IEEE Trans. on Image Processing, 2014, 23(12), pp. 5274-5283

Fast Ordering Algorithm
for Exact Histogram Specification

Mila Nikolova (Senior Member IEEE), and Gabriele Steidl

Abstract—This paper provides a fast algorithm to order in
a meaningful, strict way the integer gray values in digital
(quantized) images. It can be used in any exact histogram
specification based application. Our algorithm relies on the
ordering procedure based on the specialized variational approach
proposed in [1]. This variational method was shown to be
superior to all other state-of-the art ordering algorithms in terms
of faithful total strict ordering but not in speed. Indeed, the
relevant functionals are in general difficult to minimize because
their gradient is nearly flat over vast regions.

In this paper we propose a simple and fast fixed point algo-
rithm to minimize these functionals. The fast convergence of our
algorithm results from known analytical properties of the model.
Our algorithm is equivalent to an iterative nonlinear filtering.
Further we show that a particular form of the variational model
gives rise to much faster convergence than other alternative
forms. We demonstrate that only a few iterations of this filter
yield almost the same pixel ordering as the minimizer. Thus we
apply only few iteration steps to obtain images whose pixels can
be ordered in a strict and faithful way.

Numerical experiments confirm that our algorithm outper-
forms by far its main competitors.

Index Terms—Exact histogram specification, strict ordering,
variational methods, fully smoothed L;-TV models, nonlinear
filtering, fast convex minimization

I. INTRODUCTION

Histogram processing is a technique with numerous appli-
cations, e.g., in image normalization and enhancement, object
recognition, and invisible watermarking, [2]-[5]. The goal of
exact histogram specification (HS) is to transform an input
image into an output image having a prescribed histogram.
For a uniform target histogram we speak about histogram
equalization (HE).

Consider digital (i.e. quantized) M x N images f with L
gray values Q := {q1,---,qr}.. For 8bit images we have
L = 256 and Q@ = {0,---,255}. We reorder the image
columnwise into a vector of size n := M N and address the
pixels by the index set I,, := {1,-- ,n}. The histogram of f,
denoted by hy, is given by hylgi] = #{i € I, | f[i] = a&},
k=1,...,L, where § stands for cardinality.

In theory, histogram specification uses the relation between
the cumulative density function of an arbitrary distributed con-
tinuous random variable and a uniformly distributed one, see
[3]. However, for digital images we are confronted with a large

Copyright (c) 2013 IEEE. Personal use of this material is permitted.

M. Nikolova is with the CMLA - CNRS, ENS Cachan, 61 av. President
Wilson, 94235 Cachan Cedex, France (email: nikolova@cmla.ens-cachan.fr).
Her work was supported by the “FMJH Program Gaspard Monge in optimiza-
tion and operation research”, and by the support to this program from EDF.

G. Steidl is with the Dept. of Mathematics, University of Kaiser-
slautern, Paul Ehrlich Str. 31, 67663 Kaiserslautern, Germany (email:
steidl @ mathematik.uni-kl.de).

number of n discrete variables taking only L possible values
(i.e., n > L). Then the target histogram can almost never
be satisfied exactly. Histogram specification is an ill-posed
problem for digital images. The Matlab function histeq is
expected to produce HE but it usually fails. The importance
of a meaningful strict ordering of pixels prior to histogram
specification is illustrated in Fig. 1; see the comments in the
caption.

In this paper we focus on exact histogram specification
to a target histogram h = (hy,...,hy) for the gray values
P = {0,...,L — 1}. If the pixels values of our image
are pairwise different so that they can be strictly ascending
ordered, exact histogram specification can be easily done
by dividing the corresponding ordered list of indices into L
groups and assigning gray value O to the first h; pixels, gray
value 1 to the second hy pixels and so on until gray value L—1
is assigned to the last hy, pixels. This simple procedure yields
good results if one has a meaningful strict ordering of all
pixels in the input image. Fig. 1 demonstrates the importance
of ordering for histogram equalization.

Research on this problem has been conducted for four
decades already [7]. State-of-the-art methods are

- the local mean ordering (LM) of Coltuc, Bolon and
Chassery [8],

- the wavelet-based ordering (WA) of Wan and Shi [9],

- the variational approach (VA) of Nikolova, Wen and
Chan [1] based on the minimization of a fully smoothed
£1-TV functional.

The first two methods extract for any pixel f[i] in the input
image K auxiliary informations, say xil[i], & € Ik, where
k1 = f. Then an ascending order “<” for all pixels could
ideally be obtained using the rule

i <7 if ks[i] < Ks[j] for some s € I
and
krlt]) = kily] forall 1<k <s. (1)

The third method uses an iterative procedure to find the
minimizer of a specially designed functional related to f which
components can be ordered in a strict way. The numerical
results in [1] have shown that VA clearly outperforms LM
and WA in terms of quality of the ordering and memory
requirements. However, the minimizer was computed by the
Polak-Ribiére algorithm and the whole ordering algorithm was
slower than LM and WA.

Contributions. We propose a simple fixed point algorithm
that attains the minimizer of fully smoothed ¢,-TV functionals
with remarkable speed and precision. In this algorithm all
needed derivative and inverse functions can be given in

512
512

original image
s

HE by histeq
| &,

Fig. 1.

