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94235 Cachan, France

{arias, nikolova}@cmla.ens-cachan.fr

Abstract. The non-local Bayesian (NLB) patch-based approach of Le-
brun, Buades, and Morel [12] is considered as a state-of-the-art method
for the restoration of (color) images corrupted by white Gaussian noise.
It gave rise to numerous ramifications like e.g., possible improvements,
processing of various data sets and video. This article is the first attempt
to analyse the method in depth in order to understand the main phenom-
ena underlying its effectiveness. Our analysis, corroborated by numerical
tests, shows several unexpected facts. In a variational setting, the first-
step Bayesian approach to learn the prior for patches is equivalent to
a pseudo-Tikhonov regularisation where the regularisation parameters
can be positive or negative. Practically very good results in this step are
mainly due to the aggregation stage – whose importance needs to be
re-evaluated.

1 Introduction

In this paper we analyse the Non-local Bayesian (NLB) image denoising algo-
rithm introduced by Lebrun, Buades and Morel in [12], which is based on the
assumption that sets of similar patches are IID samples from a Gaussian distri-
bution.

In recent years several works have proposed Gaussian models, or Gaussian
mixture models (GMMs) as priors for image patches, achieving state-of-the-art
results in image denoising and other inverse problems. In [19] a GMM with
hundreds of components is used as a fixed prior for image patches. The mixture
is learnt via an EM algorithm from a database of two million patches. Instead of
a fixed prior [17, 5] proposed to learn the GMM from the input image. Guillemot
et al. [9] introduced the covariance tree, a hierarchical data structure capturing
the covariance of image patches at several scales.

The NLB algorithm differs from the previous approaches in that it does not
consider a single model (GMM, covariance tree) for all image patches. Instead,
there is a Gaussian model for each patch and its nearest neighbors. This is closely
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related to the approaches that denoise patches by applying principal component
analysis (PCA) on groups of patches [15, 6, 18, 8].

Several extensions of NLB were considered. A multiscale version was devel-
oped in [14] to handle the structured noise typical of compression artifacts. Ex-
tensions to video were proposed in [4, 2]. NLB was adapted to denoise manifolds-
valued images in [10]. A Bayesian hyper-prior model on the mean and the co-
variance in the NLB approach was proposed for inverse problems in [1].

In the NLB method, for each set of similar patches an empirical Wiener filter
is used to estimate the corresponding clean patches. The denoised image results
from the aggregation by averaging of these estimated patches. The Wiener
filter requires to estimate the mean and the covariance matrix of the a priori
distribution. The method consists of two steps. In the first step the statistics of
the prior are estimated from the noisy patches. The second step is similar but
uses the output of the first step as an oracle to estimate the a priori statistics.

In this work we carefully dissect the NLB algorithm, focusing on the first step
which is responsible for most of the denoising. On the surface, the NLB algo-
rithm appears as a maximum a posteriori (MAP) estimation of each patch. But
in fact these empirical MAP estimates are poor, as a consequence of the fact that
the prior covariance estimate has in general negative eigenvalues which result in
an unstable filter. The success of the algorithm resides in that the aggregation
phase averages out the errors of the MAP estimates, achieving similar and often
better results than the ones obtained with a more standard non-negative definite
estimate of the prior covariance matrix. Although the aggregation has been rec-
ognized as a good practice in patch-based denoising [13], the results presented
below show that it plays a crucial role for the success of the NLB.

2 The theory of the algorithm

For an original gray value image x ∈ RM1×M2 we are given an observation
contaminated with centered white normal noise n with known variance σ2, in-
dependent of x:

y = x+ n.

The approach proposed in [12] relies on the fact that natural images exhibit
patch-based self-similarity, and assumes that groups of similar patches follow a
normal distribution. The NLB algorithm consists in two main denoising steps:
(1) compute an oracle image x̃ using the data y and σ2; (2) obtain the denoised
image x̂ using the oracle x̃, the data y and σ2. Each one of these steps consist
of two stages: (a) denoise individually all patches using a maximum a posteriori
(MAP) estimator; (b) aggregate the results of (a).

An example of the output of each step is given for the 256 × 256 parrot
image, shown in Fig. 1. Some noise artifacts reside in the oracle image x̃. They
are restored in the denoised image.

