i.e. isolated) local minimizer
of E(·, y) whenever y ∈ O .
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We focus on the subset 
 ⊂ R
q of all data leading to minimizers which have good

regularity properties as specified below:

Definition 2. Let E(·, y) be Cm (with m ≥ 1) almost everywhere on Rp, for every
y ∈ Rq . Denote


 :=

y ∈ Rq :

if x̂ is a local minimizer of E(·, y) then there
is a Cm−1 minimizer function X : O → R

p

such that y ∈ O ⊂ R
q and x̂ = X (y)


 .

It will be seen that data points y for which E(·, y) has minimizers x̂ which do not
satisfy the requirements in Definition 2 are highly exceptional. We will show that the
closure of 
c in Rq , denoted 
c, is a negligible subset of the data domain Rq , i.e. that
it has Lebesgue measure zero. In the following, given an affine subspace N ⊂ R

q , we
say that a subset M ⊂ N is negligible in N if it has measure zero with respect to the
Lebesgue measure induced on N . The set 
, or equivalently its complement 
c, can be
explicitly calculated in the following examples.

Example 1. Consider the function

E(x, y) = (x − y)2 +�(x),

where

�(x) =
{

1 − (|x | − 1)2 if 0 ≤ |x | ≤ 1,
1 if |x | > 1.

It is not difficult to check that the minimizer x̂ of E(·, y) takes different forms according
to the values of y.

- If |y| > 1, the minimizer is strict and reads x̂ = y.
- If y = 1, every x̂ ∈ [0, 1] is a non-strict minimizer.
- If y = −1, every x̂ ∈ [−1, 0] is a non-strict minimizer.
- If y ∈ (−1, 1), the minimizer is strict and constant, x̂ = 0.

Thus we find that 
c = {−1, 1} which is closed and negligible in R.

Example 2. Consider

E : R2 × R → R,

(x, y) �→ (x1 − x2 − y)2 + β(x1 − x2)
2,

where β > 0. For all y ∈ R, every x̂ ∈ R2, such that x̂1 − x̂2 = y/(1+β), is a minimizer
of E(·, y). Hence 
c = R.

Example 3. Consider

E : R2 × R → R,

(x, y) �→ (x1 − x2 − y)2 + |x1| + |x2|.
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The minimizers x̂ of E(·, y) are obtained after a simple computation.

- If y > 1
2 , every x̂ = (α, α − y + 1

2 ) for α ∈ [0, y − 1
2 ] is a non-strict minimizer.

- If y ∈ (− 1
2 ,

1
2 ), the only minimizer is x̂ = (0, 0).

- If y < − 1
2 , every x̂ = (α, α− y − 1

2 ) for α ∈ [y + 1
2 , 0] is a non-strict minimizer.

Consequently, 
 = (− 1
2 ,

1
2 ).

We remark that L is injective in Example 1 whereas it is non-injective in Examples 2
and 3. We can construct many other examples of objective functions E involving L
non-injective for which 
c is non-negligible. This suggests we make the following
assumption:

H1. The operator L: Rp → R
q in (2) is injective, i.e. rank L = p.

Notice that
c may be negligible even if H1 fails. However, this assumption allows
strong results to be obtained.

Remark 1. We do not focus properly on the question of whether or not E admits mini-
mizers when y ranges over Rq . The results presented in the following are meaningful if,
for all y ∈ Rq , the objective function E(·, y) admits at least one minimizer, although they
remain trivially true in the opposite situation. Practically, objective functions are defined
in such a way that they do have minimizers. We recall that E(·, y) admits minimizers if
it is coercive, i.e. if E(x, y) → ∞ along with ‖x‖ → ∞ [15], [40]. For instance, this
situation occurs, for all y ∈ Rq when L is injective and � does not decrease faster or
equally as fast as −‖Lx‖2 as ‖x‖ → ∞. This is trivially satisfied in practice where �
is bounded below.

For any function f : Rp → R, we denote by ∇ f (x) ∈ Rp the gradient of f at a
point x ∈ Rp and by ∇2 f (x) ∈ Rp × R

p the Hessian matrix of f at x . Although E
depends on two variables (x, y), we are concerned only with its derivatives with respect
to x . For simplicity, ∇E and ∇2E will systematically be used to denote the gradient
and the Hessian of E with respect to the first variable x . By B(x, ρ) we denote a ball
in Rn with radius ρ and center x , for whatever dimension n appropriate to the context.
Furthermore, the letter S denotes the unit sphere in Rn centered at the origin. When
necessary, the superscript n is used to specify that Sn is the unit sphere inRn . We denote
R+ = {t ∈ R: t ≥ 0}. For a subset A ∈ Rq , its complement in Rq will be denoted Ac

and its closure A.
The subsequent considerations are split into two parts according to the differenti-

ability of �.

3. Cm-Smooth Objective Function

The characterization of 
, developed in this section, is based on the next lemma which
constitutes a straightforward extension of the Implicit Functions Theorem [5]. Its proof
can be found, e.g. in [21, Theorem 6, p. 34] or in [28, Lemma 6.1.1, p. 268].
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Lemma 1. Suppose E : Rp × Rq → R is any function which is Cm , with m ≥ 2. Fix
y ∈ R

q . Let x̂ be such that ∇E(x̂, y) = 0 and ∇2E(x̂, y) is positive definite. Then
there exist ρ > 0 and a unique Cm−1-minimizer function X : B(y, ρ) → R

p such that
X (y) = x̂ .

