
Optimization. Applications in image processing

Mila NIKOLOVA

CMLA (CNRS-UMR 8536)–ENS de Cachan, 61 av. du Président Wilson, 94235 Cachan Cedex, France

nikolova@cmla.ens-cachan.fr

http://mnikolova.perso.math.cnrs.fr

Textbook and Slides: http://mnikolova.perso.math.cnrs.fr/Courses.html

December 2016

1

Contents

. 1

1 Generalities 6

1.1 What is mathematical optimization? . 6
1.2 Optimization problems . 7

1.2.1 Standard Form for quadratic functional . 7
1.2.2 Ill-posed inverse problems . 7
1.2.3 Regularized objective functionals on Rn . 8

1.3 Optimization algorithms . 10
1.3.1 Iterative minimization methods . 10
1.3.2 Local convergence rate . 11

1.4 Analysis of optimization problems . 13
1.4.1 Remainders . 13
1.4.2 Existence, uniqueness of the solution . 14
1.4.3 Convex conjugates, Separation theorem and Equivalent optimization problems 15

2 Unconstrained differentiable problems 20

2.1 Preliminaries (regularity of F) . 20
2.2 Gauss-Seidel method (one coordinate at a time) . 21
2.3 First-order (Gradient) methods . 21

2.3.1 The steepest descent method . 22
2.3.2 Gradient with variable step-size . 25

2.4 Line search . 26
2.4.1 Introduction . 26
2.4.2 Schematic algorithm for line-search . 26
2.4.3 Modern line-search methods . 27

2.5 Hints to solve linear systems . 29
2.5.1 Condition number . 29
2.5.2 Preconditioning . 30

2.6 Second-order methods . 32
2.6.1 Newton’s method . 32
2.6.2 General quasi-Newton Methods . 34
2.6.3 Generalized Weiszfeld’s method (1937) . 36
2.6.4 Half-quadratic regularization . 37
2.6.5 Standard quasi-Newton methods . 41

2.7 Subspace methods . 43
2.7.1 Linear Conjugate Gradient method (CG), 1952 43
2.7.2 Non-quadratic Functionals (non-linear CG) . 44

3 Constrained optimization 47

3.1 Preliminaries . 47
3.2 Optimality conditions . 47

3.2.1 Projection theorem . 48

2

CONTENTS 3

3.3 General methods . 49
3.3.1 Gauss-Seidel method under Hyper-cube constraint 49
3.3.2 Gradient descent with projection and varying step-size 49
3.3.3 Penalty (barrier) methods . 52

3.4 Equality constraints . 53
3.4.1 Lagrange multipliers . 53
3.4.2 Application to linear systems . 56
3.4.3 Inexact quadratic penalty for equality constraints 57
3.4.4 Augmented Lagrangian method . 59

3.5 Inequality constraints . 59
3.5.1 Abstract optimality conditions . 59
3.5.2 Farkas-Minkowski (F-M) theorem . 60
3.5.3 Constraint qualification . 61
3.5.4 Kuhn & Tucker Relations . 61

3.6 Convex inequality constraint problems . 63
3.6.1 Adaptation of previous results . 63
3.6.2 Lagrangian Duality . 64
3.6.3 Uzawa’s Method . 67

3.7 Unifying framework and second-order conditions . 69
3.7.1 Karush-Kuhn-Tucker Conditions (1st order) 70
3.7.2 Second order conditions . 70
3.7.3 Standard forms (QP, LP) . 70
3.7.4 Interior point methods . 71

3.8 Nesterov’s approach . 72

4 Non differentiable problems 73
4.1 Specificities . 73

4.1.1 Examples . 73
4.1.2 Kinks . 74

4.2 Basic notions . 74
4.2.1 Preliminaries . 75
4.2.2 Directional derivatives . 76
4.2.3 Subdifferentials . 77

4.3 Optimality conditions . 81
4.3.1 Unconstrained minimization problems . 81
4.3.2 General constrained minimization problems 81
4.3.3 Minimality conditions under explicit constraints 82

4.4 Some minimization methods . 83
4.4.1 Subgradient methods . 84
4.4.2 Gauss-Seidel method for separable non-differentiable terms 85
4.4.3 Algorithms based on a reformulation of �1 . 86

5 Resolvent and Proximal operators 87
5.1 Maximal monotone and resolvent operators . 87

5.1.1 Nonexpansive operators . 87
5.1.2 Maximally monotone operators . 88
5.1.3 Resolvent operator . 89

5.2 Moreau’s conjugacy and proximal calculus . 90
5.2.1 Conjugate dual functions theorem . 90
5.2.2 Proximity operators . 90
5.2.3 Proximal decomposition . 91
5.2.4 Computing the prox of a function: the case of ‖ · ‖2 93

CONTENTS 4

5.2.5 Contraction properties . 94
5.3 A proximal algorithm for the ROF functional . 96

5.3.1 Discrete approximations of the operators ∇ and div 96
5.3.2 �2−TV minimization (Chambolle 2004, [1]) . 96

6 Splitting and penalty methods 98
6.1 Proximal algorithms . 98

6.1.1 Forward-Backward (FB) splitting . 98
6.1.2 Douglas-Rachford splitting . 100

6.2 Conjugacy based primal-dual algorithms . 101
6.2.1 A max-representation tool . 101
6.2.2 Elements of saddle-point formulations . 103
6.2.3 The context of imaging applications . 104
6.2.4 Full proximal primal-dual algorithm . 105
6.2.5 A Proximal Alternating Predictor-Corrector Algorithm 107
6.2.6 Alternating direction method of multipliers (ADMM) 109

7 Appendix 111
7.1 Proof of Property 2-1, p. 20 . 111
7.2 Proof of Theorem 17, p. 28 . 111
7.3 Proof of Theorem 18, p. 28 . 112
7.4 Proof of Proposition 1, p. 38 . 113
7.5 Proof of Proposition 2, p. 40 . 113
7.6 Derivation of the CG algorithm, p. 44 . 114
7.7 Proof of Lemma 2, p. 45 . 116
7.8 Proof of the Farkas-Minkowski theorem 39, p. 60 . 117
7.9 Proof of Lemma 8, p. 66 . 119

7.9.1 Proof of Theorem 42, p. 63 . 119
7.10 Proof of Proposition 8, p. 77 . 120

Objectives: obtain a good knowledge of the most important optimization methods, provide tools to

help reading the literature, conceive and analyze new methods. At the implementation stage, numerical

methods are always on R
n.

Main References: [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]

CONTENTS 5

Notations and abbreviations

• Abbreviations:

– n.v.s.—normed vector space (V).

– l.s.c.—lower semi-continuous (for a function).

– w.r.t.—with respect to

– resp.—respectively

• dim(.)—dimension.

• 〈. , .〉 inner product (≡ scalar product) on a n.v.s. V .

• �a� denotes the integer part of a ∈ R.

• O is an open subset (arbitrary).

• O(U) denotes an open subset of V containing U ⊂ V .

• int(U) stands for the interior of U .

• B(u, r) is the open ball centered at u with radius r. The relevant closed ball is B(u, r).

• N is the set of non negative integers.

• R
q
+ = {v ∈ Rq : v[i] � 0, 1 � i � q} for any positive integer q.

• R = R ∪ {+∞}.
• (ei)

n
i=1 is the canonical basis of Rn.

• For an n× n matrix B:

– BT is its transpose and BH its conjugate transpose.

– λi(B)—an eigenvalue of B.

– λmin(B) (resp. λmax(B))—the minimal (resp. the maximal) eigenvalue of B.

– Remind: the spectral radius of B is
def
= max

1�i�n

∣∣λi(B)
∣∣.

– B 0—B is positive definite, B � 0—B is positive semi-definite.

• Id is the identity operator.

• diag(b[1], · · · , b[n]) is an n× n diagonal matrix whose diagonal entries are b[i], 1 � i � n.

• For f : V1 × V2 × · · ·Vm → Y where Vj, j ∈ {1, 2, · · · , m} and Y are n.v.s., Djf(u1, · · · , um)
is the differential of f at u = (u1, · · · , um) with respect to uj.

• L(V ; Y), for V and Y n.v.s., is the set of all linear continuous applications from V to Y .

• For A ∈ L(V ; Y), its adjoint is A∗.

• Isom(V ; Y) ⊂ L(V ; Y) are all bijective applications that have a continuous inverse application.

• o-function—satisfies limt→∞ o(t)/t = 0

• O-function—satisfies limt→∞O(t)/t = K where K is a constant.

Chapter 1

Generalities

1.1 What is mathematical optimization?

Optimization models the goal of solving a task in the ”best way”. Saying ”best” implies a viewpoint

and possible compromises.

Examples:

• Running a business: to maximize profit, minimize loss, maximize efficiency and/or minimize risk.

• Design: minimize the weight of a bridge/truss, and maximize the strength, within the design

constraints

• Planning: select a flight route to minimize time and/or fuel consumption of an airplane, while

respecting the paths of other airplanes and other safety conditions.

Optimization is an essential tool in life, business, applied sciences.

A concrete example:

sun hats c1 euro sun hats with logo p1 euro

umbrellas c2 euro umbrellas with logo p2 euro

available money for investment k euro

free storage room b m3 storage room for rent r m3 for d euro / m3

one sun hat s1 m3 one umbrella s2 m3

—————-

actions: x1 hats ordered x2 umbrellas ordered x3 space rented

range constraints: x1 � 0 x2 � 0 0 � x3 � r

storage constraint: s1x1 + s2x2 � b+ x3

investment constraint: c1x1 + c2x2 + dx3 � k

profit expression: (p1 − c1)x1 + (p2 − c2)x2 − dx3

Goal: maximize the profit expression.

Formal definition: to minimize (or maximize) a real objective function by deciding the values

of free variables from within an allowed set.

• The objective function represents the whole range of (known) possible choices

• The objective function should allows comparison between the different choices.

Last few decades: astonishing improvements in computer hardware and software, which motivated

great leap in optimization modeling, algorithm designs, and implementations.

6

CHAPTER 1. GENERALITIES 7

1.2 Optimization problems

Many tasks are formulated as the minimization / maximization of an objective function (energy, criterion)

whose solution is the sought after object (a signal, an image).

General Form : find a solution û ∈ V such that

(P) û ∈ U and F (û) = inf
u∈U

F (u)

= − sup
u∈U

(− F (u)
)

• F : V → R functional (objective function, criterion, energy) to minimize.

• V—real Hilbert space, if not explicitly specified.

• U ⊂ V constraint set (feasible set), supposed nonempty and closed.

If U = V then the problem is called unconstrained. It is easier to solve.

Otherwise, the problem is called constrained. Important constraints:

equality constraints U = {u ∈ V : gi(u) = 0, i = 1, . . . , p}, p < n (1.1)

inequality constraints U = {u ∈ V : hi(u) � 0, i = 1, . . . , q}, q ∈ N (1.2)

Minimizer û and minimum F (û).

Relative (local) minimum (resp. minimizer) and minimum global minimum (resp. minimizer).

A ”stationary point” (where the derivative is zero) is also used as a solution, but it can be a

local maximum, a local minimum, or a saddle point.

1.2.1 Standard Form for quadratic functional

F (u) =
1

2
B(u, u)− c(u), for B ∈ L(V × V ;R) and c ∈ L(V ;R), (1.3)

where B is bilinear and symmetric (i.e. B(u, v) = B(v, u), ∀u, v ∈ V).

If V is equipped with an inner product 〈., .〉, we can write down (Riesz’s representation theorem)

F (u) =
1

2
〈Bu, u〉 − 〈c, u〉 (1.4)

If V = Rn in (1.4), B ∈ Rn×n is a symmetric matrix (i.e. B = BT) and c ∈ Rn.

1.2.2 Ill-posed inverse problems

Out-of-focus picture: v = a ∗ uo + noise = Auo + noise

A is ill-conditioned ≡ (nearly) noninvertible

Least-squares solution: û = argmin
u

{
‖Au − v‖2

}
Tikhonov regularization: û

def
= argmin

u

{
‖Au − v‖2+β

∑
i

‖Diu‖2
}
for {Di} ≈ ∇, β>0

CHAPTER 1. GENERALITIES 8

Original uo Blur a Data v û: Least-squares û: Tikhonov

1.2.3 Regularized objective functionals on Rn

Solution û
↗ close to data production model Ψ(u, v) (data-fidelity)

↘ coherent with priors and desiderata Φ(u) (prior)

Combining models: û
def
= argmin

u
F (u) where

F (u) = Ψ(u, v) + βΦ(u), β > 0 (1.5)

Φ(u) =
∑
i

ϕ(‖Diu‖) (1.6)

Diu—discrete approximation of the gradient or the Laplacian of the image or signal at i, or finite

differences, ‖.‖ is usually the �2 or the �1 norm1, β > 0 parameter and ϕ : R+ → R+ increasing

function, e.g.

ϕ(t) tα, 0 � α � 2
√
t2 + α

α t

α t+ 1
min{t2, α} ln(αt+ 1) (· · ·) α > 0

Ψ data-fitting term for data v ∈ Rm, usually A ∈ Rm×n and

Ψ(u, v) = ‖Au− v‖pp, p ∈ {1, 2} (1.7)

or another function (the discrepancy).

One can have

Di = eTi , ∀i ∈ {1, · · · , n},
then Φ(u) =

∑
i ϕ(|u[i]|).

Differences between neighboring pixels play an important role in signal processing and in imaging.

If u is an one-dimensional signal, first-order differences yield

‖Diu‖ =
∣∣∣u[i]− u[i− 1]

∣∣∣, i = 2, · · · , n.

Let u be an image of size M ×N — columnwize rearranged into a n-length vector, n =MN :

u = [u1,1, . . . , uM,1, u1,2, . . . , uM,2, . . . , u1,N , . . . , uM,N]
T � [u1, . . . , up]

T

Often

‖Diu‖ =
(
(u[i]− u[i−m])2 + (u[i]− u[i− 1])2

)1/2

(1.8)

1For p ∈ [1,+∞[the �p norm of a vector v is ‖v‖p =

(∑
i

v[i]p

) 1
p

while ‖v‖∞ = max
i

∣∣v[i]∣∣.

CHAPTER 1. GENERALITIES 9

or

‖Dku‖ =
∣∣∣u[i]− u[i−m]

∣∣∣ and ‖Dk+1u‖ =
∣∣∣u[i]− u[i− 1]

∣∣∣. (1.9)

Di can also be any other linear mapping.

Table of Contents

1. Generalities

2. Unconstrained differentiable problems

3. Constrained optimization

4. Non differentiable problems

5. Resolvent and Proximal operators

6. Operator splitting and penalty methods

CHAPTER 1. GENERALITIES 10

1.3 Optimization algorithms

Usually the solution û is defined implicitly and cannot be computed in an explicit way, in one step.

1.3.1 Iterative minimization methods

Construct a sequence (uk)k∈N initialized by u0 converging to û—a solution of (P):

uk+1 = G(uk), k = 0, 1, . . . , (1.10)

where G : V → U is iterative scheme (often defined implicitly). The solution û can be local (relative)

if (P) is nonconvex. The choice of u0 (= the initialization) can be crucial if (P) is nonconvex.

G is constructed using information on (P), e.g. F (uk), ∇F (uk), gi(uk), hi(uk), ∇gi(uk) and

∇hi(uk) (or subgradients instead of ∇ for nonsmooth functions). By (1.10), the iterates of G are

u1 = G(u0);

u2 = G(u1) = G ◦G(u0) def
= G2(u0);

· · ·
uk = G ◦ · · · ◦G︸ ︷︷ ︸ (u0)

def
= Gk(u0) = G ◦Gk−1(u0)

k times

Key questions:

• Given an iterative method G, determine if there is convergence;

• If convergence, to what kind of accumulation point?

• Given two iterative methods G1 and G2 choose the faster one.

Definition 1 û is a fixed point for G if G(û) = û.

Let X be a metric space equipped with distance d.

Definition 2 G : X → X is a contraction if there exists γ ∈ (0, 1) such that

d(G(u1), G(u2)) � γd(u1, u2), ∀u1, u2 ∈ X

⇒ G is Lipschitzian2 ⇒ uniformly continuous.

Theorem 1 (Fixed point theorem) Let X be complete and G : X → X a contraction.

Then G admits a unique fixed point, û = G(û). (see [14, p.141]).

Theorem 2 (Fixed point theorem-bis) Let X be complete and G : X → X be such that ∃k0 for which

Gk0 is a contraction. Then G admits a unique fixed point. (see [14, p.142]).

Note that in the latter case G is not necessarily a contraction.

2A function f : V → X is �-Lipschitz continuous if ∀(u, v) ∈ V × V , we have ‖f(u)− f(v)‖ � � ‖u− v‖.

CHAPTER 1. GENERALITIES 11

1.3.2 Local convergence rate

In general, a nonlinear problem (P) cannot be solved exactly in a finite number of iterations.

Goal: attach to G precise indicators of the asymptotic rate of convergence of uk towards û. Refs.

[11, 10, 5, 4]

Here V = R
n, ‖ · ‖ = ‖ · ‖2 and we simply assume that uk converges to û.

Q-convergence studies the quotient Qk
def
=
‖uk+1 − û‖
‖uk − û‖ , k ∈ N.

Q = lim sup
k→∞

Qk

• If Q <∞ then ∀ε > 0 ∃k0 such that

‖uk+1 − û‖ � (Q + ε)‖uk − û‖, ∀k � k0.

≡ Bound on the error at iteration k+1 in terms of the error at iteration k. (Crucial if Q < 1.)

