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Efficient Reconstruction of Piecewise Constant Images Using Nonsmooth
Nonconvex Minimization*

Mila Nikolovaf, Michael K. Ng!, Shugin Zhang$, and Wai-Ki Ching¥

Abstract. We consider the restoration of piecewise constant images where the number of the regions and their
values are not fixed in advance, with a good difference of piecewise constant values between neigh-
boring regions, from noisy data obtained at the output of a linear operator (e.g., a blurring kernel or
a Radon transform). Thus we also address the generic problem of unsupervised segmentation in the
context of linear inverse problems. The segmentation and the restoration tasks are solved jointly
by minimizing an objective function (an energy) composed of a quadratic data-fidelity term and a
nonsmooth nonconvex regularization term. The pertinence of such an energy is ensured by the ana-
lytical properties of its minimizers. However, its practical interest used to be limited by the difficulty
of the computational stage which requires a nonsmooth nonconvex minimization. Indeed, the exist-
ing methods are unsatisfactory since they (implicitly or explicitly) involve a smooth approximation
of the regularization term and often get stuck in shallow local minima. The goal of this paper is to
design a method that efficiently handles the nonsmooth nonconvex minimization. More precisely,
we propose a continuation method where one tracks the minimizers along a sequence of approximate
nonsmooth energies {J: }, the first of which being strictly convex and the last one the original energy
to minimize. Knowing the importance of the nonsmoothness of the regularization term for the seg-
mentation task, each J. is nonsmooth and is expressed as the sum of an ¢; regularization term and
a smooth nonconvex function. Furthermore, the local minimization of each J. is reformulated as the
minimization of a smooth function subject to a set of linear constraints. The latter problem is solved
by the modified primal-dual interior point method, which guarantees the descent direction at each
step. Experimental results are presented and show the effectiveness and the efficiency of the proposed
method. Comparison with simulated annealing methods further shows the advantage of our method.
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1. Introduction. Digital image restoration and reconstruction plays an important part
in various applied areas such as medical and astronomical imaging, film restoration, image
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and video coding, and many others [35, 13, 46, 2, 32]. We focus on the most common image
degradation model where the observed data g € R? are related to the underlying image
f € RP as

(1.1) g = Hf + n,

where n represents the noise and H is a ¢ X p matrix representing, for instance, optical blurring,
distortion wavelets in seismic imaging and nondestructive evaluation, a Radon transform in X-
ray tomography, and a Fourier transform in diffraction tomography. Usually the information
provided by the forward model (1.1) alone is not sufficient to find an acceptable solution f.
Prior information on the underlying image can then help the restoration of f. A flexible means
of combining the forward model with priors is regularization, which is formally equivalent to
maximum a posteriori (MAP) estimation [7, 18, 22]. The solution f is defined as the (global)
minimizer of a cost function J(f) of the form

(1.2) J(f) = O(Hf — g) + BO(f), £ >0,

where © forces closeness to data, ® embodies the priors, and 8 > 0 is a parameter that
controls the trade-off between these two terms. The constraint £ > 0 is optional, but in our
context it reflects the fact that the pixels are nonnegative. The most usual choice for © is

(1.3) o) = [Ivl3.

In a statistical setting, this © corresponds to assuming that n is white Gaussian noise. Our
computational method is designed for © as given in (1.3), or for any smooth and convex
function ©. Recently, data terms of the form ©(v) = ||v||; were shown to be useful if some data
entries have to be preserved, which is appreciable, for instance, if n is impulse noise [39, 14, 27].
Our method is straightforward to extend to this situation, and we will indicate how this can
be done.

The role of ® in (1.2) is to push the solution f to exhibit some a priori expected fea-
tures, such as the presence of edges, smooth regions, and textures. Since [7] a useful class of
regularization functions is of the form

(1.4) O(f) =) o(dff),
=1

where ¢ is called a potential function (PF) and d} : R? — R, for i = 1,...,r, are linear opera-
tors. In order to fix the frame of the presentation, we refer to the dZTf ’s as differences. Usually
{d;[’} yield the first-order differences between each pixel and its 4 or 8 adjacent neighbors.
Various PFs ¢ have been used in the literature; a complete review can be found, for instance,
in [9]. An important requirement is that ¢ allows the recovery of large differences ]d;[f' | at
the locations of edges in the original image and smooth differences elsewhere. It is well known
that this requirement cannot be met by ¢(t) = t2, which was originally used in [50]. Since the
pioneering work of S. Geman and D. Geman [22], different nonconvex functions ¢ have been
considered either in a statistical or in a variational framework [1, 7, 23, 20, 21, 31, 34, 42]. In
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order to avoid the numerical intricacies arising with nonconvex regularization, an important
effort was done later to derive edge-preserving convex PFs [12, 15, 25, 29, 44, 48]. Neverthe-
less, nonconvex regularization offers better possibilities for restoring images with neat edges.
This question was systematically analyzed in [38].