In the following we focus on objective functions E of the form (2) where � is any
Cm function on Rp, with m ≥ 2. Given y ∈ Rq , if x̂ ∈ Rp is a strict or non-strict local
minimizer of E(·, y), then

∇E(x̂, y) = 0, (6)

where

∇E(x, y) = 2LT (Lx − y)+ ∇�(x).
Using the fact that

∇E(x̂, 0) = 2LT Lx̂ + ∇�(x̂), (7)

the variables x̂ and y can be separated in (6) which then becomes

2LT y = ∇E(x̂, 0). (8)

A point x̂ , satisfying (8), is a strict minimizer of E(·, y) if the Hessian of E(·, y) at x̂ ,
namely ∇2E(x̂, y), is positive definite. For an arbitrary x , we have

∇2E(x, y) = 2LT L + ∇2�(x). (9)

We emphasize the fact that the Hessian of E(·, y) is independent of y at any x ∈ Rp,
by writing ∇2E(x, 0) instead of ∇2E(x, y). Let H0 be the set of all the critical points of
∇E(x, y):

H0 := {x ∈ Rp: det ∇2E(x, 0) = 0}. (10)

The set H0 is independent of y as well. We cannot guarantee that a point x̃ satisfying (6)
is a strict minimizer of E(·, y) if ∇2E(x̃, 0) is singular. Define the set


0 := {y ∈ Rq : ∃x̃ ∈ H0 satisfying 2LT y �= ∇E(x̃, 0)}. (11)

All the y’s leading to a non-strict minimizer, or to a non-continuous minimizer function,
are contained in 
c

0 which reads


c
0 = {y ∈ Rq : LT y ∈ ∇E(H0, 0)}. (12)

Then we have


0 ⊂ 
. (13)

If ∇2E(x, 0) is positive definite for all x ∈ Rp, the set H0 is empty and (13) shows that

 = R

q , and there is a unique Cm−1 minimizer function X as stated in Definition 2. If L
is injective and � is convex, ∇2E(x, 0) is clearly positive definite for all x . However, if
� is non-convex, H0 is non-empty. In the following, we focus on non-convex functions
� which satisfy the assumption below.
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H2. As t → ∞, we have ∇�(tv)/t → 0 uniformly with v ∈ S.

This assumption is satisfied by the regularization functions used by many authors
[24], [38], [25].

Theorem 1. Suppose E is as in (2) where � is an arbitrary Cm function on Rp, with
m ≥ 2. Suppose that H1 is satisfied. Then we have the following:

(i) The set
c, the complement of
 specified in Definition 2, has Lebesgue measure
zero in Rq .

(ii) Moreover, if H2 is satisfied, 
c has Lebesgue measure zero in Rq .

Remark 2. The proof of the theorem establishes (i) and (ii) for 
0, as given in (11),
instead of 
. The ultimate conclusions are obtained by noticing that (13) entails that

c ⊂ 
c

0 where 
c
0 is given in (12).

Proof. Since ∇E(·, 0) is C1 and H0 is the set of its critical points, Sard’s theorem
[39], [33] shows that ∇E(H0, 0) is a negligible subset of Rp. Since L is injective, 
c

0 is
negligible, hence (i). Statement (ii) is proven in the Appendix.

Remark 3. Now we ask what is the shape of H0, as defined in (10), since it contains all
the non-strict minimizers of E(·, y), for all y. A key point in Theorem 1 is that ∇E(H0, 0)
is negligible although H0 itself may be of positive measure. We observe that for the most
important classes of functions �, the set H0 has an empty interior. For instance, such
is the case if L is injective, � is analytic and there is x0 ∈ Rp for which the Hessian
matrix ∇2�(x0) has all its eigenvalues non-negative. Indeed, assume that the interior of
H0 is non-empty. As ∇2E(·, 0) is analytic on Rp, it follows that det ∇2E(x, 0) = 0 for
all x ∈ Rp. However, the latter is impossible because by assumption there is x0 such that

∇2E(x0, 0) = 2LT L + ∇2�(x0) (14)

is positive definite, as being the sum of a positive definite and of a semi-positive definite
matrix.

More specifically, the assumption about the positive definiteness of ∇2�(x0) holds
for x0 = 0 whenever � is of the form of (3)–(4) with φ analytic and symmetric, and
φ′′(0) ≥ 0—this comes from the fact that ∇2�(0) = φ′′(0)

∑r
i=1 GT

i Gi . These require-
ments are satisfied by the objective functions used in [24], [30] and [38] where the typical
choices for φ are the Lorentzian and the Gaussian potential functions given in (5). We
return to the expression of ∇2E(x0, 0) in (14). Observe that if there is a point x0 such
that ∇2�(x0) is positive definite, then H0 has a non-empty interior independently of the
injectivity of L .

Remark 4 (Extension to Mumford–Shah-like Regularization). The most frequently
used non-convex regularization is certainly the Mumford–Shah functional which in the
discrete setting amounts to inserting the truncated quadratic potential function, see (5),
into (3)–(4). This is a special form of non-smooth regularization which does not fall into
the scope of Section 4, but can be assimilated to the smooth case considered above. More
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generally, consider that there is a constant τ > 0 such that

φ′(τ−) > φ′(τ+)

and that φ is Cm , m ≥ 2 on R+\{τ }, with φ′(0) = 0. For the truncated quadratic PF,
τ = 1/

√
α where ϕ′(τ−) = 2

√
α and ϕ′(τ+) = 0. We define

M =
r⋃

i=1

{x ∈ Rp: ‖Gi x‖ = τ }.

Obviously, for every y ∈ Rq , the function E(·, y) is Cm on Rp\M . An important obser-
vation is that if E(·, y) has a (local) minimum at x̂ ∈ Rp, then

x̂ �∈ M.

The proof can be found in [36]. We now define

H0 := {x ∈ Rp\M : det ∇2E(x, 0) = 0}.

Notice that M is a finite union of C∞ manifolds of dimension ≤ p − 1 and that Rp\M
is composed of a finite number of open subsets of Rp, say Mc

i , i = 1, . . . , n. Using
Sard’s theorem, ∇E(H0 ∩ Mc

i , 0) is negligible in Rp, for every i = 1, . . . , n, and thus
∇E(H0, 0) is negligible in Rp. The injectivity of L yet again leads to statement (i) of
Theorem 1. Statement (ii) can be shown by extending the arguments developed in the
Appendix.

For the truncated quadratic PF in particular, using that L is injective and ∇2�(x) ≥
0, for all x ∈ Rp\M , we get H0 = ∅ and hence 
 = R

q .