HE by sort
e

A meaningful strict ordering is indeed crucial for histogram equalization (HE). First row: The pixels of a completely black image (left) are strictly

ordered using the Matlab routine sort which sorts equal pixels columnwise ascending. The resultant HE image (right) is perfectly equalized and becomes
lighter from left to right. Second row: The original image ’sand’ (http://sipi.usc.edu/database/) of size 512 x 512 and different equalizations: Matlab histeq,
Matlab sort and our sorting algorithm preceding the HE step (last two images). The third image still has the lighting effects from left to right. Third row:
The corresponding histograms. Fourth row: Zooms of the images in the second row (rows from 1 to 64 and columns from 449 to 512). It can be seen that
the texture generated by our HE algorithm is more regular and looks more natural than the other ones.

an explicit form, so our minimization scheme amounts to
a particular nonlinear filter. Convergence and parameter
selection are explained based on new theoretical results
and on few relevant facts from [1] and [11]. The classical
smooth approximation of the ¢; norm is 6;(¢t) = vt? + « for
a Z 0; it was used in [1] together with the Polak-Ribiére
algorithm, and in the conference paper [10]. Noticing that the
derivatives and the inverses for #; are slow to compute, we
looked for other approximations where these functions are
easy to compute: see A3 in Tab. I. We demonstrate that in our
context, both approximations yield the same minimizer, up
to negligible errors. Using 69 instead of 6; in the fixed point
algorithm reduces the running time by 20 %. We observed
that for nearly all images, a meaningful strict ordering of all
pixels is obtained only after a very small number of iterations.
Consequently, we use only few (e.g. 3 to 5) iterations with our
nonlinear filter to get the information needed for a meaningful
strict ordering. All these facts decrease the running time from
paper [1] by a factor between 50 and 30! In contrast to the
LM and the WA methods that extract the ordering based on
K images, our algorithm requires just a single ordering of
one image. Numerical tests confirm that our new algorithm,
involving the function 6> and the needed small number of
iterations, outperforms by far all other relevant ordering
methods in terms of quality and speed.

As already pointed out, one can design fast HS methods
based on our ordering algorithm. Therefore, the present paper
provides the background for any exact HS based application,

e.g., image normalization and image enhancement, among
others. We have used our algorithm successfully for hue and
range preserving HS based color image enhancement in [2].

Outline. In Section II we review the specialized variational
approach and some of its properties proved in [1], [11]
which are relevant to this work. In Section III, we propose
a simple fixed point algorithm to find a minimizer of our
functional. The reasons for its efficiency and effectiveness
are explained. Section IV provides numerical examples. We
compare speed and accuracy in the sense of a faithful total
strict ordering of our algorithm with state-of-the art algorithms
and provide a histogram equalization inversion comparison.
Experiments clearly demonstrate that only few iterations of our
algorithm are necessary to obtain promising ordering results.
Conclusions are given in Section V.

II. THE FULLY SMOOTHED £; —TV MODEL

Let Dy denote the forward difference matrix

e RV-LNV,
-1 1

We will apply forward differences to the rows and columns
of images, i.e., with respect to the horizontal and vertical
directions. Since we consider N x M images columnwise

reordered into vectors of length n = MN, the forward

difference operator applied to these images reads as
6= (Bron Y enn

Dy ® Iy
where Iy is the N x N identity matrix, ® denotes the
Kronecker product and » = 2M N — M — N. We consider
functionals of the form

J(u, f) == V(u, f) + pP(u), B>0 2)
with
U(u, f) = Y (uli] — fli)),
i€ll, ' (3)
ow) = Y (Gu)lj)).
j€l,

Here (Gu)[j] denotes the jth component of the vector Gu €
R". One could additionally use diagonal differences to improve
the rotation invariance of ®(u). However, our experiments
have shown that the simple forward differences in horizontal
and vertical directions are enough to enable the minimizer of
J to give rise to a prompt sorting.

Following [1], the essence for achieving a strict ordering is
that the functions ¥(+) := ¥(+, 1) and ¢(+) := @(+, a2) belong
to a family of functions 0(-,«) : R — R, a > 0, satisfying the
requirements in assumptions H1 and H2 described next. The
rationale for these choices was extensively discussed in [1].
For simplicity, the parameters «; and ay are omitted when
they are not explicitly involved in our derivations.

Assumptions. In the following, we systematically denote
2

o't o) = d t,a) and 0"(t,a):= %H(t,a).

dte(
H1 For any fixed o > 0 the function t — 0(t,) is in C*(R)
and even, i.e., 0(—t,a) = 0(t, o) for all t € R. Its derivative
0'(t, «) is strictly increasing with lim;_, o 0'(t, &) = 1, where
the upper bound is set to 1 just for definiteness. The second
derivative 0" (t, o) is decreasing on [0, +00).

H2 For fixed t > 0, the function o — 0O(t,«) is strictly
decreasing on (0, +00) with

lim 0'(t,a) =1 and lim 6'(t,a) =0 .

a—0 a—00

Under these assumptions ¢ and ¢ are smooth convex approx-

imations of the absolute value function. Hence the functional

J(-, f) in (2)-(3) amounts to a fully smoothed ¢;-TV model.
(From HI it follows that 6’(¢, o) is odd and has an inverse

function

&(t,a) == (0") (¢,). 4)

Clearly, ¢ — &(t,) is also odd and strictly increasing on
(—1,1). Moreover, since 0" (t,«) is positive and decreasing
on [0,400), the function ¢ is differentiable and

1
g(t,a) = > 0. 5)
0" (£(1))
So t — &'(t,) is also increasing on (0,1). There are many
possible choices of functions ¢ meeting H1 and H2, see [1].
In our numerical tests we use the functions 6 = 1) = ¢ with
a1 = ap = « given in the following table:

0 0 Je=)"T ¢

t NG
ol Pre | mm| W | e
i : at o
02 || [t] — alog <1+Z) ot T [a=1tD?