We focus on the restoration of piecewise constant images f where the number of the re-
gions and their values are not fixed in advance, with a good contrast between neighboring
regions. Such an f thus provides both an unsupervised segmentation and a piecewise constant
approximation of the underlying f. This is important in various situations to aid in the in-
terpretation of restored images, for the automatic recognition of objects, and finding profiles
in computed tomography and nondestructive evaluation. This objective—to combine seg-
mentation and restoration—is challenging especially in the context of inverse problems (1.1)
involving a general nondiagonal matrix H. For instance, the usual segmentation techniques
based on curve representation cannot be applied because of H. Under the same reason, hier-
archical Markov random fields cannot be used either. For a general H, two main approaches
can be evoked. Using a variational framework, image restoration and segmentation are tackled
by minimizing an objective function involving a possibly continuous-valued line process; let
us cite [20, 21, 15, 26, 49, 3] among others. Usually there is no guarantee that the resultant
restoration yields an unambiguous segmentation since the obtained contours are not neces-
sarily closed. The other approach is to construct a two-step process where image restoration
and image segmentation are realized in an alternating way, with each dependent on the result
of the other [33]. The process has to start with an initial guess for the segmentation whose
importance is critical for the success of the overall method. Clearly all these difficulties are
shrugged off if the restored image is piecewise constant. The wunsupervised obtention of a
piecewise constant image as a solution to a linear (possibly ill-conditioned) inverse problem
still remains an open problem in the low-level vision community.

1.1. Choice of energy: Nonsmooth nonconvex regularization. We solve the problem
formulated above by using nonsmooth nonconvex functions ¢. More precisely, we suppose
that
(a) ¢ is continuous, symmetric, C? on (0, 00);

(b) ¢'(07) >0 and ¢'(¢) > 0 for all ¢ > 0;

(c) ¢" is increasing on (0, 00) with limy | ¢”(¢) < 0 and lim¢ . ¢”(t) = 0.

By (b), ¢ is nonsmooth at zero and increasing on (0, +00). By (c), it is nonconvex. These basic
requirements are satisfied by the main nonconvex nonsmooth functions ¢ used in practice; see,
e.g., (£3), (f4), and (f5) in Table 1. Our interest in this class of functions ¢ is motivated by
the following theoretical result (see [38, Theorem 3.3]).

Theorem 1.1. There is a constant p > 0 entirely determined by {le : 1 <@ <7} such
that if

H HHTHHz
" (0F)]

then there exists 0 > 0 such that for every g € R?, every (local) minimizer f of J satisfies

(1.5) g >

(1.6) cither |dYf|=0 or |[dFf|>6 Vie{l,...,r}.
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Table 1
Nonsmooth at zero PFs o where a > 0 is a parameter. Some references are |7, 44, 20, 21, 45, 30].

Convex PFs
(f1)  o(t) = ||

Nonconvex PFs

() o) =t 0<a<l
(1) so(t)zlj_“"jm

(1) (1) = log (olt] + 1)
(5) p(0)=0, p(t)=1if 1£0
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(a) All underlying f (b) The relevant minimizers f
Figure 1. Histograms for 10000 independent trials: £ and £ for p(t) = /[t].

Let us recall that ||[HT H||s equals the largest eigenvalue of HT H. If ¢”(07) = oo, as is
the case with (£3), the requirement in (1.5) is simplified to 5 > 0. The constant p is defined
in [38] and is generally difficult to calculate for images.

Ezample 1. In order to illustrate the theorem, we consider a simple example where the
underlying f is a scalar, dy = 1, H = 1, and ¢ is of the form (f3) for a = 0.5, i.e., o(t) =
\/m . We realized 10000 independent trials where an original f € R is sampled from p(f)
exp(—Ap(f)) for A = 2 and then g = f +n for n ~ Normal(0, 0?) with o = 0.8. The histogram
of all f is shown in Figure 1(a). After this, the solution f is calculated by minimizing J(f) =
(f - g)% + p(V/IE]) for 5 = 202\, For every g # 0 the function J has two local minimizers,
f1 = 0 and f2 Satlsfylng |f2] > 0 for 8 ~ 0.47, and the global minimizer f is found by comparing
J(f1) and J(f5). The empirical histogram of all solutions f, shown in Figure 1(b), illustrates
the theorem well: we have f = 0 in 77% of the trials, while the smallest nonzero |f| is 0.77 > 6.

If {d;} yield the first-order differences between the adjacent neighbors in an image, then
fis composed of constant regions surrounded by closed contours and neat edges higher than
6. The solution f is hence a segmented image. Let us mention that energies J with PFs
¢ satisfying (a), (b), and (c) have already been used in [20, 21], but never with the goal to
obtain piecewise constant, segmented images. At that time, the property of Theorem 1 was not
known, and thus the minimization schemes were unable to produce these features. Indeed, it
is shown in [40] that replacing ¢ with a smooth approximation gives rise to a solution which is
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nowhere constant. Stochastic minimization with a finite number of iterations cannot produce
these features either. The minimization of J is tricky since J may have many local minima
that are usually located at points where J is nonsmooth. The existing methods for solving
this nonsmooth nonconvex optimization problem are reviewed in section 2.

1.2. Content of the paper. In the following we provide efficient tools to minimize energies
of the form (1.2)—(1.4), where ¢ is nonconvex and nonsmooth according to assumptions (a),
(b), and (c) of the previous subsection. In section 3 we design a specialized minimization
method that uses the idea of continuation. It is based on local minimization along a family of
approximations {J: }.¢[o,1) of J that are nonsmooth in order to favor the recovery of constant

patches in each f. and that tackle the local minima problem by starting with a convex Jp.
Fach J. is decomposed into a nonsmooth total variational-type regularization term and a
smooth nonconvex term. In section 4, the minimization of every J. is equivalently expressed
as the minimization of a smooth nonconvex function subject to a set of linear constraints.
The latter problems are solved by the modified primal-dual interior point method, which
guarantees the descent direction at each step (section 5). Experimental results, presented in
section 6, show the effectiveness and the efficiency of the proposed method. Comparison with
simulated annealing methods further show the advantage of our method (section 7).