4. Objective Function Involving Non-smooth Regularization

We now consider regularization terms � as introduced in (3), namely

�(x) =
r∑

i=1

ϕi (Gi x), (15)

where Gi : Rp → R
s are linear operators, for all i = 1, . . . , r . We assume that for each

i = 1, . . . , r , there is a constant θi ∈ Rs such that ϕi is Cm on Rs\{θi }, with m ≥ 2,
and continuous on Rs . Typically, ϕi is non-smooth at θi . Potential functions which are
non-smooth at more than one point, say θi , can be expressed as the sum of several ϕi ,
which are non-smooth at θi , applied to the same Gi x . Notice that the regularization
function studied in Section 3 can be seen as a special case of (15) corresponding to
r = 1, G1 = I and ϕ1 ∈ Cm(Rs). Assumption H2 is adapted to the context of piecewise
smooth potential functions as it follows:

H3. For every i and for t ∈ R, we have ∇ϕi (tu)/t → 0 uniformly with u ∈ Ss when
t → ∞.
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We assume that every ϕi has at θi a one-sided directional derivative d+ϕi (θi )(u), for
every direction u ∈ Rs [40]. When ϕi is non-smooth at θi , the function u �→ d+ϕi (θi )(u)
is non-linear. We focus on functions ϕi for which d+ϕi (θi )(u) can be expressed as
the scalar product of the direction u and a direction-dependent vector, that we call a
directional gradient. Let N be the normalization mapping which for every vector v
gives its projection on the unit sphere,

N (v) = v

‖v‖ . (16)

We assume that every ϕi satisfies the following property:

H4. For every net h ∈ Rs converging to 0 and such that limh→0N (h) exists, the limit
limh→0 ∇ϕi (θi + h) exists and depends only on limh→0N (h).

We put

∇+ϕi (θi )

(
lim
h→0
N (h)

)
:= lim

h→0
∇ϕi (θi + h). (17)

By a slight abuse of notation, we extend this definition to every u ∈ Rs in the following
way:

∇+ϕi (θi )(u) =
{∇+ϕi (θi ) (N (u)) if u �= 0,

0 if u = 0.
(18)

The vector ∇+ϕi (θi )(u) is the directional gradient of ϕi at θi for u. In particular, if ϕi is
smooth at θi , for every u �= 0, we have ∇+ϕi (θi )(u) = ∇ϕi (θi ). This fact suggests we
extend the definition of ∇+ϕi on Rs by taking ∇+ϕi (z)(u) = ∇ϕi (z) for every z �= θi

and for every u �= 0. If the directional gradient ∇+ϕi (θi ) exists, then ϕi is semi-smooth
[32] since limh→0N (h)T ∇ϕi (θi + h) exists provided that limh→0N (h) exists. In such a
case, the one-sided directional derivative d+ϕi (θi ) is well defined and, more generally,
for any z ∈ Rs and for any u ∈ Rs , we have

d+ϕi (z)(u) = lim
t↘0

ϕi (z + tu)− ϕi (z)

t
= uT ∇+ϕi (z)(u). (19)

We also use two other assumptions which are given below.

H5. For every i ∈ {1, . . . , r}, the mapping u → ∇+ϕi (θi )(u) is Lipschitz on Ss .

Assumption H5 and (19) show that the mapping u → d+ϕi (θi )(u) is Lipschitz
on Rs .

H6. For every i ∈ {1, . . . , r}, the mapping u �→ ∇ϕi (θi + hu) converges to ∇+ϕi (θi )

as h ↘ 0, uniformly on Ss .

These assumptions are illustrated in the context of typical potential functions as
mentioned in (4).
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Example 4. Consider

ϕi (z) = φ(‖z − θi‖) for z ∈ Rs,

where φ ∈ Cm(R+), m ≥ 2, and φ′(0) > 0. Using (17)–(18), it is easily obtained that




∇ϕi (z) = φ′(‖z − θi‖) z − θi

‖z − θi‖ if z �= θi ,

∇+ϕi (θi )(u) = φ′(0+)
u

‖u‖ if z = θi .

Both assumptions H5 and H6 are clearly satisfied. Assumption H3 amounts to saying
that φ′(t)/t → 0 when t → ∞. This is satisfied by all the functions cited in (5). By
(19), the one-sided directional derivative of ϕi at θi for u reads

d+ϕi (θi )(u) = uT ∇+ϕi (θi )(u) = φ′(0+)‖u‖. (20)

Below we extend Theorem 1 to objective functions involving non-smooth regular-
ization terms.

Theorem 2. Suppose E is as in (2)–(3) and that H1 is satisfied. For all i ∈ {1, . . . , r},
let ϕi be Cm onR\{θi } with m ≥ 2 and continuous at θi where assumptions H4–H6 hold.
Then we have the following:

(i) The set
c, the complement of
 specified in Definition 2, has Lebesgue measure
zero in Rq .

(ii) Moreover, if H3 is satisfied, 
c has Lebesgue measure zero in Rq .

The proof of this theorem relies on several propositions and lemmas. Before we
present them, we first exhibit some basic facts entailed by the non-smoothness of�. Let
x̂ be a minimizer of E(·, y). If Gi x̂ �= θi for all i = 1, . . . , r , then (x̂, y) is contained in a
neighborhood where E is Cm . So every minimizer x̂ ′ of E(·, y′) satisfies ∇E(x̂ ′, y′) = 0
and the second differential ∇2E(·, y′) is well defined on this neighborhood. For all
(x̂ ′, y′) in the neighborhood, we can apply the results on smooth regularization presented
in Section 3. Otherwise, all minimizers x̂ of E(·, y), involving at least one index i for
which Gi x̂ = θi , belong to the following set

F :=
r⋃

i=1

{x ∈ Rp: Gi x = θi }. (21)

If Gi �= 0, ∀i ∈ {1, . . . , r}, it is obvious that F is closed and negligible in Rp. It is
legitimate to ask what is the chance of a minimizer of E(·, y), for some y ∈ Rq , coming
across to F . It has been shown in [36] that if the ϕi are C2 on Rs\{θi } and such that

d+ϕi (θi )(v) > −d+ϕi (θi )(−v), ∀v ∈ Rs\{0},
the minimizers x̂ of E(·, y) involve numerous indices i for which Gi x̂ = 0, that is
x̂ ∈ F . When {Gi } yield the first-order differences between adjacent neighbors, this
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amounts to the stair-casing effect which has been experimentally observed by many
authors [18], [13].