TABLE I
CHOICES FOR (-, @) TOGETHER WITH THE USED DERIVATIVES AND
INVERSE FUNCTIONS.

Since J(-, f) is a strictly convex, coercive functional it has
a unique minimizer & € R™. The next theorems summarize
several properties of this minimizer which are important for
our faithful and fast sorting algorithm. The first theorem
proven in [1, Theorem 1] ensures that the entries of the
minimizer differ in general pairwise from each other so that @
provides an auxiliary information for ordering the pixels of f.

Theorem 1. (Strict ordering information)
Let v and ¢ fulfill HI and H2. Then there exists a dense open
subset K™ of R™ such that for any f € K™ the minimizer u

of J(-, f) satisfies
uli] # uljl,
uli] # fli],

The fact that K™ is dense and open in R™ means that the
property in (6) is generically true. This result is much stronger
than saying that (6) holds true almost everywhere on R"™. ! So
the minimizers @ that fail (6) are quite rare.

The second theorem provides an estimate of ||f — U||oo
which has been proven by the authors in [11, Theorems 1
and 2].

Vi,j€ly,
Viel,.

i # ©

Theorem 2. (Distance of @ from f)
Let vy and ¢ fulfill HI and H2 and let 5 < i. Then, for any
f € R"™, the minimizer u of J(-, f) satisfies

@~ flloo < ()71 (48, 01) = €(4B,0n), (D
where & := (y')~L. Further it holds

1T = fllo S €(4B,a1) as az N\, 0 (8)

if vy = maxiez { min (|£[i] — fli— 1], | £ - fli - M]]) >
26(4B, 1)}, where T := {i € int L, : (f[i]— f[i—1])(|f[i] —
fli — M]) # 0} # 0. Here int 1, denotes the set of indices of
non boundary pixels.

The upper bound (7) clearly indicates how to select the
parameters in order to guarantee that | f[¢] —u[¢]| < 0.5 for any
i € I,. Consequently, if for f[i] € {0,...,255}, i € L, the
relation f[i] < f[4] holds true, then also u[i] < @[j] such that
the initial ordering of pairwise different pixels is preserved.
More precisely, we obtain for 5 = 0.1 and a; = a3 = 0.05
that ||z — fllee < 0.0976 if ¥ = ¢ = 0; and |7 — flleo <
0.0333 if Y = ¢ = 6,.

'An almost everywhere true property requires only that K™ is dense in
R™. But K™ may not contain open subsets. There are many examples. For
instance, K := [0,1] \ {z € [0,1] : is rational} is dense in [0, 1] and K
does not contain open subsets.

Concerning the lower bound (8) we emphasize that the
assumption on vy is realistic for natural images with 8 bit
gray values; see [11].

III. FAST MINIMIZATION AND SORTING ALGORITHMS
The vector @ is a minimizer of J(-, f) in (2) if and only if
VJ(u, f) = 0 which is equivalent to VU (u,) = -8V (q).
By (3) this can be rewritten as
(¢ @] — f1)) i, = =BG (¢ (GBI, -
With € := (¢/)71(-, 1) as in (4) and since ¢ is odd we obtain
i=f-¢(BGT(GD)). ©)

Here ¢'(Gu) = (¢’ ((Gu)[j]));:1 and ¢ is applied compo-
nentwise. This is a fixed point equation for u which gives rise
to the following fixed point algorithm to compute u:

Algorithm 1 Minimization Algorithm

Initialization: «(*) = f, stopping parameter ¢
For r = 1,... compute until |VJ||s <&

u(7) _ f . 5(6 GTSO/(GU(T_U))

As stopping criterion we propose [|[VJ||oe < 1075, In
all experiments with images of various content and size we
realized that the required precision was reached in general
within less than 35 iterations. The efficiency of the algorithm
relies on two clues:

- By Theorem 2 the vector u(?) = f is very close to the

fixed point u and is therefore a good starting point.

- The functions ¢’ and £ appearing in the algorithm are

given explicitly, see Table I.
By the following corollary the sequence of iterates {u(")},en
is bounded if g < i. Consequently, it has a convergent sub-
sequence. Moreover, for appropriately chosen «; all iterates
fulfill again the important property |f[i] — u(™[i]| < 0.5,
¢ € [, such that the original ordering of the pixels in f is
still pertinent in u(").

Corollary 1. (Distance of u(") from f: upper bound)
Let ¢ and o fulfill HI and let § < i. Then, for any f € R,
all iterates u(") generated by Algorithm 1 satisfy

[0 — flloo < (W) 7148, 1) = E(48,1).

Proof: By H1 we can estimate

|4~ flloo < @) (BIGT (Gu"D)]u0)

Using |¢'(t)] < 1 and the sparsity of G we obtain
|GT' (Gu"™"V)||oo < 4 and since (¢)')~! is increasing on
[—1,1] for B < % finally

[= flloo < ()71 (4B,).

|
The following theorem provides a convergence result for
our fixed point algorithm.