2. Existing minimization methods. The minimization of J involves three major difficul-
ties that drastically restrict the methods that can be envisaged. Because of the nonconvexity
of i, J may exhibit a large number of local minima which are not global. Second, J is usually
nonsmooth at the minimizers, and thus usual gradient-based methods are inappropriate for
local minimization. Finally, the matrix H can have numerous nonzero elements beyond the
diagonal and is often ill-conditioned. Global minimization of J can be considered using either
stochastic algorithms or continuation-based deterministic relaxation.

2.1. Simulated annealing (SA) for global minimization. In this subsection, we denote
pr(flg) = exp[—J(f)/T]/Zr, where T > 0 is temperature and Zr is the partition constant.
Stochastic algorithms are based on the observation that when 7" — 0, pr converges to a Dirac
distribution centered on the maximizers of f — pr(f|g), which are also the global minimizers
of J. Since [28], asymptotically convergent global minimization of nonconvex functions J
has been conducted using annealing schemes where images f* are sampled from pr, (f|g)
for a slowly decreasing sequence of temperatures Tj. For discrete-valued images, this was
sometimes done using the Metropolis dynamics [43]. For real-valued images, f* is obtained
using the Gibbs sampler [22], where each pixel f¥ is a realization of pr, (fi|f;,j # i,g). The
update of each f¥ thus involves all other pixels f]’-C such that d7'd; # 0 or hlh; # 0, where
h; stands for the jth column of H. If H is the identity, this set is given by the neighbors
determined by {d!} (e.g., the 4 or 8 nearest neighbors). However, if H is a blurring operator
or any nonsparse operator such as a Radon or a Fourier transform, updating fz-k involves a
large number of pixels f]]f’ , or even all f]k, j # i, and the computation is cumbersome.

In order to lighten this computational burden, two different forms of half-quadratic refor-
mulation of J were proposed in [20] and later in [21]. They rely on the minimization of a new
objective J which is quadratic with respect to f and separable with respect to an auxiliary
array b € R". SA is then applied to pr(f,b|g) = exp[-T(f,b)/T]/Zr in order to find the
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minimizer (f' , f)) of J. Sampling f from pp(f|b, g) is then fully parallel and can be efficiently
done using the FFT if H is block-circulant. Sampling b from pr(b|f, g) is tractable since each
entry bf is realized independently. Solving our original problem (1.1) naturally requires that
miny, J (f, b) = J(f) for every f. For the additive form [21], there is no equivalence unless ¢ is
smooth; otherwise a smooth approximation of ¢ is introduced implicitly and null differences
dZTf' cannot be found. For the multiplicative form [21], one can see that null differences dZTf'
correspond to b, = oo, which is hard to approximate numerically.

2.2. Deterministic continuation. If a plausible initial guess for the sought image is avail-
able (e.g., the maximum likelihood estimate for simple images and low noise corruption),
local minimization in its vicinity can be an easy means of providing local regularity. It should
be emphasized that this local minimization technique must be adapted to handle the non-
smoothness of J. To the best of our knowledge, the iterated conditional mode [6, 7], which is
to maximize deterministically pr, (f;|f;, j # ¢, g), for all i and for a unique fixed temperature,
T, = 1, has only been used along with smooth energies J. A family of methods called AR-
TUR [15, 17] are methods that locally minimize with respect to (f,b) in the half-quadratic
form J mentioned in section 2.1. According to the comments given there, they are not prop-
erly adapted to nonsmooth energies J. In all cases, local minimization techniques are easily
trapped in shallow local minima that provide unsatisfactory solutions.

According to [52], continuation ideas (namely, to track local minima along a family of
approximated energies J., ¢ € [0, 1]) are a good deterministic alternative to deal with non-
convex energies J. The graduated nonconvexity (GNC) algorithm was proposed by Blake
and Zisserman [10] in the context of computer vision where H is the identity and ® is the
Mumford—Shah regularization whose discrete version corresponds to ¢ as given in (f4). More
information about GNC is given in section 3. Even though there is no guarantee for global
convergence, extensive experiments have shown that for a finite number of iterations GNC
leads to minimizers f having a lower (hence better) energy than SA [11]. Further extensions
of GNC were proposed in [4, 5, 36, 37]. Another continuation approach is mean-field an-
nealing [8, 47|, which applies when H is the identity and ® is smooth, and depends on the
initialization. However, none of these methods properly addresses the nonsmoothness of J:
since all approximations J. are smooth, their minimizers f¢ cannot contain null differences;

hence din'€ #0.

3. Nonsmooth GNC. For ¢ € [0,1] we consider a continuous family of approximated
objectives J. such that lim._,; J. = J. The idea behind GNC continuation, as pioneered in
[10], is to replace the global minimization of J by a family of local minimizations along .J.,
when ¢ is increasing from 0 to 1, by starting with a strictly convex Jy. Consider a sequence

c=0<e1< - <egp, =1

(or possibly e, S 1or lim, o€, = 1). The GNC minimization starts by calculating the
unique minimizer £ of Jy. Afterwards, for each k& > 1, an intermediate solution f¥ is calculated
by minimizing J, locally, starting from the previously obtained fe=1
f* = arg min J., (f) for k=1,...,n.

