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Abstract. We propose several very fast algorithms to restore jittered
digital video frames (their rows are shifted) in one iteration. The restored
row shifts minimize non-smooth and possibly non-convex local criteria
applied on the second-order differences between consecutive rows. We
introduce specific error measures to assess the quality of dejittering. Our
algorithms are designed for gray-value, color and noisy images. Some of
them can be considered as parameter-free. They outperform by far the
existing algorithms both in quality and in speed. They are a crucial step
towards real-time dejittering of digital video.

1 Intrinsic Dejittering

Image jitter consists in a random horizontal shift of each row of a video frame.
It occurs when the synchronization row pulses are corrupted e.g. by noise or
degradation of the storage medium, or in wireless transmission. The visual effect
is disturbing since all shapes are jagged, cf. e.g. Fig. 4. Structured jitter can
be provoked by acoustic or electrical interferences [7], cf. e.g. Fig. 8. Time base
corrector machines recover with some success the row synchronization pulses.
This operation is often unsuccessful or impossible [6]. An alternative—restoring
the video frames directly from the jittered data, called intrinsic dejittering [5]—is
much more flexible and widely applicable.

State of the Art. Intrinsic dejittering was invented in [5]. The method is based
on a 2D auto-regressive (AR) image model. The unknown AR coefficients and
row starts are estimated iteratively, jointly by blocs; a drift compensation is
applied afterwards [6]. In [7], the ℓ1 norm of the differences between 2 or 3
consecutive shifted rows is compared in the framework of dynamic programming.
A fully Bayesian iterative method using a TV-based prior for joint dejittering and
denoising is derived in [12]. The Bake and Shake method in [3] uses a good PDE
image model (e.g. Perona-Malik) to recover the row positions. In [4], the same
authors analyze the vertical slicing moments of images of bounded variation and
derive a variational method (faster than [3] but less effective for difficult data).

Our Approach. We exhibit a pertinent model enabling to discriminate natural
images from their jittered versions. Each row is restored based on the previously
restored rows using a simple non-smooth and possibly non-convex local criterion.
We thus construct one-iteration effective and fast dejittering algorithms. Noisy
jittered images are restored in two stages: (a) dejittering of the raw data; (b)
denoising of the obtained dejittered image.
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2 The main points of our approach

Notations. For any positive integersm and n, the rows of a matrix h ∈ R
m×n are

denoted by hi, 1 ≤ i ≤ m, and the components of a row hi by hi(j), 1 ≤ j ≤ n.
The components of any n-length vector u are denoted by ui, 1≤ i≤n.

Given an original image f ∈ R
r×c, a jittered image g is produced according to:

1 ≤ i ≤ r, di ∈ Z, 1 ≤ j ≤ c, gi(j) =

{

fi(j + di) if 1 ≤ j + di ≤ c,
0 otherwise.

(1)

In practice, the row shifts di are bounded, |di| ≤M , for M ≤ 6 or more [6].

The restored image and row shifts are denoted by f̂ and d̂, respectively.

2.1 Choice of a Local Criterion on Consecutive Rows

We wish to estimate the shift d̂i of each row i based on the previously restored
rows. So we need a good model for the columns of natural images.

original jittered

(a) Original (b) One column (c) Jittered

Fig. 1. 50 × 50 zoom of Lena. (b) Gray value of column 15 in (a) and in (c).

Remark 1. The gray-value of the columns of natural images can be seen as pieces
of 2nd or 3rd order polynomials—see Fig. 1(b) left or Fig. 3 in [9]. Such a claim is
clearly false for a jittered column—see Fig. 1(b) right. This observation provides
a sound basis to discriminate a natural image from its jittered versions.

Suppose that f̂1, . . . f̂i−1 are already dejittered. By Remark 1, we will estimate
the next d̂i using a criterion that compares f̂i−1, f̂i−2, . . . with all possible shifts
of the ith data row, gi(j − di), di ∈ {−N, . . . , N} for N ≥M .

Uniform jitter, M =6 arg minJ , α = 1 Original (116 × 200) arg minJ , α = 0.5

Fig. 2. Uniform jitter on {−M, . . . , M}. Restorations using (2)-(3) and (4).

Remark 2. Each row of g has no more than N zero-valued pixels at both ex-
tremities because of the jitter, see e.g. Fig. 2. Involving them in our criterion
can seriously distort its meaning. So for any row i, we will use only data samples
gi(j) for j ∈ {N + 1, . . . , c−N} which certainly belong to the original image.