• 0 < Q < 1: Q-linear convergence;

• Q = 0: Q-superlinear convergence (called also superlinear convergence);

• In particular, Qk = O(‖uk − û‖2): Q-quadratic convergence.

• Compare how G1 and G2 converge towards the same û:

If Q(G1, û) < Q(G2, û) then G1 is faster than G2 in the sense of Q.

R-convergence studies the rate of the root Rk
def
= ‖uk − û‖1/k, k ∈ N.

R = lim sup
k→∞

Rk

• 0 < R < 1: R-linear convergence; this means geometric or exponential convergence since

∀ε ∈ (0, 1−R) ∃k0 such that Rk � (R + ε), ∀k � k0 ⇐⇒ ‖uk − û‖ � (R + ε)k

• R = 0: R-superlinear convergence.

• G1 is faster than G2 in the sense of R if R(G1, û) < R(G2, û)

Remark 1 Sublinear convergence if Qk → 1 or Rk → 1. Convergence is too slow, choose another G.

Lemma 1 Let G : U ⊂ Rn → Rn, ‖.‖ be any norm on Rn, ∃B(û, δ) ⊂ U and ∃γ ∈ [0, 1) such that

‖G(u)− û‖ � γ‖u− û‖, ∀u ∈ B(û, δ)

Then ∀u0 ∈ B(û, δ) the iterates given by (1.10) remain in B(û, δ) and converge to û.

Proof. Let u0 ∈ B(û, δ), then ‖u1 − û‖ = ‖G(u0)− û‖ � γ‖u0 − û‖ < ‖u0 − û‖, hence u1 ∈ B(û, δ).

Using induction, uk ∈ B(û, δ) and ‖uk − û‖ � γk‖u0 − û‖. Thus limk→∞ uk = û. �

CHAPTER 1. GENERALITIES 12

Theorem 3 (Ostrowski) [11, p.300] Let G : U ⊂ Rn → Rn be differentiable at û ∈ int(U) and has a

fixed point G(û) = û ∈ U . If

σ
def
= max

1�i�n

∣∣λi(∇G(û))∣∣ < 1, (1.11)

then ∃O(û) such that ∀u0 ∈ O(û) we have uk ∈ O(û) and uk → û.

Proof. ∇G(û) is not necessarily symmetric and positive definite. Condition (1.11) says that ∀ε > 0

there is an induced matrix norm ‖.‖ on R
n×n such that3

‖∇G(û)‖ � σ + ε. (1.12)

Let us choose ε such that

ε <
1

2
(1− σ).

The differentiability of G at û implies that ∃δ > 0 so that B(û, δ) ⊂ U and

‖G(u)−G(û)−∇G(û)(u− û)‖ � ε‖u− û‖, ∀u ∈ B(û, δ) (1.13)

Using that G(û) = û, and combining (1.12) and (1.13), we get

‖G(u)− û‖ = ‖G(u)−G(û)−∇G(û)(u− û) +∇G(û)(u− û)‖
� ‖G(u)−G(û)−∇G(û)(u− û)‖+ ‖∇G(û)‖ ‖u− û‖
< (2ε+ σ)‖u− û‖ < ‖u− û‖, ∀u ∈ B(û, δ)

The conclusion follows from the observation that 2ε+ σ < 1 and Lemma 1. �

Theorem 5 (linear convergence) Under the conditions of Theorem 3, max
1�i�n

|λi(∇G(û))| = R, where

R is the root convergence factor.

Proof—see [11, p.301].

Illustration of the role of convergence conditions

3Let B be an n× n real matrix. Its spectral radius is defined as its largest in absolute value eigenvalue,

σ(B)
def
= max

1�i�n

∣∣λi(B)
∣∣.

Given a vector norm on Rn, say ‖.‖, the corresponding induced matrix norm on the space of all n× n matrices reads

‖B‖ def
= sup{‖Bu‖ : u ∈ R

n, ‖u‖ � 1}.

Theorem 4 [5, p. 18]

(1) Let B be an n× n matrix and ‖ . ‖ any matrix norm. Then

σ(B) �‖ B ‖ .

(2) Given a matrix B and a number ε > 0, there exists at least one induced matrix norm ‖ . ‖ such that

‖ B ‖� σ(B) + ε.

CHAPTER 1. GENERALITIES 13

(a) Original (b) Observed noisy (c) Correctly restored (d) No convergence

Figure 1.1: Convergence conditions satisfied in (c), not satisfied in (d).

1.4 Analysis of optimization problems

References : [15, 3, 16, 5, 17, 9, 18].

1.4.1 Remainders

Definition 3 Let F : V →]−∞,+∞] where V is a real topological space.

- The domain of F is the set domF = {u ∈ V | F (u) < +∞}.

- The epigraph of F is the set epiF = {(u, λ) ∈ V × R | F (u) � λ}.

Definition 4 A function F on a real n.v.s. V is proper if F : V →] − ∞,+∞] and if it is not

identically equal to +∞.

Definition 5 F : V → R is coercive if lim
‖u‖→∞

F (u) = +∞.

Definition 6 F : V →]−∞,+∞] for V a real topological space

is lower semi-continuous (l.s.c.) if

∀λ ∈ R the set
{
u ∈ V | F (u) � λ

}
is is closed in V .

F is l.s.c.

If F is l.s.c., then −F is upper semi-continuous.

If F is continuous, then it is l.s.c. and upper semi-continuous.

Definition 7 (Convex subset) Let V be any real vector space. A subset U ⊂ V is convex if ∀u, v ∈ U

and θ ∈]0, 1[, we have θu+ (1− θ)v ∈ U .

u

v

u

v

U nonconvex U non strictly convex U strictly convex

Remind that F can be convex but not coercive.

Definition 8 (Convex function) Let V be any real vector space. A proper function F : U ⊂ V → R is

convex if ∀u, v ∈ U and θ ∈]0, 1[

F (θu+ (1− θ)v) � θF (u) + (1− θ)F (v)

F is strictly convex when the inequality is strict whenever u �= v.

CHAPTER 1. GENERALITIES 14

Property 1 Important properties [16, p. 8]:

- F is l.s.c. if and only if ∀u ∈ V and ∀ε > 0 there is a neighborhood O of u such that

F (v) � F (u)− ε, ∀v ∈ O .

- If F is l.s.c.4 and uk → u as k →∞ then lim inf
k→∞

F (uk) � F (u).

- If
(
Fi

)
i∈I , where I is an index set, is a family of l.s.c. functions then the superior envelop of(

Fi

)
i∈I is l.s.c. In words, the function F defined by

F (u) = sup
i∈I

Fi(u)

is l.s.c.

- If
(
Fi

)
i∈I is a family of l.s.c. convex functions then

the superior envelop F of
(
Fi

)
i∈I is l.s.c. and convex.

F1

F2

F3

Definition 9 (Principle of minimization) Consider the problem: minimise F (u) subject to u ∈ U .

- Set of feasible solutions = domF ∩ U ;

- Optimal value (it is unique): θ = inf{F (u) : u ∈ U};

- Set of (global) minimizers: {u ∈ U : F (u) = θ};

- Local minimizer û – there is a neighborhood O ∩ U such that F (û) � F (u) ∀u ∈ O ∩ U ;

- Strict local minimizer û – there is O ∩ U such that F (û) < F (u) ∀u ∈ O ∩ U with u �= û;

- Isolated local minimizer û – there is O ∩ U such that û is the only local minimizer in O ∩ U .

All isolated local minimizers are strict.

1.4.2 Existence, uniqueness of the solution

Theorem 6 (Existence) Let U ⊂ Rn be non-empty and closed, F : Rn → R l.s.c. and proper. If U is

not bounded, we suppose that F is coercive. Then ∃û ∈ U such that F (û) = inf
u∈U

F (u).

Note that F can be non-convex; moreover û is not necessarily unique.

Proof. Two parts:

(a) U bounded ⇒ U is compact, since F is l.s.c., Weierstrass theorem5 yields the result.

(b) U not necessarily bounded. Choose u0 ∈ U .
F coercive ⇒ ∃r > 0 such that

‖u‖ > r ⇒ F (u0) < F (u)

4If F is upper semi-continuous and uk → u as k →∞ then lim supk→∞ F (uk) � F (u).
5Weierstrass theorem: Let V be a n.v.s. and K ⊂ V a compact. If F : V → R is l.s.c. on K, then F achieves a

minimum on K. If F : V → R is upper semi continuous on K, then F achieves a maximum on K. If F is continuous
on K, then F achieves a minimum and a maximum on K. See e.g. [9, p. 40]

CHAPTER 1. GENERALITIES 15

Then û ∈ Ũ def
= B(u0, r) ∩ U which is compact. The conclusion is obtained as in (a). �

Let us underline that the conditions in the theorem are only strong sufficient conditions. Much weaker

existence conditions can be found e.g. in [15, p. 96].

• Alternative proof using minimizing sequences.

• The theorem extends to separable Hilbert spaces under additional conditions, see e.g. [5, 19].

Optimization problems are often called “feasible” when U and F are convex and the conditions

of Theorem 6 are met. Remind that F can be convex but not coercive (Fig. 1.2(b)).

−1.72 6.86

0.21

2.94

two local

minimizers

u
0

F (u)

u

No minimizer

1 8

F (u)

u

U = [1, 8]

(a)F nonconvex (b)F convex non coercive U = R (c)F convex non coercive U compact

1 8

U = [1, 8]

F (u)

u
−1.89 1.89

0

F (u)

uminimizers
3.51

0.38

F (u)

u

(d)F strongly convex, U compact (e)F non strictly convex (f)F strongly convex on R

Figure 1.2: Illustration of Definition 8 and Theorem 7. Minimizers are depicted with a thick point.

Theorem 7 For U ⊂ V convex, let F : U → R be proper, convex and l.s.c.

1. If F has a relative (local) minimum at û ∈ U , it is a (global) minimum w.r.t. U . [5]

2. The set of minimizers Û =

{
û ∈ U : F (û) = inf

u∈U
F (u)

}
is convex and closed. [17, p. 35]

3. If F is strictly convex, then F admits at most one minimum and the latter is strict.

4. In addition, suppose that either F is coercive or U is bounded. Then Û �= ∅. [17, p. 35]

1.4.3 Convex conjugates, Separation theorem and Equivalent optimiza-

tion problems

Given an optimization problem defined by F : V → R and U ⊂ V ,

(P) find û such that F (û) = inf
u∈U

F (u) ⇔ find û = arg inf
u∈U

F (u)

there are many different optimization problems that are in some way equivalent to (P). For instance

CHAPTER 1. GENERALITIES 16

• ŵ = argmin
X
F(w) where F : W → R, X ⊂W and there is f : W → V such that û = f(ŵ);

• (û, b̂) = argmin
u∈U

max
b∈X

F(u, b) where F : V ×W → R, U ⊂ V , X ⊂ W and û solves (P);

Some of these equivalent optimization problems are easier to solve than the original (P). We shall

see such reformulations in what follows. The way enabling to recover them is in general an open

question. In many cases, such a reformulation (found by intuition and proven mathematically) is

valid only for a particular problem (P).

There are several duality principles in optimization theory relating a problem expressed in terms

of vectors in an n.v.s. V to a problem expressed in terms of hyperplanes in the n.v.s.

Definition 10 A hyperplane (affine) is a set of the form

[h = α]
def
= {w ∈ V | 〈h, w〉 = α}

where h : V → R is a linear nonzero functional and α ∈ R is a constant.

A milestone is the Hahn-Banach theorem, stated below in its geometric form [16, 9].

Definition 11 Let U ⊂ V and K ⊂ V . The hyperplane [h = α] separates K and U

- nonstrictly if 〈h, w〉 � α, ∀w ∈ U and 〈h, w〉 � α, ∀w ∈ K;

- strictly if there exists ε > 0 such that 〈h, w〉 − ε � α, ∀w ∈ U and 〈h, w〉+ ε � α, ∀w ∈ K.

Theorem 8 (Hahn-Banach theorem, geometric form) Let U ⊂ V and K ⊂ V be convex, nonempty and

disjoint sets.

(i) If U is open, there is a closed hyperplane6 [h = α] that separates K and U nonstrictly;

(ii) If U is closed and K is compact7, then there exists a closed hyperplane [h = α] that separates

K and U in a strict way.

Definition 10 and Theorem 8 are illustrated in Fig. 1.3 where K = {u}. Note that U and K in

Definition 11 are not needed to be convex.

Remark 2 An example of equivalent optimization problems is seen in Fig. 1.3:

the shortest distance from a point u to a convex closed set U (i.e., the orthogonal projection of u on

U) is equal to the maximum of the distances from the point u to a hyperplane separating the point u

from the set U .

One systematic approach to derive equivalent optimization problems is centered about the inter-

relation between an n.v.s. V and its dual.

6The hyperplane [h = α] is closed iff h is continuous [16, p. 4], [9, p. 130]. If V = Rn any hyperplane is closed.
7Let us remind that if K is a subset of a finite dimensional space, it is compact iff K is closed and bounded.

CHAPTER 1. GENERALITIES 17

strict separation

nonstrict

U

u

Πu

v

α

Figure 1.3: Green line: [h = α] = {w | 〈h, w〉 = α} separates strictly {u} and U : for v ∈ U we
have 〈h, v〉 < α whereas 〈h, u〉 > α. The orthogonal projection of u onto U is Πu (red dots). Lines
in magenta provide nonstrict separation between u and U .

Definition 12 The dual V � of a n.v.s. V is composed of all continuous linear functionals on V , i.e.,

V � def
= {f : V → R | f linear and continuous}

V � is endowed with the norm

‖f‖V � = sup
u∈V, ‖u‖�1

|f(u)|

The n.v.s. V is reflexive if V �� = V where V �� is the dual of V �.

If V = Rn then V � = Rn (see e.g. [9, p. 107]). The dual of the Hilbert space8 L2 (resp. �2) is

yet again L2 (resp. �2)—see e.g. [9, pp. 107-109]. Clearly, all these spaces are reflexive as well.

Definition 13 Let F defined on a real n.v.s. V be proper. The function F � : V � → R given by

F �(v)
def
= sup

u∈V

{ 〈u, v〉 − F (u)
}

(1.14)

is called the convex conjugate or the polar function of F .

The Fenchel-Young inequality:

u ∈ V, v ∈ V � ⇒ 〈u, v〉 � F (u) + F �(v) (1.15)

The application v �→ 〈u, v〉 − F (u) is convex and continuous, hence l.s.c., for any fixed u ∈ V .

According to Property 1, F � is convex and l.s.c. (as being a superior convex envelop).

We can repeat the process in (1.14), thereby leading to the bi-conjugate F �� : V → R:

F ��(u)
def
= sup

v∈V �

{ 〈u, v〉 − F �(v)
}

One can note that F ��(u) � F (u), ∀u ∈ V .

8Remind that Rn is a Hilbert space as well.

CHAPTER 1. GENERALITIES 18

0

epiFepiF

FF

uu

F (u�)F (u�)

−F �(v)−F �(v)

Figure 1.4: The convex conjugate at v determines an hyperplane that separates nonstrictly epiF
and its complement in Rn.

Theorem 9 (Fenchel-Moreau) Let F , defined on a real n.v.s. V , be proper and convex. Then

F �� = F

For the proof, see [16, p. 10] or [18, 17].

The theorem below is an important tool to equivalently reformulate optimization problems.

Theorem 10 (Fenchel-Rockafellar) Let Φ and Ψ be convex on V . Assume that there exists u0 such

that Φ(u0) < +∞, Ψ(u0) < +∞ and Φ is continuous at u0. Then

inf
u∈V

(
Φ(u) + Ψ(u)

)
= max

v∈V �
(−Φ�(−v)−Ψ�(v)

)

The proof can be found in [16, p. 11] or in [9, p. 201] (where the assumptions on Φ and Ψ are

slightly different).

Example 1 V is a real reflexive n.v.s. Let U ⊂ V and K ⊂ V � be convex compact nonempty subsets.

Ψ(u)
def
= sup

v∈K
〈v, u〉 = max

v∈K
〈v, u〉 � max

v∈K
‖v‖ ‖u‖ (1.16)

where Schwarz inequality was used. Note that we can replace sup with max in (1.16) because K is

compact and v �→ 〈v, u〉 is continuous (Weierstrass theorem). Clearly max
v∈K

‖v‖ is finite and Ψ is

continuous and convex.

• Let w ∈ V � \K. The set {w} being compact, Hahn-Banach theorem 8 tells us that there exists

h ∈ V �� = V enabling us to separate strictly {w} and K ⊂ V �, that is

〈v, h〉 < 〈w, h〉 , ∀v ∈ K

and the constant c
def
= inf

v∈K
(〈w, h〉 − 〈v, h〉) meets c > 0. Then

〈w, h〉 − 〈v, h〉 � c > 0, ∀ v ∈ K ⇔ 〈w, h〉 − sup
v∈K

〈v, h〉 � c > 0

CHAPTER 1. GENERALITIES 19

Using that αh ∈ V for any α > 0, we have

Ψ�(w) = sup
u∈V

(〈w, u〉 −Ψ(u)
)

� sup
α>0

(〈w, αh〉 −Ψ(αh)
)
= sup

α>0

(
α 〈w, h〉 − sup

v∈K
〈v, αh〉)

= sup
α>0

α
(〈w, h〉 − sup

v∈K
〈v, h〉) � c sup

α>0
α = +∞. (1.17)

• Let now w ∈ K ⊂ V �. Then 〈w, u〉 −maxv∈K 〈v, u〉 � 0, ∀u ∈ V , hence

Ψ�(w) = sup
u∈V

(〈w, u〉 −Ψ(u)
)
= sup

u∈V

(〈w, u〉 −max
v∈K

〈v, u〉) = 0 (1.18)

where the upper bound 0 is always reached for u = 0.