fev(fk—l)
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In this expression, V (£*1) stands for the attraction valley of Je, near =1, The natural way
to construct {J.} is to replace ¢ in (1.2) by approximated potential functions ¢., £ € [0, 1],
such that g is convex and ¢1 = ¢, and for every € € [0, 1], ¢ is symmetric and increasing

on [0, oo]. Thus we consider

(3.1) Jo(F) = O(Hf —g) + B8 ¢ (d]f).
=1

When O is strictly convex, the initial Jy is strictly convex. Such is the case for instance when
O is of the form (1.3) with rankH = p. We note that when © is only nonstrictly convex (e.g.
rank H < p), Jp is only nonstrictly convex since d} f = 0 for all constant images f (i.e., f; = f;
for all 7, 7). In the latter case, we can consider

J(£) = O(HE —g) + pe||£]* + 8D ¢e(d] D),
i=1

where p. decreases from pg > 0 to pe = 0 for all € > 1 with 0 < e; < 1. Clearly, Jy is then
strictly convex. In order to simplify the presentation, we will consider J. as given in (3.1).

The choice of the approximating family . is crucial for the success of the GNC mini-
mization. One of the novelties of our approach is to require that the intermediate solutions
f* exhibit the same type of features as the global minimizer fof J. In particular, we require
that they are piecewise constant. Such a goal cannot be reached if ¢, are smooth functions
[40]. Instead, we choose ¢, smooth on (0,00) and such that

(3.2) ©L(07) >0 Veel0,1].
For instance, the function (f3) in Table 1 can be approximated by

alt|

)=
et = T

For (f8), we can take o.(t) = [t|7*"17¢. A systematical way to construct . when ¢'(07) is
finite is simply

(3-3) pe(t) = ep(t) + p(1 —€)lt],

where p is any positive constant. In all these cases, every . for ¢ € (0, 1] satisfies the
conditions (a), (b), and (c) in section 1.1 which ensures that all intermediate solutions f*,
k > 1, exhibit the property (1.6) in Theorem 1.1, whereas £0 is likely to have constant pieces
thanks to (3.2); see [40] for the theoretical explanation. We can argue that the precise shape
of a . satisfying (a), (b), and (c) has no significant influence on the ultimate solution as long
as the differences d;f* are either null or pushed away from zero, according to Theorem 1.1.
This qualitative argument was confirmed by the numerical experiments.

There is some degree of freedom in the choice of the initial convex ¢.—for instance, ¢g in
(3.3) is convex for any p > 0. When we start with p = ¢/(07), the regularization is strong,
so the early solutions must have few details. As long as € increases, regularization decreases



NONSMOOTH NONCONVEX MINIMIZATION FOR PIECEWISE CONSTANT IMAGES 9

and details start to appear. A better strategy is to start with a very small p so that the early
solutions are underregularized. When ¢ increases, the regularization becomes stronger and
spurious details are swept out. Our experiments show that this strategy leads to a deeper
decrease of the energy although the difference with the case p = ¢'(0") is not sensitive.

4. Equivalent formulation as smooth GNC under linear constraints. At each step of our
GNC method we have to properly solve a nonsmooth (local) minimization problem. Recently,
several methods have specially been designed to minimize convex objectives J with a convex
but nonsmooth regularization term, such as the TV norm [16, 24, 19]. We will extend the
method of [19] in order to handle nonconvex regularization under the additional condition
that

(d) ¢ is such that ¢'(0") > 0 is finite.

To this end, we split each J. into a (nonsmooth) total variational-type regularization term
and a smooth, nonconvex term. More precisely, for every ¢ € [0, 1], we decompose

(4.1) pe(t) = Ve (t) + L (07)]].
Since ¥ (t) = @e(t) — pL(07)|t] satisfies
PL(0T) = 0=y (07),

1 is smooth at 0 and hence on R. Notice also that . is symmetric and nonconvex if € > 0.
For instance, when ¢ is a function given by (f3), we have

(1.2 ) = T = 0e(t) ol

43) )= 1

with a = ¢L(0T). For every ¢ € [0,1], let us define

(4.4) as = ¢L(07).

For o, as given in (3.3), a. = e¢/(07) 4+ p(1 — ¢). Using (4.1), J. can be put into the form
(4.5) J-(f) = O(Hf — g) + BU.(f) + Ba: | DE |1,

where D is the r X p matrix whose ith row is d;r fori=1,...,r and

Vo (f) = > v(d]f)
i=1

is a smooth function. Notice that whenever d;f are the first-order differences between the 4
adjacent neighbors, || Df||; is the ¢; approximation of the discrete gradient of the image f.

For any ¢ € [0, 1], we next focus on the local minimization of J.(f) as given in (4.5). Let
us introduce the following notation:

v = max(v,0),

— — vt _ v
(4.6) v=Df =v" —v~, where { v- = max(—v, 0),
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as well as
f —2HTg
y = V+ bl C= 5a61 I
A\ Bael
2HTH 0 0
M = 0 0 0], B=1[D,-1,1],
0 0 0

(4.7) V(y)=8 Z(%(Vf) + ws(vz—)) =p Z Ve(yi)-

1<i<r i>p+1
Observe that W.(y) = SU.(f). The minimization of J. in (4.5) is equivalent to finding
y € RPF2" that solves the problem

1
(4.8) min 5yTMy +cly + 0. (y)

subject to By =0, y>0.
Now the nonconvex nonsmooth local minimization problem is reformulated as the minimiza-
tion of a nonconvex differentiable objective function under a set of linear constraints, which is

much more tractable. Notice that any additional linear constraint on f is easy to incorporate

in the above formulation.
Remark 1 (¢, data fidelity). The case when in (1.2) we have ©(f) = ||Hf — gl|1 can be
considered in a very similar way. Instead of (4.5), the approximated J. now reads

(4.9) Jo(£) = |[HE — glls + U (f) + Sz | DE 1.
In addition to (4.6), we define

+_
w—Hf —g and { u" = max(u,0),

u~ = max(—wu,0),
f 0
u 1
_ g H -I' I 0 O
y = u y €= 1 ’ h:( )7 B:|: N ’
vt a1 0 D 0 0 —I I
"2 Bael
V(y)=8 Y, vy

i>p+2g+1
Finding a minimizer f of Je is equivalent to finding a solution y of the following problem:
min cTy + U.(y)
subject to By =h, y>0.