Theorem 3. (Convergence of fixed point algorithm)
Let v and ¢ fulfill HI. Let a1, > 0 and < % be chosen
such that

8651(45,(11)@”(0,(12) <L (10)

Then, for any f € R", the sequence {u(")}, generated by
Algorithm 1 converges to the minimizer u of J(-, f).

Proof: Let T(u) := f — £(BG"¢'(Gu"™V)). By Os-
trowski’s theorem [12] it is enough to prove that the Jacobian
matrix V7T'(u) becomes smaller than 1 in some norm on R"
for all uw € R™. Since

VT(u) = Bdiag(¢'(BG"¢' (Gu))) G" diag(¢” (Gu)) G
we obtain

IVT(u)|l2 < Bldiag(§'(BG"¢' (Gu)) |2
IG™ 12 [|diag (¢ (Gu)) |12 |G-

Since ¢” is monotone decreasing on [0,4+00) we get

| diag(¢”(Gu))|l2 < ¢”(0). Further, we have by the defi-
nition of G that |G|z ||G||2 = ||G"G||2 < 8. Note that G'G
is a discrete Laplacian with Neumann boundary conditions and
that the bound is sharp in the sense that |G"G/||2 approaches
8 as n — oo.

It remains to estimate & (BG"¢'(Gu)). Regarding that
| (t)] < 1 for all t € R we conclude [|G"¢'(Gu)|lse <
IG|l1 < 4. Since &' increases on (0,1) by (5) and 48 < 1 we
obtain finally

| diag (€' (BG"¢(Gu)) |2 < &' (45).

Multiplying the parts together we obtain the assertion. []
For ¢ = ¢ from Table I the left-hand side of (10) becomes
01 ‘ 02
oy 88 a1 88

o2 \[a-@p2) | ez (4572

For ay = aq these values are smaller than 1 if 8 < 0.0976
and 8 < 0.0670, for 0; and 65, respectively.

Remark 1. The upper bound in (10) is an overestimate since
one has ¢ (Gu, az) = ¢" (0, a2) only for constant images .

For our ordering purpose we are not really interested in
the minimizer u of J(-, f), but want to use the sorting of its
entries to get a meaningful ordering of the original image.
We observed that typically the pixel ordering obtained after
a small number of steps of the minimization algorithm does
not change in the subsequent steps except for very few pixels.
This fact led us to propose the following efficient ordering
algorithm for R < 35 (e.g., R = 5):

Algorithm 2 Ordering Algorithm

Initialization: u(®) = £, stopping parameter R
1. For r =1,..., R, using £ and ¢’ in Tab. I, compute

u® = f—€(BGTY (GuY))

2. Order the values in I,, according to the corresponding
ascending entries of 1),

IV. NUMERICAL COMPARISON OF SORTING ALGORITHMS

In this section we demonstrate that our Ordering Algorithm
2 with » = ¢ = 5 is actually the best way (in terms of
speed and quality) to order pixels in digital images. Note that
extensive qualitative comparisons of the variational ordering
method (VA) with the (fully iterated) Polak-Ribiére algorithm
were done in [1]. These experiments have already shown that
VA clearly outperforms other state-of-the-art algorithms as
LM [8] and WA [9] concerning quality. Here we want to
demonstrate that our new ordering algorithm ensures the same
quality, in particular a faithful strict ordering, but is much
faster than the previous implementations.

We apply VA with parameters
(0.1,0.05,0.05) in the variants

- VA-PR: with Polak-Ribiére algorithm, function 6; and
stop if ||[VJ||eoc < 107° but at most 35 iterations as
proposed in [1],

- VA-0(R): with fixed point algorithm with function 0y,
k € {1,2} and R iterations.

We want to mention that the estimate in Theorem 3 is too
restrictive (see Remark 1) and we have chosen 3 slightly larger
which still provides a convergent iteration scheme. Further we
use the notation LM(K) and WA(K) for the corresponding
algorithms with K — 1 filter applications. Recall that K = 6
for LM and K = 9 for WA were recommended by the authors.

(57041,042) =

Remark 2. (Filtering versus sorting)

The above algorithms contain a filtering and a sorting step
which behave quite differently:

- LM and WA: Both algorithms apply K — 1 simple linear
filters which is cheap. For example, if n = N2 is the
number of image pixels, then 24n, 44n, 64n (mainly) additions
are necessary for the LM-¢ filtering procedure in the cases
K = 4,5,6, respectively. Note that this filtering can be also
done in a cheaper way using the i-filters employed in [§]
for the theoretical study of the LM algorithm. The resulting
K images must be lexicographically ordered, see (1). This
can be done in O(nlogn), but the concrete factor depends
on K and the image content. In our numerical experiments
we have used the sortrows Matlab function which calls for
K >4 a C program. In our numerical examples with K = 6
this sorting procedure was three to twelve times (increasing
with increasing number of pixels) slower than the filtering
procedure. Finally, we mention that larger images, e.g., of size
5616 x 3744 taken by usual commercial cameras, cannot be
handled by sortrows. Here a more sophisticated sequential
sorting implementation in a better adapted programming lan-
guage may be used with storage requirement 2n. However,
the speed relation between linear filtering and lexicographical
sorting will be kept.