• Combining (1.17) and (1.18) shows that the convex conjugate of Ψ reads

Ψ�(v) =

{
+∞ if v �∈ K
0 if v ∈ K

• Set

Φ(u) =

{
+∞ if u �∈ U
0 if u ∈ U

By the definition of Ψ in (1.16) and the one of Φ, the Fenchel-Rockafellar Theorem 10 yields

min
u∈U

(
max
v∈K

〈u, v〉) = min
u∈U

Ψ(u) = min
u∈V

(
Φ(u) + Ψ(u)

)
= max

v∈V �

(− Φ�(−v)−Ψ�(v)
)

(1.19)

The maximum in the right side cannot be reached if v �∈ K because in this case −Ψ�(v) = −∞.

Hence max
v∈V �

(− Φ�(−v)−Ψ�(v)
)
= max

v∈K
(− Φ�(−v)). Furthermore

−Φ�(−v) = − sup
u∈V

(− 〈v, u〉 − Φ(u)
)
= inf

u∈V
(〈v, u〉+ Φ(u)

)
= inf

u∈U
〈v, u〉 = min

u∈U
〈v, u〉

It follows that

max
v∈V �

(−Ψ�(v)− Φ�(−v)) = max
v∈K

(
min
u∈U

〈v, u〉) (1.20)

Combining (1.19) and (1.20) shows that minu∈U
(
maxv∈K 〈u, v〉

)
= maxv∈K

(
minu∈U 〈v, u〉

)
.

In Example 1 we have proven the fundamental Min-Max theorem used often in classical game

theory. The precise statement is given below.

Theorem 11 (Min-Max) Let V be a reflexive real n.v.s. Let U ⊂ V and K ⊂ V � be convex, compact

nonempty subsets. Then

min
u∈U

max
v∈K

〈u, v〉 = max
v∈K

min
u∈U

〈v, u〉

Chapter 2

Unconstrained differentiable problems

2.1 Preliminaries (regularity of F)

Remainders (see e.g. [20, 21, 5]):

1. For V and Y real n.v.s., f : V → Y if differentiable at u ∈ V if ∃Df(u) ∈ L(V, Y) (linear

continuous application from V to Y) such that

f(u+ v) = f(u) +Df(u)v + ‖v‖ε(v) where lim
v→0

ε(v) = 0.

2. If Y = R (i.e. f : V → R) and the norm on V is derived from an inner product 〈., .〉, then
L(V ;R) is identified to V (via a canonical isomorphism). Then ∇f(u) ∈ V—the gradient of

f at u is defined by

〈∇f(u), v〉 = Df(u)v, ∀v ∈ V.
Note that if V = Rn we have Df(u) = (∇f(u))T .

3. Under the conditions given above in 2., if f is twice differentiable, we can identify the second

differential D2f and the Hessian ∇2f via D2f(u)(v, w) = 〈∇2f(u)v, w〉.

Property 2 Let U ⊂ V be convex. Suppose F : V → R is differentiable in O(U).

1. F convex on U ⇔ F (v) � F (u) + 〈∇F (u), v − u〉 , ∀u, v ∈ U .

2. F strictly convex on U ⇔ F (v) > F (u) + 〈∇F (u), v − u〉 , ∀u, v ∈ U, v �= u.

A proof of statement 1 can be found in Appendix, p. 111.

Property 3 Let U ⊂ V be convex. Suppose F twice differentiable in O(U).

1. F convex on U ⇔ 〈∇2F (u)(v − u) , (v − u)〉 � 0, ∀u, v ∈ U .

2. If 〈∇2F (u)(v − u), (v − u)〉 > 0, ∀u, v ∈ U, v �= u then F is strictly convex on U .

Definition 14 F is called strongly convex or equivalently elliptic if F ∼ C1 and if ∃ μ > 0 such that

〈∇F (v)−∇F (u), v − u〉 � μ‖v − u‖2, ∀v, u ∈ V.

20

CHAPTER 2. UNCONSTRAINED DIFFERENTIABLE PROBLEMS 21

F in (1.4) is strongly convex if and only if B 0.

Property 4 Suppose F : V → R is differentiable in V .

1. F : V → R strongly convex ⇒ F is strictly convex, coercive and

F (v)− F (u) � 〈∇F (u), v − u〉+ μ

2
‖v − u‖2, ∀v, u ∈ V .

2. Suppose F twice differentiable in V :

F strongly convex ⇔ 〈∇2F (u)v, v〉 � μ‖v‖2, ∀v ∈ V .

Remark 3 If F : Rn → R is twice differentiable, then ∇2F (u) (known as the Hessian of F at u) is

an n× n symmetric matrix, ∀u ∈ Rn. Indeed,
(∇2F (u)

)
[i, j] = ∂2F (u)

∂u[i]∂u[j]
=
(∇2F (u)

)
[j, i].

2.2 Gauss-Seidel method (one coordinate at a time)

Consider the minimization of a coercive proper convex function F : Rn → R.

For each k ∈ N, the algorithm involves n steps: for i = 1, . . . , n, uk+1[i] is updated according to

F (uk+1[1], . . . , uk+1[i− 1], uk+1[i], uk[i+ 1], . . . , uk[n])

= inf
ρ∈R

F (uk+1[1], . . . , uk+1[i− 1], ρ, uk[i+ 1], . . . , uk[n])

Theorem 12 F is C1, strictly convex and coercive ⇒ (uk)k∈N converges to û. (see [6])

Remark 4 Differentiability is essential. E.g. apply the method to

F (u[1], u[2]) = u[1]2 + u[2]2 − 2
(
u[1] + u[2]

)
+ 2

∣∣u[1]− u[2]
∣∣ with u0 = (0, 0).

Note that infR2 F (u) = F (1, 1) = −2.

Remark 5 Extension for F (u) = ‖Au− v‖2 +∑
λi|u[i]|, see [6].

2.3 First-order (Gradient) methods

They use F (u) and ∇F (u) and rely on F (uk − ρkdk) ≈ F (uk)− ρk 〈∇F (uk), dk〉. Different tasks:

• Choose a descent direction (−dk) - such that F (uk − ρdk) < F (uk) for ρ > 0 small enough;

• Line search : find ρk such that F (uk − ρkdk)− F (uk) < 0 is sufficiently negative.

• Stopping rule: introduce an error function which measures the quality of an approximate

solution û, e.g. choose a norm ‖.‖, τ > 0 (small enough) and test:

– Iterates: if ‖uk+1 − uk‖ � τ , then stop ;

– Gradient: if ‖∇F (uk)‖ � τ , then stop ;

– Objective: if F (uk)− F (uk+1) � τ , then stop ;

CHAPTER 2. UNCONSTRAINED DIFFERENTIABLE PROBLEMS 22

or a combination of these.

Descent direction −dk for F at uk ⇔ F (uk − ρdk) < F (uk), ρ > 0 (small enough)

F differentiable:

〈∇F (uk), dk〉 > 0 ⇒ −dk is a descent direction for F at uk (2.1)

F convex and differentiable:

〈∇F (uk), dk〉 > 0 ⇔ −dk is a descent direction for F at uk (2.2)

F : R2 → R smooth strictly convex F : R2 → R smooth nonconvex
one minimizer two minimizers

Using a first-order expansion,

F (uk − ρdk) = F (uk)− ρ 〈∇F (uk), dk〉+ ρ‖dk‖ ε(ρdk) (2.3)

where ε(ρdk)→ 0 as ρ→ 0 (2.4)

Then (2.3) can be rewritten as

F (uk)− F (uk − ρdk) = ρ
(
〈∇F (uk), dk〉 − ‖dk‖ ε(ρdk)

)
.

Consider that 〈∇F (uk), dk〉 > 0. By (2.4), there is ρ > 0 such that 〈∇F (uk), dk〉 > ‖dk‖ ε(ρdk),
0 < ρ < ρ. Then −dk is a descent direction since F (uk)− F (uk − ρdk) > 0, 0 < ρ < ρ.

Note that some methods construct ρkdk in an automatic way.

2.3.1 The steepest descent method

Motivation : make F (uk)−F (uk+1) as large as possible. In (2.3) we have 〈∇F (uk), dk〉 � ‖F (uk)‖ ‖dk‖
(Schwarz inequality) where the equality is reached if dk ∝ ∇F (uk).

The steepest descent method = Gradient with optimal stepsize is defined by

F (uk − ρk∇F (uk)) = inf
ρ∈R

F (uk − ρ∇F (uk)) (2.5)

uk+1 = uk − ρk∇F (uk), k ∈ N. (2.6)

Theorem 13 If F : Rn → R is strongly convex, (uk)k∈N given by (2.5)-(2.6) converges to the unique

minimizer û of F .

Proof. Suppose that ∇F (uk) �= 0 (otherwise û = uk). Proof in 5 steps.

CHAPTER 2. UNCONSTRAINED DIFFERENTIABLE PROBLEMS 23

(a) Denote

fk(ρ) = F
(
uk − ρ∇F (uk)

)
, ρ > 0.

fk is coercive, strictly convex, hence it admits a unique minimizer ρ
def
= ρ(uk) and the latter

solves the equation f ′
k(ρ) = 0. Thus

f ′
k(ρ) = − 〈∇F (uk − ρ∇F (uk)

)
, ∇F (uk)

〉
= 0 (2.7)

Since

uk+1 = uk − ρ∇F (uk) ⇔ ∇F (uk) = 1

ρ
(uk − uk+1) (2.8)

the left hand side of (2.8) inserted into (2.7) yields

〈∇F (uk+1),∇F (uk)〉 = 0, (2.9)

i.e. two consecutive directions are orthogonal, while the right hand side equation of (2.8) inserted

into (2.7) shows that

〈∇F (uk+1), uk − uk+1〉 = 0.

Using the last equation and the assumption that F is strongly convex,

F (uk)− F (uk+1) � 〈∇F (uk+1), uk − uk+1〉+ μ

2
‖uk − uk+1‖2 = μ

2
‖uk − uk+1‖2 (2.10)

(b) Since
(
F (uk)

)
k∈N is decreasing and bounded from below by F (û) we deduce that

(
F (uk)

)
k∈N

converges, hence

lim
k→∞

(
F (uk)− F (uk+1)

)
= 0

Inserting this result into (2.10) shows that 1

lim
k→∞

‖uk − uk+1‖ = 0 (2.11)

(c) Using (2.9) allows us to write down

‖∇F (uk)‖2 = 〈∇F (uk),∇F (uk)〉 − 〈∇F (uk),∇F (uk+1)〉 = 〈∇F (uk),∇F (uk)−∇F (uk+1)〉

By Schwarz’s inequality,

‖∇F (uk)‖2 � ‖∇F (uk)‖ ‖∇F (uk)−∇F (uk+1)‖

hence

‖∇F (uk)‖ � ‖∇F (uk)−∇F (uk+1)‖ (2.12)

(d) The facts that
(
F (uk)

)
k∈N is decreasing and that F is coercive implies that ∃ r > 0 such that

uk ∈ B(0, r), ∀k ∈ N. Since F ∼ C1, ∇F is uniformly continuous on the compact B(0, r). Using

(2.11), ∀ε > 0 there are η > 0 and k0 ∈ N such that

‖uk − uk+1‖ < η ⇒ ‖∇F (uk)−∇F (uk+1)‖ < ε, ∀k � k0.

1Remind that (2.11) does not mean that the sequence (uk) converges!

Consider uk =
∑k

i=0
1

k+1 . It is well known that (uk)k∈N diverges. Nevertheless, uk+1 − uk = 1
k+2 → 0 as k →∞.

CHAPTER 2. UNCONSTRAINED DIFFERENTIABLE PROBLEMS 24

Consequently,

lim
k→∞

‖∇F (uk)−∇F (uk+1)‖ = 0.

Combining this result with (2.12) shows that

lim
k→∞

∇F (uk) = 0. (2.13)

(e) Using that F is strongly convex, that ∇F (û) = 0 and Schwarz’s inequality,

μ‖uk − û‖2 � 〈∇F (uk)−∇F (û) , uk − û〉 = 〈∇F (uk) , uk − û〉 � ‖∇F (uk)‖ ‖uk − û‖.

Thus we have a bound on the error at iteration k

‖uk − û‖ � 1

μ
‖∇F (uk)‖ → 0 as k →∞

where the convergence result is due to (2.13). �

Remark 6 Note the role of the assumption that V = R
n is of finite dimension in this proof.

Quadratic strictly convex problem. Consider F : Rn → R of the form:

F (u) =
1

2
〈Bu, u〉 − 〈c, u〉 , B 0, B = BT . (2.14)

The full algorithm: for any k ∈ N, do

dk = Buk − c

ρk =
‖dk‖2

〈Bdk, dk〉
uk+1 = uk − ρkdk

⇔ a method to solve a linear system Bu = c when B 0 and BT = B.

Theorem 14 The statement of Theorem 13 holds true if F is C1, strictly convex and coercive.

Proof. (Sketch.) F (uk) is decreasing, bounded from below. Then ∃θ > 0 such that uk ∈
B(0, θ), ∀k ∈ N, i.e. (uk)k∈N is bounded. Hence there exists a convergent subsequence

(
ukj
)
j∈N; let

us denote

u = lim
j→∞

ukj .

∇F being continuous and using (2.13), limj→∞∇F (ukj) = ∇F (u) = 0. Remind that F admits a

unique minimizer û and the latter satisfies ∇F (û) = 0. It follows that û = u. �

Note that we do not have any bound on the error ‖uk − û‖ as in the proof of Theorem 14.

CHAPTER 2. UNCONSTRAINED DIFFERENTIABLE PROBLEMS 25

• Q-linear convergence of
(
F (uk)− F (û)

)
k∈N towards zero in a neighborhood of û, under addi-

tional conditions—see [4, p. 33].

• Steepest descent method can be very-very bad: the sequence of iterates is subject to zigzags, the

step-size can decrease consderably.

However, the steepest descent method serves as a basis for all the methods actually used.

Remark 7 Consider

F (u[1], u[2]) =
1

2

(
α1u[1]

2 + α2u[2]
2
)
, 0 < α1 < α2.

Clearly, û = 0 and

∇F (u) =
[
α1u[1]
α2u[2]

]
Initialize the steepest descent method with u0 �= 0. Iterations read

uk+1 = uk − ρ∇F (uk) =
[
uk[1]− ρα1uk[1]
uk[2]− ρα2uk[2]

]
In order to get uk+1 = 0 we need ρα1 = 1 and ρα2 = 1 which is impossible (α1 �= α2). Finding the

solution û = 0 needs an infinite number of iterations.

2.3.2 Gradient with variable step-size

V—Hilbert space, ‖u‖ =√〈u, u〉, ∀u ∈ V .
uk+1 = uk − ρk ∇F (uk), ρk > 0, ∀k ∈ N (2.15)

Theorem 15 Let F : V → R be differentiable in V . Suppose ∃μ and ∃M such that 0 < μ < M , and

(i) 〈∇F (u)−∇F (v), u− v〉 � μ‖u− v‖2, ∀(u, v) ∈ V 2 (i.e. F is strongly convex);

(ii) ‖∇F (u)−∇F (v)‖ �M‖u− v‖, ∀(u, v) ∈ V 2

Consider the iteration (2.15) where

where
μ

M2
− ζ � ρk � μ

M2
+ ζ, ∀k ∈ N

and ζ ∈
]
0,

μ

M2

[
Then (uk)k∈N in (2.15) converges to the unique minimizer û of F and

‖uk+1 − û‖ � γk‖u0 − û‖, where γ =

√
ζ2M2 − μ2

M2
+ 1 < 1.

Proof. See the proof of Theorem 31, p. 49 for ΠU = Id. �

If F is twice differentiable, condition (ii) becomes sup
u∈V

∥∥∇2F (u)
∥∥ �M .

Remark 8 Denote by û the fixed point of

G(u) = u− ρ∇F (u).

∇G(u) = I − ρ∇2F (u). By Theorem 3, p. 12, convergence is ensured if max
i

∣∣∣λi(∇2F (u)
)∣∣∣ < 1

ρ
.

CHAPTER 2. UNCONSTRAINED DIFFERENTIABLE PROBLEMS 26

Quadratic strictly convex problem (2.14), p. 24. Convergence is improved—it is ensured if

1

λmax(B)
− ζ � ρk �

1

λmax(B)
+ ζ with ζ ∈

]
0,

1

λmax(B)

[
.

Proof. See the proof of Proposition 17, p. 52.

2.4 Line search

2.4.1 Introduction

Merit function f : R→ R

f(ρ) = F (uk − ρdk), ρ > 0,

where −dk is a descent direction, e.g. dk = ∇F (uk) and in any case 〈∇F (uk), dk〉 > 0.

The goal is to choose ρ > 0 such that f is decreased enough. If the previous ρk−1 was good one

may prefer ρ ≈ ρk−1.

Line search is of crucial importance since it is done at each iteration.

We fix at iteration k and drop indexes (when possible). Thus we write

f(ρ) = F (u− ρd), then f ′(ρ) = −〈∇F (u− ρd), d〉 .

In particular,

f ′(0) = −〈∇F (u), d〉 < 0

since −d is a descent direction, see (2.1), p. 22.

Usually, line search is a subprogram where f can be evaluated only point-wise.

