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Abstract We address the denoising of images contaminated
with multiplicative noise, e.g. speckle noise. Classical ways
to solve such problems are filtering, statistical (Bayesian)
methods, variational methods, and methods that convert the
multiplicative noise into additive noise (using a logarith-
mic function), apply a variational method on the log data
or shrink their coefficients in a frame (e.g. a wavelet basis),
and transform back the result using an exponential function.

We propose a method composed of several stages: we
use the log-image data and apply a reasonable under-optimal
hard-thresholding on its curvelet transform; then we apply a
variational method where we minimize a specialized hybrid
criterion composed of an �1 data-fidelity to the thresholded
coefficients and a Total Variation regularization (TV) term
in the log-image domain; the restored image is an exponen-
tial of the obtained minimizer, weighted in a such way that
the mean of the original image is preserved. Our restored
images combine the advantages of shrinkage and variational
methods and avoid their main drawbacks. Theoretical results
on our hybrid criterion are presented. For the minimization
stage, we propose a properly adapted fast scheme based on
Douglas-Rachford splitting. The existence of a minimizer
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of our specialized criterion being proven, we demonstrate
the convergence of the minimization scheme. The obtained
numerical results clearly outperform the main alternative
methods especially for images containing tricky geometri-
cal structures.
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1 Introduction

In various active imaging systems, such as synthetic aper-
ture radar (SAR), laser or ultrasound imaging, the data rep-
resenting the underlying (unknown image) So : � → R+,
� ⊂ R

2, are corrupted with multiplicative noise. Such a
noise severely degrades the image (see Fig. 2(a)–(b) as well
as the noisy images in Sect. 6). In order to increase the
chance to restore a better image, several independent mea-
surements for the same scene should be realized, thus yield-
ing a set of data:

�k = Soηk + nk, ∀k ∈ {1, . . . ,K}, K ≥ 1, (1)

where ηk : � → R+, and nk represent the multiplicative and
the additive noise relevant to each measurement k. The addi-
tive noise nk has usually a very weak effect and is systemat-
ically neglected in the literature. A commonly used realistic
model for the distribution of ηk is the one-sided exponential
distribution, shown in Fig. 1(a):

ηk: pdf(ηk) = μe−μηk1R+(ηk),

where 1R+(t)
def=

{
1 if t ≥ 0,

0 otherwise.
(2)
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Fig. 1 Noise distributions: K = 1 in (a), (b), (c) and K = 10 in (d), (e), (f). In (c) and (f) W is a curvelet frame. Hist in (c) and (f) stands for
histogram

The data used for denoising is the average of the set of all
K measurements that could be realized (see e.g. Fig. 2(b)).
In classical SAR modeling one takes1 μ = 1 in (2), so the
usual data production model reads (see e.g. [3, 66, 67, 71]
among many other references):

� = 1

K

K∑
k=1

�k = So

1

K

K∑
k=1

ηk = Soη. (3)

Since all ηk are independent, the resultant mean of the mul-
tiplicative noise η in (3) follows a Gamma distribution, see
Fig. 1(d) for K = 10:

η = 1

K

K∑
k=1

ηk: pdf(η) = KKηK−1

�(K)
e−Kη, (4)

where � is the usual Gamma-function and pdf stands for
probability density function.

Conversion of the Multiplicative Noise into Additive Noise
A large variety of methods—references are given in Sect. 1.1
—rely on the conversion of the multiplicative noise into ad-
ditive noise using

v = log� = logSo + logη = uo + n. (5)

In this case the probability density function of n reads (see
Fig. 1(b)–(e)):

n = logη: pdf(n) = KKeK(n−en)

�(K)
. (6)

In our experiments, we will consider noisy images for K = 1
(see e.g. Fig. 2(a)), in which case pdf(η) and pdf(n) are triv-
ial to derive from (4) and (6).

1.1 Preexisting Restoration Methods

Various adaptive filters for multiplicative noise removal have
been proposed, see e.g. [40, 72] and references therein. Ex-
periments have shown that filtering methods work well when

1Taking μ �= 1 just amounts to re-scale S by μ.

the multiplicative noise is weak, i.e. when K is large. How-
ever, in practice it is seldom possible to get a large K .

1.1.1 Bayesian MAP, regularization and variational
methods

Even though the methods belonging to this class are inspired
by different motivations, it is well known that given v, the
general approach define the restored function û as

û = argmin
u

Fv(u),

where u is defined on a continuous or a finite domain
� ⊂ R

2, Fv is a criterion combining data-fidelity � with
priors (regularization) � balanced via a parameter ρ > 0:

Fv(u) = ρ�(u) + �(u)

for

{
�(u) = ∫

�
ψ(u(ξ), v(ξ))dξ,

�(u) = ∫
�

φ(|∇u(ξ)|) dξ,

ξ = (ξ1, ξ2) ∈ �. (7)

In what follows, the overscript “ .̂ ” denotes a minimizer
of a given criterion and when there is no ambiguity, the cor-
responding restored image. In (7), ψ : R+ → R+ assesses
closeness to data, ∇ stands for gradient (possibly in a distri-
butional sense or a discrete approximation when � is finite),
φ : R+ → R+ is an increasing function modeling the prior
on |∇u| and | · | is a norm on the gradient field. Rudin, Os-
her and Fatemi [60] proved that when � is finite, φ(t) = t

yields solutions û that preserve edges. The resultant (prior)
regularization term, known as Total Variation (TV), is very
popular. It reads

‖u‖TV
def=

∫
�

|∇u(ξ)|dξ,

where |∇u| = √
(∂u/∂ξ1)2 + (∂u/∂ξ2)2.

Next we sketch the main modern MAP or variational
methods that were used for multiplicative noise removal.
Such methods were applied to raw-data (3)–(4) as well as to
log-data (5)–(6). In [4], the authors develop a Bayesian MAP
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estimator on the log-image where the data-fitting term � is
derived from (6) and a specially designed prior term. The
method of Aubert-Aujol (AA) [8] uses the raw data (3)–(4)
and � is the log-likelihood derived from (4). The criterion
reads

(AA) F�(S) = ρ

∫ (
logS(ξ) + �(ξ)

S(ξ)

)
dξ +‖S‖TV. (8)

The method proposed in [39] combines the log-likelihood
associated to (6) and a smoothed TV regularization. A sim-
ple and fast method using graph-cut minimization is pro-
posed in [29].

The methods in [58, 59] consider white Gaussian mul-
tiplicative noise with mean 1 and a very small variance. In
[59], Rudin Lions and Osher (RLO) minimize a criterion of
the form

F�(S) = ρ

∥∥∥∥�

S
− 1

∥∥∥∥
2

2
+ ‖S‖TV. (9)

The methods proposed by Shi and Osher (SO) in [61] deal
with various noises and provide iterative TV regularization
using relaxed inverse scale space (RISS) flows. The first one
uses the log-data v and is based on the criterion Fv(u) =
ρ‖u − v‖2

2 + ‖u‖TV. The corresponding RISS flow reads

(SO)

ut = div

( ∇u

|∇u|
)

+ ρ(v − u + v),

vt = α(v − u), α > 0,

with v0 = 0 and u0 = mean(v).

(10)

The second one generalizes several multiplicative noise
models in the image domain [8, 28, 59] and the RISS flow
uses iterative TV regularization on exp (S) for convergence
reasons. According to the authors, both methods provide
similar solution qualities. We focus on the first one mainly
because of its simplicity.

Whatever smooth data-fidelity is chosen, it was proven
[48, 51] that TV regularization yields images containing nu-
merous constant regions (the well known stair-casing ef-
fect), hence textures and fine details are removed; this is
clearly visible in the restorations obtained using these meth-
ods as reported in Sect. 6. The results of [60] initiated a flood
of papers to construct smooth edge-preserving convex func-
tions φ, see e.g. [2, 21, 68], and [9] for a recent overview.
Even though smoothness at zero alleviates stair-casing, it
was proven in [52] that these functions φ lead to images
with underestimated edges. This is particularly annoying if
the sought-after image has neat edges or spiky features since
the latter are eroded. Nevertheless, the good point is that
these methods enable the introduction of priors in the im-
age domain.