- VA: The nonlinear filtering in the VA procedure is more de-
manding than the above linear one. However, for ¢ = ¢ = 6
we have (up to absolute values) only to compute additions and
multiplications. In summary, we have to perform 13n additions
or multiplications in each iteration step. Indeed our numerical
experiments have confirmed that our filtering behaves as O(n).
The subsequent sorting procedure sort of one image which

requires mlogn operations is faster than the filtering step, in
our examples with R = 5 nearly 4 times.

We summarize: for LM(K) and WA(K), the lexicograph-
ical sorting of K images is more time consuming than the
simple linear filtering. In our ordering algorithm, the nonlinear
filtering requires more time than the sorting step. The running
time for our filtering is linear in the number of pixels n and
is cheaper for 65 than for 6.

All algorithms are implemented in Matlab2012a and exe-
cuted on a computer with an Intel Core 17-870 Processor (§8M
Cache, 2.93 GHz) and 8 GB physical memory, 64 Bit Linux.
The tests are performed for four groups of digital 8-bit images
of increasing size N x N, where N = 256,512,1024, 2048,
presented in Fig. 2. The results in all tables give the means
over 100 runs for each image of all tested algorithms.

We present two numerical experiments:

1. Ordering of natural images: The results for LM(6), WA(9)
and the variational approaches are reported in Tab. II. Here
Fail gives the percentage of image pixels which cannot
be totally ordered. The fast VA algorithm with #; and 5
iterations VA-605(5) clearly outperform the LM(6) and WA(9)
algorithms both with respect to Fail and computational time.
The different VA algorithms show a similar Fail. However,
compared to the Polak-Ribiére algorithm with 67 suggested in
[1], VA-05(5) reduces the running time by a factor of 50 to 30.
Further, our fixed point algorithm needs 20 % less computation
time for VA-05 than for VA-6,.

Tab. III shows the fail rate of LM and VA-65 for numbers
K —1 and R of filter applications. It can be seen that after R =
2 applications of our nonlinear filter, the average percentage of
pixels which cannot be sorted is nearly the same as for LM(6).
However, for R = 5 steps of our nonlinear filter, nearly all
pixels are faithfully sorted.

Fig. 3 depicts the filtering time, the sorting time and the
overall running time of LM(K) and VA-63(R) for R =
K —1¢€{l,...,5}. The plots on the left (resp., on the right)
give the means over 100 runs for all images in Fig. 2 of size
512 x 512 (resp., of size 1024 x 1024). The obtained curves
are in agreement with Remark 2.

2. Histogram equalization inversion: In [8], histogram
equalization inversion was shown to be a relevant way to
evaluate up to what degree a sorting algorithm is meaningful.
First the original 8-bit image f with histogram A is mapped
to an 8-bit image g with a uniform histogram (up to rounding
errors). This requires the first application of an ordering
algorithm. Then ¢ is transformed to an 8-bit image f with
histogram hy which requires a second time an ordering algo-
rithm. Tab. IV shows the PSNR 20 log,(255M - N/|| f — f1|2),
the percentage of pixels Fail% which cannot be faithfully
ordered averaged over the two applied ordering procedures
and the computational time of the whole histogram equal-
ization inversion process. Since VA-PR and VA-0;(R) give
qualitatively, in terms of PSNR and FAIL, the same results
as VA-02(R) but VA-05(R) is faster, we consider only VA-
02(R), R € {5,35}. The VA-algorithms outperform LM(6)
and WA(9) wrt PSNR and FAIL. Moreover, VA-05(5) is the

256 x 256

chemical

512 x 512

airplane

raffia stream

mandrill

smarties stones traffic

eifel

boys plants

Fig. 2.
2048 x 2048 in the fourth row.

fastest algorithm.

The quality of our VA algorithms is emphasized by Fig. 4
which shows three difference images of the original image f
and the images f obtained after the histogram equalization
inversion. The first row presents the original image trui
and zooms of stones and church. The second and third
rows show the results f — f obtained by the LM and WA
ordering, respectively. The fourth and the fifth rows depict the
difference images f — f corresponding to VA-05(35) and VA-
02(5), respectively. Both VA methods are able to reconstruct
the original image more precisely than their competitors in
particular in the vicinity of edges.

ad B

pont

violine

church

All 24 digital 8-bit images with their histograms used for our comparison. The size of the images ranges from 256 X 256 in the first row to

V. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed a fast algorithm to order
strictly and reasonably the pixels in digital (integer valued)
natural images. Our algorithm outperforms by far the state-
of-the-art algorithms in speed and in quality to order the
pixels. Thus it provides a background for any exact histogram
specification based application.

We have applied this algorithm for hue and range preserving
enhancement of color images in [2] where we also handled
large size images. Given an RGB image w = (w,, wq, wy)
the rough idea consists of the following two steps:

(i) appropriate histogram specification of the intensity image
f = 3(w, + wy + wy) using our proposed sorting
algorithm which yields an enhanced intensity image f.