General scheme with 3 possible exists:

(a) f ′(ρ) = 0—ρ seems to minimize f (true is f convex)

(b) f ′(ρ) > 0—f seems to have a minimum for a smaller ρ

(c) f ′(ρ) < 0—f seems to have a minimum for a larger ρ

2.4.2 Schematic algorithm for line-search

ρL–a too small ρ; ρR–a too large ρ;

− step (0). Initialize ρL = 0, ρR such that f ′(ρR) > 0 and ρ > 0.

An initial ρR can be found using extrapolation.

− step (1). Test ρ > 0:

• if f ′(ρ) = 0 then stop.

• if f ′(ρ) < 0, set ρL = ρ and go to Step 2;

CHAPTER 2. UNCONSTRAINED DIFFERENTIABLE PROBLEMS 27

• if f ′(ρ) > 0, set ρR = ρ and go to Step 2.

− step (2). Compute a new ρ ∈]ρL, ρR[. Loop to step (1).

For some functions F , ρ can be calculated explicitly—algorithms are faster.

Fletcher’s initialization—assume that f is locally quadratic, then take ρ = 2F (uk)−F (uk−1)

f ′(0) > 0.

Once a ρR is found, a line-search algorithm is a sequence of interpolations that reduce the bracket

[ρL, ρR], i.e. ρL increases � ρR decreases.

Property 5 Each [ρL, ρR] contains a ρ̂ such that f ′(ρ̂) = 0. Infinite interpolations entail ρR−ρL = 0.

Historically: one has tried to find ρ̂ such that f ′(ρ̂) = 0. Such a ρ̂ is called optimal stepsize.

Looking for this ρ̂ is not a good strategy in practice.

Interpolation methods. There are many choices. For instance:

• Bissection method: ρ =
ρL + ρR

2

• Polynomial fitting; fit a polynomial that coincides with the points ρi already tested and com-

pute a ρ that minimizes this new function explicitly. E.g. use a 2nd or 3rd order polynomial.

Precautions:

• Attention to roundoff errors.

• Avoid infinite loops—impose emergency exits.

• Attention when programming the computation of f ′.

• Mathematical proofs need assumptions on f . It may happen that they are not satisfied or that

they exclude the roundoff errors.

• Line-search is time consuming!

2.4.3 Modern line-search methods

Arguments:

• Devise tolerant stopping rules—we minimize F and not f !

• Striving to minimize f along the current direction is useless.

Intuitions:

• If f is quadratic: f(ρ) = 1
2
cρ2 + f ′(0)ρ+ f(0) for c > 0, then ρ̂ = −f ′(0)/c > 0 ;

• If f is affine: f(ρ) = f(0) + ρf ′(0) (etc).

Goal: predict the decrease of f with respect to f(0).

Wolfe’s conditions

Here f is the usual merit function, f(ρ) = F (uk − ρd), ρ > 0. Goals at each iteration:

• decrease f enough (hence uk+1 will not be too far from uk);

CHAPTER 2. UNCONSTRAINED DIFFERENTIABLE PROBLEMS 28

• increase f ′ enough (hence uk+1 will not be too close to uk).

Choose two coefficients 0 < c0 < c1 < 1, e.g. c0 < 1/2 and c1 > 1/2. Do the following 3 tests:

1.

{
(a) f(ρ) � f(0) + c0 ρf

′(0)
(b) f ′(ρ) � c1f

′(0)
⇒ terminate

2. f(ρ) > f(0) + c0 ρf
′(0) ⇒ set ρR = ρ (extrapolation step)

3.

{
(a) f(ρ) � f(0) + c0 ρf

′(0)
(b) f ′(ρ) < c1f

′(0)
⇒ set ρL = ρ (interpolation step)

Theorem 16 ([4, p. 45]) Suppose that f is C1 and bounded from below. Then Wolfe’s line-search

terminates (i.e. the number of the line-search iterations is finite).

Wolfe’s line search can be combined with any kind of descent direction −d. However, line search
is helpless if −dk is too orthogonal to ∇F (uk). The angle θk between the direction and the gradient

is crucial. Put

cos θk =
〈∇F (uk), dk〉
‖∇F (uk)‖ ‖dk‖ (2.16)

We can say that −dk is a “definite” descent direction if cos θk > 0 is large enough.

Theorem 17 If ∇F (u) is Lipschitz-continuous with constant � on {u : F (u) � F (u0)} and the mini-

mization algorithm uses Wolfe’s rule, then

r(cos θk)
2‖∇F (uk)‖2 � F (uk)− F (uk+1), ∀k ∈ N, (2.17)

where the constant r > 0 is independent of k.

Theorem 18 Let F ∼ C1 be bounded from below. Assume that the iterative scheme is such that (2.17)

holds true for a constant r > 0 independent of k. If the series

∞∑
k=0

(cos θk)
2 diverges (2.18)

then lim
k→∞

∇F (uk) = 0.

The proofs of Theorems 17 and 18 are given in Appendix 7.2, p. 111 and 7.3, p. 112.

Property (2.18) depends on the way the direction is computed.

Remark 9 Wolfe’s rule needs to compute the value of f ′(ρ) = −〈∇F (uk − ρdk), dk〉 at each cycle of

the line-search. Computing ∇F (uk−ρdk) is costly when compared to the computation of F (uk−ρdk).
Other line-search methods avoid the computation of ∇F (uk − ρdk).

Armijo’s methods

Choose c ∈ (0, 1). Tests for ρ:

1. f(ρ) � f(0) + cρf ′(0) ⇒ terminate;

2. f(ρ) > f(0) + cρf ′(0) ⇒ set ρR = ρ.

CHAPTER 2. UNCONSTRAINED DIFFERENTIABLE PROBLEMS 29

It is easy to see that this line-search terminates as well. The interest of the method is that it does

not need to compute f ′(ρ). It ensures that ρ is not too large. However, it can be dangerous since it

never increases ρ; thus it relies on the initial step-size ρ0. More details: [4].

Majorize-Minimize Line Search [22]

The goal is that ρ is an update of the previous ρk.

ρk+1 ≈ argmin f(ρ; ρk)

for

f(ρ; ρk) = f(ρk) + (ρ− ρk)f
′(ρk) +

1

2
bk(ρ− ρk)

2

where bk > 0 ensures that

f(ρ; ρk) � f(ρ), ∀ ρ � 0, ∀ ρ � 0.

Update:

ρk+1 = ρk − θf ′(ρk)/bk

where θ ∈ (0, 2) is a fixed relaxation parameter. For details see [23, 22].

• Interest: line search is done in one iteration;

• Danger: ρk can become arbitrarily small as k increases.

Other Line-Searches

We can evoke e.g. the Goldstein and Price method. More details: e.g. [10, 4].

In practice it often had appeared that taking a good constant step-size yields a faster convergence.

2.5 Hints to solve linear systems

2.5.1 Condition number

Definition 15 The condition number of an n× n matrix A, denoted by cond(A), is defined by

cond(A)
def
= ‖A‖2 ‖A−1‖2 =

(
max1�i�n

∣∣λi(ATA)
∣∣

min1�i�n

∣∣λi(ATA)
∣∣
)1/2

.

where λi are the eigenvalues of (·).

The condition number gives a bound on how inaccurate the solution A−1v is before the effects

of round-off error.

Solving Au = v under perturbations 2:

A(u+ δu) = v + δv ⇒ ‖δu‖
‖u‖ � cond(A)

‖δv‖
‖v‖

2From v = Au, ‖v‖ � ‖A‖‖u‖2 or equivalently, 1/‖u‖ � ‖A‖/‖v‖. By Aδu = δv we have ‖δu‖ � ‖A−1‖ ‖δv‖.

CHAPTER 2. UNCONSTRAINED DIFFERENTIABLE PROBLEMS 30

2.5.2 Preconditioning

Preconditioning of circulant matrices

An n× n matrix C is said to be circulant if its (j+1)th row is a cyclic right shift of the jth row,

0 � j � n− 1:

C =

⎡⎢⎢⎢⎢⎢⎣
c0 cn−1 cn−2 . . . c2 c1
c1 c0 cn−1 . . . c2
... c1 c0

. . .
. . .

...

cn−2
. . .

. . . cn−1

cn−1 cn−2 cn−1 . . . c1 c0

⎤⎥⎥⎥⎥⎥⎦
Note that C is determined by n components only, ci for 0 � i � n− 1.

Circulant matrices are diagonalized by the discrete Fourier matrix F (see e.g. [24, p. 73]):

F[p, q] =
1√
n
exp

(
2πi pq

n

)
, 0 � p, q � n− 1, i

def
=
√−1

We have

FCFH = Λ = diag(λ1(C), · · · , λn(C)), where λp(C) =
n−1∑
j=0

cj exp

(
2πi jp

n

)
, p = 0, . . . , n− 1

where FH is the conjugate transpose of F. Λ(C) can be obtained in O(n logn) operations using the

fast Fourier transform (FFT) of the first column of C.

Note that F−1 = FH . Solving

Cu = v

amounts to solve

Λũ = ṽ where ṽ = Fv; then u = FH ũ.

Here Fv and FH ũ are computed using the FFT and the inverse FFT, respectively.

For preconditioning of block-circulant matrices for image restoration, see [25, p. 938].

Preconditioning

The speed of algorithms can be substantially improved using preconditioning; see, e.g. [26, 27, 10, 28].

Instead of solving Bu = c, we solve the preconditioned system

P−1Bu = P−1c,

where the n×n matrix P is called the preconditioner. P is chosen according to the following criteria:

• P should be constructed within O(n logn) operations;

• Pv = w should be solved in O(n logn) operations;

• The eigenvalues of P−1B should be clustered (i.e. well concentrated near 1);

• If B 0 then P−1B 0.

CHAPTER 2. UNCONSTRAINED DIFFERENTIABLE PROBLEMS 31

Toeplitz Systems

An n × n Toeplitz matrix A is defined using 2n − 1 scalars, say ap, 1 − n � p � n − 1. It is

constant along its diagonals:

A =

⎡⎢⎢⎢⎢⎢⎣
a0 a−1 . . . a−n+2 a−n+1

a1 a0 a−1 . . . a−n+2
... a1 a0

. . .
...

an−2
. . .

. . . a−1

an−1 an−2 . . . a1 a0

⎤⎥⎥⎥⎥⎥⎦ (2.19)

Toeplitz matrices are important since they arise in deblurring, recursive filtering, auto-regressive

(AR) modeling and many others.

Circulant preconditioners

We emphasize that the use of circulant matrices as preconditioners for Toeplitz systems allows the

use of FFT throughout the computations, and FFT is highly parallelizable and has been efficiently

implemented on multiprocessors.

Given an integer n, we denote by Cn the set of all circulant n× n matrices.

Below we sketch several classical circulant preconditioners.

• Strang’s preconditioner [29]

It is the first circulant preconditioner that was proposed in the literature. P is defined by to

be the matrix that copies the central diagonals of A and reflects them around to complete the

circulant requirement. For A given by (2.19), the diagonals pj of the Strang preconditioner

P = [pm−�]0�m,�<n are given by

pj =

⎧⎨⎩
aj 0 < j � �n/2�
aj−n �n/2� < j < n
pn+j 0 < −j < n

P (of size n× n) satisfies 3

‖P −A‖1 = min
C∈Cn

‖C − A‖1 and ‖P −A‖∞ = min
C∈Cn

‖C −A‖∞.

• T. Chan’s preconditioner for A as in (2.19) [30]

For A as in (2.19), P is defined by

‖P − A‖F = min
C∈Cn

‖C − A‖F
3Remind that for an n× n matrix B with elements B[i, j] (i for row, j for column)

‖B‖1 = max
1�j�n

n∑
i=1

∣∣B[i, j]
∣∣

‖B‖∞ = max
1�i�n

n∑
j=1

∣∣B[i, j]
∣∣

CHAPTER 2. UNCONSTRAINED DIFFERENTIABLE PROBLEMS 32

where ‖.‖F denotes the Frobenius norm4. The jth diagonals of P are shown to be equal to

pj =

{
(n−j)aj+jaj−n

n
0 � j < n

pn+j 0 < −j < n

• Preconditioners by embedding [31]

For A as in (2.19), let B be such that the matrix below is 2n× 2n circulant:[
A BH

B A

]
R. Chan’s circulant preconditioner P is defined as P = A+B.

• Preconditioners by minimization of norms

Tyrtyshnikov’s circulant preconditioner is defined by

‖Id− P−1A‖F = min
C∈Cn

‖Id− C−1A‖F .

It has some nice properties and is called the superoptimal circulant preconditioner. See [32].

• Other circulant preconditioners are derived from kernel functions.

Various types of preconditioners are known for different classes of matrices.

2.6 Second-order methods

Based on F (uk+1)− F (uk) ≈ 〈∇F (uk), uk+1 − uk〉+ 1
2
〈∇2F (uk)(uk+1 − uk), uk+1 − uk〉

Crucial approach to derive a descent direction at each iteration of a scheme minimizing a smooth

objective F .

2.6.1 Newton’s method

Example 2 Let F : R→ R, find û such that F ′(û) = ∇F (û) = 0.

We choose uk+1 such that:

∇F (uk)
uk − uk+1

= ∇2F (uk) = F
′′
(uk)

Newton’s method: uk+1 = uk −
(∇2F (uk)

)−1∇F (uk) (2.20)

4The Frobenius norm of an n× n matrix B is defined by

‖B‖F =

⎛⎝ n∑
i=1

n∑
j=1

∣∣B[i, j]
∣∣2⎞⎠1/2

.

CHAPTER 2. UNCONSTRAINED DIFFERENTIABLE PROBLEMS 33

Theorem 19 Let V be a Hilbert space. Assume that ∇2F (uk) is continuous and invertible near û,

say O û, and that5
∥∥∥(∇2F (u)

)−1
∥∥∥
L(V)

is bounded above on O. The Newton’s method converges

towards û and the convergence is Q-superlinear.

Proof. Using Taylor expansion for ∇F about uk:

0 = ∇F (û) = ∇F (uk) +∇2F (uk) (û− uk) + ‖û− uk‖ε(û− uk) = 0,

where ε(û− uk)→ 0 as ‖û− uk‖ → 0. By Newton’s method (2.20),

∇F (uk) +∇2F (uk) (uk+1 − uk) = 0

Subtracting this equation from the previous one yields

∇2F (uk) (û− uk+1) + ‖û− uk‖ε(û− uk) = 0.

Since ∇2F (uk) is invertible, the latter equation is equivalent to

û− uk+1 = −(∇2F (uk)
)−1‖û− uk‖ε(û− uk).

From the assumptions, the constant M below is finite:

M
def
= sup

u∈O(û)

∥∥∥(∇2F (u)
)−1

∥∥∥
L(V)

.

Then

‖uk+1 − û‖ �M‖û − uk‖ε(û− uk)

and Qk = ‖uk+1−û‖
‖û−uk‖ � Mε(û − uk) → 0 as ‖û − uk‖ → 0. Hence the Q-superlinearity of the

convergence. �

Comments

• Under the conditions of the theorem, if in addition F is C3 then convergence is Q-quadratic.

• Direction and step-size are automatically chosen (−(∇2F (uk)
)−1∇F (uk));

• If F is nonconvex, −(∇2F (uk)
)−1∇F (uk) may not be a descent direction, hence the û found

in this way is not necessarily a minimizer if F ;

• Convergence is very fast;

• Computing
(∇2F (uk)

)−1
can be difficult, i.e. solving the equation ∇2F (uk)z = ∇F (uk) with

respect to z can require a considerable computational effort;

Numerically it can be very unstable thus entailing a violent divergence;

• Preconditioning can help if ∇2F (uk) has a favorable structure, see [27];

• In practice—efficient to get a high-precision û if we are close enough to the sought-after û.

5Remind that L(V) ≡ L(V, V) and that for B ∈ L(V), we have ‖B‖L(V) = supu∈V \{0}
‖Bu‖V

‖u‖V
, where ‖ · ‖V is the

norm on V . If V = Rn, ‖B‖L(V) is just the induced matrix norm.

CHAPTER 2. UNCONSTRAINED DIFFERENTIABLE PROBLEMS 34

2.6.2 General quasi-Newton Methods

Approximation :
(Hk(uk)

)−1 ≈
(
∇2F (uk)

)−1

uk+1 = uk −
(Hk(uk)

)−1∇F (uk) (2.21)

Possible to keep H−1
k (uk) constant for several consecutive iterations.

Sufficient conditions for convergence:

Theorem 20 F : U ⊂ V → R twice differentiable in O(U), V complete n.v.s. Suppose there exist

constants r > 0, M > 0 and γ ∈]0, 1[such that B
def
= B(u0, r) ⊂ U and

1. sup
k∈N

sup
u∈B

‖H−1
k (u)‖L(V) �M

2. sup
k∈N

sup
u,v∈B

‖∇2F (u)−Hk(v)‖L(V) �
γ

M

3. ‖∇F (u0)‖V � r

M
(1− γ)

Then the sequence generated by (2.21) satisfies:

(i) uk ∈ B, ∀k ∈ N;

(ii) lim
k→∞

uk → û; moreover, û is the unique zero of ∇F (u) on B;

(iii) The convergence is geometric with

‖uk − û‖V � γk

(1− γ)
‖u1 − u0‖V .

Proof. We will use that iteration (2.21) is equivalent to

Hk(uk)
(
uk+1 − uk

)
+∇F (uk) = 0, ∀k ∈ N. (2.22)

There are several steps.