Guided by Remarks 1 and 2, as well as by a series of preliminary experiments
(see e.g. Fig. 3), our main focus is on

d̂i = arg min
{

J (di) : di ∈ {−N, .., N}
}

, N ≥M, (2)

J (di) =

c−N
∑

j=N+1

∣

∣gi(j − di)− 2f̂i−1(j) + f̂i−2(j)
∣

∣

α
, α ∈ {0.5, 1} . (3)

d̂i is easily found by exhaustive search since it belongs to a small finite set. Then:

∀j ∈ {1, · · · , c}, f̂i(j) = gi(j − d̂i) if 1≤j − d̂j≤c and f̂i(j) = 0 else . (4)

Criterion J for α ∈ (0, 1] is minimized by a d̂i such that for a maximum

number of components j we have f̂i(j) ≈ 2f̂i−1(j)− f̂i−2(j)—i.e. f̂i(j), f̂i−1(j)

and f̂i−2(j) form a nearly linear segment—while breakpoints are preserved; for

a mathematical flavor, see [10, 11]. Then each column of f̂ has a nearly piecewise
linearly varying gray value. More details are given in [9]. When α < 1, (2)-(3) is
a special form of a Modes-estimator [13].

Remark 3. Dejittering a single frame yields a translated estimate p̂ of the row
shifts, say p̂ = d̂+ C. Given the original d, the integer C is such that

C = argmax
n∈Z

#
{

i ∈ {1, · · · , r} : p̂i − n = di

}

, (5)

where # means cardinality.

Alternative criteria. The jitter in Fig. 3(b) is considerable. Minimizing J1(di) =
∑c−N

j=N+1

∣

∣gi(j − di) − f̂i−1(j)
∣

∣

α
for α ∈ { 1

2 , 1} yield (c)-(d). Criteria J1 work
poorly—they tend to recover constant gray-value vertical pieces. Solving (2)-

(3) yields the original image in (e)-(f). Criteria J3(di) =
∑c−N

j=N+1

∣

∣gi(j−di) −

3f̂i−1(j)+3f̂i−2(j)− f̂i−3(j)
∣

∣

α
cannot discriminate well enough a natural image

from its slightly shifted versions, see (g)-(h). 3rd order differences enable larger
variations of the gray value than 2nd order differences.

(a) Original (b) Jittered (c) J1, α = 1 (d) J1, α = 0.5

(e) J , α = 1 (f) J , α = 0.5 (g) J3, α = 1 (h) J3, α = 0.5

Fig. 3. (b) Independent uniform jitter. Next: restorations for N = M + 1.



2.2 Error Measures for Dejittering

Remind that f̂ is translated with respect to (w.r.t.) f and that the extremities of
its rows are null because of the jitter. In order to apply standard error measures
for the restored f̂ , we shrink f̂ to f̂s ∈ R

r×c−2N according to

f̂s
i (j) = f̂i(j +N), 1 ≤ j ≤ c− 2N, ∀i ∈ {1, . . . , r},

so that f̂s contains only proper image information. Then we select an r×(c−2N)

inner submatrix fs of the original f that matches f̂s the best. Note that any
error measure on f̂s − fs is sensitive to the choice of fs. We select fs using
the ℓ1 norm: ‖fs− f̂s‖1 = min0≤k≤2N

∑r
i=1

∑c−2N
j=1

∣

∣fi(j+ k)− f̂s(j)
∣

∣. Then we

consider the mean absolute error mae(f̂ , f)=‖fs−f̂s‖1/
(

r(c−2N)
)

and the peak

signal to noise ratio, psnr(f̂ , f) = 10 log10

(

δ2r(c−2N)/‖fs− f̂s‖22
)

, where ‖.‖2

is the ℓ2-norm and δ is the dynamic range of (f̂s, fs).

The quality of dejittering can also be evaluated using d− d̂. The error measure
e1 below gives the average displacement of the pixels along any column:

e1(d̂, d)
def
= (1/r)‖d− d̂‖1 . (6)

The following two measures are quite interesting:

e∞(d̂, d)
def
=

100

c
‖d− d̂‖∞% ; (7)

e∆
0 (d̂, d)

def
=

100

r − 1
#

{

(d̂i − di)− (d̂i+1 − di+1) 6= 0, 1 ≤ i ≤ r − 1
}

% . (8)

e∞ measures the maximum horizontal error w.r.t. the width c of the image while
e∆
0 measures the number of changes in d− d̂ w.r.t. the height r of the image.