1.1.2 Multiscale Shrinkage for the Log-Data

Many authors—e.g. [3, 5, 37, 54, 71] and references
therein—focus on restoring the log-data v in (5) using
decompositions into some multiscale frame for L2(R2).
Let us remind that the analysis operator W of a frame
W = {wi : i ∈ I }, where I is a set of indices, i.e. (Wz)[i] =
〈z,wi〉, ∀i ∈ I , satisfies the generalized Parseval condition
c1‖z‖2

2 ≤ ∑
i∈I |〈z,wi〉|2 ≤ c2‖z‖2

2, ∀z ∈ L2(R2), where
c2 ≥ c1 > 0 are the frame bounds. When c1 = c2, the frame
is said to be tight. In particular W can be a wavelet basis.
The frame is chosen so that uo admits a sparse representa-
tion, i.e. uo ≈ ∑

i∈J ζiwi for some ζi ∈ R with #J � #I .
The usual strategy is to decompose the log-data v into an

well-adapted W :

y = Wv = Wuo + Wn. (11)

The rationale is that the noise Wn in y approaches a
Gaussian distribution—see Figs. 1(c) and (f)—according to
the Central Limit Theorem. The tendency to normality gets
better as K increases. Under different frameworks, coeffi-
cients are denoised using shrinkage estimators:

yT [i] = T
(
(Wv)[i]), ∀i ∈ I, (12)

where T : R → R is a symmetric function satisfying 0 ≤
T (t) ≤ t , ∀t ≥ 0. The most widely used examples are soft
and hard thresholding inaugurated in [30], and are given in
(16) and (36) later on. Since then, various shrinkage func-
tions T have been explored, e.g. [6, 11, 31, 46, 63, 69] to
name only a few. See also those derived in a Bayesian frame-
work and applied to multiplicative noise removal e.g. in [3,
5, 71].

Let W̃ = {w̃i : i ∈ I } be a dual frame. The associated
dual operator W̃ : y �→ ∑

i∈I y[i]w̃i is a left inverse of W ,
that is v = ∑

i∈I (Wv)[i]w̃i . Then a denoised log-image vT
is generated by expanding the shrunk coefficients yT in the
dual frame reads

vT =
∑
i∈I

T ((Wv)[i])w̃i =
∑
i∈I

T (y[i])w̃i , (13)

and the sought-after image reads ST = exp(vT ).
The major problems with shrinkage denoising methods,

as sketched in (12)–(13), is that shrinking large coefficients
entails an erosion of the spiky image features, while shrink-
ing small coefficients towards zero yields Gibbs-like oscil-
lations in the vicinity of edges and a loss of texture in-
formation. On the other hand, if shrinkage is not strong
enough, some coefficients bearing mainly noise will remain
almost unchanged—we call such coefficients outliers—and
(13) suggests they generate artifacts with the shape of the
functions w̃i . An illustration can be seen in Fig. 2(b)–(h).



J Math Imaging Vis

Several improvements, such as translation invariant thresh-
olding [23] and block-Stein thresholding (BS) [22], were
brought in order to alleviate these artifacts. Results obtained
using the BS method are presented in Sect. 6: the above
mentioned artifacts remain visible. Another inherent diffi-
culty comes from the fact that coefficients between differ-
ent scales are not independent, as usually assumed, see e.g.
[7, 11, 46, 62]. In summary, as shrinkage-based estimation
relies on sparsity of the representation, it is able to capture
efficiently faint structures in the image. But this comes at the
price of an intricate choice of the shrinkage function and the
associated parameters (e.g. threshold).

1.2 Our Approach is Hybrid

We initially restore the log-data (5) and then derive the re-
stored image Ŝ. Our objective is to avoid the main draw-
backs of variational and sparsity-based shrinkage methods
and to take benefit of the best of both worlds. A way to
achieve such a goal is to combine the information brought
by the coefficients of the frame-transformed data along with
pertinent regularization in the domain of the log-image. This
idea for the purpose of additive Gaussian noise removal have
been investigated in several papers [13, 15, 20, 24, 33, 36,
43, 44].

Although guided by different arguments, hybrid methods
amount to define the restored function û as

û ∈ argmin
u

�(u)

subject to |(W(u − v)) [i]| ≤ μi, ∀i ∈ I.

If the use of an edge-preserving regularization, such as TV
for � is a pertinent choice, the strategy for the selection of
parameters (μi)i∈I is more tricky since it must take into ac-
count the magnitude of the data coefficients (y[i])i∈I . How-
ever, deciding on the value of μi based solely on y[i], as
done in these papers, is too rigid since there are either cor-
rect data coefficients that incur smoothing (μi > 0), or noisy
coefficients that are left unchanged (μi = 0). A way to deal
with this situation is to determine (μi)i∈I based both on the
data and on the prior term �. According to the theoretical re-
sults derived in [49, 50], this objective can be carried out by
defining a non-smooth data-fitting term for the coefficients,
as done by some of the authors of this paper in [32] which
gave rise to very successful numerical results.

To the best of our knowledge, hybrid methods have never
been applied to multiplicative noise removal before, whereas
the latter is a challenging problem: it arises in important
applications but up to now, there is no entirely satisfactory
methods to solve it.

We propose a method where the restored log-image û is
defined as the minimizer of a criterion composed of an �1-
fitting to the (suboptimally) hard-thresholded frame coeffi-

cients of the log-data and a TV regularization in the log-
image domain (Sect. 2). The rationale behind this choice
and several theoretical properties are presented as well. This
method uses some ideas from a previous work of some of the
authors [32]. The minimization scheme to compute the log-
restored image uses a Douglas-Rachford splitting scheme
specially adapted to our criterion (Sect. 3). It involves orig-
inal derivations and proofs. The sought-after image is of the
form B exp (û) where B is a bias-correction term derived
from the noise distribution (Sect. 4). The full algorithm to re-
move multiplicative noise is summarized in Sect. 5. A large
variety of experiments and comparisons to other contem-
porary multiplicative noise removal methods are presented
in Sect. 6. Concluding remarks and open questions are dis-
cussed in Sect. 7.

2 Restoration of the Frame Coefficients of the Log-Data

In this section we consider how to restore the frame coef-
ficients y = Wv of the log-data image v obtained accord-
ing to (5). We focus on methods which, for a given pre-
processed data set, lead to convex optimization problems.
The denoised coefficients are denoted by x̂.

We assume that v ∈ L2(�) which ensures that y = Wv ∈
�2(I ).

2.1 Specific Requirements to Restore the Coefficients

Given the log-data v obtained according to (5), we first apply
a frame transform as in (11) to get

y[i] = 〈wi, v〉 = 〈wi,uo〉 + 〈wi,n〉, ∀i ∈ I, (14)

where uo denotes the unknown original log-image. The
noise contained in the i-th datum reads 〈n,wi〉; its distribu-
tion is of the form displayed in Fig. 1(c) or (f). However the
signal to noise ratio (SNR) of the coefficients is ill-assorted.
When uo has a sparse representation in the frame, many co-
efficients contain only noise. For this reason, we apply a
hard-thresholding to all coefficients

yTH[i] def= TH
(
y[i]), ∀i ∈ I, (15)

where the hard-thresholding operator TH, with a threshold
T , reads [30]

TH(t) =
{

0 if |t | ≤ T ,

t otherwise.
(16)

The resultant set of coefficients is systematically denoted by
yTH . We choose an underoptimal threshold T in order to pre-
serve as much as possible the information relevant to edges
and to textures, an important part of which is contained in



J Math Imaging Vis

Fig. 2 (a) Noisy Lena for K = 1. (b) Noisy Lena obtained via aver-
aging, see (1), for K = 4. (c)–(h) Denoising of data v shown in (b)
where the curvelet transform of v are hard-thresholded according to

(15)–(17) for different choices of T where (see (61)). The displayed
restorations correspond to vTH = exp (vTH ), as given in (17)

small coefficients. Let’s point out that with hard threshold-
ing, all kept coefficients are unaltered and thus contain the
original information on the sought-after image.