The minimization of J; in (4.9) is hence equivalent to minimizing a smooth nonconvex function
under a set of linear constraints. This optimization problem can be solved using the approach
developed in section 5.
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5. Interior point method for local constrained nonconvex minimization. The necessary
conditions for a solution to (4.8) are formulated with the aid of its Lagrangian function. The
latter reads

1
Ly, A s) =5y My +cly +We(y) =\ By —s'y.
Let Y = diag(y) and S = diag(s). The optimality condition then reads

My +c+VU.(y)— BTX—s

F(y,A,s) = By =0,
Y51
(5.1) y=0, s=0,
where
0
VU (y)=| Ve U (vT)
V-V (v7)
with components calculated according to (4.7),
w;@ P (vy)
Pi(vy) Pi(vy)
VerUe(y) =4 | | Vey) =8|
ve(v) AUN)

One may be induced to solve (4.8), and correspondingly (5.1), using standard tools such
as the projected gradient method. Finding at each iteration a descent direction that satisfies
the active constraints involves projection operators that are singular, so the numerical task is
impractical. Instead, we focus on a primal-dual interior point method where the constraints
are strictly satisfied. A description of these methods can be found in [53, 41]. In the primal-
dual interior point methods, the search direction is modified with respect to the Newton
method in such a way that it focuses on points on a central path (y,, A;,s;) of the form

0
F(YT7AT7ST) = 0 , yr>0, s;>0.
71

The parameter 7 is often written as ou, where o € [0,1] is a centering parameter, and p is
the duality measure defined by

1 p+2r yTS
5.2 - Y yisi = .
(52) b= o for — Yisi = Tor

The Newton search direction (Ay, A\, As) is computed by solving the system

M+ V2V (y) —-BT —I Ay —r.
B 0 0 AN = —Iy )
S 0 Y As -r,
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where
r.=My+c+ VU, (y) — BIA -5,

r, =By, r,=YS51-oul.

By eliminating As from the above equation, we obtain

(5'3) B 0 —AM —Iyp

M+ V20, + Y-S BTH Ay ]_[—fc]
where
fo=1.+ Y 'r,.

Since V2, (y;) is negative semidefinite, we would like to guarantee that Ay and A\ can be
determined in the Newton step toward points on the central path; therefore the term V2W_(y;)
is removed in (5.3). Now the equation in (5.3) becomes

M+Y-ls BT Ay | [ -t
B 0 —A\ a —Iy ’

Since M +Y ~1S is always positive definite, the solutions A\ and Ay can always be determined
as follows:
BM+Y 1S HBYAN= —ry+ B(M + Y 18)" ¢,

and
Ay = (M +Y71S)" Y (—t.+ BTAN).

Furthermore, as B is a full-rank matrix, AX can be computed.

Taking advantage of the special structures of the matrices M, B, and VU.(y), the above
system can be further reduced. Let Li, Lo, and L3 be the diagonal matrices of size p X p,
r X r, and r X 7, respectively, such that

Li 0 0
ST2y2 1 0 Ly 0
0 0 Ls

Then the system can be put into the following form:

2H'TH+L;> 0 0 DT Af —fe1
0 Ly? 0 T Avt || —te
0 0 L;* I Av™ | | —fe
D -I I 0 —A\ —ry

Here t.(i = 1,2,3) are subvectors of T, of size p, r, and 7, respectively. By eliminating Av™
and Av™, we get

2HTH + L DT ] [ Af } - [ —fd}
_rb )

D ~L3-12 || —AA
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where
. 2 2
r, =71y + LZI'CQ — L3I'03.

Eliminating A\, we get
(5.4) 2HTH + L? + DY (L3 + L}) ' D]Af = —Fa,
where
re = f'cl + DT(L% + L%)_lrb‘
The other unknowns can be calculated by

AN = (L3 + L3)"'(—t, — DAF),
Avt = LE(—fo + AN),
Av™ = L3(—fe — AN),

As= MAy — BTAX +r..

(5.5)

5.1. Initialization. Interior point methods must start with a feasible initialization. In our
case, the strictly feasible set reads

FO = {(£,A,8)|[My + ¢+ VU.(y) - BTA—s =0,
By =0,f >0,s > 0}.

Next we explain how to find an element belonging to FY. Let f.; be any estimate of the
solution, and let § > 0. We choose f(©) to be

(5.6) £O 1] = max{£,,[i], 6}

We let v(O+ be the sum of the nonnegative part of Df(®) and §, and v(®~ be the sum of the
nonpositive part of Df(® and §. Then the vector

0 = fO7 y+O7 0T
satisfies By = 0. To find s(¥ and )\(0), there are many different ways only if they can satisfy

My +c+ V¥ (y) — B'X —s = 0. One simple method is to set A = 0 and to iterate £ by
adding ¢ in (5.6) until s = My°® + ¢ + VU (y?) — BT is strictly positive.