(a) We will show 3 preliminary results:

‖uk+1 − uk‖ �M‖∇F (uk)‖, ∀k ∈ N; (2.23)

uk+1 ∈ B, ∀k ∈ N ; (2.24)

‖∇F (uk+1)‖ � γ

M
‖uk+1 − uk‖. (2.25)

We start with k = 0. Iteration (2.21) yields (2.23) and (2.24) for k = 1:

‖u1 − u0‖ �‖H−1
0 (u0)‖ ‖∇F (u0)‖ �M ‖∇F (u0)‖ �M

r

M
(1− γ) < r ⇒ u1 ∈ B

Using (2.22) for k = 0,

∇F (u1) = ∇F (u1)−∇F (u0)−H0(u0)
(
u1 − u0

)

CHAPTER 2. UNCONSTRAINED DIFFERENTIABLE PROBLEMS 35

Consider the application u �→ ∇F (u) − H0(u0)u. Its gradient is ∇2F (u) − H0(u0). By the

generalized mean-value theorem 6 and assumption 2 we obtain (2.25) for k = 1:

‖∇F (u1)−H0(u0)u1 −∇F (u0) +H0(u0)u0‖
= ‖∇F (u1)‖ � sup

u∈B
‖∇2F (u)−H0(u0)‖ ‖u1 − u0‖

� γ

M
‖u1 − u0‖.

Suppose that (2.23)-(2.25) hold till (k − 1) inclusive, which means we have

‖uk − uk−1‖ �M‖∇F (uk−1)‖
uk ∈ B;

‖∇F (uk)‖ � γ

M
‖uk − uk−1‖

(2.26)

We check if these hold for k as well. Using (2.26) and assumption 1, iteration (2.21) yields

(2.23):

‖uk+1 − uk‖ �‖H−1
k (uk)‖ ‖∇F (uk)‖ �M ‖∇F (uk)‖ �M

γ

M
‖uk − uk−1‖ = γ‖uk − uk−1‖

Thus we have established that

‖uk+1 − uk‖ � γ‖uk − uk−1‖ � · · · � γk‖u1 − u0‖ (2.27)

Using the triangular inequality, (2.23) for k = 0 and assumption 3, we get (2.24) for the

actual k:

‖uk+1 − u0‖ � ‖uk+1 − uk‖+ ‖uk − uk−1‖+ · · ·+ ‖u1 − u0‖ =
k∑

i=0

‖ui+1 − ui‖

�
(

k∑
i=0

γi

)
‖u1 − u0‖ �

(∞∑
i=0

γi

)
‖u1 − u0‖ = 1

1− γ
‖u1 − u0‖

� M‖∇F (u0)‖
1− γ

� r ⇒ uk+1 ∈ B.

Using (2.22) yet again

∇F (uk+1) = ∇F (uk+1)−∇F (uk)−Hk(uk)
(
uk+1 − uk

)
Applying in a similar way the generalized mean-value theorem to the application u �→ ∇F (u)−
Hk(uk)u and using assumption 2 entails (2.25):

‖∇F (uk+1)‖ � sup
u∈B

‖∇2F (u)−Hk(uk)‖ ‖uk+1 − uk‖� γ

M
‖uk+1 − uk‖.

6Generalized mean-value theorem. Let f : U ⊂ V → W and a ∈ U , b ∈ U such that the segment [a, b] ∈ U .
Assume f is continuous on [a, b] and differentiable on]a, b[. Then

‖f(b)− f(a)‖W � sup
u∈]a,b[

‖∇f(u)‖L(V,W)‖b− a‖V

CHAPTER 2. UNCONSTRAINED DIFFERENTIABLE PROBLEMS 36

(b) Let us prove the existence of a zero of ∇F in B. Using (2.27), ∀k ∈ N, ∀j ∈ N we have

‖uk+j−uk‖ �
j−1∑
i=0

‖uk+i+1−uk+i‖ �
j−1∑
i=0

γk+i‖u1−u0‖ � γk‖u1−u0‖
∞∑
i=0

γi =
γk

1− γ
‖u1−u0‖,

(2.28)

hence (uk)k∈N is a Cauchy sequence. The latter, combined with the fact that B ⊂ V is complete

shows that ∃ û ∈ B such that lim
k→∞

uk = û.

(c) Since ∇F is continuous on O(U) ⊃ B and using (2.25), we obtain the existence result:

‖∇F (û)‖ = lim
k→∞

‖∇F (uk)‖ � γ

M
lim
k→∞

‖uk+1 − uk‖ = 0

(d) Uniqueness of û in B.

Suppose ∃u ∈ B, u �= û such that ∇F (u) = 0 = ∇F (û). We can hence write

u− û = −H−1
0 (u0)

(
∇F (u)−∇F (û)−H0(u0) (u− û)

)
‖u− û‖ � ‖H−1

0 (u0)‖ sup
u∈B

‖∇2F (u)−H0(u0)‖ ‖u− û‖ �M
γ

M
‖u− û‖< ‖u− û‖

This is impossible, hence û is unique in B.

(e) Geometric convergence: using (2.28),

‖û− uk‖ = lim
j→∞

‖uk+j − uk‖ � γk

1− γ
‖u1 − u0‖. �

Iteration (2.21) is quite general. In particular, Newton’s method (2.20) corresponds to Hk(uk) =

∇2F (uk) while (variable) stepsize Gradient descent to Hk(uk) =
1
ρk
I.

2.6.3 Generalized Weiszfeld’s method (1937)

It is a Quasi-Newton method (with linearization of the gradient); see [33, 34, 35]

Assumptions: F : Rn → R is twice continuously differentiable, strictly convex, bounded from

below and coercive. (F can be constrained to U—a nonempty convex polyhedral set.)

F is approximated from above by a quadratic function F of the form

F(u, v) = F (v) + 〈u− v,∇F (v)〉+ 1

2
〈u− v, H(v)(u− v)〉

under the assumptions that ∀u ∈ Rn

• F(u, v) � F (u), for any fixed v ;

• H : Rn → Rn×n is continuous and symmetric ;

• 0 < μ0 � λi
(H(u)

)
� μ1 <∞, 1 � i � n.

CHAPTER 2. UNCONSTRAINED DIFFERENTIABLE PROBLEMS 37

Note that F(u, u) = F (u). The iteration for this method reads

uk+1 = argmin
u
F(u, uk), k ∈ N.

For uk fixed, F is C2, coercive, bounded below and strictly convex. The minimizer uk+1 exists and

satisfies the quasi-Newton linear equation

0 = ∇1F(uk+1, uk) = ∇F (uk) +H(uk)(uk+1 − uk).

Here H(.) can be seen as an approximation of ∇2F (.).

Recently – increase interest in Weiszfeld’s approach [36].

2.6.4 Half-quadratic regularization

Minimize F : Rn → R of the form

F (u) = ‖Au− v‖22 + β

r∑
i=1

ϕ(‖Diu‖2), (2.29)

where Di ∈ Rs×n for s ∈ {1, 2}: s = 2—e.g. discrete gradients, see (1.8) and s = 1—e.g. finite

differences, see (1.9), p. 9. Let us denote

D
def
=

⎡⎢⎢⎢⎣
D1

D2
...
Dr

⎤⎥⎥⎥⎦ ∈ R
rs×n. Assumption: ker(ATA) ∩ ker(DTD) = {0}.

Furthermore, ϕ : R+ → R is a convex edge-preserving potential function (see [2]), e.g.

ϕ ϕ′ ϕ′′
√
t2 + α

t√
α + t2

α

(
√
α + t2)3

α log

(
cosh

(
t

α

))
tanh

(
t

α

) (
1− tanh2

(
t

α

))
1

α

|t| − α log

(
1 +

|t|
α

)
t

α + |t|
α

(α+ |t|)2{
t2/2 if |t| � α,
α|t| − α2/2 if |t| > α,

{
t if |t| � α,
αsign(t) if |t| > α,

{
1 if |t| � α,
0 if |t| > α,

|t|α, 1 < α � 2 α|t|α−1sign(t) α(α− 1)|t|α−2

where α > 0 is a parameter. Note that F is differentiable with

∇F (u) = 2ATAu− 2ATv + β
r∑

i=1

DT
i

ϕ′(‖Diu‖)
‖Diu‖ Diu (2.30)

However ϕ′ is (nearly) bounded, so ϕ′′ is close to zero on large regions; if A is not well conditioned

(a common case in practice), ∇2F has nearly null regions and convergence of usual methods can be

extremely slow. Newton’s method reads uk+1 = uk − (∇2F (uk)))
−1∇F (uk). E.g., for s = 1 we have

Diu ∈ R, so ‖Diu‖2 = |Diu| and ∇2F (u) = 2ATA+ β

r∑
i=1

ϕ′′(|Diu|)DT
i Di.

CHAPTER 2. UNCONSTRAINED DIFFERENTIABLE PROBLEMS 38

For the class of F considered here, ∇2F (u) has typically a bad condition number so (∇2F (u)
−1
)

is difficult (unstable) or impossible to obtain numerically. Newton’s method is practically unfeasible.

Half-quadratic regularization, two forms multiplicative (“×”) and additive (“+”) introduced in [37]

and [25], respectively. Main idea: using an auxiliary variable b, construct an augmented criterion

F(u, b) which is quadratic in u and separable in b, such that

(û, b̂) = argmin
u,b

F(u, b) ⇒ û = argmin
u
F (u)

Alternate minimization: ∀k ∈ N,

⎧⎪⎨⎪⎩
uk+1 = argmin

u
F(u, bk)

bk+1[i] = argmin
b
F(uk+1, b), 1 � i � r .

The construction of these augmented criteria rely on Theorem 9 (Fenchel-Moreau, p. 18).

Multiplicative form.

References [38, 39, 40, 2, 41, 42].

Assumptions (easily satisfied) on ϕ in order to guarantee global convergence:

(a) t→ ϕ(t) is convex and increasing on R+, ϕ �≡ 0 and ϕ(0) = 0

(b) t→ ϕ(
√
t) is concave on R+,

(c) ϕ is C1 on R+ and ϕ′(0) = 0,
(d) ϕ′′(0+) > 0,
(e) lim

t→∞
ϕ(t)/t2 = 0.

Proposition 1 We have

ψ(b) = sup
t∈R

{
−1

2
bt2 + ϕ(t)

}
⇔ ϕ(t) = min

b�0

(
1

2
t2b+ ψ(b)

)
(2.31)

Moreover, b̂
def
=

{
ϕ′(t)
t

if t > 0

ϕ′′(0+) if t = 0
is the unique point yielding ϕ(t) = 1

2
t2b̂+ ψ(b̂).

The proof of the proposition is outlined in Appendix 7.4, p. 113.

Based on Proposition 1 we minimize w.r.t. (u, b) an F of the form given below

F(u, b) = ‖Au− v‖22 + β

r∑
i=1

(
b[i]

2
‖Diu‖22 + ψ(b[i])

)
.

Note that (u, b) �→ F(u, b) is nonconvex. Iterates for k ∈ N read as 7:

uk+1 = (H(bk))
−1 2ATv, H(b) = 2ATA+ β

r∑
i=1

b[i]DT
i Di (2.32)

bk+1[i] =
ϕ′(‖Diuk+1‖2)
‖Diuk+1‖2 , 1 � i � r. (2.33)

Combining the expression for ∇F in (2.30) along with ∇uF on can see that

7Note that ∇uF = H(b)u− 2AT v

CHAPTER 2. UNCONSTRAINED DIFFERENTIABLE PROBLEMS 39

Theorem 21 ([41]) Let F be of the form (2.29) where kerA ∩ kerD = {0}, all assumptions (a)-(e)

(p. 38) hold and ϕ′′(0) > 0. Let û denote the unique minimizer of F . The sequence {uk} generated

by (2.32)-(2.33) satisfies uk → û as k →∞. Furthermore, the iterates satisfy

uk+1 = uk − (H(uk))
−1∇F (uk) with H(u) = H

((
ϕ′(‖Diu‖2)
‖Diu‖2

)r

i=1

)
where H(·) is given in (2.32) and H(u) 0, ∀ u ∈ Rn.

Comments

• uk in (2.32) can be computed efficiently using CG (see § 2.7) if direct inversion is heavy.

• Interpretation : bk edge variable (≈ 0 if “discontinuity”)

• F is nonconvex w.r.t. (u, b). However, under (a)-(e) the minimum is unique and convergence

is ensured, uk → û (see [41, 42]).

• By Theorem 21, this is a Quasi-Newton method. Compare with H in Newton method (2.20).

• Iterates amount to the relaxed fixed point iteration described next.

Theorem 22 ([43]) Let F be as in (2.29) and all assumptions in Theorem 21 hold. Put ∇F (u) into
the form

∇F (u) = L(u)u− z

where z := 2ATy is independent of u. Then L(u) ∈ Rn×n is invertible and the iterates given by

uk+1 = (L(uk))
−1 z (2.34)

are equal to the iterates given by (2.32) for any k.

The scheme in (2.34) is known as the relaxed fixed point iteration. It amounts to linearize ∇F at

each iteration. By the last theorem, the multiplicative algorithm (2.32)-(2.33) produces the same

vectors uk as the scheme in (2.34). Observe that the relaxed fixed point iteration in (2.34) is much

simpler than (2.32)-(2.33) – there is no need to compute and to store the auxiliary vector b whose

size typically is close to 2n.

Non-convex objectives The multiplicative for has been used to solve non-convex problems since

the beginning. Local convergence results were established e.g. in [39]. Recently, the set of simple

conditions given below were considered in [44]:

(a) t→ ϕ(t) is increasing and nonconstant on R�0

(b) t→ ϕ(t) is C1 on R>0 and continuous at zero
(c) t→ t−1ϕ′(t) is decreasing and bounded on R>0.

The boundedness assumption in (c) implies that ϕ′(0) = 0, hence the objective is smooth. Under

these conditions, monotone convergence to an isolated minimizer is established in [44]. Nonconvex

functions ϕ satisfying the above conditions are, e.g.,

ϕ(t) = ln(1 + t2) and ϕ(t) =
t2

1 + t2

A detailed analysis of the convergence process is exhibited in [44].

CHAPTER 2. UNCONSTRAINED DIFFERENTIABLE PROBLEMS 40

Additive form.

References: [45, 40, 41, 42].

Usual assumptions on ϕ to ensure convergence:

(a) t→ ϕ(t) is convex and increasing on R+, ϕ �≡ 0 and ϕ(0) = 0
(b) t→ t2/2− ϕ(t) is convex,
(c) ϕ′(0) = 0,
(d) lim

t→∞
ϕ(t)/t2 < 1/2.

Notice that ϕ is differentiable on R+. Indeed, (a) implies that ϕ′(t−) � ϕ′(t+), for all t. If for some t

the latter inequality is strict, (b) cannot be satisfied. If follows that ϕ′(t−) = ϕ′(t+) = ϕ′(t).

In order to avoid additional notations, we write ϕ(‖.‖) and ψ(‖.‖) next.

Proposition 2 For ‖.‖ = ‖.‖2 and b ∈ R
s, t ∈ R

s, s ∈ {1, 2}, we have:

ψ(‖b‖) = max
t∈Rs

{
−1

2
‖b− t‖2 + ϕ(‖t‖)

}
⇔ ϕ(‖t‖) = min

b∈Rs

(
1

2
‖t− b‖2 + ψ(‖b‖)

)
(2.35)

Moreover, b̂
def
= t− ϕ′(‖t‖) t

‖t‖ is the unique point yielding ϕ(‖t‖) = 1
2
‖t− b̂‖2 + ψ(‖b̂‖).

For the proof – see Appendix 7.5

Based on Proposition 2, we consider

F(u, b) = ‖Au− v‖22 + β
r∑

i=1

(
1

2
‖Diu− bi‖22 + ψ(bi)

)
, bi ∈ R

s (2.36)

and the iterations read, ∀k ∈ N,

uk+1 = H−1

(
2ATv + β

r∑
i=1

DT
i bik

)
, H = 2ATA + β

r∑
i=1

DT
i Di (2.37)

bik+1
= Diuk − ϕ′(‖Diuk‖2) Diuk

‖Diuk‖2 , 1 � i � r. (2.38)

Theorem 23 ([41]) Let F be of the form (2.29) where kerA ∩ kerD = {0}, all assumptions (a)-(d)

(p. 40) hold and ϕ′′(0) > 0. Let û denote the minimizer of F . The sequence {uk} generated by

(2.37)-(2.38) satisfies uk → û as k →∞. Furthermore, the iterates satisfy

uk+1 = uk −H−1∇F (uk)

where H is given in (2.37) and H 0.

Comments

• By Theorem 23, (2.37)-(2.38) is a Quasi-Newton method. Compare with H in Newton method

(2.20).

• If the inverse H−1 ∈ Rn×n cannot be stored, it has to be evaluated at each iteration. Precon-

ditioning of H (see § 2.5.2, p. 30) is usually easy and accelerates the algorithm.

CHAPTER 2. UNCONSTRAINED DIFFERENTIABLE PROBLEMS 41

Comparison between the two forms.

• “ × ′′-form: less iterations but each iteration is expensive;

• “ + ′′-form: more iterations but each iteration is cheaper and it is possible to precondition H.

• For both forms, convergence is faster than Gradient, DFP and BFGS (§ 2.6.5), and non-linear

CG (§ 2.7.2) for functions of the form (2.29).

• Overall, the “ + ′′-form is faster than the “ × ′′-form in (2.32)-(2.33). For details, see [41].

• We are not aware about comparisons between the “ + ′′-form and the relaxed fixed point

iteration (Theorem 22) which yields the same iterates uk as the “ × ′′-form .