The conditions for a point x̂ ∈ F to be a minimizer of E(·, y) are now more tricky
than in the case when E(·, y) is smooth in the vicinity of x̂ . Given x̂ ∈ F , define

J := {i ∈ {1, . . . , r}: Gi x̂ = θi }. (22)

For i ∈ J c = {i ∈ {1, . . . , r}: i �∈ J }, the function x → ϕi (Gi x) is differentiable on a
neighborhood of x̂ in the usual sense. This suggests we introduce the following partial
objective function,

EJ (x, y) = ‖Lx − y‖2 +
∑
i∈J c

ϕi (Gi x),

which is Cm on a neighborhood of x̂ . Moreover, for every y ∈ Rq , we see that EJ (·, y)
is Cm at any x belonging to the set

�J :=
{

x ∈ Rp:

[
Gi x = θi for all i ∈ J
Gi x �= θi for all i ∈ J c

}
. (23)

Incidentally, �J is an affine space and �J is a differentiable manifold. The relevant
tangent space at any point of �J is denoted TJ and reads

TJ =
⋂
i∈J

Ker Gi . (24)

Notice that the family of all�J , when J ranges over P({1, . . . , r}), forms a partition of
R

p. We can notice also that⋃
J∈P({1,...,r})

{
y ∈ Rq : ∃x̂ ∈ �J minimizer of E(·, y)

}
is a covering of Rq provided that for every y, E(·, y) admits at least one minimizer. In
particular, this is a partition ofRq if E(·, y) admits a unique strict minimizer for every y.

Any minimizer x̂ of E(·, y) satisfies

d+E(x̂, y)(v) ≥ 0, ∀v ∈ Rp.

Let J be associated with x̂ according to (22). For any x ∈ �J and v ∈ Rp we have

d+E(x, y)(v) = vT ∇EJ (x, y)+
∑
i∈J

(Giv)
T ∇+ϕi (θi )(Giv), (25)

with

∇EJ (x, y) = 2LT (Lx − y)+
∑
i∈J c

GT
i ∇ϕi (Gi x). (26)

The restriction of E(·, y) to the manifold �J satisfies

E |�J (·, y) = EJ |�J (·, y)+ K where K =
∑
i∈J

ϕi (θi ),

and consequently E |�J (·, y) is Cm on �J . Based on these expressions, we formulate a
result which extends Lemma 1. The proofs of all statements given in what follows are
detailed in the Appendix.
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Proposition 1. Consider E defined as in (2)–(3) and y ∈ Rq . For all i ∈ {1, . . . , r}, let
ϕi be Cm on R\{θi } with m ≥ 2 and continuous at θi where assumptions H4–H6 hold.
Given x̂ ∈ Rp, let J be defined as in (22). Suppose x̂ is a local minimizer of E |�J (·, y)
such that:

(A) ∇2
(
E |�J

)
(x̂, y) is positive definite;

(B) if J is non-empty,

d+E(x̂, y)(v) > 0, ∀v ∈ T ⊥
J ∩ S.

Then there exist ρ > 0 and a unique Cm−1 local minimizer function X : B(y, ρ) → R
p

such that x̂ = X (y). Moreover, X (y′) ∈ �J for all y′ ∈ B(y, ρ).

Remark 5. For y′ ∈ B(y, ρ), since X (y′) ∈ �J , we can say that minimizing E(·, y′)
on a neighborhood N of x̂ , such that Gi x �= θi , for all i ∈ J c, is equivalent to solving the
problem: minimize EJ (·, y′) on N under the constraint Gi x = θi , for all i ∈ J . Notice
that EJ (·, y′) is smooth on N and the latter problem is classically solved using Lagrange
multipliers. Our conditions can be reformulated in such a way that using Theorem 6
on p. 34 of [21], or Theorem 6.1.1 on p. 275 of [28], we can deduce that X ∈ �J —
the function exhibited in our Proposition 1—solves the latter constrained optimization
problem. This could be used as a starting point in the proof of Proposition 1, in which
case we must also show that X solves our unconstrained minimization problem as well.
Notice that when y′ is far enough from B(y, ρ), the relevant local minimizer x̂ ′ of E(·, y′)
will satisfy another set of constraints J ′ �= J .

All data points y ∈ Rq for which all local minimizers of E(·, y) satisfy the conditions
of Proposition 1 clearly belong to
. Reciprocally, its complement
c is included in the
set of those data points y for which the conditions of Proposition 1 are liable to fail. As
previously, we will try to confine the latter set to a closed negligible subset of Rq .

Corollary 1. Let E be as in Proposition 1. For J ∈ P({1, . . . , r}), define

H J
0 := {x ∈ �J : det ∇2(E |�J )(x, 0) = 0}, (27)

WJ :=
{
w ∈ T ⊥

J : vTw ≤
∑
i∈J

(Giv)
T ∇+ϕi (θi )(Giv), ∀v ∈ T ⊥

J

}
. (28)

Let �TJ be the orthogonal projection onto TJ . Put

AJ := {y ∈ Rq : 2�TJ LT y ∈ ∇(E |�J )(H
J

0 , 0)}, (29)

BJ := {y ∈ Rq : 2LT y ∈ ∇EJ (�J , 0)+ ∂T ⊥
J

WJ }, (30)

where ∂T ⊥
J

WJ is the boundary of WJ considered in T ⊥
J . Then 
c, the complement of 


in Rq introduced in Definition 2, satisfies


c ⊆
⋃

J∈P({1,...,r})
(AJ ∪ BJ ). (31)
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The reasoning underlying Corollary 1 can be summarized in the following way. The
set AJ in (29) contains all the y ∈ R

q which lead to a stationary point of E |�J (·, y)
belonging to�J where the Hessian of E |�J (·, y) is singular, i.e. for which condition (A)
of Proposition 1 is not valid. For any J non-empty, BJ contains all y for which E(·, y) can
exhibit minimizers for which condition (B) of Proposition 1 fails. It remains to consider
the extent of the sets AJ and BJ . The set AJ is addressed next.

Proposition 2. Let E be as in Proposition 1. Then:

(i) The set AJ , defined in (29), is negligible in Rq .
(ii) If all ϕi satisfy H3, the closure of AJ is a negligible subset of Rq .

Although the proof is totally different, we have a similar statement for BJ .