Let us consider

vTH =
∑
i∈I

yTH[i]w̃i =
∑
i∈I1

y[i]w̃i , (17)

where

I1 = {i ∈ I : |y[i]| > T }. (18)

The image vTH contains artifacts with the shape of the w̃i ’s,
for all y[i], that are dominated by noise and above the
threshold T , as well as a lot of information about the fine
details in the original (unknown) log-image uo. In all cases,
whatever the choice of T , the image vTH is unsatisfactory—
see Fig. 2(c)–(h).

Given the under-thresholded data yTH , we focus on hy-
brid methods where the restored coefficients x̂ minimize a
function Fy : �2(I ) → R ∪ {∞} of the form:
{

x̂ = argminx∈�2(I ) Fy(x)

Fy(x) = �(x,yTH) + �(W̃x),
(19)

where � is a data-fidelity term in the domain of the frame
coefficients and � is an edge-preserving regularization term
in the log-image domain. The restored log-image û is of the
form

û = W̃ x̂. (20)

Let us denote

I0 = I \ I1 = {i ∈ I : |y[i]| ≤ T }, (21)

where I1 is given in (18). In order to specify the shape of �

and �, we analyze the information borne by the coefficients
yTH[i] relevant to I0 and to I1.

(I0) The coefficients y[i] for i ∈ I0 usually correspond to
high-frequency components which can be of the two
types described below.
(a) Coefficients y[i] containing essentially noise—in

which case the best we can do is to keep them null,
i.e. x̂[i] = yTH[i] = 0;

(b) Coefficients y[i] which correspond to faint edges
and details in uo. Since y[i] is difficult to distin-
guish from the noise, the relevant x̂[i] should be
restored using the edge-preserving prior conveyed
by �. Let us emphasize that a careful restoration
must find a nonzero x̂[i], since otherwise x̂[i] = 0
would generate Gibbs-like oscillations in û.

(I1) The coefficients y[i] for i ∈ I1 are of the following two
types:
(a) Large coefficients which carry the main features

of the sought-after function û. They verify y[i] ≈
〈wi,uo〉 and can be kept intact, i.e. x̂[i] = yTH[i] =
y[i].

(b) Coefficients which are highly contaminated by
noise, characterized by |y[i]| � |〈wi,uo〉|. We call
them outliers: if we had x̂[i] = y[i], by (17) we get
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vTH = ∑
j �=i x̂[j ]w̃j + y[i]w̃i which shows that û

would contain an artifact with the shape of w̃i . For
this reason, x̂[i] must be restored according to the
prior �.

2.2 A Specialized Hybrid Criterion

This analysis clearly defines the goals that the minimizer x̂

of Fy is expected to achieve. In particular, x̂ must involve an
implicit classification between coefficients that fit to yTH ex-
actly and coefficients that are restored according to the prior
term �. In short, restored coefficients have to fit yTH exactly
if they are in accordance with the regularization term � and
have to be restored via the latter otherwise. Since [49, 50]
it is known that criteria Fy where � is non-smooth at the
origin (e.g. �1) can satisfy x̂[i] = yTH[i] for coefficients that
are in accordance with the prior �, while the other coeffi-
cients are restored according to �, see also [32]. For these
reasons, we focus on a criterion of the form (19) where

�(x) =
∑
i∈I1

λi |(x − y)[i]| +
∑
i∈I0

λi |x[i]|

= ∥∥�(x − yTH)
∥∥

1 , (22)

for �
def= diag{λi : i ∈ I }, (23)

�(x) =
∫

�

∣∣∣∇W̃x

∣∣∣ dξ =
∥∥∥W̃x

∥∥∥
TV

. (24)

Remark 1 We should emphasize that the TV regularization
term � in our criterion will not favor minimizers û = W̃ x̂

that involve constant regions unlike the usual variational
methods, as discussed in Sect. 1.1.1. The reason is that the
non differentiability of � at yTH ensures that x̂[i] = yTH[i]
for a certain number of coefficients [49]. Then W̃ x̂ keeps
some fixed structures of the form yTH[i]w̃i which can pre-
vent from stair-casing in û, provided that there is no large
sets of outliers corresponding to the same region of the im-
age all of which are restored according to the TV term �.
Such an important benefit clearly depends on the level of
the noise, the threshold T and the choice of (λi)i∈I .

2.3 Well-posedness of the Minimization Problem

The theorem below ensures the existence of a minimizer of
the criterion Fy defined above. Its proof can be found in
[32].

Theorem 1 [32] For y ∈ �2(I ) and T > 0 given, consider
Fy as defined by (15), (19) and (22)–(24), where � ∈ R

2 is
open, bounded and its boundary ∂� is Lipschitz, and W =
{wi : i ∈ I } is a frame of L2(�). Suppose that

1. W̃ is the pseudo inverse of W , i.e. W̃ = (W ∗W)−1W ∗
where W ∗ is the adjoint operator;

2. λmin = mini∈I λi > 0.

Then Fy has a minimizer x̂ ∈ �2(I ).

Remark 2 Since W is a multiscale frame for L2(R2) and
x̂ ∈ �2(I ), the restored log-image û as given in (20) satisfies
û ∈ L2(�). Note that assumption 1 holds true in many cases,
e.g. for tight frames this choice of W̃ is standard since it
leads to W̃ = c−1W ∗, where c ∈ (0,∞) is a constant.

Let us notice that the minimizer of Fy is not necessarily
unique. Given y, we denote by Gy the set of all minimizers
of Fy :

Gy
def= {

x̂ ∈ �2(I ) : Fy(x̂) = min
x

Fy(x)
}
. (25)

For every yTH , the set Gy is convex and corresponds to im-
ages û = W̃ x̂ which are visually very similar, as stated in
the theorem below whose proof can be found in [32].

Theorem 2 [32] Let the assumptions of Theorem 1 hold. If
x̂1 and x̂2 are two minimizers of Fy (i.e. x̂1 ∈ Gy and x̂2 ∈
Gy ), then

∇W̃ x̂1 ∝ ∇W̃ x̂2, a.e. on �,

i.e. W̃ x̂1 and W̃ x̂2 have the same level lines.

In words, the images û1 = W̃ x̂1 and û2 = W̃ x̂2 share the
same level lines, i.e. they are obtained from each other by
a local change of contrast. This is usually invisible to the
naked eye.

Some guidelines for the choice of λi were investigated in
[32]. The conclusions can be summarized as follows.

(a) If i ∈ I1, the parameter λi should be close to, but be-
low the upper bound ‖w̃i‖TV, since above this bound,
outliers y[i] cannot be restored.

(b) For i ∈ I0, a reasonable choice is

λi = max
k �=i

∣∣∣∣
∫

�

(∇w̃i(ξ))T
∇w̃k(ξ)

|∇w̃k(ξ)| dξ

∣∣∣∣ ,

where .T stands for transposed. If λi is below this bound,
some neighboring coefficients that are set to zero might
not be restored correctly, even though Gibbs-like oscil-
lations are reduced.

Another important remark is that, for some multiscale trans-
forms, the bounds discussed above are constant. This is for
instance the case for the wavelet transform.

For the frame W = {wi : i ∈ I } we here focus on the sec-
ond generation curvelet transform because of the following
facts.
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• This transform is known to provide near-optimal non-
adaptive sparse representation of piecewise smooth im-
ages away from smooth edges. Thus it is a very good can-
didate to capture efficiently the geometrical content of the
log-data.