2.6.5 Standard quasi-Newton methods

References: [4, 46, 10]. Here F : Rn → R with ‖u‖ =√〈u, u〉, ∀u ∈ Rn.

Hk ≈ ∇2F (uk) 0 and Mk ≈
(∇2F (uk)

)−1 0, ∀k ∈ N.

Δk
def
= uk+1 − uk

gk
def
= ∇F (uk+1)−∇F (uk)

Definition 16 Quasi-Newton (or secant) equation:

Mk+1gk = Δk (2.39)

Interpretation: the mean value H of ∇2F between uk and uk+1 satisfies gk = HΔk. So (2.39) forces

Mk+1 to have the same action as H−1 on gk (subspace of dimension one).

There are infinitely many quasi-Newton matrices satisfying Definition 16.

General quasi-Newton scheme

0. Fix u0, tolerance ε � 0, M0 0 such that M0 =MT
0 . If ‖∇F (u0)‖ � ε stop, else go to 1.

For k = 1, 2, . . ., do:

1. dk =Mk∇F (uk)

2. Line search along −dk to find ρk (e.g. Wolfe, ρ0 = 1)

3. uk+1 = uk − ρkdk

4. if ‖∇F (uk+1)‖ � ε stop else go to step 5

5. Mk+1 =Mk + Ck 0 so that Mk+1 =MT
k+1 and (2.39) holds; then loop to step 1

Ck � 0 is a correction matrix. For stability and simplicity, it should be “minimal” in some sense.

Various choices for Ck can be done.

CHAPTER 2. UNCONSTRAINED DIFFERENTIABLE PROBLEMS 42

DFP (Davidon-Fletcher-Powel)

Historically the first (1959). Apply the General quasi-Newton scheme along with

Mk+1 = Mk + Ck

Ck =
ΔkΔ

T
k

gTk Δk

− Mkgk g
T
kMk

gTkMkgk

Each of the matrices composing Ck is of rank � 1, hence rankCk � 2, ∀k ∈ N. Note that Ck = CT
k .

Mk+1 is symmetric and satisfies the quasi-Newton equation (2.39):

Mk+1gk =Mkgk +Δk
ΔT

k gk
gTk Δk

−Mkgk
gTkMkgk
gTkMkgk

=Mkgk +Δk −Mkgk = Δk

BFGC (Broyden-Fletcher-Goldfarb-Shanno)

Proposed in 1970. Apply the General quasi-Newton scheme along with

Mk+1 = Mk + Ck

Ck = −Δkg
T
kMk +MkgkΔ

T
k

gTk Δk
+

(
1 +

gTkMkgk
gTk Δk

)
ΔkΔ

T
k

gTk Δk

Obviously Mk+1 satisfies (2.39) as well. BFGC is often preferred to DFP.

Comment: One can approximate ∇2F using Hk+1 = Hk+ C̃k where Hk must satisfy the so called

“dual” quasi-Newton equation, Hk+1Δk = gk, ∀k (see [4, p. 55]).

Theorem 24 ([4], p. 58.) Let M0 0 (resp. H0 0). Then gTk Δk > 0 is a necessary and sufficient

condition for DFP and BFGS formulae to give Mk 0 (resp. Hk 0), ∀k ∈ N.

Remark 10 It can be shown that DFP and BFGC formulae are mutually dual. See [4, p. 56].

Theorem 25 ([4], p. 58.) Let F be convex, bounded from below and ∇F Lipschitzian on {u : F (u) �
F (u0)}. Then the BFGS algorithm with Wolfe’s line-search and M0 0, M0 =MT

0 yields

lim inf
k→∞

|∇F (uk)| = 0.

• Locally - Q superlinear convergence;

• Drawback: we have to store n× n matrices;

• DFP, BFGC available in Matlab Optimization toolbox.

Recently the BFGS minimization method was extended in [47] to handle nonsmooth, not necessarily

convex problems. The Matlab package HANSO developed by the authors is freely available8.

8http://www.cs.nyu.edu/overton/software/hanso/

CHAPTER 2. UNCONSTRAINED DIFFERENTIABLE PROBLEMS 43

2.7 Subspace methods

Main idea:

uk+1 = uk −DkRk

where Dk is a subspace of descent directions and Rk is a multidimensional stepsize.

In general it is difficult to construct a multidimensional stepsize method combining suitable

convergence properties and low computational cost.

2.7.1 Linear Conjugate Gradient method (CG), 1952

Due to Hestenes and Stiefel, 1952, still contains a lot of material for research.

Preconditioned CG is an important technique to solve large systems of equations.

For B = BT and B 0, powerful method to minimize F given below for n very large

F (u) =
1

2
〈Bu, u〉 − 〈c, u〉 , u ∈ R

n

or equivalently to solve Bu = c. (Remind that B 0 implies λmin(B) > 0.) Then F is strongly

convex. By the definition of F , we have a very useful relation:

∇F (u− v) = B(u− v)− c = ∇F (u)− Bv, ∀u, v ∈ R
n. (2.40)

Main idea : at each iteration, compute uk+1 such that

F (uk+1) = inf
u∈uk+Hk

F (u)

Hk = Span{∇F (ui), 0 � i � k}
uk+1 minimizes F over an affine subspace (and not only along one direction, as in Gradient methods.)

Theorem 26 The CG method converges after n iterations at most and it provides the unique exact

minimiser û obeying F (û) = min
u∈Rn

F (u).

Proof. Define the subspace

Hk =

{
g(α) =

k∑
i=0

α[i]∇F (ui) : α[i] ∈ R, 0 � i � k

}
(2.41)

Hk is a closed convex set. Set f(α)
def
= F

(
uk − g(α)

)
. Note that f is convex and coercive.

F (uk+1) = inf
α∈Rk+1

F
(
uk − g(α)

)
= inf

α∈Rk+1
f(α) = f(αk).

αk is the unique solution of ∇f(α) = 0. By (2.41), ∂g(α)/∂α[i] = ∇F (ui). Then
∂f(α)

∂α[i]
= 0 = −〈∇F (uk − g(α)) ,∇F (ui)〉 = −〈∇F (uk+1) ,∇F (ui)〉 , 0 � i � k. (2.42)

Hence for 0 � k � n− 1 we have

〈∇F (uk+1) ,∇F (ui)〉 = 0, 0 � i � k (2.43)

⇒ 〈∇F (uk+1) , u〉 = 0, ∀u ∈ Hk (2.44)

It follows that
{∇F (ui)} are linearly independent. Conclusions about convergence:

CHAPTER 2. UNCONSTRAINED DIFFERENTIABLE PROBLEMS 44

• If ∇F (uk) = 0 then û = uk (terminate).

• If ∇F (uk) �= 0 then dimHk = k + 1.

Suppose that ∇F (un−1) �= 0, then Hn−1 = Rn. By (2.44),

〈∇F (un), u〉 = 0, ∀u ∈ R
n ⇒ ∇F (un) = 0 ⇒ û = un.

The proof is complete. �

Remark 11 In practice, numerical errors can require a higher number of iterations.

The derivation of the CG algorithm is outlined in Appendix 7.6 on p. 114

CG Algorithm:

0. Initialization: d−1 = 0, ‖∇F (u−1)‖ = 1 and u0 ∈ Rn. Then for k = 0, 1, 2, · · · do:

1. if ∇F (uk) = 0 then terminate; else go to step 2

2. ξk =
‖∇F (uk)‖2
‖∇F (uk−1)‖2 (where ∇F (uk) = Buk − c, ∀k)

3. dk = ∇F (uk) + ξk dk−1 (by step 0, we have d0 = ∇F (u0))

4. ρk =
〈∇F (uk), dk〉
〈Bdk, dk〉 (where B = ∇2F (uk), ∀k)

5. uk+1 = uk − ρkdk; then loop to step 1.

Main Properties :

• ∀k, 〈∇F (uk+1),∇F (ui)〉 = 0 if 0 � i � k

• ∀k, 〈Bdk+1, di〉 = 0 if 0 � i � k— directions are conjugated w.r.t. ∇2F = B

• since B 0 it follows that (dk)
ñ
k=1 are linearly independent where ñ � n is such that

∇F (uñ) = 0.

• CG does orthogonalization: DTBD is diagonal where D = [d1, . . . , dn] (the directions).

Theorem 27 ([10], p. 114) If B has only r different eigenvalues, then the CG method converges after

r iterations at most.

Convergence is faster if the eigenvalues of B are “concentrated”.

2.7.2 Non-quadratic Functionals (non-linear CG)

References: [10, 4]

Nonlinear variants of the CG are well studied and have proved to be quite successful in practice.

However, in general there is no guarantee to converge in a finite number of iterations.

Main idea: cumulate past information when choosing the new descent direction.

CHAPTER 2. UNCONSTRAINED DIFFERENTIABLE PROBLEMS 45

Fletcher-Reeves method (FR)

step 0. Initialization: d−1 = 0, ‖∇F (u−1)‖ = 1 and u0 ∈ Rn.

∀k ∈ N:

1. Compute ∇F (uk); if ‖∇F (uk)‖ � ε then stop, otherwise go to step 2

2. ξk =
‖∇F (uk)‖2
‖∇F (uk−1)‖2

3. dk = ∇F (uk) + ξk dk−1

4. Test: if 〈∇F (uk), dk〉 < 0 (−dk is not a descent direction) set dk = ∇F (uk)

5. Line-search along −dk to obtain ρk > 0

6. uk+1 = uk − ρkdk, then loop to step 1.

C. Comments (see [4, p. 72])

• The new direction dk still involves memory from previous directions (”Markovian property”).

• Conjugacy has little meaning in the non-quadratic case.

• FR is heavily based on the locally quadratic shape of F (only step 4 is new w.r.t. CG).

• If the line-search is exact, the new direction −dk is a descent direction.

Polak-Ribière (PR) method

Remark 12 There are many variants of the FR method that differ from each other mainly in the

choice of the parameter ξk. An important variant is the PR method.

By the mean-value formula there is ρ̃ ∈]0, ρk−1] such that along the line span(dk−1) we have

∇F (uk) = ∇F (uk−1)− ρk−1Bk dk−1 (2.45)

for Bk = ∇2F (uk−1 − ρ̃dk−1) (2.46)

Note that Bk = BT
k .

Main idea: choose a ξk in the FR method that conjugates dk and dk−1 w.r.t. Bk, i.e. that yields

〈Bkdk−1 , dk〉 = 0.

However, Bk is unknown. By way of compromise, the result given below will be used.

Lemma 2 Let Bk be given by (2.45)-(2.46) and consider the FR methods where

(i) ξk =
〈∇F (uk)−∇F (uk−1),∇F (uk)〉

‖∇F (uk−1)‖2 (the PR formula)

(ii) ρk−1 and ρk−2 are optimal.

Then 〈Bkdk−1 , dk〉 = 0.

CHAPTER 2. UNCONSTRAINED DIFFERENTIABLE PROBLEMS 46

The proof is given in Appendix 7.7, p. 116

PR method

Apply the FR method, p. 45, where ξk in step 2 is replaced by the PR formula

ξk =
〈∇F (uk)−∇F (uk−1),∇F (uk)〉

‖∇F (uk−1)‖2 .

Comparison between FR and PR (see [4, p. 75])

• FR converges globally (F convex, coercive).

• There exists a counter-example where PR does not converge

• PR converges if F is locally strongly convex

• PR converges much faster than FR (so the latter is rarely used in practice)

• Relation with quasi-Newton

Chapter 3

Constrained optimization

3.1 Preliminaries

References : [48, 5, 4], also [6, 49, 12].

3.2 Optimality conditions

Theorem 28 (Euler (in)equalities) Let V be a real n.v.s., U ⊂ V convex, F : O(U) → R proper (see

the definition on p. 13) and differentiable at û ∈ U .
1. If F admits at û a minimum w.r.t. U , then

〈∇F (û), u− û〉 � 0, ∀u ∈ U (3.1)

2. Assume in addition that F is convex. Necessary and sufficient condition (NSC) for a minimum:

F (û) = min
u∈U

F (u) ⇔ (3.1) holds.

Moreover, if F is strictly convex, the minimizer û is unique.

3. If U is open, then : (3.1) ⇐⇒ ∇F (û) = 0.

Proof. We have F (û) � F (û+ v) for any v satisfying û+ v ∈ U . Consider an arbitrary v such that

u = û+ v ∈ U.

Since U is convex,

θ ∈ [0, 1] ⇒ θu+ (1− θ)û = θ(û+ v) + (1− θ)û = û+ θv ∈ U.

The first-order expansion of F about û+ θv reads

F (û+ θv)− F (û) = θ 〈∇F (û) , v〉+ θ‖v‖ε(θv). (3.2)

Suppose that 〈∇F (û) , v〉 < 0 and note that v is fixed. Since ε(θv) → 0 as θ → 0, we can find θ

small enough such that 〈∇F (û) , v〉+ ‖v‖ ∣∣ε(θv)∣∣ < 0, hence F (û) > F (û+ θv) by (3.2), i.e. there

is no minimum at û. It follows that necessarily

〈∇F (û) , u− û〉 = 〈∇F (û) , v〉� 0.

47

CHAPTER 3. CONSTRAINED OPTIMIZATION 48

Statement 2. The necessity of (3.1) follows from statement 1. To show its sufficiency, combine

(3.1) with the convexity of F , Property 2, statement 1 (p. 20): F (u) − F (û) � 〈∇F (û) , u− û〉,
∀u ∈ U . If F is strictly convex, the uniqueness of û follows from (3.1) and Property 2-2, namely

F (u)− F (û) > 〈∇F (û) , u− û〉, ∀u ∈ U , u �= û.

Statement 3 follows directly from statement 1. �

3.2.1 Projection theorem

Theorem 29 (Projection) Let V be real Hilbert space, U ⊂ V nonempty, convex and closed, and

‖u‖ =√〈u, u〉, ∀u ∈ V . Given v ∈ V , the following statements are equivalent:

1. ∃û = ΠUv ∈ U unique such that ‖v − û‖ = inf
u∈U

‖v − u‖, where ΠU is the projection onto U ;

2. û ∈ U and 〈v − û, u− û〉 � 0, ∀u ∈ U .

Classical proof [14, p.391] or [9]. Shorter proof using Theorem 28—see below.

Proof. If v ∈ U , then û = v and ΠU = Id. Consider next that u ∈ V \ U and

F (u) =
1

2
‖v − u‖2.

F is clearly C∞, strictly convex and coercive. The projection û of v onto U solves the problem:

F (û) = inf
u∈U

F (u) = min
u∈U

F (u).

By Theorem 28-2, such an û exists and it is unique; it satisfies 〈∇F (û) , u− û〉 � 0, ∀u ∈ U .

Noticing that

∇F (u) = u− v,

we get

〈û− v, u− û〉 � 0, ∀u ∈ U ⇔ 〈v − û, u− û〉 � 0, ∀u ∈ U. �

Property 6 The application ΠU : V → U satisfies

1. v − ΠUv = 0 ⇔ v ∈ U

2. ‖ΠUv1 − ΠUv2‖ � ‖v1 − v2‖, ∀v1, v2 ∈ V .

(ΠU is uniformly continuous, Lipschitz)

3. ΠU linear ⇔ U is a sub-vector space. Then statement 2 reads (v − ΠUv)⊥u, ∀u ∈ U .

A typical constraint is U = {u ∈ Rn ; u[i] � 0, ∀i}
Then U is not a vector subspace, ΠU is nonlinear

CHAPTER 3. CONSTRAINED OPTIMIZATION 49

3.3 General methods

3.3.1 Gauss-Seidel method under Hyper-cube constraint

Consider the minimization of a coercive proper convex function F : Rn → R under a hyper-cube

constraint:

U = {u ∈ R
n : ai � u[i] � bi, 1 � i � n} with ai ∈ [−∞,∞[, bi ∈]−∞,∞], 1 � i � n. (3.3)

Iterations: ∀k ∈ N, ∀i = 1, . . . , n

F (uk+1[1], . . . , uk+1[i− 1], uk+1[i], uk[i+ 1], . . . , uk[n])

= inf
ai�ρ�bi

F (uk+1[1], . . . , uk+1[i− 1], ρ, uk[i+ 1], . . . , uk[n])

Theorem 30 If F is strongly convex and U is of the form (3.3), then (uk) converges to the unique û

such that F (û) = minu∈U F (u).

Remark 13 The method cannot be extended to a general U . E.g., consider F (u) = (u[1]2 + u[2]2)

and U = {u ∈ R2 : u[1] + u[2] � 2}, and initialize with u0[1] �= 1 or u0[2] �= 1.

The algorithm is blocked at the boundary of U

at a point different from the solution.

3.3.2 Gradient descent with projection and varying step-size

V—Hilbert space, U ⊂ V convex, closed, non empty, F : V → R is convex and differentiable in V . Here

again, ‖u‖ =√〈u, u〉, ∀u ∈ V .
Motivation: û ∈ U and F (û) = inf

u∈U
F (u)

⇔ û ∈ U and ρ 〈∇F (û), u− û〉 � 0, ∀u ∈ U, ρ > 0 (the NSC for a minimum)

⇔ û ∈ U and 〈û− ρ∇F (û)− û, u− û〉 � 0, ∀u ∈ U, ρ > 0

⇔ û = ΠU

(
û− ρ∇F (û)), ρ > 0.

In words, û is the fixed point of the application

G(u) = ΠU

(
u− ρ∇F (u)), where ΠU is the projection operator onto U

Theorem 31 Let F : V → R be differentiable in V and U ⊂ V a nonempty convex and closed subset.