2.1 Bayesian model for patches

A patch of y (resp., x) of size
√
K ×

√
K at pixel i = (i1, i2) is denoted by

yi (resp., xi). In what follows, we adopt a vector notation for patches. The



Fig. 1. From left to right: noisy image y for σ = 20; first-step denoised x̃ (29.57 PSNR),
denoised x̂ (29.95 PSNR) and original image.

likelihood of xi given the observed yi is

P(yi|xi) ∝ exp

[
−‖xi − yi‖2

2σ2

]
. (1)

With each patch xi, there is associated a set of N most similar patches S(i)
within a fixed size window. The patch xi is called the reference patch. Similarity
is measured with respect to the `2 distance. It is assumed that all patches in
S(i) have a normal distribution sharing the same mean mxi

∈ RK and the same
covariance Cxi

, see [12]. Thus

P(xi) ∝ exp

(
−1

2
(xi −mxi

)TC−1xi
(xi −mxi

)

)
. (2)

Using Bayes’s rule, P(xi|yi) ∝ P(yi|xi)P(xi). The MAP estimate x̂
(i)
i of the noisy

reference patch yi,

x̂
(i)
i = arg max

xi

P(xi|yi) =
(
I + σ2C−1xi

)−1
(yi + σ2C−1xi

mxi
)

is known to provide some denoising. Using that for an invertible matrix C one has(
I + σ2C−1

)−1
C−1 =

(
C + σ2I

)−1
and σ2

(
C + σ2I

)−1−I = −C
(
C + σ2I

)−1
,

the MAP estimate reads also as

x̂i = mxi
+ Cxi

(
Cxi

+ σ2I
)−1

(yi −mxi
) . (3)

This individual MAP patch denoising is considered as the main phase of the
NLB algorithm [12].

Remark 1. Extensive numerical tests reported in [11] have shown that the de-
noising formula (3) can be applied simultaneously to all of the N most similar
patches, i.e. those belonging to Si. As a consequence the same patch yk can be
denoised several times, if k ∈ S(i) for different i. We denote the corresponding

MAP estimates as x
(i)
k .

After all patches are denoised using the local MAP estimator, an aggregation
stage is applied by computing for each pixel i the mean over all restored patches
that contain this pixel.

The main difference of the NLB method compared to other Gaussian-based
models for image patches [19, 17, 5] is the way how the matrix Cxi

is learned
from the image itself. The question is analysed in the following sections.



2.2 Learning the a priori model

We have to distinguish between the first and the second steps. The number of the
pixels in the square patch window is denoted by Kj and the number of similar
patches by Nj , where j = 1, 2 indicates the step.

First step. The N1 patches S1(i) similar to the reference patch yi are selected
using the `2 distance between yi and all patches yk in a neighborhood around
yi. Let us fix at patch yi and its similar patches yk ∈ S1(i).

Since xi ∼ N (mxi
, Cxi

) and ni ∼ N (0, σ2I) and since the noise is indepen-
dent from the original x, we have that yk ∼ N (mxi

, Cyi
), with Cyi

= Cxi
+ σ2I,

for yk ∈ S(i). The maximum likelihood estimates of mxi
and Cyi

are given by
the sample mean and sample covariance matrix. The ML estimate of the covari-
ance matrix is biased. An unbiased estimator can be obtained by dividing by
N1 − 1 instead of N1, yielding

yi =
1

N1

∑
k∈Si

yk, Cyi
=

1

N1 − 1

∑
k∈S1(i)

(yk − yi)(yk − yi)
T , (4)

where the superscript T means transposed. Using that Cyi
= Cxi

+ σ2I, the
authors in [12] estimate Cxi

as

Cxi
= Cyi

− σ2I. (5)

This estimate is often not positive definite. There are different ways to avoid
this; e.g., clipping the negative eigenvalues to zero has been used on the context
of patch-based denoising in [5]. This may also have undesirable effects, see the
discussion in [16, p. 406]. New facts are given in subsection 3.3.

In spite of the theoretical background explained above, extensive experiments
in [11] have shown that using the MAP estimator yields artifacts in flat areas.

Remark 2. [Flat areas] Flat areas are detected by applying a χ2 Gaussianity test
to the set of all pixels of the patches in S(i). If a flat area is detected, the patches
in S(i) are estimated as constant patches, where the constant value is the average
of all pixel values of all patches in S(i).

Second step. This step is grounded on the presumption that the oracle esti-
mate x̃ is faithful enough to provide two informations on the unknown ground
truth image. These are: (1) the distances between patches in the oracle are well
estimated, so the set of the N2 patches similar to yi is computed from the oracle
estimate x̃; (2) the covariance matrices for patches provided by the oracle image
x̃ are “nearly true”, so these matrices are computed using only the oracle image.