5.2. Algorithm for nonconvex programming problems. To solve the whole problem, as
described in section 3, we need to compute a sequence of minimization problems min J. from
€ = 0 to € = 1. The initial point in solving min J;, is the solution of the min J;, .

Let g =0<e; < -+ < g, = 1. Start from €(0), jo = A%:. Initialize (y(©), )\(0)75(0))'
Calculate p according to (5.2).

Fork=1—n,ec=c¢;
j=0
While ¢ > tol do
Choose o € [0,1];
Solve (5.4) for Af;
Use (5.5) to find Av™, Av™—, A\, As;
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Choose a step length v;
yUth =y 4 pAy:
AUHD = A0 4 AN,
sUHD) = g 4 pAs;
Update p;
J=J+1L

End While

y(0) = y (k).

A0 = \k),

s(0) = g(k),

e(j+1) =¢e(j) + Ae;

End For

We remark that in our experiments, a linear increase for ¢ is considered. We also tested
other possible increases for ¢, but their differences are not significant. How to determine an
optimal increase for ¢ is a question for future research work.

Finally, let us discuss the computational cost of the proposed continuation method. In the
continuation method, we must solve (4.5) for several values of ¢ by the interior point method.
In each interior point iteration, we must solve a linear system in (5.4). In [19], we have shown
how to use the preconditioned conjugate gradient technique with an effective preconditioner
to solve such a system efficiently. The computational cost of the preconditioning conjugate
gradient technique is O(plog p), where p is the size of the computed solution where the image
is in a vector form. It follows that the overall computational cost of the proposed method
is O(cplog p) operations, where ¢ depends on the number of values of € to be tested and the
total number of interior point iterations. According to our numerical results, the number of
values of ¢ is 10 and the total number of interior point iterations is about 200.

6. Numerical experiments. In this section, we present the experimental results to show
the effectiveness of our method. The PF is applied:

__alf
C1+alt]

¢
¢Aﬂ——£iL—0<6§L

(6.1) o(t) = Trean) S

(6.2) o(t) =log(1+ aft]), @e(t) =log(l+ealt]), 0 <e<1.

Three images are tested, which are all gray level images with intensity values ranging
from 0 to 1. The first two are based on two artificial images: a circles image (Figure 2) and a
diamonds image (Figure 6). The first image is of size 64 x 64, and the second is of size 50 x 50.
For each of these two images, we generate two observed images. One is that all the pixels are
contaminated by Gaussian noise with the standard deviation of 0.1 without blurring, and the
other is that the pixels are contaminated by Gaussian noise with the standard deviation of
0.05 with blurring. The blurring function is chosen to be a two-dimensional Gaussian,

h(i, ) = e 20037 =26/37,
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O

Figure 2. The original circles image.

truncated such that the function has a support of 7 x 7. For the circles image, we choose D
to be a matrix of a first-order difference operator:

LI . . -1
D1_<I®L1> with Ll—

1 -1
For the diamonds image, we choose D to be a matrix of a second-order difference operator:

1 -1

. L2®I . _
D2_<I®L2> with L9 =

with the Neumann boundary condition. The third image is the modified Shepp—Logan image
(Figure 10), which is used to test the effectiveness of restoration algorithms. For this image,
we perform the restoration when it is under the Radon transform rather than the convolution.

To demonstrate the effectiveness of our GNC method, we also applied the interior point
method to the problem with € = 1; i.e., we directly solve the involved optimization problem.
In the following description, “c = 1” means an interior point method is directly applied to
the optimization problem, while “c = 0 — 1”7 means the GNC technique is resorted.

6.1. Test of circles image. Figure 3 shows the observed images without blurring and
with blurring described in the above setting. Four initial guesses are employed: the observed
image (OB), the least square solution (LS), a flat image (FL) (all the pixel values are 0.5), and
a random image (RD). Tables 2 and 3 show the objective function values and the peak signal
noise ratio (PSNR) values by using different initial guesses. Here the PF in (6.1) and the
optimal regularization parameters a and 3 are used. In the computational process, we tested
several values of o and 3 such that the resulting PSNR of the restored image is the largest.
It is clear from the tables that the proposed method (¢ = 0 — 1) can provide similar image
restoration results for different initial guesses and give smaller objective function values and
larger PSNR values of the restored images than those of the noncontinuation method (¢ = 1)
when initial guesses are flat images and random images. As an example, we further show in
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E] m 0 & o 2 £

(a) (b)

Figure 3. Observed circles images: (a) all pizels are contaminated by Gaussian noise with deviation 0.1
without blurring; (b) Gaussian blurring and all pizels are contaminated by Gaussian noise with deviation 0.05.

Table 2
Objective values and PSNRs for the observed circles image without blurring when o = 0.5, 8 = 0.3. The
objective function value for the original image is 84.48.

FL RD OB LS
e=1 Objective | 82.02 81.89 81.62 81.63
€ =0—1 | Objective | 81.63 81.63 81.63 81.63
e=1 PSNR 30.66 30.85 31.31 31.28
e=0—1| PSNR 31.28 31.28 31.28 31.28
Table 3

Objective values and PSNRs for the observed circles image with blurring when o = 0.5, 8 = 0.02. The
objective value for the true image is 13.56.