Proposition 3. Let E be as in Proposition 1. Then:

(i) The set BJ , defined in (30), is negligible in Rq .
(ii) If the assumption H3 is true, the closure of BJ is a negligible subset of Rq .

The proof of Theorem 2 is a straightforward consequence of Corollary 1 and Propo-
sitions 2 and 3.

Appendix

The lemma below is used in the proof of Theorem 1 and Proposition 2.

Lemma 2. Let M and N be two real vector spaces of the same finite dimension.
Consider a closed subset H of M . Let G be a continuous function from H to N such that

1. G(H) is a negligible subset of N ;
2. there is a point x0 ∈ H as well as a positive constant C , such that for all x ∈ H

satisfying ‖x − x0‖ > C we have ‖G(x)− G(x0)‖ ≥ C ‖x − x0‖.

Then G(H) is a negligible subset of N .

Proof. Let x0 ∈ H and C > 0 be as required in assumption 2. Then for all α > C ,

G(H) ∩ B(G(x0),Cα) ⊂ G(H ∩ B(x0, α)) ⊂ G(H). (32)

The second inclusion is evident. The first one comes from the following facts. Let y ∈
G(H)\G(H ∩ B(x0, α)). Hence there is x such that y = G(x) and ‖x −x0‖ > α > C . By
assumption 2, we get ‖G(x)−G(x0)‖ ≥ Cα. This means that y �∈ G(H)∩ B(G(x0),Cα).

Furthermore, as G is continuous and H ∩ B(x0, α) is compact, G(H ∩ B(x0, α)) is
also compact. By the last inclusion in (32), G(H ∩ B(x0, α)) is a negligible subset of N .
Then, by the first inclusion, G(H) ∩ B(x0,Cα) is included in a negligible compact set.
This is true for all α, so by making α tend to infinity, we obtain the conclusion.
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Proof of Theorem 1(ii)

By the continuity of ∇E(·, 0), the set H0 is closed. Let us check whether assumption 2
of Lemma 2 is true for G = ∇E(·, 0) and H = H0. We have

‖G(x)‖ ≥ 2‖LT Lx‖ − ‖∇�(x)‖.

Moreover, ‖LT Lx‖ ≥ λ2‖x‖ for any x ∈ Rp, where λ2 is the least eigenvalue of LT L;
since L is injective, λ2 > 0. Next, by assumption H2, there is C > 0 such that ‖x‖ > C
leads to ‖∇�(x)‖ ≤ λ2‖x‖. Hence, assumption 2 of Lemma 2 is true for x0 = 0, a fact
which allows us to deduce that ∇E(H0, 0) is a negligible subset of Rp. Using that L is
injective, we see that 
c

0 is negligible, which proves (ii).

Proof of Proposition 1

As a first stage we consider the consequences of assumption (A). Point x̂ satisfies

∇(E |�J )(x̂, y) = 0, (33)

∇2(E |�J )(x̂, 0) is positive definite. (34)

By the Implicit Functions Theorem, there are ρ1 > 0 and a unique Cm−1-function
XJ : B(y, ρ1) → �J such that

∇ (E |�J

)
(XJ (y

′), y′) = 0 when y′ ∈ B(y, ρ1). (35)

In addition, by (34) and the fact that ∇2(E |�J ) is continuous, there is ν1 > 0 such that
∇2(E |�J )(x, 0) is positive definite whenever x ∈ B(x̂, ν1). SinceXJ is continuous, there
isρ2 ∈ (0, ρ1) such thatXJ (B(y, ρ2)) ⊆ B(x̂, ν1). In other words, ∇2(E |�J )(XJ (y′), y′)
is positive definite if y′ ∈ B(y, ρ2). This fact, combined with (35) shows that XJ is a
local minimizer function on B(y, ρ2), relevant to E |�J .

By also taking into account the consequences of assumption (B), we will show
that for every y′ belonging to a neighborhood of y, the point x̂ ′ := XJ (y′) ∈ �J is a
strict minimizer of the relevant non-restricted objective function E(·, y′). To this end,
we analyze the growth of E(·, y′) near to an x̂ ′ ∈ B(x̂, ν1/2) along arbitrary directions
v ∈ Rp. Since any v ∈ Rp is decomposed in a unique way into

v = vJ + v⊥
J with vJ ∈ TJ and v⊥

J ∈ T ⊥
J ,

we can write

E(x̂ ′ + v, y′)− E(x̂ ′, y′) = [E(x̂ ′ + vJ + v⊥
J , y′)− E(x̂ ′ + vJ , y′)]

+ [E(x̂ ′ + vJ , y′)− E(x̂ ′, y′)]. (36)

The sign of the two terms between the brackets will be checked separately. The fact that
Gi x̂ ′ �= θi for all i ∈ J c entails that there is ν2 ∈ (0, ν1) such that Gi (x̂ ′ + v) �= θi for
all i ∈ J c, if ‖v‖ < ν2. In such a case, x̂ ′ + vJ ∈ �J , so we have

E(x̂ ′ + vJ , y′)− E(x̂ ′, y′) = E |�J (x̂
′ + vJ , y′)− E |�J (x̂

′, y′).
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Because, by construction, x̂ ′ is a minimizer of E |�J (·, y′), for any y′ ∈ B(y, ρ2) there
exists ν3 ∈ (0, ν2) such that

E |�J (x̂
′ + vJ , y′)− E |�J (x̂

′, y′) > 0 if 0 < ‖vJ ‖ < ν3. (37)

Now we focus on the first term on the right side of (36) which will be shown to be
positive when ‖v‖ is small enough. Instead of x̂ ′ + vJ ∈ �J , we consider any x ′ ∈ �J

in a neighborhood of x̂ . We show that for any y′ near y, the function E(·, y′) reaches a
strict minimum at such an x ′ in the direction of T ⊥

J .
Since, by H5, u �→ d+ϕi (θi )(u) is lower semi-continuous on Ss , we see that u �→

d+E(x̂, y)(u) is lower semi-continuous on S p. Then assumption (B) implies that

η := inf
u∈T ⊥

J ∩S
d+E(x̂, y)(u) > 0,

where the positivity of η is due to the compactness of T ⊥
J ∩ S. It follows that

d+E(x̂, y)(v⊥
J ) >

η

2
‖v⊥

J ‖, ∀v⊥
J ∈ T ⊥

J \{0}. (38)

Then E(x ′ + v⊥
J , y′) − E(x ′, y′) will be positive for (x ′, y′, v⊥

J ) on a neighborhood of
(x̂, y, 0) if∣∣E(x ′ + v⊥

J , y′)− E(x ′, y′)− d+E(x̂, y)(v⊥
J )
∣∣ < η

2
‖v⊥

J ‖. (39)

In order to show this statement, for v⊥
J ∈ T ⊥

J , we define

I := {i ∈ {1, . . . , r}: Giv
⊥
J = 0}.