Fail % Computation Time
Variational Method Variational Method
method LM(6) | WA(9) PR 01(35) | 62(35) [62(5) LM(6) | WAQ9) PR 01(35) | 62(35) [62(5)
256 X 256
chemical 0.01 0.06 0.00 0.00 0.00 0.00 0.03 0.04 0.59 0.08 0.06 0.01
clock 4.82 4.52 0.00 0.00 0.00 0.00 0.03 0.04 0.27 0.08 0.06 0.01
elaine 0.01 0.02 0.00 0.00 0.00 0.00 0.03 0.03 0.61 0.08 0.07 0.01
moon 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.04 0.61 0.08 0.06 0.01
tree 0.20 0.19 0.00 0.00 0.00 0.00 0.03 0.04 0.59 0.08 0.06 0.01
trui 0.03 0.00 0.00 0.00 0.00 0.00 0.03 0.04 0.30 0.08 0.06 0.01
means 0.84 0.80 0.00 0.00 0.00 0.00 0.03 0.04 0.50 0.08 0.06 0.01
512 x 512
aerial 0.04 0.00 0.00 0.00 0.00 0.00 0.13 0.16 2.28 0.45 0.29 0.05
airplane 18.58 17.70 | 0.00 0.00 0.00 0.00 0.16 0.31 1.16 0.44 0.29 0.05
boat 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.15 1.40 0.45 0.29 0.05
mandrill 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.14 2.25 0.43 0.29 0.05
raffia 46.64 16.05 0.00 0.00 0.00 0.00 0.20 0.35 1.04 0.44 0.29 0.05
stream 0.65 0.75 0.00 0.00 0.00 0.14 0.13 0.19 1.03 0.44 0.29 0.05
means 10.98 5.75 0.00 0.00 0.00 0.02 0.14 0.22 1.53 0.44 0.29 0.05
1024 x 1024
bark 0.00 0.00 0.00 0.00 0.00 0.00 0.64 0.80 10.16 1.79 1.33 0.25
man 0.43 0.68 0.00 0.00 0.00 0.00 0.61 0.82 4.47 1.62 1.22 0.24
pentagon 0.00 0.00 0.00 0.00 0.00 0.00 0.66 0.87 9.48 1.80 1.32 0.22
smarties 0.55 0.05 0.00 0.00 0.00 0.00 0.68 0.90 9.43 1.82 1.46 0.24
stones 2.25 1.39 0.00 0.00 0.00 0.09 0.66 0.90 4.76 1.78 1.32 0.22
traffic 0.69 0.07 0.00 0.00 0.00 0.00 0.65 0.88 4.96 1.80 1.44 0.24
means 0.65 0.36 0.00 0.00 0.00 0.01 0.65 0.86 7.21 1.77 1.34 0.24
2048 x 2048
eifel 3.54 0.37 0.00 0.00 0.00 0.01 4.24 6.56 22.29 8.08 6.58 1.23
boys 0.33 0.00 0.00 0.00 0.00 0.00 3.84 5.45 42.64 8.06 6.60 1.20
plants 0.03 0.00 0.00 0.00 0.00 0.00 3.74 4.73 21.61 8.08 6.62 1.20
pont 9.98 5.77 0.00 0.00 0.00 0.00 3.98 5.67 43.15 8.08 6.63 1.20
church 0.96 0.78 0.13 0.05 0.07 0.30 3.62 5.18 20.74 8.08 6.60 1.21
violine 1.83 0.23 0.00 0.00 0.00 0.00 3.76 5.97 43.25 8.07 6.59 1.19
means 2.78 1.19 0.02 0.01 0.01 0.05 3.86 5.59 32.28 8.07 6.60 1.20
TABLE 11

COMPARISON OF DIFFERENT ORDERING METHODS FOR THE IMAGES IN FIG. 2.

filtering (512 x 512) filtering (1024 x 1024)

0.06 02
r 0.15 X
 0.04 ®
c # £ S
° - 0.1
£ Lo .g *
= 0.02 e =
/e/e/e/ o.os};@/e/@/é
° % 3 4 s o 2 3 4 5
R R

sorting (512 x 512) sorting (1024 x 1024)

0.2 0.8
0.15 0.6
2 @
£ £
o 01 o 0.4
E E
0.05< 0.2
Cj' R K----- Gé -k * -k -F
1 2 3 4 5 1 2 3 4 5
R R

overall (512 x 512) overall (1024 x 1024)

0.2 0.8
0.15 0.6

" "

£ £

o 0.1 » 0.4

£ £

= = -
0.05 T 0.2 T

Gl 2 3 4 5 Gl 2 3 4 5
R R

Fig. 3.

Comparison of filtering, sorting and overall computational time of

(i)

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

LM(K) (solid) and VA-02(R) (dashed *) for R=K —1=1,...,5 for

the images in Fig. 2 of size 512 x 512 (left) and 1024 x 1024 (right).

application of an affine transform to each pixel of the
RGB image w such that the resulting image w
(1, g, 1) has the desired intensity f and is in the
range [0, 255]. The images w and @ have the same hue.

REFERENCES

M. Nikolova, Y.-W. Wen, and R. Chan, “Exact histogram specification
for digital images using a variational approach”, Journal of Mathemat-
ical Imaging and Vision, vol. 46, no. 3, pp. 309-325, July 2013.

M. Nikolova and G. Steidl, “Hue and range preserving color image
enhancement based on fast histogram specification. New algorithms,
theory and applications”, IEEE Transactions on Image Processing, vol.
23, no. 9, pp. 4087-4100, Sep. 2014.