Remark 4. When both e∞ and e∆
0 are small (e.g. e∞ ≤ 0.4% and e∆

0 ≤ 0.8%), we
are guaranteed that dejittering is nearly perfect, independently of any other error
measure (see Figs. 6, 7, 10 and 12). Indeed, for a 512× 512 image, the proposed
error bounds mean that no more than 4 rows have a horizontal erroneous shift
which is no more than 2 pixels. For a natural image, such an error is invisible
to the naked eye. However, if one of these values is larger, no conclusion can be
done—cf. Fig. 9 and the relevant comments.

3 Algorithms for Gray-Value Natural Images

We construct an r×(c+2N)-size matrix f∗ forN > M . The middle of its first row
f∗
1 is g1, so p̂1 =N+1. Then we restore the relative row shifts p̂i ∈ {1, . . . , 2N+1},

∀i ∈ {2,· · ·, r} based on (2)-(3) and (4). The f̂ is an inner sub-matrix of f∗.

Notations. [a
... b

... c] means that a, b and c are concatenated horizontally; a← b
means that we replace a by b. For any n ∈ N, we denote by θ(n) the n-length
zero-valued row-vector:

θ(n) =
[

0
... · · ·

... 0
]

, #θ(n) = n. (9)



Algorithm 1 (Gray value images)

– Fix N > M , e.g., N = M + 1.
– Choose α = 1 or α = 0.5.

——————————————————————————————————
1. Define f∗ ∈ R

r×(c+2N) and set f∗
1 =

[

θ(N)
... g1

... θ(N)
]

.

2. Split g =
[

gL
... γ

... gR
]

where gL ∈ R
r×N , γ ∈ R

r×(c−2N) and gR ∈ R
r×N .

3. Put p̂0 = p̂1 = N + 1 and u = v =
[

θ(N)
... γ1

... θ(N)
]

.
4. For any i = 2, . . . , r, do:

(a) ∀ k = 1, . . . , 2N+1, do































(i) Put hk =
[

θ(k − 1)
... γi

... θ(2N − k + 1)
]

;
(ii) Find m = max

{

k, p̂i−1, p̂i−2

}

and n = min
{

k, p̂i−1, p̂i−2

}

+c−1 ;

(iii) J (k) =
1

n−m+1

n
∑

j=m

∣

∣

∣
hk

j − 2uj + vj

∣

∣

∣

α

;

(b) Find p̂i = arg min{J (k) : 1 ≤ k ≤ 2N + 1} ;

(c) Replace v ← u and u← hp̂i =
[

θ(p̂i − 1)
... γi

... θ(2N + 1− p̂i)
]

;

(d) Set f∗
i =

[

θ(p̂i − 1)
... gi

... θ(2N − p̂i + 1)
]

.

5. Extract f̂ ∈ R
r×c from f∗ ∈ R

r×(c+2N): cancel 2N columns at the left and
right ends of f∗ that have the largest number of zeros.

——————————————————————————————————

Explanations. u, v and hk are c-length rows such that at step i, u and v corre-
spond to the restored rows i− 1 and i− 2, respectively, while hk in 4a(i) realizes
all possible shifts for row i. In 4a(ii), m and n help to satisfy Remark 2. In 4b,
p̂i is the estimate for relative shift of row i.

Computation time. We used Matlab 7.2 on a PC with Pentium 4 CPU 2.8GHz
and 1GB RAM, under Windows XP Professional service pack 2. For a 512×512
size gray-value image and N = 7 we got the solution in 0.62 second for α = 1
and in 1 second for α = 0.5. (Note that our Matlab code is not fully optimized.)

Translation Recovery. In order to compute the the errors defined in § 2.2, we
need the translation constant C given in (5). Note that 1−N ≤ C ≤ 3N + 1.

Algorithm (Translation Recovery)
——————————————————————————————————
1. Define I = {−N + 1, . . . , 3N + 1}.
2. Compute the histogram H(n) = #

{

j ∈ I : p̂(j)− d(j) = n
}

, ∀n ∈ I.