Then for x ′ ∈ �J near x̂ , we have

E(x ′ + v⊥
J , y′)− E(x ′, y′)

= 2(Lv⊥
J )

T (Lx ′ − y′)+ ‖Lv⊥
J ‖2 +

∑
i∈I c

[ϕi (Gi x
′ + Giv

⊥
J )− ϕi (Gi x

′)].

The one-sided derivative of E given in (25), is written

d+E(x̂, y)(v⊥
J ) = 2(Lv⊥

J )
T (Lx̂ − y)+

∑
i∈J c∩I c

(Giv
⊥
J )

T ∇ϕi (Gi x̂)

+
∑

i∈J∩I c

(Giv
⊥
J )

T ∇+ϕi (θi )(Giv
⊥
J ).

Based on the last two equations,∣∣E(x ′ + v⊥
J , y′)− E(x ′, y′)− d+E(x̂, y)(v⊥

J )
∣∣

≤
∣∣∣∣∣(v⊥

J )
T

(
2LT L(x ′ − x̂)− 2LT (y′ − y)+ LT Lv⊥

J (40)

−
∑

i∈J c∩I c

GT
i (∇ϕi (Gi x̂)− ∇ϕi (Gi x

′))

)∣∣∣∣∣ (41)

+
∑

i∈J c∩I c

∣∣ϕi (Gi x
′ + Giv

⊥
J )− ϕi (Gi x

′)− (v⊥
J )

T GT
i ∇ϕi (Gi x

′)
∣∣ (42)

+
∑

i∈J∩I c

∣∣ϕi (θi + Giv
⊥
J )− ϕi (θi )− d+ϕi (θi )(Giv

⊥
J )
∣∣ . (43)
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The expression in (40)–(41) is bounded by

‖v⊥
J ‖
(

2‖LT L‖ ‖x ′ − x̂‖ + 2‖L‖ ‖y′ − y‖ + ‖LT L‖ ‖v⊥
J ‖

+
∑

i∈J c∩I c

‖Gi‖ ‖∇ϕi (Gi x̂)− ∇ϕi (Gi x
′)‖
)
.

The term between the parentheses will be smaller than η/6 if (x ′, y′, v⊥
J ) is close enough

to (x̂, y, 0). Hence the term in (40)–(41) is upper bounded by (η/6)‖v⊥
J ‖. As the functions

ϕi are at least C1 in a neighborhood of Gi x ′ when i ∈ J c ∩ I c, the expression in (42)
can be bounded above by (η/6)‖v⊥

J ‖. Last, by hypothesis H6, the expression (43) can
be bounded by (η/6)‖v⊥

J ‖ as well. We thus obtain that the expression in (39) is smaller
than η‖v⊥

J ‖. Hence the conclusion.

Proof of Corollary 1

Let y ∈ 
c, then E(·, y) admits at least one minimizer x̂ ∈ Rp such that the conclusion
of Proposition 1 fails. Let J be calculated according to (22), then x̂ ∈ �J . Clearly, x̂ is
also a stationary point of E |�J (·, y), which means that

∇(E |�J )(x̂, y) = 0.

By noticing that for every direction v ∈ TJ we have E(x̂ + v, y) = EJ (x̂ + v, y) + K ,
where K =∑i∈Jϕi (θi ) is independent of v, we see that

�TJ ∇EJ (x̂, y) = ∇(E |�J )(x̂, y).

We deduce

2�TJ LT y = �TJ ∇EJ (x̂, 0) = ∇(E |�J )(x̂, 0). (44)

Since y is in
c, at least one of the conditions (A) or (B) of Proposition 1 is not satisfied.
If (A) fails, we have

det ∇2
(
E |�J (x̂, y)

) = 0,

which means that x̂ ∈ H J
0 . Since x̂ satisfies (44) as well, it follows that y ∈ AJ . It is

easy to see that these considerations are trivially satisfied if J = ∅.
Next, we focus on the case when (B) fails. In the particular case when J = ∅, (28)

shows that W∅ = ∅, since T∅ = R
p. Consequently, B∅ = ∅ as well. We now consider

the case when J is non-empty. Since x̂ is a minimizer of E(·, y),

d+E(x̂, y)(v) = vT ∇EJ (x̂, 0)− 2vT LT y

+
∑
i∈J

vT GT
i ∇+ϕi (θi )(Giv) ≥ 0, ∀v ∈ T ⊥

J ,

which expression comes from (25). Using the definition of WJ in (28), the latter expres-
sion is equivalent to

2�T ⊥
J

LT y −�T ⊥
J
∇EJ (x̂, 0) ∈ WJ .
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Saying that (B) fails means that ∃v ∈ T ⊥
J , v �= 0 such that d+E(x̂, y)(v) = 0. Hence we

can write

2�T ⊥
J

LT y −�T ⊥
J
∇EJ (x̂, 0) ∈ ∂T ⊥

J
WJ .

Since x̂ minimizes E(·, y), (44) is true. Adding it to the expression above yields

2LT y ∈ ∇EJ (x̂, 0)+ ∂T ⊥
J

WJ .

Hence y ∈ BJ .

Proof of Proposition 2

By (27), H J
0 is the set of the critical points of the C1-mapping ∇ (E |�J

)
(·, 0): �J → TJ .

Then Sard’s theorem [39], [33] shows that the set ∇(E |�J )(H
J

0 , 0) is negligible in TJ .
Noticing that �TJ LT is surjective shows that AJ , given in (29), is negligible in Rq ,
hence (i). Similarly to Theorem 1, assumptions H1 and H3 show that ∇ (E |�J

)
(·, 0)

satisfies condition 2 of Lemma 2. The same lemma then implies that ∇ (E |�J

)
(H J

0 , 0)
is negligible in TJ . Using the surjectivity of �TJ LT again yields (ii).