FL RD OB LS
e=1 Objective | 14.65 21.02 13.51 13.14
€ =0—1 | Objective | 12.84 12.84 12.84 12.84
e=1 PSNR 18.92 17.35 19.42 19.64
e=0—1| PSNR 19.03 19.03 19.03 19.03

Figures 4 and 5 that the proposed method can provide better quality of restored images than
those of the non-continuation method when initial guesses are flat images and random images.
Also we remark that we tried the PF in (6.2) and found that the numerical results obtained
are similar to those in Tables 2 and 3.

6.2. Test of diamonds image (Figure 6). Figure 7 is the observed blurred image. In
Figures 8 and 9, we showed the restored images by using the noncontinuation method and
the proposed method, respectively. Table 4 shows their objective function values and their
PSNR values by using different initial guess that we used in the previous subsection. We see
that the proposed continuation method provides slightly better image restoration results in
the table than those obtained by the noncontinuation method when different initial guesses
are used. Here the PF in (6.1) and the optimal regularization parameters o and [ are used.
When the PF in (6.2) is used, we find that the numerical results obtained are similar to those
in Table 4.
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Figure 4. Restored blurred circles images for PF (6.1) when o = 0.5, 8 = 0.02, ¢ = 1: (a) the initial guess
is the flat image; (b) the initial guess is the random image; (c) the initial guess is the observed image; (d) the
initial guess is the least square solution.

Figure 5. Restored blurred circles images for PF (6.1) whene =0 — 1, « = 0.5, 8 = 0.02: (a) the initial
guess is the flat image; (b) the initial guess is the random image; (c) the initial guess is the observed image;
(d) the initial guess is the least square solution.

6.3. Radon transform of modified Shepp—Logan image. Radon transform is able to
transform two-dimensional images with lines into a domain of possible line parameters, where
each line in the image will give a peak positioned at the corresponding line parameters. This
had led to many line detection applications within image processing, computer vision, and
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Figure 6. The original diamonds image.
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Figure 7. Observed diamonds images: Gaussian blurring and all pizels are contaminated by Gaussian noise
with deviation 0.05.
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Figure 8. Restored blurred diamonds images for PF (6.1) when o = 0.5, 8 = 0.05, ¢ = 1: (a) the initial
guess is the flat image; (b) the initial guess is the random image; (c) the initial guess is the observed image;
(d) the initial guess is the least square solution.

seismics [51]. The inverse of the transform can reconstruct the images. The Radon transform
of a two-dimensional function is found by stacking or integrating the function along some
slanted lines. A discrete approximation to the Radon transform that transforms digital images
is very useful. As mentioned in section 1, the matrix H in the image degradation model is
the discrete Radon transform matrix in this application.
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Figure 9. Restored blurred diamonds images for PF (6.1) when e = 0 — 1, a = 0.5, 8 = 0.05: (a) the
initial guess is the flat image; (b) the initial guess is the random image; (c) the initial guess is the observed
image; (d) the initial guess is the least square solution.

Table 4
Objective values and PSNRs for the observed diamond image with blurring when o = 0.5, § = 0.05. The
objective value for the true image is 7.38.

FL RD OB LS
e=1 Objective | 7.08 7.17 6.93 6.90
€ =0—1 | Objective | 6.88 6.88 6.88 6.88
e=1 PSNR 28.01 28.07 28.25 28.55
e=0—1| PSNR 28.59 28.59 28.59 28.59

In this subsection, the image reconstruction from images transformed by the Radon trans-
form using our proposed method is presented. The modified Shepp—Logan image which is
used in image restoration is applied to illustrate the efficiency of our algorithm. Here we set
the image to be of size 50 x 50. Figure 10(a) is the original modified Shepp-Logan image.
The image is transformed along the angles from 0 to 180 degrees. We choose the transformed
line along one angle out of 6 angles. That is, we choose the transformed line along angles 0, 6,
12,...,180. There are in total 31 angles in the calculation. For an image of size 50 x 50, the
Radon transform of it along one angle is of size 75 x 1. We represent the image as a column
vector of size 2500. The corresponding matrix H has 75 x 31 rows and 2500 columns. Figure
10(b) is the Radon transform of the image. The noise-based normal distribution with mean
zero and deviation 0.05 is added to the transformed image.

The regularization parameter ( is chosen from 0 to 1. We find that when ( is 0.8, the
largest PSNR, value of the restored image is obtained. Figure 11 shows the restored image
when the initial guess is the flat image. Figure 11(a) is the restored image when the interior
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0 (degrees)

(b)

Figure 10. (a) The original modified Shepp—Logan image with size 50 x 50; (b) the obtained image after
Radon transform along the angles from 0 to 180 with the increasing of 6 degrees. The noise follows the normal
distribution with mean zero and deviation 0.05.

Figure 11. Restored Shepp—Logan images for PF (6.1) when the initial guess is a flat image of constant
value 25: (a) the restored image when ¢ = 1, PSNR = 25.82; (b) the restored image when ¢ = 0 — 1,
PSNR = 41.96.

Figure 12. Restored Shepp—Logan images for PF (6.1) when the initial guess is a random image: (a) the
restored image when € =1, PSNR = 20.23; (b) the restored image when ¢ =0 — 1, PSNR = 41.96.

point method is directly applied to solve the formulated problem and Figure 11(b) is that
when ¢ is taken from 0 to 1. It is clear that Figure 11(b) is very close to the original image,
while Figure 11(a) is far from the original. Figure 12 shows the restored image when the
initial guess is a random image. We also see that when the continuation technique is applied,
the restored image is quite good.