3. Obtain C = arg maxn∈ I H(n). Then d̂i = p̂i − C, 1 ≤ i ≤ r.
——————————————————————————————————

Compound models. If the gray-values of the columns of an image are nearly
constant on large pieces, we should involve in J a 1st-order differences term.

Algorithm 1(a)
——————————————————————————————————
In Algorithm 1, 4a(iii), use J below where β is a weight for 1st-order differences:

J (k) = 1
n−m+1

∑n

j=m

(

|hk
j − 2uj + vj |+ β|hk

j − uj |
)α
, β ≥ 0.

——————————————————————————————————



Illustrations. In all experiments, Algorithm 1, is applied with N = M + 1.
The jitter in Fig. 4 is significant. We kept this first trial since our method

found the original for α ∈ {0.5, 1}. In Fig. 5 (Peppers), the dejittered image is

hard to distinguish from the original. However, the error image fs − f̂s shows
a slight displacement of several pixels. The dejittered image in Fig. 6 is nearly
perfect since e∆

0=0.6% and e∞=0.39%. We observe that d̂− d has a 1-pixel error
at rows 83, 84 and 401. The first two are within the zooms in the same figure.
The restored Boat in Fig. 7 is quasi-perfect since e∆

0 = 0.25% and e∞= 0.39%.
The original Boat can be seen in Fig. 8 where the restorations are exact (all
errors are null). For the results concerning [12] and [3], cf. section 7, p. 12.

Note that for our algorithms, d̂ − d is piecewise constant, which is a good
point. This cannot be claimed for the concurrent methods.

Uniform jitter, M=6 Bayesian TV [12] Bake & Shake [3] Algorithm 1≡Original
mae=11.7, psnr=22 mae=7.4, psnr=23 mae=0, psnr=∞

Fig. 4. Algorithm 1 for α = 1 and α = 0.5 yields the original image.

Uniform jitter,M=10 Original (512×512) Algorithm 1, α=0.5 Error: fs − f̂s

Fig. 5. Algorithm 1 with α = 0.5 yields mae= 1.35, psnr=31.51 and e1 = 0.4.

Uniform jitter,M=6 Alg. 1, α = 0.5 Zoom dejittered Zoom original

Fig. 6. (512×512). Algorithm 1: mae= 4.16, psnr=25.53, e∆
0 = 0.6% and e∞ = 0.39%.



Uniform jitter,M=10 Bayesian TV [12] Bake & Shake [3] Alg. 1, α∈{0.5, 1}
mae=13.4, psnr=20.8 mae=12.5, psnr=20.3 mae=0.6, psnr=42.9

Fig. 7. Boat (400×512). Algorithms 1 is nearly perfect: e∆
0 = 0.25% and e∞ = 0.39%.

d = ⌊6 sin
`

n

20

´

⌋ Alg.1,α=1 ≡Original d = ⌊6 sin
`

n

4

´

⌋ Alg.1,α=1 ≡Original

Fig. 8. Boat (400×512). Here ⌊.⌋ denotes approximation to the nearest integer.

Large-Scale Experiment. We tested all proposed algorithms using 1000 indepen-
dent experiments where 4 images were degraded with 2 different types of random
jitter and restorations were done for α = 1 and α = 0.5. The main conclusion
is that α = 0.5 is better for images with texture or curvatures (Lena, Barbara,
Peppers); α = 1 is better for images with many straight lines (Boat). In all cases
α = 1 yields good results, usually α = 0.5 works better. The details are reported
in [9]. Globally, the obtained mean results are very encouraging.

4 Algorithms Color Natural Images

We extend Algorithm 1 to RGB color images where all channels incur the same
jitter. RGB images are represented by vector-valued matrices f where each pixel
fi(j) has 3 components, fi(j;κ), 1 ≤ κ ≤ 3. The jittering model now reads:

gi(j;κ)=

{

fi(j + di;κ), if 1≤j+di≤c,
0, otherwise,

|di|≤M,

{

1≤ i≤r,
1≤j≤c,

1 ≤κ≤ 3.

The main algorithm is based on (2)-(3) and (4), yet again. Since the jitter
is the same for all color channels, we obtain from g a gray-value image γ and
estimate the relative row shifts p̂i using γ as in Algorithm 1. The dejittered color
image f̂ is obtained by inserting p̂ into g.

Similarly to (9), for any positive integer n we denote by θ(n×3) the n-length
vector-valued row whose components are (0, 0, 0) for all i = 1, · · · , n.