Proof of Proposition 3

The proof of this proposition relies on the following theorem whose proof can be found
for instance in [43].

Theorem 3. Let U be an open subset of Rn and let f : U → R
n be a locally Lipschitz

function. If W is a negligible subset of U , then f (W ) is a negligible subset of Rn .

As B∅ = ∅, we just have to prove the proposition for J �= ∅. Since WJ is convex,
∂T ⊥

J
WJ is negligible in T ⊥

J , hence the set �J + ∂T ⊥
J

WJ is negligible in Rp. By noticing

that the function x + x̃ �→ ∇EJ (x, 0) + x̃ is C1 on �J + T ⊥
J = R

p, Theorem 3 shows
that ∇EJ (�J , 0) + ∂T ⊥

J
WJ is also negligible in Rp. Since L is injective, the set BJ in

(30) is negligible in Rq .
In order to prove (ii), we show that under assumption H3, BJ is also negligible in

R
q . Since L is injective, this is true provided that ∇EJ (�J , 0)+ ∂T ⊥

J
WJ is negligible in

R
p. The latter statement is shown below. The term ∇EJ (�J , 0) reads

∇EJ (�J , 0)

=
{

lim
n→∞ ∇EJ (xn, 0): xn ∈ �J , ∀n ∈ N and lim

n→∞ ∇EJ (xn, 0) exists
}
. (45)

Assumption H3, joined to the fact that ∇EJ (xn, 0) is bounded when n → ∞, implies that
{xn}n∈N is also bounded. Consequently, {xn}n∈N admits a subsequence which converges
in �J ; by a slight abuse of notation, the latter will be denoted by {xn}n∈N again. Let
x̄ := limn→∞ xn . Then x ∈ �J where

�J =
⋃
I⊂J c

�J∪I .
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Since all the sets �J∪I in the above union are disjoint, there is a unique I0 ⊂ J c such
that x ∈ �J∪I0 .

If I0 = ∅, we can write that

lim
n→∞ ∇EJ (xn, 0) = ∇EJ (x, 0).

For I0 �= ∅, the considerations are developed in several stages. Starting with I0, for
every k = 1, 2, . . ., we define recursively

uk := lim
n→∞N

(
�TJ ∩(∩i∈Ik−1 Ker Gi )⊥(xn − x)

)
, (46)

Ik := {i ∈ Ik−1: Gi uk = 0}. (47)

The limit in (46) is taken over an arbitrary convergent subsequence. More precisely, for
every k, we recursively extract a subsequence of {xn} that is denoted {xn} again, and
which ensures the existence of the limit. Clearly, uk is well defined only when Ik−1 �= ∅.
For k small enough, the definition of uk shows that uk �∈⋂Ik−1

Ker Gi , hence there exists
i ∈ Ik−1 for which Gi uk �= 0. Consequently {Ik}k∈N is strictly decreasing whenever Ik is
non-empty. It follows that there is an integer K , with 1 ≤ K ≤ r , such that the sequence
{Ik}k∈{0,...,K } is strictly decreasing with respect to the inclusion relation, and IK = ∅. The
expressions in (46) and (47) are considered in the lemmas presented below.

Lemma 3. For every k ∈ {1, . . . , K } we have uk ∈ Uk where

Uk :=





TJ ∩

( ⋂
i∈Ik−1\Ik

Ker Gi

)⊥
∩
(⋂

i∈Ik

Ker Gi

)
\
( ⋃

i∈Ik−1\Ik

Ker Gi

)
if k < K ,

TJ ∩
( ⋂

i∈IK−1

Ker Gi

)⊥ \
( ⋃

i∈Ik−1\Ik

Ker Gi

)
if k = K .

Proof. By the definitions of uk and Ik ,

uk ∈ TJ ∩
( ⋂

i∈Ik−1

Ker Gi

)⊥
and uk ∈

⋂
i∈Ik

Ker Gi ,

respectively. Hence, uk belongs to the intersection of the above sets. By using the fol-
lowing trivial decomposition when k < K ,( ⋂

i∈Ik−1

Ker Gi

)⊥
=
(( ⋂

i∈Ik−1\Ik

Ker Gi

)
∩
(⋂

i∈Ik

Ker Gi

))⊥

=
( ⋂

i∈Ik−1\Ik

Ker Gi

)⊥
+
(⋂

i∈Ik

Ker Gi

)⊥
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we find that

uk ∈ TJ ∩


( ⋂

i∈Ik−1\Ik

Ker Gi

)⊥
+
(⋂

i∈Ik

Ker Gi

)⊥ ∩
(⋂

i∈Ik

Ker Gi

)

=

TJ ∩

( ⋂
i∈Ik−1\Ik

Ker Gi

)⊥
∩
(⋂

i∈Ik

Ker Gi

)


+

TJ ∩

(⋂
i∈Ik

Ker Gi

)⊥
∩
(⋂

i∈Ik

Ker Gi

)


= TJ ∩
( ⋂

i∈Ik−1\Ik

Ker Gi

)⊥
∩
(⋂

i∈Ik

Ker Gi

)
.

We obtain the result relevant to k = K likewise.

Lemma 4. If i ∈ Ik−1\Ik ,

lim
n→∞ ∇ϕi (Gi xn) = ∇+ϕi (θi )(N (Gi uk)).

Proof. From hypothesis H4, we have

lim
n→∞ ∇ϕi (Gi xn) = lim

n→∞ ∇ϕi (θi + Gi (xn − x))

= ∇+ϕi (θi )
(

lim
n→∞N (Gi (xn − x))

)
provided that the limit between the parentheses is well defined. We examine the latter
question. The fact that xn and x are elements of�J implies that xn −x ∈ TJ and moreover

Gi (xn − x) = Gi �TJ (xn − x)

= Gi �TJ ∩(∩j∈Ik−1 Ker Gj )⊥(xn − x)+ Gi�TJ ∩(∩j∈Ik−1 Ker Gj )(xn − x)

= Gi �TJ ∩(∩j∈Ik−1 Ker Gj )⊥(xn − x).