3 An oracle image in the first step

In this section we study in detail the first step of the algorithm.



3.1 Statistical model and filtering for 1st step patch denoising

Replacing Cxi
and mxi

in (3) by their estimates (4), we end up with the following
Wiener-like filter

x̃
(i)
k = yi +

(
Cyi
− σ2I

)
C−1yi

(yk − yi) . (6)

This filter is applied to all patches k ∈ S1(i). After simplification, x̃
(i)
k = yk −

σ2C−1yi
(yk − yi). Since Cyi

� 0 its eigen-decomposition is of the form

Cyi
= Uyi

diag(λyi
) UTyi

. (7)

Here Uyi
is an orthonormal matrix (i.e. it satisfies UTyi

Uyi
= Uyi

UTyi
= I) con-

taining the eigenvectors of Cyi
and λyi

∈ RK≥0 are the corresponding eigenvalues

of Cyi
in decreasing order. The estimate of Cxi

in (5) reads as

Cxi
= Cyi

− σ2I = Uyi
diag

(
λyi
− σ2

)
UTyi

. (8)

Thus the Wiener-like denoising in (6) can be interpreted as a filtering in the
basis of the eigenvectors Uyi

of Cyi
:

UTyi

(
x
(i)
k − yi

)
= diag

(
λyi
− σ2

λyi

) (
UTyi

(yk − yi)
)
. (9)

where division in the diagonal matrix is vector-wise.
A filtering of this form is stable and the learnt prior model is consistent if

and only if Cyi
− σ2I has positive eigenvalues.

The eigenvalues of the estimated prior covariances Cyi−σ2I. It appears
that Cyi

− σ2I nearly always has negative eigenvalues even for non-flat patches,
whatever the level of the noise. Table 1 gives more details for five images and
different values of σ ∈ {1, 5, 10, 20, 40}. The parameter choice follows the recom-
mendations in [11]. Patches are square; for σ < 20 one takes (K1, N1) = (9, 27)
and for 20 ≤ σ < 50 (K1, N1) = (25, 75); as recommended, Ni = 3Ki and the
search window is a square of size bNi/2c. Flat areas are detected as described
in Remark 2. As in [12], with each index i in the image (except at the bound-
ary) there is associated a reference patch yi. The set of indexes corresponding
to non-flat reference patches is denoted by J . Column (a) contains the least
eigenvalues of Cyi

for each image and for each noise level σ over all patches in
the relevant set J . Since the eigenvalues are ordered decreasingly, the least one
is K1. All these least eigenvalues are much smaller that the corresponding σ2.
Column (b) shows the percentage of matrices Cyi

−σ2I over J with at least one
negative eigenvalue, which also reads as ] {yi, i ∈ J : g(λK1

) < 0}. Observe that
these percentages are large, going up to 100 %. What is more, the number of
negative weights in g(λyi

) for non-flat reference patches is important: column
(c) presents the average number of negative weights in g(λyi

) taken over J .

Consequences. Since Cxi
= Cyi

− σ2I has negative eigenvalues it is not a
covariance matrix, and the learned prior P(xi) is not a probability.

Table 1 shows that most of the noisy prior covariances estimated by the
denoising algorithm have a large number of negative eigenvalues, and thus they
have a significant impact in the pseudo-Wiener denoising in (6) and (9).



(a) min
yi,i∈J

λyi(K1) (b) ] {yi : g(λK1) < 0} (c) ] {k ∈ J : g(λk) < 0}

boat σ = 1 0.087 10.25 % 1.702 %
(512 × 512) σ = 5 0.883 96.23 % 40.75 %

σ = 10 3.747 99.85 % 53.47 %
σ = 20 31.88 100 % 55.13 %
σ = 40 122.7 100 % 62.25 %

man σ = 1 0.059 10.37 % 2.584 %
(1024 × 1024) σ = 5 0.909 95.84 % 41.41 %

σ = 10 3.833 99.64 % 54.65 %
σ = 20 29.01 100 % 56.83 %
σ = 40 134.6 100 % 62.23 %

parrot σ = 1 0.051 45.43 % 16.59 %
(256 × 256) σ = 5 1.201 80.75 % 29.84 %

σ = 10 4.811 93.88 % 42.26 %
σ = 20 35.22 100 % 48.16 %
σ = 40 134.9 100 % 89.42 %

peppers σ = 1 0.126 13.48 % 1.914 %
(512 × 512) σ = 5 0.772 97.67 % 46.82 %

σ = 10 3.309 99.88 % 56.94 %
σ = 20 34.05 100 % 56.63 %
σ = 40 127.3 100 % 62.62 %

stream σ = 1 0.093 5.194 % 0.856 %
(512 × 512) σ = 5 0.942 67.77 % 20.44 %

σ = 10 4.354 97.14 % 39.19 %
σ = 20 29.55 100 % 50.38 %
σ = 40 130.5 100 % 61.69 %