Algorithm 2 (Color images)

– Fix N > M , e.g., N = M + 1.
– Choose α = 1 or α = 0.5.

——————————————————————————————————

1. Define f∗ ∈ R
r×(c+2N)×3 and set f∗

1 =
[

θ(N × 3)
... g1

... θ(N × 3)
]

.

2. Split g =
[

gL
... g

... gR
]

, where gL ∈ R
r×N , g ∈ R

r×(c−2N) and gR ∈ R
r×N .

3. Calculate γ1(j) = |g1(j; 1)|+ |g1(j; 2)|+ |g1(j; 3)| for 1 ≤ j ≤ c− 2N .
4. Put p̂0 = p̂1 = N + 1 and u = v =

[

θ(N), γ1, θ(N)
]

.
5. For any i = 2, . . . , r do:

(a) ∀ k = 1, . . . , 2N + 1 do:

{

i. γi(j) =
∣

∣gi(j; 1)
∣

∣ +
∣

∣gi(j; 2)
∣

∣ +
∣

∣gi(j; 3)
∣

∣;
ii. do step 4a as in Algorithm 1;

(b) Do steps 4b and 4c as in Algorithm 1 ;

(c) Set f∗
i =

[

θ
(

(p̂i − 1)× 3
) ... gi

... θ
(

(2N − p̂i + 1)× 3
)]

.

6. Find f̂ ∈ R
r×c as in step 5, Algorithm 1.

——————————————————————————————————

Computation time. In the conditions of Remark 3, p.5, for a 512×512 RGB
image and N=7 we got the solution in 1 s. forα =1 and in 1.4 s. for α=0.5.

Algorithm 2(a) (Compound models)
——————————————————————————————————
In step 5a, Algorithm 2, replace J as done in Algorithm 1(a).
——————————————————————————————————

Illustrations. In all examples, Algorithms 2 and 2(a) are used with N = M + 1.

In Fig. 9, the main part of the error in d̂ corresponds to the sky and to the
ground which are quite homogeneous, so the error is invisible to the naked eye.
Part of it reaches the the boat, so we display a zoom of the latter. Fig. 10 shows a
zoom of a 707×579 image. The dejittering of the full image is nearly perfect since
e∞ = 0.17% and e∆

0 = 0.28%. The jitter in Fig. 11 is a centered Gaussian with
standard deviation σ = 6, truncated and quantized on {−12, . . . , 12}. Algorithm
2(a) for α = 0.5 and β ∈ {2, 3} gives better visual results than Algorithm 2. Fig.
12 shows a nearly perfect restoration since e∞ = 0.18% and e∆

0 = 0.37%.

original

restored

Uniform jitter, M=8 Man (478 × 532) Algorithm 2 α=1 Zooms.

Fig. 9. Dejittering yields mae= 1.45, psnr=33.82, e1 = 0.76 and e∞ = 3.76%.



OriginalZooms

of a 707 × 579 image

Algorithm 2, α = 0.5Jitter N (0,52) truncated on {−15, .., 15}

Fig. 10. The restoration of the whole image quasi-perfect: e∞=0.17% and e∆
0 =0.28%.

(a)

(b)

(c)

Gaussian jitter, M = 12 Algorithms 2(a) Zooms

Fig. 11. Zooms: (a) Jittered, (b) Original, (c) Dejittered

d Uniform jitter M =8 Original (542 × 410) Algorithm 2, α=0.5

Fig. 12. The result is quasi-perfect, mae=0.14, psnr=45.15, e∆
0=0.37% and e∞=0.18%.

5 Restoration of Noisy Jittered Images

Our approach is to first dejitter the raw data using the ideas of Algorithms
1-2 and then to denoise the dejittered image. In the second stage, we use fast
shrinkage estimators, see e.g. [8]. Better methods would improve the final result.



5.1 Moderate Noise

For a noise with 15-20 db snr or more, Algorithms 1, 2 perform well.

Experiment.Fig. 13(a) is corrupted with white zero-mean normal noise, 15 db snr,
and independent uniform jitter on {−6, . . . , 6}. Taking into account that the
columns of the image are nearly constant on large segments, dejittering in (b)
is done using Algorithm 1(a) for β = 3. Denoising of (b) is done in (c) by hard
thresholding the 2D Daubechies wavelet transform with 4 vanishing moments
for T = 30. The restoration is fast and the result is clean, compared to Fig. 5.