Suppose that ∃μ and ∃M such that 0 < μ < M , and

(i) 〈∇F (u)−∇F (v), u− v〉 � μ‖u− v‖2, ∀(u, v) ∈ V 2 (i.e. F is strongly convex);

(ii) ‖∇F (u)−∇F (v)‖ �M‖u− v‖, ∀(u, v) ∈ V 2

CHAPTER 3. CONSTRAINED OPTIMIZATION 50

For ΠU the projection operator onto U , consider

Gk(u)
def
= ΠU

(
u− ρk∇F (u)

)
where

μ

M2
− ζ � ρk � μ

M2
+ ζ, ∀k ∈ N (3.4)

and ζ ∈
]
0,

μ

M2

[
(fixed) (3.5)

uk+1 = Gk(uk), ∀k ∈ N. (3.6)

Then (uk)k∈N in (3.6) converges to the unique minimizer û of F and

‖uk+1 − û‖ � γk‖u0 − û‖, where γ =

√
ζ2M2 − μ2

M2
+ 1 < 1. (3.7)

Remark 14 If we fix ζ � 0, γ is nearly optimal but the range for ρk is decreased; and vice-versa, for

ζ � μ
M2 , the range for ρk is nearly maximal

]
0, 2μ

M2

[
but γ � 1.

Ideally, one would wish the largest range for ρk and the least value for γ...

Proof. By its strongly convexity, F admits a unique minimizer. Let u ∈ V and v ∈ V .

‖Gk(u)−Gk(v)‖2 = ‖ΠU

(
u− ρk∇F (u)

)−ΠU

(
v − ρk∇F (v)

)‖2
� ‖u− v − ρk

(∇F (u)−∇F (v))‖2
= ‖u− v‖2 − 2ρk 〈∇F (u)−∇F (v), u− v〉+ ρ2k‖∇F (u)−∇F (v)‖2
� ‖u− v‖2 − 2ρkμ‖u− v‖2 + ρ2kM

2‖u− v‖2
= (ρ2kM

2 − 2ρkμ+ 1) ‖u− v‖2
= f(ρk) ‖u− v‖2,

where f is convex and quadratic and reads as

f(ρ)
def
= ρ2M2 − 2ρμ+ 1.

Since 0 < μ < M , the discriminant of f is negative, 4μ2 − 4M2 < 0, hence

f(ρ) > 0, ∀ρ � 0.

Then
√
f(ρ) is real and positive. It is easy to check that ρ→√

f(ρ) is strictly convex on R+ when

0 < μ < M and that it admits a unique minimizer on R+.

More precisely:

f(ρ)

2μ/M2μ/M2(0, 0)

1 √
f(ρ)

ρ

•
√
f(0) =

√
f

(
2μ

M2

)
= 1

• argmin
ρ

√
f(ρ) =

μ

M2

• 0 <

√
f
(μ

M2

)
< 1

CHAPTER 3. CONSTRAINED OPTIMIZATION 51

For any ζ as given in (3.5), we check that√
f(

μ

M2
− ζ) =

√
f(

μ

M2
+ ζ) =

√
ζ2M2 − μ2

M2
+ 1 = γ,

where the last equality comes from (3.7). By (3.5) yet again,

ζ2M2 − μ2

M2
+ 1 <

μ2

M2
− μ2

M2
+ 1 � 1 ⇒ γ < 1.

Hence for any ρk as specified by (3.4)-(3.5)√
f(ρk) � γ < 1.

It follows that Gk is a contraction, ∀k ∈ N since ‖Gk(u) − Gk(v)‖ � γ‖u − v‖, γ < 1, for any

(u, v) ∈ V 2, hence Gk(û) = û for all k ∈ N. We can write down

‖uk+1 − û‖ = ‖Gk(uk)−Gk(û)‖ � γ‖uk − û‖ � · · · � γk‖u0 − û‖

where γ < 1 is given in (3.7). �

Remark 15 If U = V then ΠU = Id.

Remark 16 (About the Assumptions) If ∃∇2F then ∇2F 0 because F is strongly convex. Then

we have M = λmax(∇2F) � μ = λmin(∇2F) > 0. Note that most usually, M > μ.

Taking into account the structure of the problem can increase the convergence speed.

Constrained quadratic strictly convex problem: F (u) = 〈Bu, u〉 − 〈c, u〉, u ∈ Rn, B = BT ,

B 0 (hence λmin(B) > 0), U ⊂ R
n nonempty, closed and convex. Using that ∇F (u) = Bu − c,

iterations are

uk+1 = ΠU

(
uk − ρk(Buk − c)

)
, k ∈ N.

Since ∇2F (u) = B, ∀u ∈ Rn, Theorem 31 ensures convergence if

λmin(B)(
λmax(B)

)2 − ζ � ρk � λmin(B)(
λmax(B)

)2 + ζ, ζ ∈
]
0,

λmin(B)(
λmax(B)

)2
[

(3.8)

Drawback: λmin(B)/
(
λmax(B)

)2
can be very-very small.

For any u, v ∈ Rn,∥∥ΠU

(
u− ρk(Bu− c)

)− ΠU

(
v − ρk(Bv − c)

)∥∥
2
� ‖(u− v)− ρkB(u− v)‖2 � ‖Id− ρkB‖2 ‖u− v‖2.

Remind that for any square matrix B, if Bv = λi(B)v then (Id−B)v = v− λi(B)v = (1− λi(B))v.

Since Id− ρB, ρ > 0, is symmetric, its spectral radius is

f(ρ) = max
1�i�n

∣∣λi(Id− ρB)
∣∣ = max

{∣∣1− ρλmin(B)
∣∣ , ∣∣1− ρλmax(B)

∣∣}
We have f convex and

CHAPTER 3. CONSTRAINED OPTIMIZATION 52

• f(ρ) > 0 if λmin(B) < λmax(B);

• argmin
ρ
f(ρ) =

2

λmin(B) + λmax(B)
< 1

• f(0) = f

(
2

λmax(B)

)
= 1

Convergence is ensured if 0 < ρk <
2

λmax(B)
. This bound for ρk is much better than (3.8) that was

established in Theorem 31 in a more general case.

Remark 17 Difficulty : in general ΠU has no an explicit form. In such a case we can use a penal-

ization method, or another iterative method (see later sections).

3.3.3 Penalty (barrier) methods

Main idea : Replace the constrained minimization of F : Rn → R by an unconstrained problem.

Construct G : Rn → R continuous, convex, G(u) � 0, ∀u ∈ Rn and such that

G(u) = 0 ⇔ u ∈ U (3.9)

∀ω > 0 define

(Pω) Fω(u) = F (u) + ωG(u)
We will consider that ω → +∞.

Theorem 32 Let F be continuous, coercive and strictly convex, and U convex, defined by (3.9). Then

(1) ∀ω > 0, ∃uω unique such that Fω(uω) = inf
u∈Rn

Fω(u) ;

(2) lim
ω→+∞

uω = û where û is the unique solution of F (û) = inf
u∈U

F (u).

The proof can be found e.g. in [50, p.205]. The idea is very intuitive, not always good.

Convex programming Problem : U given by (1.2), i.e.

U = {u ∈ R
n | hi(u) � 0, 1 � i � q}

with hi : R
n → R, i = 1, . . . , q convex functions. Consider

G(u) =

q∑
i=1

gi(u),

gi(u) = max{hi(u), 0}

G clearly satisfies the requirements for continuity, convexity and (3.9). Let us check the last point

(3.9). If for all 1 � i � q we have hi(u) � 0, i.e. u ∈ U , then gi(u) = 0 for all 1 � i � q and thus

G(u) = 0. Note that G(u) � 0 for all u ∈ Rn. If u �∈ U , there is at least one index i such that

hi(u) > 0 which leads to gi(u) > 0 and G(u) > 0. Thus G(u) = 0 shows that u ∈ U .

CHAPTER 3. CONSTRAINED OPTIMIZATION 53

Comments Note that G is not necessarily differentiable.

Difficulty : construct “good” functions G (differentiable, convex). This constitutes the main

limitation of penalization methods.

3.4 Equality constraints

The main idea is to get rid off the constraints.

3.4.1 Lagrange multipliers

Here V1, V2 and Y are n.v.s. Optimality conditions are based on the Implicit functions theorem.

Theorem 33 (Implicit functions theorem) Let G : O ⊂ V1 × V2 → Y be C1 in O, where V2 and Y are

complete (i.e. Banach spaces). Suppose that û = (û1, û2) ∈ O and v ∈ Y are such that G(û1, û2) = v

and D2 G(û1, û2) ∈ Isom(V2 ; Y).

Then ∃O1 ⊂ V1, ∃O2 ⊂ V2 such that (û1, û2) ∈ O1 × O2 ⊂ O and there is a unique continuous

function g : O1 ⊂ V1 → V2, called an implicit function, such that

{(u1, u2) ∈ O1 ×O2 : G(u1, u2) = v} = {(u1, u2) ∈ O1 × V2 : u2 = g(u1)}.

Moreover g is differentiable at û1 and

Dg(û1) = − (D2G(û1, û2))−1D1G(û1, û2). (3.10)

Proof. See [21, p. 30], [20, p. 176]

Let us prove (3.10). Note that g is differentiable at û1:

G(u1, g(u1))− v = 0 ∈ Y, ∀u1 ∈ O1.

Since O1 is open, differentiation of both sides of this identity w.r.t. u1 = û1 yields

D1G(û1, g(û1)) +D2G(û1, g(û1))Dg(û1) = 0.

Example 3 V1 = V2 = R, G(u1, u2) = u21 − u2 = 0 = v ∈ Y = R. Then D2G(u) = −1 ∈ Isom(R,R)

and u2 = g(u1) = u21. Thus G(u1, u2) = 0 = G(u1, g(u1)), ∀u1 ∈ R.

Theorem 34 (Necessary condition for a constrained minimum) Let O ⊂ V = V1 × V2 be open where V1

and V2 are real n.v.s., and V2 be complete. Consider that G : O → V2 is C1 and set

U = {u ∈ O : G(u1, u2) = 0}.

Suppose that F : V → R is differentiable at û ∈ U and that D2G(û) ∈ Isom(V2, V2). If F has a

relative minimum w.r.t. U at û, then there is an application λ(û) ∈ L(V2,R) such that

DF (û) + λ(û)DG(û) = 0. (3.11)

CHAPTER 3. CONSTRAINED OPTIMIZATION 54

Proof. By the Implicit Functions Theorem 33, there are two open sets O1 ∈ V1 and O2 ∈ V2, with

û ∈ O1 ×O2 ⊂ O, and a continuous application g : O1 → O2 such that

(O1 ×O2) ∩ U = {(u1, u2) ∈ (O1 × V2) | u2 = g(u1)}

and

Dg(û1) = −(D2G(û))−1D1G(û). (3.12)

Define

F(u1)
def
= F

(
u1, g(u1)

)
, ∀u1 ∈ O1.

Then F(û1) = inf
u1∈O1

F(u1) entails F (û) = inf
u∈U

F (u) for û =
(
û1, g(û1)

)
. Since O1 is open, û1 satisfies

0 = DF(û1) = D1F
(
û1, g(û1)

)
+D2F

(
û1, g(û1)

)
Dg(û1)

= D1F
(
û1, g(û1)

)−D2F
(
û1, g(û1)

)
(D2G(û))−1D1G(û),

where the last equality comes from (3.12). Using that û =
(
û1, g(û1)

)
, we can hence write down

D1F (û) = D2F (û) (D2G(û))−1D1G(û)
D2F (û) = D2F (û) (D2G(û))−1D2G(û)

where the second equality is an obvious identity. We have

DF (û) + λ(û)DG(û) = 0

as claimed in (3.11) by setting

λ(û) = −D2F (û) (D2G(û))−1.

Since D2F (û) ∈ L(V2 ;R) and (D2G(û))−1 ∈ L(V2 ;V2), we have λ(û) ∈ L(V2 ;R). �

The most usual case arising in practice is considered next.

Theorem 35 Let O ⊂ Rn be open and gi : O → R, 1 � i � p be C1-functions in O.

U = {u ∈ O : gi(u) = 0, 1 � i � p} ⊂ O

Let Dgi(û) ∈ L(Rn,R), 1 � i � p be linearly independent and F : O → R differentiable at û. If

û ∈ U solves the problem inf
u∈U

F (u) then there exist p real numbers λi(û) ∈ R, 1 � i � p, uniquely

defined, such that

DF (û) +

p∑
i=1

λi(û) Dgi(û) = 0. (3.13)

λi(û), 1 � i � p are called Lagrange multipliers. The constraint set U as also known as feasible set.

The problem considered in the last theorem is a particular case of Theorem 34.

Proof. Put G def
= (g1, · · · , gp). Then

DG(û) =
⎡⎣ Dg1(û)

· · ·
Dgp(û)

⎤⎦ =

⎡⎢⎣
∂g1
∂û1

· · · ∂g1
∂ûp

· · · ∂g1
∂ûn

· · ·
∂gp
∂û1

· · · ∂gp
∂ûp

· · · ∂gp
∂ûn

⎤⎥⎦

CHAPTER 3. CONSTRAINED OPTIMIZATION 55

Since Dgi(û) are linearly independent, rank(DG(û)) = p � n, so we can assume that the first p× p

submatrix of DG(û) is invertible. If p = n, û is uniquely determined by G. Consider next that p < n.

Let {e1, · · · en} be the canonical basis of Rn. Define

V1
def
= span{ep+1, · · · , en}

V2
def
= span{e1, · · · , ep}

Redefine G in the following way:

G : V1 × V2 → V2

(u1, u2) → G(u) =
p∑

i=1

gi(u)ei.

Since the first p × p submatrix of DG(û) is invertible, D2G(û) ∈ Isom(V2, V2). Noticing that the

elements of V2 belong to Rp, Theorem 34 shows that there exists λ(û) ∈ Rp (i.e. real numbers λi(û),

1 � i � p) such that

DF (û) + λ(û)DG(u) = 0 ⇔ DF (û) +

p∑
i=1

λi(û)Dgi(û) = 0

The uniqueness of λ(û) is due to the fact that rank(DG(û)) = p. �

Remark 18 Since F : O ∈ Rn → R and gi : O ∈ Rn → R, 1 � i � p, we can identify differentials

with gradients using the scalar product on R�, � ∈ {p, n}. By introducing the Lagrangian function

L(u, λ) := F (u) +

p∑
i=1

λi gi(u)

(3.13) can be rewritten as ∇uL(u, λ) = 0, i.e.,

∇uL(u, λ) = ∇F (û) +
p∑

i=1

λi ∇gi(u) = 0 n equations (3.14)

The numbers λi, i ∈ {1, 2, · · · , p} are called Lagrange multipliers. They obey ∇λL(u, λ) = 0, i.e.,

∇λi
L(u, λ) = gi(u) = 0, 1 � i � p p equations (3.15)

We have n+ p unknowns, û ∈ Rn and λ ∈ Rp, and we have a system of n+ p (nonlinear) equations.

(3.14) an (3.15) are known as the Karush-Kuhn-Tucker (KKT) conditions for equality constraints.

They have been found by Louis Lagrange in 18th century.

These are necessary conditions. Complete the resolution of the problem by analyzing if û indeed

is a minimizer. In particular, if F is convex and continuous, and if U is convex and {∇gi} linearly

independent on V , then (3.14)-(3.15) yields the minimum of F .

Example 4 F (u) = u1 + u2 and U = {u ∈ R
2 | h(u) = u21 + u22 − 2 = 0}. Then û = (−1,−1).

CHAPTER 3. CONSTRAINED OPTIMIZATION 56

3.4.2 Application to linear systems

Quadratic function under affine constraints

For B ∈ Rn×n, B = BT , B 0, and c ∈ Rn, consider

minimize F (u) =
1

2
〈Bu, u〉 − 〈c, u〉 subject to u ∈ U

where U = {u ∈ R
n : Au = v} with A ∈ R

p×n, rankA = p < n. (3.16)

(3.14) yields
Bu+ ATλ = c

Au = v
(3.17)

Projection onto U in (3.16) The projection û = ΠU(w) of w ∈ (Rn \ U) onto U satisfies

û = argmin
u∈U

1

2
‖u− w‖2 = argmin

u∈U

(
1

2
〈u, u〉 − 〈w, u〉

)
.

(3.17) yields
u+ ATλ = w
Au = v

Using that AAT is invertible (see (3.16))

Au+ AATλ = Aw ⇒ λ = (AAT)−1A(w − u) = (AAT)−1(Aw − v)

Then

u+ ATλ = u+ AT (AAT)−1(Aw − v) = w

We deduce

û = ΠU(w) =
(
I − AT (AAT)−1A

)
w + AT (AAT)−1v (3.18)

• If p = 1, then A ∈ R
1×n is a row-vector, v ∈ R and AAT = ‖A‖22.

• If v = 0, then U = kerA is a vector sub-space and ΠU is linear

ΠU = I −AT (AAT)−1A (3.19)

“Solving” a linear system: Au = v ∈ R
m where u ∈ R

n

• rankA = m � n : F (u) = ‖u‖2, U = {u ∈ Rn : Au = v}
û = AT (AAT)−1v (the minimum norm solution). Compare with (3.19).

• rankA = n � m : F (u) = ‖Au− v‖2, U = Rn

û = (ATA)−1ATv (the least-squares (LS) solution)

These solutions are usually unstable—remind the LS solution on p. 8 and Example ??.