Table 1. (a) The least eigenvalue of Cyi for all reference patches in non-flat areas. (b)
Percentage of reference patches yi in non-flat areas with at least one negative weight
in g(λyi). (c) Average number of negative weights in g(λyi) for reference patches yi in
non-flat areas.

Pseudo-Tikhonov regularization. Observe that x̃
(i)
k in (6) is the unique stationary

point of the objective F below

F (x) = ‖x− yi‖2 + σ2(x− yi)
T
(
Cyi
− σ2I

)−1
(x− yi). (10)

Using the eigen-decomposition in (7) and the fact that Uyi
is orthonormal, F

also reads as

F (x) = ‖UTyi
(x− yi) ‖2+σ2(x−yi)

TUyi

(
diag(λyi

− σ2I)
)−1

UTyi
(x−yi). (11)

We denote λyi
:= (λ1, . . . , λK). Let uyi,k stand for the kth column of Uyi

. Then

F (x) =

K∑
k=1

(
uTyi,k

(x− yi)
)2

+ β(λk)
(
uTyi,k

(x− yi)
)2
, (12)

where β(λ) = σ2/(λ−σ2). The function λ 7→ β(λ) is continuous on R \ {0} with

lim
λ↘0

β(λ) = −1 lim
λ↗σ2

β(λ) = −∞ lim
λ↘σ2

β(λ) =∞ β(2σ2) = 1 lim
λ→+∞

β(λ) = 0.



The objective F is a quadratic convex-concave function. It can be seen as a
pseudo-Tikhonov regularization in the basis Uyi

where the regularization param-
eters β(λk) can be positive or negative. Let us remind that classical Tikhonov
regularization with all β > 0 entails oversmoothing; see e.g., [3, sec. 3.2]. Ta-
ble 1(c) shows that F in (12) has many negative regularization parameters.

Pseudo-Wiener filtering. Equation (9) reads also as

UTyi
x̃
(i)
k = diag

(
λyi
− σ2

λyi

) (
UTyi

(yk − yi)
)

+ UTyi
yi. (13)

Since Uyi
is an orthonormal matrix, the noise statistics of yi and of UTyi

yi are
the same. The weighting coefficients in the diagonal matrix in (13) are given by
a function g : R>0 → R

g(λ) := (λ− σ2)/λ = 1− σ2/λ (14)

which is differentiable, strictly increasing with limλ↘0 g(λ) = −∞, g(σ2) = 0
and limλ→+∞ g(λ) = 1. The weights g(λ) are negative for λ < σ2 and rapidly
decrease with λ↘ 0. This g is related to β in (12) by g(λ) = (β(λ) + 1)−1.

Thus the components of UTyi
x
(i)
i in (13) satisfy

uTyi,k

(
x̃
(i)
k − yi

)
= g(λk) uTyi,k

(yk − yi) , 1 ≤ k ≤ K1. (15)

Fig. 2 shows a sample covariance matrix Cyi
with its eigenvectors and eigen-

values λyi
for a non-flat patch of the noisy parrot image in Fig. 1 where σ = 20.

The eigenvectors are plotted in a raster order. The weights g(λyi
) in (14) are

depicted in the same figure. More than half of the eigenvalues are smaller than
σ2, resulting in negative eigenvalues in Cxi

and negative filter coefficients g(λ).
The resulting filter gives large negative weights to the eigenvectors associated
to the smallest eigenvalues, which look like noise with no apparent structure.

1 11 25

400

1000

1 11 25

−3

0

Fig. 2. For a non-flat patch in the noisy parrot image in Fig. 1, with σ = 20, from left
to right: sample covariance matrix Cyi ; its eigenvectors in raster order; the eigenvalues
λyi and the resulting weighting function g(λyi). Notice the large filter weights g(λ)
corresponding to λ < σ2.