• The bounds on (λi)i∈I are nearly constant, so we use only
two values for λi ,

λi = λ̃0 > 0, ∀i ∈ I0 and λi = λ̃1 > 0, ∀i ∈ I1.

Then the diagonal matrix � in (23) satisfies �[i, i] ∈
{λ̃0, λ̃1}.

• This curvelet transform corresponds to a tight frame
which will turn out to be helpful for the subsequent op-
timization scheme, see in particular Sect. 3.2.2.

3 Minimization Scheme

Let us rewrite the minimization problem defined by (15),
(19) and (22)–(24) in a more compact form:

find x̂ such that Fy(x̂) = min
x

Fy(x)

for Fy(x) = �(x) + �(x). (26)

Clearly, � in (22) and � in (24) are proper lower-semicon-
tinuous convex functions, hence the same holds true for Fy .
The set Gy introduced in (25) is non-empty by Theorem 1
and can be rewritten as

Gy = {x̂ ∈ �2(I ) | x̂ ∈ (∂Fy)
−1(0)},

where ∂Fy stands for subdifferential operator. Minimizing
Fy amounts to solving the inclusion

0 ∈ ∂Fy(x),

or equivalently, to finding a solution to the fixed point equa-
tion

x = (Id + γ ∂Fy)
−1(x), ∀γ > 0, (27)

where (Id+γ ∂Fy)
−1 is the resolvent operator associated to

∂Fy and Id is the identity map on the Hilbert space �2(I ).
The schematic algorithm resulting from (27), namely

x(k+1) = (Id + γ ∂Fy)
−1(x(k)), (28)

is a fundamental tool for finding the root of any maximal
monotone operator [34, 57], such as e.g. the subdifferential
of a convex function. By (28), γ > 0 can be seen as the step-
size of the algorithm. Unfortunately, the resolvent operator
(Id+γ ∂Fy)

−1 for Fy in (26) cannot be calculated in closed-
form; we focus on iterative splitting methods.

3.1 Generalities on Splitting Methods

Splitting methods do not attempt to evaluate (28) directly;
instead, they are based on separate evaluations of the resol-
vent operators (Id + γ ∂�)−1 and (Id + γ ∂�)−1. The latter
are usually easier and this turns out to be true for our func-
tionals � and � in (26).

Splitting methods for monotone operators have numerous
applications for convex optimization and monotone varia-
tional inequalities. Even though the literature is abundant,
these can basically be systematized into three main classes:
the forward-backward [38, 64, 65], the Douglas/Peaceman-
Rachford [42], and the little-used double-backward [41, 53].
A recent theoretical overview of all these methods can be
found in [25, 35]. Forward-backward can be seen as a gener-
alization of the classical gradient projection method for con-
strained convex optimization, hence it inherits all its restric-
tions. Typically, one must assume that either � or � is dif-
ferentiable with Lipschitz continuous gradient, and the step-
sizes γ must fall in a range dictated by the gradient modulus
of continuity; see [27] for an excellent account. Since both
� and � are non differentiable, forward-backward splitting
is not adapted to our criterion (26).

We will focus on a Douglas/Peaceman-Rachford ap-
proach since differentiability of neither of the functions �

or � is required. The derivation of our algorithm relies on
the calculation of the proximity operators as defined next.

3.1.1 Proximity Operators

Proximity operators were inaugurated in [45] as a general-
ization of convex projection operators.

Definition 1 (Moreau [45]) Let ϕ : H → R be a proper,
lower-semicontinuous and convex function where H is a
Hilbert space. Then, for every z ∈ H, the function h �→
ϕ(h) + ‖z − h‖2

2/2, for h ∈ H, achieves its infimum at a
unique point denoted by proxϕz, i.e.

proxϕz = argmin
h∈H

{
ϕ(h) + 1

2
‖z − h‖2

2

}
. (29)

The operator proxϕ : H → H thus defined is called the prox-
imity operator of ϕ.

It will be convenient in the sequel to introduce the reflection
operator

rproxϕ
def= 2proxϕ − Id. (30)

By the minimality condition for (29), it is straightforward
that ∀z,p ∈ H we have

p = proxϕz ⇐⇒ z − p ∈ ∂ϕ(p). (31)
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Then, for any ϕ, we have (Id + ∂ϕ)−1 = proxϕ , and we can
write for all γ > 0,

(Id + γ ∂�)−1 = proxγ� and (Id + γ ∂�)−1 = proxγ�.

(32)

One can note that (28) can also be written as x(k+1) =
proxγFy

(x(k)) for γ > 0.

3.1.2 Douglas-Rachford Splitting Algorithms

The Douglas/Peaceman-Rachford family is the most gen-
eral preexisting class of maximal monotone operator split-
ting methods. Given a fixed scalar γ > 0 and a sequence
μk ∈ (0,2), this class of methods can be expressed via the
following recursion written in the compact form

x(k+1) =
[(

1 − μk

2

)
Id + μk

2
(2proxγ� − Id)

◦ (2proxγ� − Id)

]
x(k),

=
[(

1 − μk

2

)
Id + μk

2
rproxγ� ◦ rproxγ�

]
x(k). (33)

Since our problem (26) admits solutions, the following
result ensures that iteration (33) converges for our crite-
rion Fy .

Theorem 3 Let γ > 0 and μk ∈ (0,2) be such that∑
k∈N

μk(2 − μk) = +∞. Take x(0) ∈ �2(I ) and consider
the sequence of iterates defined by (33). Then, (x(k))k∈N

converges weakly to some point x̄ ∈ �2(I ) and
proxγ�x̄ ∈ Gy .

This theorem is a straightforward consequence of [25,
Corollary 5.2]. For instance, the sequence μk = 1,∀k ∈ N,
satisfies the requirement of the theorem.

According to this theorem, the restored log-image x̂, as
defined by (19) and (22)–(24), reads

x̂ = proxγ�x̄, (34)

where x̄ is the output of the Douglas-Rachford algorithm
(33).

3.2 Douglas-Rachford Splitting Algorithm for Our
Criterion

To implement the Douglas-Rachford recursion (33) that
solves our minimization problem (26), we need to compute
the proximity operators proxγ� and proxγ�. This is detailed
in this subsection.

3.2.1 Proximity Operator of �

The proximity operator of γ� is established in the lemma
stated below.

Lemma 1 Let x ∈ �2(I ). Then

proxγ�(x)[i] = yTH[i] + TS
γ λi

(
x[i] − yTH[i]) ,

∀i ∈ I, (35)

where TS
θ is the soft-thresholding operator with threshold θ

TS
θ (t) =

{
0 if |t | ≤ θ,

t − θ sign(t) otherwise,
t ∈ R. (36)

Proof � as given in (22) is an additive separable function in
each coordinate i ∈ I . Thus, solving the proximal minimiza-
tion problem of Definition 1 is also separable and amounts
to solving independently #I scalar minimization problems.

For any convex function ϕ and t ∈ R, s ∈ R, let ψ(s) =
ϕ(s − t). Thus, using (31), it is straightforward to show that

p = proxψ(s) ⇐⇒ p = t + proxϕ(s − t). (37)

Furthermore, it is easy to find that for ϕ(h) = θ |h|

proxϕ(s) = TS
θ (s). (38)

Applying (37) to ψ(s) = θ |s − t | with θ = γ λi , s = x[i] and
t = yTH[i] yields (35). �

Note that now

rproxγ�(x) = 2
(
yTH[i] + TS

γ λi
(
x[i] − yTH[i]))

i∈I
− x.

(39)

3.2.2 Proximity Operator of �

Clearly, �(x) = ‖ · ‖TV ◦ W̃ (x) is a pre-composition of the
TV-norm with the linear operator W̃ . However, computing
the proximity operator of � for an arbitrary W̃ may be in-
tractable. We then systematically assume that our frame is
tight with constant c ∈ (0,∞); i.e. W ∗W = cId. An imme-
diate consequence is that W̃ = c−1W ∗.