R. Gonzalez and R. Woods, Digital Image Processing, Addison-Wesley,
1993.

V. Caselles, J. L. Lisani, J. M. Morel, and G. Sapiro, “Shape preserving
local histogram modification”, IEEE Transactions on Image Processing,
vol. &, no. 2, pp. 220-229, Feb. 1999.

D. Sen and P. Sankar, “Automatic exact histogram specification for
contrast enhancement and visual system based quantitative evaluation”,
IEEE Transactions on Image Processing, vol. 20, no. 5, pp. 1211-1220,
May 2011.

N. Bassiou and C. Kotropoulos, “Color image histogram equalization
by absolute discounting back-off”, Computer Vision and Image Under-
standing, vol. 107, 2007.

E. L. Hall, “Almost uniform distributions for computer image enhance-
ment”, IEEE Transactions on Computers, vol. C-23, no. 2, pp. 207-208,
Feb. 1974.

D. Coltuc, P. Bolon, and J.-M. Chassery, “Exact histogram specifi-
cation”, IEEE Transactions on Image Processing, vol. 15, no. 6, pp.
1143-1152, 2006.

Fail %
method LM(@2) | LM(3) | LM@) | LM(5) | LM(®) || 02(1) | 02(2) | 62(3) | 02(4) | 62(5)
256 x 256
chemical 68.93 | 640 | 019 | 003 0.01 297 | 007 | 000 | 000 | 0.00
clock 7455 | 4356 | 2361 | 1076 | 482 || 4751 | 869 | 047 | 002 | 0.00
Elaine 7502 | 1200 | 056 | 0.03 0.01 778 | 0.06 | 000 | 0.00 | 0.00
moon 76.65 | 8.57 020 | 000 | 0.00 460 | 000 | 000 | 000 | 0.00
tree 67.89 | 17.65 | 474 | 091 020 || 1951 | 1.12 | 000 | 000 | 0.0
trui 8346 | 3282 | 4.14 | 03I 003 || 3172 | 007 | 000 | 000 | 0.00
means 7442 | 2016 | 5.57 2.01 084 || 19.02 | 167 | 008 | 0.00 | 0.00
512 x 512
aerial 8569 | 3497 | 510 | 037 004 | 2305 | 002 | 000 | 000 | 0.00
airplane 96.38 | 86.27 | 67.71 | 3824 | 1858 || 91.07 | 3806 | 0.19 | 0.00 | 0.0
boat 87.59 | 2376 | 092 | 002 | 000 || 1567 | 000 | 0.00 | 000 | 0.00
mandrill 8117 | 736 | 012 | 000 | 0.00 259 | 000 | 000 | 000 | 0.00
raffia 9991 | 99.22 | 95.08 | 7735 | 46.64 || 99.51 | 29.02 | 0.15 | 001 | 0.0
stream 9535 | 53.66 | 1328 | 206 | 065 || 5638 | 1.53 | 032 | 021 | 0.14
means 91.02 | 50.87 | 3037 | 19.67 | 1098 || 48.04 | 1144 | 0.11 | 0.04 | 0.02
1024 x 1024
bark 96.19 | 3140 | 060 | 001 0.00 562 | 000 | 000 | 000 | 0.00
man 9582 | 48.63 | 692 1.29 043 || 2885 | 091 | 009 | 0.00 | 0.00
Pentagon 9642 | 46.89 | 221 0.03 0.00 | 2390 | 0.00 | 000 | 0.00 | 0.00
smarties 97.51 | 78.66 | 29.81 | 4.09 055 || 4921 | 016 | 002 | 001 | 0.00
stones 96.09 | 71.57 | 30.10 | 724 | 225 || 49.18 | 232 | 054 | 021 | 0.09
traffic 9641 | 68.06 | 2557 | 441 069 | 4493 | 048 | 000 | 000 | 0.00
means 9641 | 5754 | 1587 | 285 065 | 3361 | 064 | 011 | 0.04 | 001
2048 x 2048
eifel 98.89 | 87.50 | 6523 | 2336 | 354 || 8126 | 032 | 0.05 | 002 | 001
boys 9922 | 8748 | 4100 | 502 | 033 || 6922 | 000 | 000 | 000 | 0.00
plants 9827 | 68.04 | 1272 | 056 | 003 || 3192 | 001 | 000 | 000 | 0.00
pont 98.86 | 78.36 | 30.59 | 18.09 | 9.98 || 44.87 | 10.54 | 0.02 | 000 | 0.00
church 98.62 | 8232 | 3077 | 3.71 096 | 6601 | 1.07 | 048 | 036 | 0.30
violine 9941 | 9291 | 61.18 | 1552 | 1.83 || 8759 | 012 | 000 | 0.00 | 0.0
means 9888 | 82.77 | 4025 | 11.04 | 278 || 6348 | 201 | 0.09 | 0.06 | 0.05
TABLE IIT

COMPARISON OF LM(K') WITH VA-62(R) WITH RESPECT TO FAIL FOR AN INCREASING NUMBER R = K — 1 OF FILTER APPLICATIONS.

[9]1 Y. Wan and D. Shi, “Joint exact histogram specification and image
enhancement through the wavelet transform”, IEEE Transactions on
Image Processing, vol. 16, no. 9, pp. 2245-2250, 2007.

[10] M. Nikolova, “A fast algorithm for exact histogram specification. simple
extension to colour images”, in Scale Space and Variational Methods in
Computer Vision. Lecture Notes in Computer Science 7893, Springer,
2013, pp. 174-185.