Remark 3. According to the Eckart-Young theorem, the capability of the eigen-
vectors of Cyi

to encode important features of the patch yi decreases as the
eigenvalue decreases. As far as the negative weights g(λk) decrease, insignificant
eigenvectors with inverted signs are amplified.



3.2 Aggregation

The process of individual patch MAP estimation terminates when all patches
have been visited. A patch can be estimated multiple times using (6). The set
of all MAP estimates of a patch xk reads as Xk := {i : k ∈ S1(i)}. All
these patch estimates are aggregated by averaging them on their corresponding
locations on the image. We denote by H the local indexes within a

√
K ×

√
K

patch, H = {h = (h1, h2) : 0 ≤ h1, h2 ≤
√
K − 1}. A pixel j is contained in all

the patches xj−h with h ∈ H. The value of the oracle image x̃ at pixel j results
from averaging all estimated values for that pixel:

x̃(j) =
1

Aj

∑
h∈H

∑
i∈Xj−h

x̃
(i)
j−h(h), with Aj =

∑
h∈H

]Xj−h. (16)

There is a large variability in the aggregation weights across the image. Some
patches have a high degree of self-similarity with their surroundings, and appear
in many nearest neighbors sets S1. Thus their aggregation weights Ai can be
quite higher than those of other patches with singular patterns. Several patch
based methods have a similar aggregation of the patch estimates [7, 19, 17], and
it was identified in [13] as one of the key ingredients of state-of-the-art image
denoising strategies.

To evaluate the impact of the different stages of the denoising algorithm, we
track the non-flat patches during the denoising of the parrot image with σ = 20.
In Figure 3 we show the histograms of the RMSE of the non-flat patches in
the input noisy image, (1) after the individual MAP estimates but before the
aggregation, and (2) after their aggregation in the output oracle image. The
RMSE before the aggregation (BA) is computed as

RMSEBA =

 1

C

∑
i∈J

∑
k∈S1(i)

‖x̃(i)
k − xk‖22

 1
2

, (17)

where C =
∑

i∈J ] S1(i) for J the set of non-flat patches. The RMSE after
the aggregation is computed similarly, with the patch of the oracle x̃k instead

of x̃
(i)
k . The left figure corresponds to the first step of the NLB and the right to

the second. It is seen that the MAP formula (6) in the first step gives quite a
poor result, with a RMSE worse than that of the noisy input image. This is a
consequence of the unreliable estimate of the covariance matrix. The aggregation
stage has a crucial role to obtain the first-step denoised patch x̃i. Most of the
denoising work is done during the first step of the algorithm; see also Fig. 1.

Fig. 4 shows different stages of the denoising of a patch yi: the MAP estimate
(6), the aggregation stage in (16), followed by the second step MAP and the final
denoised patch x̂i. Fig. 2 already showed that eigenvectors with small positive
and also negative eigenvalues have a random structure. In Fig. 4, the significant
contribution of such eigenvectors can be clearly seen: The step 1 MAP estimate
before the aggregation is not better than the noisy patch. However, the aggrega-
tion of the MAP estimates yields a good approximation of the clean patch, very
similar to the output after the second denoising iteration. Most of the denoising
is carried out by the aggregation of the MAP estimates in the first stage.



Fig. 3. Histograms of the RMSE for non-flat patches, for the parrot image with σ = 20.
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Fig. 4. Restoration of a noisy patch yi of the image in Fig. 1. Top: noisy patch yi, step

1 MAP x̃
(i)
i , step 1 agg. x̃i. Bottom: original, step 2 MAP x̂

(i)
i , step 2 agg. x̂i.

In Fig. 5 we show all the estimates that are aggregated for two pixels in
the patch shown in Fig. 4. We refer to these plots as pixel paths. These values
correspond to the MAP estimates (Eq. (6)) of patches that contain the pixels. It
is quite a general rule that a pixel has a large number of updates. The variance
of the updates is huge, which results from the negative weights in the pseudo-
Wiener filter. The surprising fact is that in spite of this huge variance the final
value is reasonable. By manipulating the values – removing outliers based on
the histogram – one can get better results. Since the number of updates is not
known, an automatic outlier rejection does not seem simple.