The precise definition of the TV norm that we actually
use depends on W̃x which belongs to L2(�). Let X =
L2(�) × L2(�) ⊂ L2(R2) × L2(R2) and 〈·, ·〉X be the in-
ner product in X . For any q ∈ [1,∞], we denote by ||| · |||q
the Lq norm on X . For any τ > 0, we define B∞(τ ) as the
closed L∞-ball of radius τ in X ,

B∞(τ )
def= {

z = (z1, z2) ∈ X : |z(ξ)| ≤ τ,∀ξ ∈ �
}
. (40)
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Let us also define the set

C(τ)
def= {

div(z) ∈ L2(�) : z ∈ C∞
c (� × �) ∩ B∞(τ )

}
. (41)

More precisely the TV regularization term we use reads

‖u‖TV = sup

{∫
�

u(ξ)w(ξ) dξ : w ∈ C(1)

}
. (42)

Let us remind that �(x) = ‖W̃x‖TV. The expression of
proxγ� is given in statement (i) of the next lemma while the
computation scheme to solve statement (ii) is established in
Lemma 3.

Lemma 2 Let x ∈ �2(I ) and B∞(.) be as defined in (40).

(i) We have

proxγ�(x) =
(

Id − W ◦ (
Id − proxc−1γ ‖·‖TV

) ◦ W̃
)

(x);
(43)

(ii) Furthermore,

proxc−1γ ‖·‖TV
(u) = u − PC(c−1γ )(u), ∀u ∈ L2(�),

(44)

where C(.) is defined in (41) and PC(.) is the orthogonal
projector on C(.).

Proof Since W̃ is bounded and linear, ‖ · ‖TV is continuous
and convex, and there is u ∈ L2(�) such that ‖u‖TV < ∞, it
is clear that all assumptions required in [26, Proposition 11]
are satisfied. Applying the same proposition yields state-
ment (i).

We focus next on (ii). Note that for any τ > 0, C(τ) in
(41) is a closed convex subset since B∞(τ ) is closed and
convex, and the operator div is linear; thus the projection
PC(τ) is well defined.

Let us remind that the Legendre-Fenchel (known also as
the convex-conjugate) transform of a function ϕ : H → R,
ϕ �≡ ∞, where H is an Hilbert space, is defined by

ϕ�(h) = sup
z∈dom(ϕ)

{〈h, z〉 − ϕ(z)
}
,

and that ϕ� is a closed convex function. If ϕ is convex,
proper and lower semi-continuous, the original Moreau de-
composition [45, Proposition 4.a] tells us that

proxϕ + proxϕ� = Id. (45)

One can see also [27, Lemma 2.10] for an alternate proof of
(45).

Let ıS denote the indicator function of a nonempty set S ,
i.e.

ıS (z) =
{

0 if z ∈ S,

+∞ otherwise.

It is easy to see that from (41), (42) and the definition of the
conjugate that
(
c−1γ ‖ · ‖TV

)�
(z) = ıC(c−1γ ).

On the other hand, by Definition 1, it is easy to check that

PC(c−1γ ) = proxı
C(c−1γ )

.

Combining the last two equations yields

prox(c−1γ ‖.‖TV)� = PC(c−1γ ).

Identifying c−1γ ‖.‖TV with ϕ and (c−1γ ‖.‖TV)� with ϕ�,
(45) leads to statement (ii). The proof is complete. �

Note that our argument (45) for the computation of
proxc−1γ ‖·‖TV

(u) is not used in [18], which instead uses con-
jugates and bi-conjugates of the objective function.

Remark 3 In view of (44) and (41), one can see that the
term between the middle parentheses in (43) admits a sim-
pler form:

Id − proxc−1γ ‖·‖TV
= PC(c−1γ ).

Using (30) along with (43)–(44) we easily find that

rproxγ�(x) =
(

Id − 2W ◦ PC(c−1γ ) ◦ W̃
)

(x). (46)

Calculation of the Projection PC(.) in (44) in a Discrete Set-
ting In what follows, we work in the discrete setting. We
consider that W ∈ R

M×N is the analysis matrix associated
to a tight frame with N < M = #I < ∞. Note that now
W ∗ = WT and thus W̃ = c−1WT .

Next we replace X by its discrete counterpart,

X = �2(�) × �2(�) where #� = N. (47)

We denote the discrete gradient by ∇̈ and consider Div :
X → �2(�) the discrete divergence defined by analogy
with the continuous setting2 as the adjoint of the gradient
Div = −∇̈∗; see e.g. [18].

2More precisely, let u ∈ �2(�) be of size m × n, N = mn. We write

(∇̈u)[i, j ] = (
u[i + 1, j ] − u[i, j ], u[i, j + 1] − u[i, j ])

with boundary conditions u[m + 1, i] = u[m, i], ∀i and u[i, n + 1] =
u[i, n], ∀i; then for z ∈ X , we have

(Div(z))[i, j ] = (
z1[i, j ] − z1[i − 1, j ]) + (

z2[i, j ] − z2[i, j − 1])
along with z1[0, i] = z1[m, i] = z2[i,0] = z2[i, n] = 0, ∀i.
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Unfortunately, the projection in (44) does not admit an
explicit form. The next lemma provides an iterative scheme
to compute the proximal points introduced in Lemma 2. In
this discrete setting, the set C(.) introduced in (41) admits a
simpler expression:

C
(γ

c

)
=

{
Div(z) ∈ �2(�)

∣∣ z ∈ B∞
(γ

c

)}
, (48)

where B∞(.) is defined according to (40).

Lemma 3 We adapt all assumptions of Lemma 2 to the dis-
crete setting, as explained above. Given u ∈ �2(�), consider
the forward-backward iteration: z(0) ∈ B∞(1) and, for all
k ∈ N,

z(k+1) = PB∞(1)

(
z(k) + βk∇̈

(
Div(z(k)) − cu/γ

))

where 0 < inf
k

βk ≤ sup
k

βk < 1/4, (49)

and, ∀(i, j) ∈ �,

PB∞(1)(z)[i, j ] =
{

z[i, j ] if |z[i, j ]| ≤ 1;
z[i,j ]
|z[i,j ]| otherwise.

(50)

Then

(i) (z(k))k∈N converges to a point ẑ ∈ B∞(1);
(ii) (u − c−1γ Div(z(k)))k∈N converges to u − c−1γ Div(ẑ)

= proxc−1γ ‖·‖TV
(u) at the rate O(1/k).

Proof Given u ∈ �2(�), the projection ŵ = PC(c−1γ )(u),
where C(.) is given in (48), is unique and satisfies

ŵ = argmin
w∈C(c−1γ )

1

2
‖u − w‖2

= argmin
w∈�2(�)

{
1

2

∥∥∥∥ c

γ
u − w

∥∥∥∥
2

subject to w = Div(z)

for z ∈ B∞(1)

}

�

ŵ = Div(ẑ) where ẑ = argmin
z∈B∞(1)

1

2

∥∥∥∥ c

γ
u − Div(z)

∥∥∥∥
2

,

(51)

where ‖.‖ denotes the Euclidian norm on �2(�). This
problem can be solved using a projected gradient method
(which is a special instance of the forward-backward split-
ting scheme) whose iteration is given by (49). This iteration
converges to a minimizer of (51)—see [25, Corollary 6.5]—
provided that the stepsize βk > 0 satisfies supk βk < 2/δ2,
where δ is the spectral norm of the Div operator. It is easy
to check that δ2 ≤ 8—see e.g. [18]. Hence statement (i).

Next we focus on statement (ii). Set

ω(k) = cγ −1u − Div(z(k)), ∀k ∈ N and

ω̂ = cγ −1u − Div(ẑ).

Let J be the dual objective given in (51), namely

J = H ◦ Div + G, (52)

with

H : w �→ 1

2

∥∥∥∥ c

γ
u − w

∥∥∥∥
2

and G = ıB∞(1).