We make a comparison between the nonconvex regularization and the convex regulariza-
tion. We choose one convex, nonsmooth PF: ¢(¢) = |t|. We choose the best results for both
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Figure 13. The restored Shepp—Logan image with PF ¢ (t) = |t|. The initial guess is a flat image, PSNR =
34.71.

0 40 50 0 10 20 30 40 50

(a) (b)

Figure 14. (a) The 21st line in the original Shepp—Logan image; (b) the restored 21st line with convex
reqularization.
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Figure 15. (a) The restored 21st line with PF in (6.1); (b) the restored 21st line with PF in (6.2).

when ( is taken from O to 1. For the convex regularization, the best PSNR value is obtained
when 6 = 0.1. Figure 13 shows the restored image with convex regularization, and this PSNR
value is 34.71, which is less than those with nonconvex regularization (the PSNR values are
41.96 in Figures 11(b) and 12(b)). In particular, we choose the 21st line of both restored
images to see the restoration effect. Figure 14(a) is the image corresponding to the 21st line
in the original image. Figure 14(b) is the restored result when the convex PF is applied.
Figures 15(a) and 15(b) show the restored results when the nonconvex PFs in (6.1) and (6.2)
are applied, respectively. The restored images are very close to the original image when the
nonconvex PF is used, where sharp edges appear and the flat parts restore very well.
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Figure 17. (a) Observed image; (b) the restored image.

6.4. Test of cameraman image. In this subsection, we present the restoration of a blurred
and noisy 256 x 256 “cameraman” image that contains more edges. The original image is
shown in Figure 16. The image is blurred by a Gaussian function h(i,j) = e (/3)*=(5/3)?
truncated such that the function has a support of 7 x 7, and then the pixels are contaminated
by Gaussian noise with the standard deviation of 0.05. The blurred and noisy image is shown
in Figure 17(a). The restored image using the proposed method using a nonconvex PF in
(6.1) is shown in Figure 17(b) with o = 0.5 and 8 = 0.12. We see that the piecewise constant
image appears in the restoration result.

6.5. Comparison with simulated annealing method. In this subsection, we make a com-
parison between our method and the SA method when the blur is not present. When the blur
is present, the SA method does not work in practice.

We choose a temperature sequence {1}, k = 1,...} and initialize the configuration f(0) of
the image. For each & = 1,2,..., the pixels are updated one by one. Each pixel will follow
the distribution

Hr (£ 51k, (4,7) # (k,1)) = exp(=J(£)/T),

where T' is the temperature. To generate this distribution, the acceptance-rejection method
is applied. Let ¢ be a constant which satisfies

Hr (£ 5|fx0, (7, 5) # (K, 1))
9(y)

<c Yy,
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Table 5
Results using SA when o = 0.5, 3 = 0.3 for the observed circles image without blurring. The objective
function value and PSNR obtained by the proposed continuation method are 81.62 and 31.28.

Initial Initial Number Relation Objective
image T of between function | PSNR
iterations k k and T value

Random image 1 40,000 T= m 206.52 17.69

Observed image 0.08 30,000 T = manisy 93.77 27.68

Computed image by 1og(z'20000500) 15,000 T = % 82.75 31.17
the interior point
method with e =1

where g(y) = 1, which is the probability distribution function of the uniform distribution on
[0,1]. The algorithm is as follows:

Step 1: Generate Y has the distribution g(y);

Step 2: Generate a random number U;

Step 3: If U < HT(fi'j‘f’;‘gl(’)(fsj)#k'l)), set f; ; = U. Otherwise, return to step 1.

We choose three initial images and a proper 7" such that the initial image is a distribution at
temperature T. When T decreases, the objective value should decrease with some fluctuations.
We did experiments for the circles image without blurring. When there is no blurring, we test
three initial guesses. The first initial image is the random image, the second is the observed
image, and the third is the image we get from the interior point method with ¢ = 1 (i.e., no
continuation).

Table 5 shows the settings and the results of SA tests. In the SA tests, the objective
function value decreases with some fluctuations when T' decreases. When the decrease rate of
T is slower, the decrease rate of the objective function values for the first two initial images
is also slower. For the third image, since the objective function value is already close to the
minimal value, we need to choose a small T" correspondingly. In such a case, when T is further
decreasing, the objective function value cannot decrease any more. The main reason is that
T cannot be smaller than %, as the corresponding probability distribution function is
very close to zero. For the computational time, 10,000 iterations in the SA method cost more
than 12 hours. It took a few days in order to get the resulting objective function value in
the table. However, the proposed continuation method takes only a few minutes to provide a
very good solution comparable to that determined by the SA method. The objective function
value and the PSNR value obtained by the proposed continuation method are 81.62 and 31.28,
which are much better than those obtained by the SA method (82.75 and 31.17) in Table 5.

7. Concluding remarks. The restoration of images with nonconvex and nonsmooth regu-
larization can give rise to restored images with neat edges and homogeneous regions elsewhere.
This benefits many practical applications of image restoration. Solving such an optimization
problem is a challenging task since it involves many minima due to the nonconvex property. In
this paper, we proposed an efficient algorithm for solving the optimization problem. The prob-
lem is formulated as a series of nonsmooth approximations which are solved by a primal-dual
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interior point method. FExperiment results showed that the method is quite effective and
that the proposed algorithm can determine restored images within a reasonably short period

of time.
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