3.3 The effect of the thresholding the negative weights

In the light of the results after the first step MAP estimation (Figs. 3 and 4) one
is curious to better realize the role of the negative eigenvalues in the estimated
matrix Cxi

. A common approach is to clip negative eigenvalues to zero [5]. Our
aim here is to go into the question using a family of estimates of the covariance
matrix by discarding small eigenvalues in Cyi

− σ2I (see [2]):

Cτxi
= Uyi

diag
(
Tτ
(
λyi
− σ2

))
UTyi

, (18)

where τ ∈ R and Tτ (s) = s if s ≥ τσ2 and Tτ (s) = 0 otherwise. We can then
investigate the performance of the algorithm under variations of τ .
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Fig. 5. Pixel paths for two pixels in the patch yi shown in Fig. 4. These are the values
that are aggregated according to (16).

In Fig. 6 we test the estimators Cτxi
for different values of τ and evaluate the

PSNR on non-flat patches after the individual MAP estimation (dashed lines),
and after the aggregation (continuous lines) for both denoising steps. As expected
the plots become constant below τ = −1, since all eigenvalues are larger than
−σ2 (Cyi

is positive definite). This is exactly the first-step MAP estimate (5)
in NLB [12]. When τ increases, more and more entries in the diagonal matrix
in (18) are zeroed out, together with the corresponding filter coefficients g(λyi

).

For τ large enough Cxi
→ 0 and the MAP denoising reduces to the x̃

(i)
k = yi. If

τ = 0 we recover estimator (Cyi
− σ2)+ of [5].

The plot confirms the bad quality of the MAP estimates in the first denoising
iteration when τ ≤ −1, and the impressive correction caused by the aggregation.
Regarding the output of the individual MAP estimates in the first step, the best
results are obtained for τ = 0 (1.8dB higher than with τ ≤ −1). However, this is
not the case after the aggregation (continuous red curve), where slightly better
results (around 0.1dB higher) correspond to τ ≈ 2, and also to τ ≈ −0.7. The
PSNRs for the second step of the algorithm are almost independent of τ . The
negative eigenvalues in the first step do not have a negative effect on the perfor-
mance of the whole algorithm. In fact, allowing some small negative eigenvalues
seems slightly better than keeping all the positive eigenvalues. Although we show
our analysis on a single example, we have found that this is the generally the
case.

4 Second step denoising

The second step denoising is essentially a Wiener filter where the a priori statis-
tics are estimated using the oracle image resulting from the first step. In addition,
the oracle image is also used to define the set of similar patches S2(i). As in the
first step, following Remark 1, all patches in S2(i) are denoised as proposed in
(3). The a priori covariance matrix is estimated as the sample covariance ma-
trix of the patches from the oracle image Cx̃i

, which are assumed noiseless. The
coefficients of the resulting Wiener filter matrix on the basis of eigenvectors Ux̃i

have the well-known expression f(λ) = λ/(λ+ σ2).
Fig. 7 shows a sample covariance matrix Cx̃i

with its eigenvectors and eigen-
values, and the weights f(λx̃i

). The covariance matrix corresponds to the ref-
erence patch in Fig. 2. The filter weights concentrate their mass on the largest
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Fig. 6. PSNR of all non-flat patches after different stages of the algorithm, using the
thresholded covariance matrices Cτxi

, as a function of τ . See text for details.

eigenvalues, which correspond to smooth eigenvalues. This is contrary to what
happens in the first step, as shown in Fig. 2. Thus, unlike to the the first step,
eigenvectors with a random structure are much less present in the second step
MAP estimates.

1 12 25
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1 12 25
0
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1

Fig. 7. For the same non-flat patch as in Fig. 2 we show, from left to right: sample
covariance matrix Cx̃i

; its eigenvectors in raster order; the eigenvalues λx̃i
and the

resulting weighting function f(λx̃i
). Compare to the weights in Fig. 2.

The final denoised image is obtained by aggregation as described in subsec-
tion 3.2. Although the second step has a contribution to the quality of the final
result, arguably most of the denoising is done in the first step, as can be seen
by the Figures 1, 3 and 4.

5 Discussion

Several patch-based methods for image denoising follow Bayesian approaches
with a Gaussian (or GMM) prior for patches. The validity of the Gaussian model
is questionable, but these methods produce state-of-the art results and are ap-
pealing due to their simplicity. In the case of NLB, the indefinite prior covariance
estimate causes poor individual patch MAP estimates. However, they system-
atically lead to sets of pixel estimates whose mean (aggregate value) is visibly
consistent. A good understanding of the NLB algorithm requires models that
include the aggregation stage.
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