Let DH denote the usual derivative of H . For an optimal
solution ẑ ∈ B∞(1), we define the Bregman-like distance as
the functional

B(w) = G(w) − G(ẑ) + 〈−∇̈(DH)(Div(ẑ)),w − ẑ
〉

X ,

∀w ∈ X . (53)

It is obvious that B(ẑ) = 0. We also have B(w) ≥ 0,
∀w ∈ X . This is checked by noting that the minimality
condition corresponding to (52) is equivalent to
−∇̈(DH)(Div(ẑ)) ∈ ∂G(ẑ). Applying the subgradient in-
equality to G proves the non-negativity claim.

As H ◦ Div is differentiable, the Taylor distance is the
remainder of the Taylor expansion of H ◦ Div near ẑ

T(w) = H(Div(w)) − H(Div(ẑ))

− 〈−∇̈(DH)(Div(ẑ)),w − ẑ
〉

X , ∀w ∈ X . (54)

Reminding that Div = −∇̈∗ and that H is convex shows that
T(w) ≥ 0, ∀w ∈ X , along with T(ẑ) = 0.

It is easy to verify that

B(z(k)) + T(z(k)) = J (z(k)) − J (ẑ), ∀k ∈ N. (55)

Using [55] or [47, Theorem 4], the convergence rate over J

satisfies

J (z(k)) − J (ẑ) ≤ 2δ2R2

k + 2
, ∀k ∈ N, (56)

where R
def= max{‖z− ẑ‖ : J (z) ≤ J (z(0))} for z(0) ∈ B∞(1).

R is obviously finite since B∞(1) is bounded. Using (55),
along with the facts that B(z(k)) ≥ 0 and that δ2 ≤ 8 leads to

T(z(k)) ≤ J (z(k)) − J (ẑ) ≤ 16R2

k + 2
, ∀k ∈ N. (57)

On the other hand, by the definition of H , which is a
quadratic (strongly convex of modulus 1), we have

T(z(k)) = H(Div(z(k))) − H(Div(ẑ))

−
〈
−∇̈(DH)(Div(ẑ)), z(k) − ẑ

〉
X
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= H(Div(z(k))) − H(Div(ẑ))

−
〈
(DH)(Div(ẑ)),Div(z(k)) − Div(ẑ)

〉

= 1

2

∥∥∥Div(z(k)) − Div(ẑ)

∥∥∥2 = 1

2

∥∥∥ω(k) − ω̂

∥∥∥2
. (58)

Piecing together (58) and (57), we obtain

∥∥∥ω(k) − ω̂

∥∥∥2 = 2T(z(k)) ≤ 32R2

k + 2
, ∀k ∈ N. (59)

This completes the proof. �

Note that computing prox‖·‖TV
amounts to solving a dis-

crete L2-TV-denoising (the criterion given in (10)).
The forward-backward splitting-based iteration proposed

in (49) to compute the proximity operator of the TV-norm is
different from the projection algorithm of [18]. A similar it-
eration was suggested in [19] without a proof. The forward-
backward splitting allows to derive a sharper upper-bound
on the stepsize βk than the one proposed in [18]—actually
twice as large. What is more, our proof is simpler than the
one in [18] since it uses well known properties of proxim-
ity operators, and we have a convergence rate on the iter-
ates.

Our iteration to solve this problem is one possibility
among others. While this paper was submitted, our atten-
tion was drawn to an independent work of [10] who, using
a different framework, derive an iteration similar to (49) to
solve the L2-TV-denoising. Another parallel work of [73]
propose an application of gradient projection to solving the
dual problem (51), and the authors of [70] applied the multi-
step Nesterov scheme to (51). See also [12] for yet an-
other multi-step iteration to solve (51). We are of course
aware of max-flow/min-cut type algorithms, for instance
the one in [16]. We have compared our whole denoising
procedure using our implementation of prox‖·‖TV

and the
max-flow based implementation that we adapted from the
code available at [17]. We obtained similar results, although
the max-flow-based algorithm was faster, mainly because it
uses the �1 approximation of the discrete gradient, namely
‖(∇̈u)[i, j ]‖1 = |u[i +1, j ]−u[i, j ]|+ |u[i, j +1]−[i, j ]|.
Let us remind that this approximation for the discrete gra-
dient does not inherit the rotational invariance property of
the L2 norm of the usual gradient; we observed that the
quality of the resultant restorations is slightly reduced, com-
pared to those involving the L2 norm of the discrete gradi-
ent.

3.3 Comments on the Douglas-Rachford Scheme for Fy

The bottleneck of the minimization algorithm is in the
computation of the proximity-operator of the TV-norm

(Lemma 2). However, when inserted in the whole numer-
ical scheme, this is not a real drawback as we explain it
below. A crucial property of the Douglas-Rachford splitting
scheme (33) is its robustness to numerical errors that may
occur when computing the proximity operators prox� and
prox�, see [25]. We have deliberately omitted this prop-
erty in (33) for the sake of simplicity. This robustness prop-
erty has important consequences: e.g. it allows us to run the
forward-backward sub-recursion (49) only a few iterations
to compute an approximate of the TV-norm proximity oper-
ator in the inner iterations, and the Douglas-Rachford is still
guaranteed to converge provided that these numerical errors
are under control. More precisely, let ak ∈ �2(I ) be an er-
ror term that models the inexact computation of proxγ� in
(43), as the latter is obtained through (49). If the sequence
of error terms (ak)k∈N and step-sizes (μk)k∈N defined in
Theorem 3 obey

∑
k∈N

μk‖ak‖ < +∞, then the Douglas-
Rachford algorithm (33) converges [25, Corollary 6.2]. In
our case, noting that the convergence rate of Lemma 3 yields
‖ak‖ = O(1/k), one can easily derive a rule on the number
of inner iterations at each outer iteration k such that the sum-
mability condition is verified.

4 Bias Correction to Recover the Sought-After Image

Recall from (5) that uo = logSo and set û = W̃ x̂ as the esti-
mator of uo, where x̂ is a minimizer of Fy obtained from the
Douglas-Rachford iteration. Unfortunately, the estimator û

is prone to bias, i.e. E[û] = uo − bû. A problem that classi-
cally arises in statistical estimation is how to correct such a
bias. More importantly is how this bias affects the estimate
after applying the inverse transformation, here the exponen-
tial. Our goal is then to ensure that for the estimate Ŝ of the
image satisfies E[Ŝ] = So.

To this end we need the expectation and the variance of
the log-noise n in (5)–(6). One can prove that

E [n] = ψ0(K) − logK, (60)

Var [n] = ψ1(K), (61)

where

ψk(z) =
(

d

dz

)k+1

log�(z) (62)

is the polygamma function [1].
Expanding exp û in the neighborhood of E[û], we have

exp û = exp
(
E

[
û
])(

1 + (û − E[û])

+ (û − E[û])2

2
+ R2

)
,
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and therefore

E
[
exp û

] = exp
(
E

[
û
])

(1 + Var[û]/2 + E[R2])
= So exp (−bû)(1 + Var[û]/2 + E [R2]), (63)

where R2 is the Lagrange remainder in the Taylor series.
One can observe that the posterior distribution of û is nearly
symmetric, in which case E[R2] ≈ 0. That is, bû ≈ log(1 +
Var[û]/2) to ensure unbiasedness. Consequently, finite sam-
ple (nearly) unbiased estimates of uo and So are respectively
û + log(1 + Var[û]/2), and exp(û)(1 + Var[û]/2). Var[û]
can be reasonably estimated by ψ1(K), the variance of the
noise n in (5) being given in (61). Thus, given the restored
log-image û, our restored image reads:

Ŝ = exp
(
û
)
(1 + ψ1(K)/2). (64)

The authors of [71] propose a direct estimate of the bias
bû using the obvious argument that the noise n in the log-
transformed image has a non-zero mean ψ0(K) − logK .
A quick study shows that the functions (1 + ψ1(K)/2) and
exp(logK − ψ0(K)) are very close for K reasonably large.