(a) 15 db snr+Jitter (b) Dejittered, Alg.1 (c) Denoised

Fig. 13. Pepers (512 × 512). For the restored image in (c), psnr=29.34.

5.2 Strong Noise

When the noise is strong, we propose a sightly different scheme having a compa-
rable computational cost. The idea is to partially denoise each row of the image
using hard thresholding and to replace the function |.|α in step 4a(iii) of Algo-
rithm 1 by a better adapted edge-preserving function ψ. Let W : R

1×n → R
1×n

denote a 1D wavelet transform and W ∗ its inverse. Given a threshold T > 0, let
us introduce the hard thresholding operator HT : R

1×n → R
1×n by

HT (w)(j) =

{

0 if
∣

∣w(j)
∣

∣ ≤ T
w(j) otherwise

1 ≤ j ≤ n, ∀w ∈ R
1×n. (10)

Knowing that the asymptotically optimal T , cf. [2], oversmooths rows, we use
an under-optimal T . In order to simplify the presentation, we give the algorithm
for gray-value images. The extension to color images is straightforward, cf. [9].

Algorithm 3 (Quite noisy images)

– Fix N > M , e.g., N = M + 1.
– Choose a 1D wavelet transform W (e.g. Daubechies).
– Fix an under-optimal threshold T .
– Choose ψ : R×R→ R+, e.g. ψ(s, t) = (|s|+ β|t|)α, and fix α > 0 and β ≥ 0.

——————————————————————————————————
1. Define f∗ ∈ R

r×(c+2N) and set f∗
1 =

[

θ(N)
... g1

... θ(N)
]

.

2. Split g =
[

gL
... g

... gR
]

where gL ∈ R
r×N , g ∈ R

r×(c−2N) and gR ∈ R
r×N .

3. Compute γ1 = W ∗
(

HT (Wg1)
)

.



4. Do steps 3 to 5 of Algorithm 1 with the following changes:
(a) in step 4a(i), insert γi = W ∗

(

HT (Wgi)
)

;

(b) in step 4a(iii), use J (k)= 1
n−m+1

∑n

j=m ψ
(

|hk
j − 2uj + vj |+β|h

k
j − uj |

)

.
——————————————————————————————————
Comments. Hard-thresholding in steps 3 and 4a is better than other shrinkages
since it keeps unchanged the important coefficients. The 1D row under-denoising
(step 4a) helps to approach the model of Remark 1. Denoising of a dejittered
image can be done by various methods. The proposed algorithm works pretty
well even though it involves several parameters that need to be fixed cleverly.

Experiment. Boat in Fig. 14 is corrupted with 10 db snr white zero-mean nor-
mal noise and independent jitter, uniform on {−8, .., 8}. Its restoration using
Bayesian TV [12] is unsatisfactory. The result using Bake and Shake [3] is bet-
ter. For these results, cf. section 7, p. 12. The features of the image suggest to
run our Algorithm 3 for β = 0 and ψ(t) = |t|α for α = 0.5 in step 4b. In steps
3 and 4a we use hard-thresholding of the Daubechies wavelet coefficients with
2 vanishing moments for T = 30. The dejittered image in (d) is denoised in
(e) by hard thresholding of its curvelet transform using the enhanced-denoising
program in the CurveLab 2.1.2 toolbox relevant to [1].

(a) 10db snr + Jitter (b) Bayesian TV [12] (c) Bake & Shake [3]
mae=19.36, psnr=20.24 mae=20.62, psnr=19.37

(d)Algorithm 3, dejittering (e) Our full 2-stage method Original
mae=7, psnr=28.31

Fig. 14. Boat (512 × 512). Restoration of (a) using different methods.



6 Conclusions

The obtained results have a remarkable quality while the algorithms are nearly
real-time. More details and examples are presented in [9]. The crux of our ap-
proach are (a) to minimize a nonsmooth and possibly nonconvex local criterion
on the magnitude of the second-order differences between consecutive rows; (b)
to exclude from J all pixels due to the jitter. In presence of strong noise, a
critical step is to (under)-denoise the rows successively so that the prior men-
tioned in Remark 1 remains relevant, and to adapt the criterion J if necessary.
The natural evolution of this work is to involve it in the restoration of video
sequences and to take advantage of the correlation between consecutive frames.
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