[11] F. Baus, M. Nikolova, and G. Steidl, “Fully smoothed ¢1-TV models:
Bounds for the minimizers and parameter choice”, Journal of Mathe-
matical Imaging and Vision, vol. 48 no. 2 pp. 295-307, 2014.

[12] J. Ortega and W. Rheinboldt, Iterative Solution of Nonlinear Equations
in Several Variables, Academic Press, New York, 1970.

PSNR Fail % Computation Time
VA VA VA
method LM(6) | WA©9) | 62(35) | 62(5) LM(6) | WA | 62(35) | 02(5) LM WA 02(35) | 02(5)
256 x 256
chemical 49.34 48.90 49.67 49.67 0.03 0.10 0.00 0.00 0.06 0.07 0.13 0.03
clock 51.69 51.56 51.78 51.78 0.87 2.41 0.00 0.02 0.06 0.08 0.14 0.02
elaine 49.51 49.66 49.90 49.90 0.00 0.02 0.00 0.00 0.06 0.07 0.13 0.03
moon 47.36 46.50 47.82 47.71 0.06 0.11 0.00 0.00 0.05 0.07 0.13 0.03
tree 51.94 51.84 52.01 52.01 0.03 0.18 0.00 0.00 0.05 0.07 0.12 0.03
trui 52.70 52.51 52.86 52.85 0.04 0.06 0.00 0.00 0.05 0.07 0.13 0.03
means 50.42 50.16 50.67 50.67 0.17 0.48 0.00 0.00 0.05 0.07 0.13 0.03
512 x 512
aerial 48.36 48.06 50.05 50.05 0.00 0.02 0.00 0.00 0.25 0.33 0.57 0.11
airplane 46.74 46.26 47.25 47.25 2.68 8.96 0.00 0.01 0.27 0.49 0.56 0.10
boat 49.51 49.58 49.89 49.89 0.07 0.09 0.00 0.00 0.24 0.32 0.57 0.11
mandrill 48.27 49.47 49.75 49.76 0.00 0.00 0.00 0.00 0.23 0.30 0.56 0.10
raffia 41.12 41.12 41.12 41.12 6.85 8.18 0.00 0.00 0.32 0.54 0.57 0.11
stream 44.75 45.00 45.07 45.08 0.40 0.71 0.00 0.13 0.24 0.36 0.56 0.10
means 46.46 46.58 47.19 47.19 1.67 2.99 0.00 0.02 0.26 0.39 0.57 0.11
1024 x 1024
bark 51.28 51.17 51.30 51.30 0.00 0.01 0.00 0.00 1.29 1.60 2.60 0.48
man 49.22 49.18 49.44 49.44 0.19 0.40 0.00 0.00 1.20 1.59 2.55 0.46
pentagon 50.69 50.62 51.35 51.35 0.01 0.01 0.00 0.00 1.29 1.66 2.53 0.48
smarties 51.47 51.09 51.64 51.60 0.63 0.91 0.00 0.03 1.34 1.77 2.55 0.49
stones 51.28 50.95 51.60 51.60 0.97 1.22 0.00 0.04 1.31 1.78 2.52 0.44
traffic 50.73 50.58 51.01 51.00 0.25 0.30 0.00 0.01 1.31 1.73 2.53 0.47
means 50.78 50.60 51.06 51.05 0.34 0.48 0.00 0.01 1.29 1.69 2.55 0.47
2048 x 2048
eifel 48.61 48.48 48.74 48.73 0.88 0.97 0.00 0.05 8.17 | 12.36 13.15 2.41
boys 51.63 5143 51.71 51.71 0.09 0.13 0.00 0.00 7.45 10.44 13.15 2.38
plants 48.96 48.86 49.52 49.52 0.18 0.24 0.00 0.02 7.35 9.29 13.15 2.39
pont 51.48 51.30 51.55 51.51 1.42 3.50 0.00 0.09 7.78 10.90 13.24 2.39
church 50.94 50.80 51.28 51.27 1.23 1.73 0.06 0.28 7.16 | 10.23 13.16 2.40
violine 51.66 51.34 51.85 51.75 1.22 1.59 0.10 0.22 7.25 11.29 13.12 2.37
means 50.55 50.37 50.78 50.75 0.84 1.36 0.03 0.11 7.53 10.75 13.16 2.39
TABLE IV

COMPARISON OF HISTOGRAM EQUALIZATION INVERSION ALGORITHMS.

10

original trui

zoom of stones zoom of church

LM: (f — f) for trui

LM: zoom(f — f) for church

WA: (f — f) for trui WA: zoom(f — f) for stones

VA-02(35): (f — f) for trui VA-02(35): zoom(f~) / stones VA-02(85): zoom(ff) / church

VA-02(5): (f — f) for trui VA-02(5): zoom(f—f) / stones VA-02(5): zoom(f—f) / church

Fig. 4. Comparison of ordering methods for histogram equalization inversion. First row: true images or parts of them. The following rows show the difference
images between the original one and those obtained after histogram equalization inversion. Top to down: LM(6), WA(9), VA-02(35), VA-02(5). The variational

methods (VA) contain much less errors than those achieved by LM(6) and WA(9). Moreover there is no visual difference between VA with 35 iterations and
its faster variant with only 5 iterations.

WA: zoom(f — f) for church