We should emphasize that the bias correction approach
we propose can be used in a more general setting.

5 Full Algorithm to Suppress Multiplicative Noise

Now, piecing together Lemmas 1, 2 and Theorem 3, we ar-
rive at the multiplicative noise removal algorithm:

Task: Denoise an image S contaminated with multiplicative
noise according to (3).
Parameters: The observed noisy image S, number of it-
erations NDR (Douglas-Rachford outer iterations) and NFB

(Forward-Backward inner iterations), stepsizes μk ∈ (0,2),
0 < βs < 1/4 and γ > 0, tight-frame transform W and ini-
tial threshold T (e.g. T = 2

√
ψ1(K)), regularization para-

meters λ0,1 associated to the sets I0,1.
Specific operators:

• Soft-thresholding TS
γ λi in (36).

• Projector PB∞(1) in (50).
• The discrete gradient ∇̈ and divergence Div.
• ψ1(·) defined according to (62) (built-in Matlab function,

otherwise see [56]).

Initialization:

• Compute v = logS and transform coefficients y = Wv.
Hard-threshold y at T to get yTH . Choose an initial x(0).

Main iteration:
For k = 0 to NDR,

(1) Inverse curvelet transform of x(k) according to u(k) =
W̃x(k).

(2) Initialize z(0); For s = 0 to NFB − 1

z(s+1) = PB 1∞(X )

(
z(s) + βs∇̈

(
Div(z(s)) − c

γ
u(k)

))
.

(3) Set z(k) = z(NFB).
(4) Compute w(k) = c−1γ Div(z(k)).
(5) Forward curvelet transform: α(k) = Ww(k).
(6) From (46) compute r(k) = rproxγ�(x(k)) = x(k)−2α(k).

(7) By (39) compute q(k) = (rproxγ� ◦ rproxγ�)(x(k)) =
2(yTH[i] + TS

γ λi (r(k)[i] − yTH[i]))i∈I − r(k).
(8) Update x(k+1) using (33): x(k+1) = (1 − μk

2 )x(k) +
μk

2 q(k).

End main iteration
Output: Using (34) and (43), get the denoised image Ŝ =
exp(W̃ (x(NDR) − α(NDR)))(1 + ψ1(K)/2).

Remark 4 (Computation load) The bulk of computation of
our denoising algorithm is invested in applying W and its
pseudo-inverse W̃ . These operators are of course never con-
structed explicitly, rather they are implemented as fast im-
plicit analysis and synthesis operators. Each application of
W or W̃ cost O(N logN) for the second generation curvelet
transform of an N -pixel image [14]. If we define NDR and
NFB as the number of iterations in the Douglas-Rachford
algorithm and the forward-backward sub-iteration, the com-
putational complexity of the denoising algorithm is of order
NDRNFB2N logN operations.

6 Experiments

In all experiments carried out in this paper, our algorithm
was run using second-generation curvelet tight frame along
with the following set of parameters: ∀t,μk ≡ 1, βs = 0.24,
γ = 10 and NDR = 50. For comparison purposes, some very
recent multiplicative noise removal algorithms from the lit-
erature are considered. We compare our method with the
most recent successful algorithms, namely:

• BS Algorithm proposed in [22]: this is a Stein-Block
thresholding method in the curvelet domain, applied on
the log transformed image. It is a sophisticated shrinkage-
based denoiser that thresholds the coefficients by blocks
rather than individually, and has been shown to be nearly
minimax over a large class of images in presence of addi-
tive bounded noise (not necessarily Gaussian nor indepen-
dent). This algorithm has one threshold parameter T, and
in all our experiments, we set it to the theoretical value
T = 4.50524 devised in [22].
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Fig. 3 Fields (512 × 512) for K = 1 in (3). Restorations using different methods. Parameters: SO algorithm for ρ = 0.05, α = 0.25 and
dt = 0.0005; AA algorithm for ρ = 125; our algorithm T = 2

√
ψ1(K), λ0 = 1.2, λ1 = 10
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Fig. 4 Residuals (So − Ŝ) for the restorations in Fig. 3 (K = 1)

• AA Algorithm proposed in [8]: it is sketched in (8); the
algorithm was applied using 1000 iterations and stepsize
dt = 0.1, as recommended by the authors;

• SO Algorithm proposed in [61]: the first algorithm pro-
posed in [61], see (10). As recommended in [61] the
stopping rule is to reach k∗ such that k∗ = max{k ∈ N :
Var[uk − uo] ≥ Var[n] = ψ1(K)} where uo is the under-
lying log-image and n the relevant noise; see (61) for the
variance. We systematically used stepsize dt = 0.001 (ex-
cept for Fig. 3 where dt = 0.0005).

The denoising algorithms were tested on three images:
Cameraman (N = 2562 pixels), an image of Fields (N =
5122 pixels) and an aerial picture of the French city Nîmes
(N = 5122 pixels). All images were normalized so that their
gray-scale is in the range [1,256]. For each image, a noisy
observation is generated by multiplying the original image
by a realization of noise according to the model in (3)–(4)

with the choice μ = 1 and K ∈ {1,4,10}. For a N -pixel
noise-free image So and its denoised version by any algo-
rithm Ŝ, the denoising performance is measured in terms of
peak signal to noise ratio (PSNR) in decibels (dB)

PSNR = 10 log10
N |maxSo − minSo|2

‖Ŝ − So‖2
2

dB,

where |maxSo − minSo| gives the gray-scale range of the
original image, and mean absolute-deviation error MAE

MAE = 1

N

∥∥Ŝ − So

∥∥
1.

6.1 Qualitative Results

The results are depicted in Figs. 3–6 for the Fields image,
Figs. 7–9 for the Nîmes picture, and Figs. 10–12 for Cam-
eraman. Our denoiser does a good job at restoring faint geo-
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Fig. 5 Fields (512×512) for K = 4 in (3). Restorations using different methods. Parameters: SO algorithm for ρ = 0.1, α = 0.25 and dt = 0.001;
AA algorithm for ρ = 400; our algorithm T = 2

√
ψ1(K), λ0 = 1.3, λ1 = 10
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Fig. 6 Fields (512×512) for K = 10 in (3). Restorations using different methods. Parameters: SO algorithm for ρ = 0.8, α = 0.25 and dt = 0.001;
AA algorithm for ρ = 480; our algorithm T = 2

√
ψ1(K), λ0 = 1.3, λ1 = 10
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Fig. 7 Aerial image of the French city of Nîmes (512 × 512) for K = 1 in (3). Restorations using different methods. Parameters: SO algorithm
for ρ = 0.05, α = 0.25 and dt = 0.001; AA algorithm for ρ = 60; our algorithm T = 2

√
ψ1(K), λ0 = 1.5, λ1 = 10
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Fig. 8 Aerial image of the town of Nîmes (512 × 512) for K = 4 in (3). Restorations using different methods. Parameters: SO algorithm for
ρ = 0.3, α = 0.25 and dt = 0.001; AA algorithm for ρ = 120; our algorithm T = 2

√
ψ1(K), λ0 = 1.5, λ1 = 10
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Fig. 9 Aerial image of Nîmes (512 × 512) for K = 10 in (3). Restorations using different methods. Parameters: SO algorithm for ρ = 1.2,
α = 0.25 and dt = 0.001; AA algorithm for ρ = 130; our algorithm T = 2

√
ψ1(K), λ0 = 1.3, λ1 = 10
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Fig. 10 Cameraman (256 × 256) for K = 1 in (3). Restorations using different methods. Parameters: SO algorithm for ρ = 0.04, α = 0.25 and
dt = 0.001; AA algorithm for ρ = 125; our algorithm T = 2.6