Hence,

N (Gi (xn − x)) = N (Gi �TJ ∩(∩j∈Ik−1 Ker Gj )⊥(xn − x)
)

= N (Gi N
(
�TJ ∩(∩j∈Ik−1 Ker Gj )⊥(xn − x)

))
.

Letting n → ∞, we obtain

lim
n→∞N (Gi (xn − x)) = N

(
Gi lim

n→∞N
(
�TJ ∩(∩j∈Ik−1 Ker Gj )⊥(xn − x)

))
= N (Gi uk).

The last expression is well defined since i �∈ Ik ensures Gi uk �= 0.
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We now return to the proof of the proposition. Given I ⊂ {1, . . . , r}, we introduce
the function

FI : Rp\
{⋃

i∈I

Ker Gi

}
→ R

p,

u �→ FI (u) :=
∑
i∈I

GT
i ∇+ϕi (θi )(N (Gi u)). (48)

By the definition of Ik in (47), uk �∈⋃i∈Ik−1\Ik
Ker Gi . Then, according to Lemma 4,

lim
n→∞

∑
i∈Ik−1\Ik

GT
i ∇ϕi (Gi xn) = FIk−1\Ik (uk).

Hence, from the definition of EJ , we have

lim
n→∞ ∇EJ (xn, 0) = ∇EJ∪I0(x, 0)+

K∑
k=1

FIk−1\Ik (uk).

Based on (45) and Lemma 3, we can write

∇EJ (�J , 0) ⊂ ∇EJ (�J , 0)

∪

 r⋃

K=1

⋃
{Ik }K

k=1⊂IK

(
∇EJ∪I0(�J∪I0 , 0)+

K∑
k=1

FIk−1\Ik (Uk)

) , (49)

where

IK := {{Ik}K
k=1 ⊂ (P({1, . . . , r}))K : {Ik}K

k=1 is strictly decreasing and IK = ∅} .
Lemma 5. Let {Ik}K

k=0 be a strictly decreasing sequence (with respect to the inclusion
relation) and let {Uk}K

k=0 be defined as in Lemma 3. Then we have Uk ⊥ Ul for every
k �= l and

TJ = TJ∪I0 ⊕
(

K⊕
k=1

Uk

)
.

Note that Uk �= {0} since uk ∈ Uk and uk �= 0. It follows that

dim

( ⋃
i∈Ik−1\Ik

Ker Gi

)
< dim


TJ ∩

( ⋂
i∈Ik−1\Ik

Ker Gi

)⊥
∩
(⋂

i∈Ik

Ker Gi

) .
Then Uk is a vector space which reads

Uk = TJ ∩
( ⋂

i∈Ik−1\Ik

Ker Gi

)⊥
∩
(⋂

i∈Ik

Ker Gi

)
.
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Proof. This proof is based on the following identity:

⋂
i∈Ik

Ker Gi =
[( ⋂

i∈Ik−1\Ik

Ker Gi

)
∩
(⋂

i∈Ik

Ker Gi

)]

⊕


( ⋂

i∈Ik−1\Ik

Ker Gi

)⊥
∩
(⋂

i∈Ik

Ker Gi

)


=
( ⋂

i∈Ik−1

Ker Gi

)

⊕


( ⋂

i∈Ik−1\Ik

Ker Gi

)⊥
∩
(⋂

i∈Ik

Ker Gi

)
 (by Ik ⊂ Ik−1).

Consequently

TJ ∩
(⋂

i∈Ik

Ker Gi

)
=
[

TJ ∩
( ⋂

i∈Ik−1

Ker Gi

)]
⊕ Uk . (50)

By using recursively the obtained identity we get

TJ = TJ ∩

( ⋂

i∈IK−1

Ker Gi

)
⊕
( ⋂

i∈IK−1

Ker Gi

)⊥

=
[

TJ ∩
( ⋂

i∈IK−1

Ker Gi

)]
⊕ UK

=
[

TJ ∩
( ⋂

i∈IK−2

Ker Gi

)]
⊕ UK−1 ⊕ UK (by (50))

= · · ·

=
[

TJ ∩
(⋂

i∈I0

Ker Gi

)]
⊕
(

K⊕
k=1

Uk

)

= TJ∪J0 ⊕
(

K⊕
k=1

Uk

)
.

The proof is complete.

We can now complete the proof of the proposition. By Lemma 5, we have the
following inclusion:(

�J∪I0 +
K∑

k=1

Uk + ∂T ⊥
J

WJ

)
⊂ (�J + ∂T ⊥

J
WJ ).
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Since ∂T ⊥
J

WJ is negligible in T ⊥
J , the expression in the right side above determines a set

which is negligible in Rp. Hence the term in the left side is negligible as well.
Let x̃ ∈ �J∪I0 be given, then �J∪I0 = {x̃} + TJ∪I0 . By Lemma 5, any x ∈ Rp can

be decomposed in a unique way in the form

x = x̃ + xJ∪I0 + x1 + · · · + xK + x⊥
J ,

where

xJ∪I0 ∈ TJ∪I0 ,

xk ∈ Uk, ∀k ∈ {1, . . . , K },
x⊥

J ∈ T ⊥
J .

Based on this decomposition and using FI defined in (48), the function

�J∪I0 +
K∑

k=1

Uk + T ⊥
J → R

p,

x̃+xJ∪I0 +x1+· · ·+xK +x⊥
J �→ ∇EJ∪I0(x̃ + xJ∪I0 , 0)+

K∑
k=1

FIk−1\Ik (xk)+ x⊥
J ,

is locally Lipschitz since ∇EJ∪I0 is C1 and FIk−1\Ik is Lipschitz by H5. Its image when x
ranges over �J∪I0 +∑K

k=1 Uk + ∂T ⊥
J

WJ , that is

∇EJ∪I0(�J∪I0 , 0)+
K∑

k=1

FIk−1\Ik (Uk)+ ∂T ⊥
J

WJ ,

is consequently negligible in Rp.
We prove in the same way that ∇EJ (�J , 0) + ∂T ⊥

J
WJ is negligible in Rp. Thus,

according to (49), ∇EJ (�J , 0)+∂T ⊥
J

WJ is a negligible subset ofRp, being a finite union
of negligible subsets. The proof is complete.
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