√
ψ1(K), λ0 = 1.8, λ1 = 5.7
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Fig. 11 Cameraman (256 × 256) for K = 4 in (3). Restorations using different methods. Parameters: SO algorithm for ρ = 0.1, α = 0.25 and
dt = 0.001; AA algorithm for ρ = 125; our algorithm T = 2.5

√
ψ1(K), λ0 = 1.8, λ1 = 5.7
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Fig. 12 Cameraman (256 × 256) for K = 10 in (3). Restorations using different methods. Parameters: SO algorithm for ρ = 1, α = 0.25 and
dt = 0.001; AA algorithm for ρ = 125; our algorithm T = 2.1

√
ψ1(K), λ0 = 1.3, λ1 = 10
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Table 1 Parameters used in the comparison study of Table 2

Fields 512 × 512

Algorithm Parameters

K = 1 K = 4 K = 10

Ours T = 2
√

ψ1(K), λ0 = 1.2, λ1 = 10 T = 2
√

ψ1(K), λ0 = 1.3, λ1 = 10 T = 2
√

ψ1(K), λ0 = 1.3, λ1 = 10

AA ρ = 125 ρ = 400 ρ = 480

SO ρ = 0.05, α = 0.25 ρ = 0.1, α = 0.25 ρ = 0.8, α = 0.25

Nîmes 512 × 512

Algorithm Parameters

K = 1 K = 4 K = 10

Ours T = 2
√

ψ1(K), λ0 = 1.5, λ1 = 10 T = 2
√

ψ1(K), λ0 = 1.5, λ1 = 10 T = 2
√

ψ1(K), λ0 = 1.3, λ1 = 10

AA ρ = 60 ρ = 120 ρ = 130

SO ρ = 0.05, α = 0.25 ρ = 0.3, α = 0.25 ρ = 1.2, α = 0.25

Cameraman 256 × 256

Algorithm Parameters

K = 1 K = 4 K = 10

Ours T = 2.6
√

ψ1(K), λ0 = 1.8, λ1 = 5.7 T = 2.5
√

ψ1(K), λ0 = 1.8, λ1 = 5.7 T = 2.1
√

ψ1(K), λ0 = 1.3, λ1 = 10

AA ρ = 120 ρ = 240 ρ = 390

SO ρ = 0.04, α = 0.25 ρ = 0.1, α = 0.25 ρ = 1, α = 0.25

metrical structures of the images even for low values of K ,
see for instance the results on Nîmes and Fields for K = 1
and K = 4. As expected, our hybrid method is less prone
to staircasing artifacts and takes benefit from the curvelet
transform for capturing efficiently the geometrical content
of the images. Our algorithm performs among the best and
even outperforms its competitors most of the time both vi-
sually and quantitatively as revealed by the PSNR and MAE
values. Note also that a systematic behavior of AA and SO
methods for low values of K is their tendency to lose some
important details and the persistence of a low-frequency
ghost as it can be seen on the residual images on Fig. 4. For
SO method, the number of iterations necessary to satisfy the
stopping rule rapidly increases when K decreases.

6.2 Quantitative Results

The above visual results were confirmed by Monte Carlo
simulations where, for each tested image and each value of
K ∈ {1,4,10}, ten noisy realizations were generated. Then
the compared algorithms were applied to the same noisy ver-
sions. The output PSNR and MAE were averaged over the
ten denoised realizations.

For fair comparison, the parameters of SO and AA were
tweaked manually to reach their best performance level. For
SO, α = 0.25 was recommended by the authors. Their val-
ues are summarized in Table 1. Notice that the parameters of
our method are very stable with respect to the image, except

for Cameraman with small K . Curvelet based methods are
indeed quite inadequate to this image since the threshold-
ing step generates Gibbs-like oscillations and outliers that
are strongly visible on the nearly uniform background (see
the image restored by BS method). In order to remove these
artifacts, we used different values for T , λ0 and mostly λ1.
Despite this drawback, our method yields quite good results
on Cameraman.

The denoising performance results are tabulated in Ta-
ble 2 where the best PSNR and MAE value is shown in bold-
face. By inspection of this table, the PSNR improvement
brought by our approach can be quite high particularly for
K = 1 (see e.g. the Fields image) and the visual resolution is
quite respectable. This is an important achievement since in
practice K has a small value, usually 1, rarely above 4. This
improvement becomes less salient as K increases which is
intuitively expected. But even for K = 10, the PSNR of our
algorithm can be higher by ∼0.45 dB to more than 10 dB
compared to AA, SO and BS methods, depending on the
image.

7 Conclusions

This work proposes quite an original, efficient and fast
method for multiplicative noise removal. The latter is a dif-
ficult problem that arises in various applications relevant to
active imaging system, such as laser imaging, ultrasound
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Table 2 Average PSNR and MAE (over ten noisy realizations) to de-
noise different images using the SO, AA BS and our algorithm as a
function of K . The standard deviation of PSNR and MAE over the

ten realizations are in parentheses. The best PSNR and MAE value is
shown in boldface. The parameters used for each denoising algorithm
are summarized in Table 1

Fields 512 × 512

PSNR MAE

K 1 4 10

Ours 23.13 (0.14) 26.31 (0.08) 27.99 (0.05)

BS 22.60 (0.10) 25.50 (0.06) 27.21 (0.05)

AA 15.75 (0.004) 16.82 (0.004) 17.14 (0.004)

SO 10.11 (0.21) 19.70 (0.23) 25.33 (0.08)

K 1 4 10

Ours 32.67 (0.68) 22.00 (0.18) 18.24 (0.10)

BS 35.00 (0.58) 23.95 (0.22) 19.66 (0.12)

AA 76.64 (0.04) 67.77 (0.05) 65.36 (0.04)

SO 189.24 (2.96) 55.80 (1.48) 25.26 (0.22)

Nîmes 512 × 512

PSNR MAE

K 1 4 10

Ours 22.66 (0.09) 25.86 (0.03) 27.78 (0.03)

BS 22.18 (0.03) 24.90 (0.03) 26.95 (0.02)

AA 22.01 (0.04) 24.33 (0.01) 25.06 (0.02)

SO 18.26 (0.03) 24.25 (0.04) 26.84 (0.03)

K 1 4 10

Ours 13.27 (0.07) 8.98 (0.03) 7.11 (0.02)

BS 13.88 (0.04) 9.75 (0.03) 7.59 (0.01)

AA 14.05 (0.09) 10.37 (0.02) 9.03 (0.02)

SO 24.54 (0.08) 10.99 (0.04) 7.83 (0.02)

Cameraman 256 × 256

PSNR MAE

K 1 4 10

Ours 19.61 (0.12) 22.94 (0.07) 26.09 (0.10)

BS 19.22 (0.09) 22.31 (0.07) 24.40 (0.05)

AA 18.65(0.12) 21.93 (0.09) 24.42(0.07)

SO 12.62(0.28) 19.96 (0.12) 25.61 (0.07)

K 1 4 10

Ours 16.78 (0.25) 10.67 (0.07) 7.44 (0.09)

BS 17.94 (0.25) 12.14 (0.12) 9.51 (0.06)

AA 22.61 (0.34) 14.39 (0.15) 9.99 (0.10)

SO 49.33 (1.56) 19.04 (0.32) 7.43 (0.04)

imaging, SAR and many others. Multiplicative noise conta-
mination involves inherent difficulties that severely restrict
the main restoration algorithms.

The main ingredients of our method are: (1) consider the
log-data to restore a log-image; (2) preprocess the log-data
using and under-optimal hard-thresholding of its tight frame
coefficients; (3) restore the log-image using a hybrid crite-
rion composed of an �1 data-fitting for the coefficients and
a TV regularization in the log-image domain; (4) restore
the sought-after image using an exponential transform along
with a pertinent bias correction. The resultant algorithm is
fast, its consistency and convergence are proved theoreti-
cally.

The obtained numerical results are really encouraging
since they outperform the most recent methods in this field.
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