CHAPTER 3. CONSTRAINED OPTIMIZATION 57

Generalized inverse, pseudoinverse — if A has linearly dependent rows or columns

SVD (singular value decomposition) of A ∈ Rm×n :

A = Q1ΣQ2

• Q1Q
T
1 = QT

1Q1 = Im, Q2Q
T
2 = QT

2Q2 = In (orthonormal matrices)

• the columns of Q1 = eigenvectors of AAT

• the columns of Q2 = eigenvectors of de ATA

• Σ, m × n, diagonal, Σ[i, i], 1 � i � r singular values =
√
eigenvalues �= 0 of AAT and ATA,

r = rankA

The pseudo-inverse A† = QT
2Σ

†QT
1 where Σ†[i, j] =

⎧⎨⎩
1

Σ[i, i]
if i = j and 1 � i � r

0 else

It can be shown that this A† corresponds to

U =

{
u ∈ R

n : ‖Au− v‖ = inf
w∈Rn

‖Aw − v‖
}

û : ‖û‖ = inf
u∈U

‖u‖ ⇒ û = A†v

See [26, 51].

The SVD plays a key role in many fields – tool for analysis and computation..

Remark 19 Generalized inverse—in a similar way when A : V1 → V2 is compact and V1, V2 are

Hilbert spaces. (see e.g. [51].)

3.4.3 Inexact quadratic penalty for equality constraints

Consider the constraint minimisation problem

minimize F (u) subject to u ∈ U := {u ∈ O : gi(u) = 0, 1 � i � p} . (3.20)

Following the penalty approach, one choose G in (3.9)

G(u) =
p∑

i=1

g2i (u). (3.21)

By the penalty approach (subsection 3.3.3) and Theorem 32, one could track the minimizer of

Fω(u) := F (u) +
ω

2

p∑
i=1

g2i (u) for ω →∞ (3.22)

A more subtle approach, linking penalty and Lagrangian multipliers, is stated next.

Theorem 36 Let {τk} be a sequence of tolerance parameters satisfying τk → 0 and let {ωk} → +∞.

For any k, find an approximate minimizer uk of Fωk
(·) satisfying ‖∇uFωk

(uk)‖ � τk. Let û be a limit

point of the sequence {uk}. Then û is a stationary point of G in (3.21). Furthermore, if {∇gi(û)}pi=1

CHAPTER 3. CONSTRAINED OPTIMIZATION 58

are linearly independent, then û ∈ U and û is a KKT point for problem (3.20) where for any infinite

subsequence kj such that limkj→∞ ukj = û, the vector λ given by

lim
kj→∞

ωkjgi(ukj) = λi 1 � i � p (3.23)

satisfies the KKT conditions (3.14)-(3.15) for the constrained problem (3.20).

Proof. By differentiating Fωk
in (3.22) we obtain

∇Fωk
(uk) = ∇F (uk) + ωk

p∑
i=1

gi(uk)∇gi(uk), (3.24)

so from the termination criterion given by τk, we have that

‖∇Fωk
(uk)‖ =

∥∥∥∥∥∇F (uk) + ωk

p∑
i=1

gi(uk)∇gi(uk)
∥∥∥∥∥ � τk (3.25)

By rearranging this expression and using the inequality ‖a‖ − ‖b‖ � ‖a+ b‖, we obtain∥∥∥∥∥
p∑

i=1

gi(uk)∇gi(uk)
∥∥∥∥∥ � 1

ωk

(τk + ‖∇F (uk)‖)

Let û be a limit point of the sequence of iterates. Then there is a subsequence kj such that

lim
kj→∞

ukj = û. Taking such a limit, the right-hand-side approaches zero. Thus,

p∑
i=1

gi(û)∇gi(û) = 0. (3.26)

Hence û is a stationary point of the function G in (3.21).

Consider next that the constraint gradients {∇gi(û)}pi=1 are linearly independent at û. Then

(3.26) shows that gi(û) = 0, 1 � k � p, i.e., û ∈ U . Hence the second KKT condition in (3.15) is

satisfied. We want to check the first KKT condition (3.14) as well, and to prove the limit (3.23).

Let G(u) denote the matrix of constraint gradients (the Jacobian), that is

G(u)T = [∇gi(u)]pi=1

and let λk denote the vector [ωkgi(uk)]
p
i=1. By (3.24) and (3.25) one has

G(uk)
Tλk = ∇Fωk

(uk)−∇F (uk), ‖∇Fωk
(uk)‖ � τk. (3.27)

Taking the limits for a subsequence kj with lim
kj→∞

ukj = û we conclude that

∇F (û) +G(û)Tλ = 0

so that λ as defined in the theorem satisfies also the first KKT condition (3.14). �

The additional condition τk → 0 for inexact solving the intermediate steps of the penalty method

improves the convergence. The quantities ωkgi(uk) are estimates at iteration k of the Lagrange

parameter λ. This fact underlines the “Augmented Lagrangian Methods” (ALM) considered next.

CHAPTER 3. CONSTRAINED OPTIMIZATION 59

3.4.4 Augmented Lagrangian method

These are a class of algorithms for solving constrained optimization problems. An additional term

is designed to mimic a Lagrange multiplier based on Theorem 36. The main advantage is that

penalization does not need to go to infinity and that thus, ill-conditioning is avoided.

Let λ denote the true Lagrange parameter. From Theorem 36 we have gi(uk) ≈ − 1
ωk
(λi−λki), ∀ i.

The augmented Lagrangian function LA includes this explicit estimate of the Lagrange multipliers

λ in the objective.

LA(u, λ;ω) = F (u) +

p∑
i=1

λigi(u) +
ω

2

p∑
i=1

(
gi(u)

)2
(3.28)

LA is a combination of the Lagrangian function and the quadratic penalty function. The algorithms

fixes the penalty parameter ωk > 0 and at the kth iteration fixes λ at the current iterate λk and

performs minimization of LA(u, λ) with respect to u.

Augmented Lagrangian Algorithm – Equality Constraints [10]

Given ω0 > 0, τ > 0, starting points λ0 and u0

for k = 0, 1, 2, . . .

- Find an approximate minimizer uk of LA(u, λ
k;ωk) starting at uSk

and terminate when ‖∇uLA(u, λ
k;ωk)‖ � τk;

- If convergence is satisfied - stop;

- Otherwise

Update λk+1 = λk + ωkg(uk);

Choose ωk+1 � ωk;

Set starting point for the next iteration to uSk+1 = uk;

Select tolerance τk+1

end (for).

Theorem 37 ([10, p. 517]) Let û be a minimizer of (3.20) such that {∇gi(û)}pi=1 are linearly inde-

pendent. Then there is a threshold value ω̄ such that for all ω > ω̄ û is a strict local minimizer of

LA(u, λ;ω).

Convergence of ALM can be assured without increasing ε indefinitely. Ill conditioning is therefore

less of a problem than in penalty methods.

3.5 Inequality constraints

Set of constraints: U ⊂ V , U �= ∅, where V is a real n.v.s.

3.5.1 Abstract optimality conditions

Definition 17 Let V be a n.v.s., U ⊂ V , �= ∅. The cone of all feasible directions at u ∈ U reads

C(u) = {0} ∪
{
v ∈ V \ {0} : ∃(uk)k�0, u �= uk ∈ U, ∀k � 0, lim

k→∞
uk = u, lim

k→∞
uk − u

‖uk − u‖ =
v

‖v‖
}

CHAPTER 3. CONSTRAINED OPTIMIZATION 60

C(u) is a cone with vertex 0, not necessarily convex. C(u) is the closure of the set of all directions

such that starting from u, we can reach another point v ∈ U .

Lemma 3 ([5]) C(u) is closed, ∀u ∈ U .

Lemma 4 If U is convex then U ⊂ u+ C(u), for all u ∈ U .

Theorem 38 (Necessary condition for constrained minimum) V real n.v.s., U ⊂ V , U �= ∅ (arbitrary)

and F : O(U)→ R differentiable at û ∈ U . If F admits at û ∈ U a constrained minimum, then

〈∇F (û), u− û〉 � 0, ∀u ∈ {û+ C(û)}.

Proof. —see e.g. [5].

From Theorem 28, p. 47, if U is convex, then 〈∇F (û), u− û〉 � 0, ∀u ∈ U .

3.5.2 Farkas-Minkowski (F-M) theorem

Theorem 39 Let V be a Hilbert space, I—a finite set of indexes, ai ∈ V, ∀i ∈ I and b ∈ V . Then

1. {u ∈ V : 〈ai, u〉 � 0, ∀i ∈ I} ⊂ {u ∈ V : 〈b, u〉 � 0}

if and only if

2. ∃λi � 0, ∀i ∈ I | b =
∑
i∈I

λiai

If {ai, i ∈ I} are linearly independent,

then {λi, i ∈ I} are determined in a unique way.

The proof is given in Appendix 7.8 on p. 117

Remark 20 Link with : g1, . . . , gp linearly independent and [〈gi, u〉 = 0, ∀i⇒ 〈f, u〉 = 0] then ∃λ1, . . . , λp
such that f =

∑p
i=1 λigi.

CHAPTER 3. CONSTRAINED OPTIMIZATION 61

3.5.3 Constraint qualification

U = {u ∈ O : hi(u) � 0, 1 � i � q} where O ⊂ V (open), V is a n.v.s., hi : V → R, 1 � i �
q, q ∈ N (finite). We always assume that U �= ∅.

How to describe C(u) in an easier way?

Definition 18 The set of active constraints at u ∈ U is defined by:

I(u) = {1 � i � q : hi(u) = 0}

Since hi(u) � 0, ∀u ∈ U , the figures on p. 59 (below Definition 17) suggest that in some cases,

if i ∈ I(u), then hi reaches at u its maximum w.r.t. U , hence 〈∇hi(u), v − u〉 � 0 for some v ∈ U .

(We say “some” because U can be nonconvex.) This observation underlies the definition of Q:

Q(u) = {v ∈ V : 〈∇hi(u), v〉 � 0, ∀i ∈ I(u)} (convex cone) (3.29)

This cone is much more practical that C, even though it still depends on u. The same figures

show that in some cases Q(u) = C(u). Definition 19 below is constructed in such a way so that

these cones are equal in the most important cases.

Definition 19 The constraints are qualified at u ∈ U if one of the following conditions hold:

• ∃w ∈ V \ {0} such that ∀i ∈ I(u), 〈∇hi(u), w〉 � 0, where the inequality is strict if hi is

not affine;

• hi is affine, ∀i ∈ I(u).

Naturally, Q(u) = V if I(u) = ∅.

Lemma 5 ([5]) Let hi for i ∈ I(u) be differentiable at u ⇒ C(u) ⊂ Q(u)

Theorem 40 ([5]) Assume that

(i) hi differentiable at u, ∀i ∈ I(u)
(ii) hi continuous at u, ∀i ∈ {1, · · · , q} \ I(u)
(iii) Constraints are qualified at u

⇒ C(u) = Q(u)

Example 5 U = {v ∈ Rn : 〈ai, v〉 � bi, 1 � i � q} �= ∅ (then the constraints are qualified ∀v ∈ U)

and we have C(u) = Q(u) = {v ∈ R
n : 〈ai, v〉 � 0, ∀i ∈ I(u)}

3.5.4 Kuhn & Tucker Relations

Putting together all previous results leads to one of the most important statements in Optimization

theorey—the Kuhn-Tucker (KT) relations, stated below.

CHAPTER 3. CONSTRAINED OPTIMIZATION 62

Theorem 41 (Necessary conditions for a minimum) V—Hilbert space, O ⊂ V open, hi : O → R, ∀i

U = {u ∈ O : hi(u) � 0, 1 � i � q} (3.30)

(i) hi differentiable at û, ∀i ∈ I(û)
(ii) hi continuous at û, ∀i ∈ {1, · · · , q} \ I(û)
(iii) Constraints are qualified at û ∈ U
(iv) F : O → R differentiable at û
(v) F has a relative minimum at û w.r.t. U

Then

∃λi(û) � 0, 1 � i � q such that ∇F (û) +
q∑

i=1

λi(û)∇hi(û) = 0,

q∑
i=1

λi(û)hi(û) = 0 . (3.31)

λi(û) are called Generalized Lagrange Multipliers

Proof. Assumptions (i), (ii) and (iii) are as in Theorem 40, hence

C(û) = Q(û).

By Theorem 38 (p. 60), or equivalently by Theorem 28 (p. 47)—since Q(û) is convex,

〈∇F (û), v〉 � 0, ∀v def
= u− û ∈ Q(û) . (3.32)

The definition of Q at û—see (3.29) (p. 61)—can be rewritten as

Q(û) = {v ∈ V : −〈∇hi(û), v〉 � 0, ∀i ∈ I(û)}.

Combining this with (3.32), we can write down:

Q(û) =
{
v ∈ V : −〈∇hi(û), v〉 � 0, ∀i ∈ I(û)} ⊂ {

v ∈ V : 〈∇F (û), v〉 � 0
}
.

By the F-M Theorem 39 (p. 60),

∃λi � 0, i ∈ I(û) such that ∇F (û) = −
∑
i∈I(û)

λi(û)∇hi(û). (3.33)

From the definition of I(û), we see that
∑
i∈I(û)

λi(û)hi(û) = 0. Fixing λi(û) = 0 whenever i ∈ I \ I(û)

leads to the last equation in (3.31). �

Remarks

• λi(û) � 0, i ∈ I(û) are defined in a unique way if and only if the set {∇hi(û), i ∈ I(û)} is

linearly independent (recall the Farkas-Minkowski lemma).

• The KT relation (3.31) depend on û—difficult to exploit directly.

• (3.31) yields a system of (often nonlinear) equations and inequations—not easy to solve.

CHAPTER 3. CONSTRAINED OPTIMIZATION 63

3.6 Convex inequality constraint problems

3.6.1 Adaptation of previous results

Lemma 6 If O is convex and hi : O ⊂ V → R, 1 � i � q are convex ⇒
U in (3.30) (namely U = {u ∈ O : hi(u) � 0, 1 � i � q}) is convex.

Proof. Straightforward (apply the basic definition for convexity). �

Definition 20 Convex constraints hi : O ⊂ V → R, 1 � i � q are qualified if U �= ∅ and if

• Either ∃w ∈ O such that hi(w) � 0, ∀i = 1, . . . , q and hi(w) < 0 if hi is not affine.

• Or hi, 1 � i � q, are affine.

Emphasize that these conditions are independent of û, hence they are much easier to use.

Example 6 U = {v ∈ Rn | 〈ai, v〉 � bi, 1 � i � q} �= ∅.

For u ∈ U the set of active constraints 〈ai, u〉 = bi

has a geometric representation as seen next.

Theorem 42 (Necessary and sufficient conditions for a minimum on U) Let V be a Hilbert space, O ⊂
V (open) and U ⊃ O convex. Suppose û ∈ U and that

(i) F : O ⊂ V → R and hi : O ⊂ V → R, 1 � i � q are differentiable at û;

(ii) hi : V → R, 1 � i � q, are convex;

(iii) Convex constraints qualification holds (Definition 20).

Then we have the following statements:

1. If F admits at û ∈ U a relative minimum w.r.t. U , then

∃ {λi(û) ∈ R+ : 1 � i � q} such that

∇F (û) +
q∑

i=1

λi(û)∇hi(û) = 0 and (3.34)

q∑
i=1

λi(û)hi(û) = 0 . (3.35)

2. If F is convex on U and (3.34)-(3.35) holds then F has at û a constrained minimum w.r.t. U .

Note that as before, I := {i : hi(û) = 0.

Proof. To prove 1, we have to show that if the constraints are qualified in the convex sense (Definition

20) then they are qualified in the general sense (Definition 19, p. 61), for any u ∈ U , which will

allows us to apply the KT Theorem 41.

To prove statement 2, we have to check that F (û) � F (u), ∀u ∈ U .
The details are outlined in Appendix on p. 119.

If λi(û) ∈ R
q
+ were known, then we would have and unconstrained minimization problem.

CHAPTER 3. CONSTRAINED OPTIMIZATION 64

Example 7 U = {u ∈ Rn : Au � b ∈ Rq}: the constraints are qualified if and only if U non-empty.

F convex. The necessary and sufficient conditions for F to have a constrained minimum at

û ∈ U : ∃λ ∈ R
q
+ such that ∇F (û) + ATλ = 0 with λi = 0 if 〈ai, û〉 − bi < 0.

3.6.2 Lagrangian Duality

V,W any subsets

Lemma 7 For any L : V ×W → R, ∀u ∈ V and ∀λ ∈ W we have:

sup
λ∈W

inf
u∈V

L(u, λ) � inf
u∈V

sup
λ∈W

L(u, λ)

Proof. Take u ∈ V , λ ∈ W arbitrary.

inf
u∈V

L(u, λ) � L(u, λ) � sup
λ∈W

L(u, λ), ∀u ∈ V

inf
u∈V

L(u, λ) � inf
u∈V

sup
λ∈W

L(u, λ)
def
= K

inf
u∈V

L(u, λ) � K, ∀λ ∈ W ⇒ sup
λ∈W

inf
u∈V

L(u, λ) � K = inf
u∈V

sup
λ∈W

L(u, λ)

The proof is complete. �

Definition 21 Saddle point of L : V ×W → R at (û, λ̂) : sup
λ∈W

L(û, λ) = L(û, λ̂) = inf
u∈V

L(u, λ̂)

In our context: W—the space of Generalized Lagrange Multipliers

L has a saddle point at (0, 0).

Theorem 43 Let (û, λ̂) be a saddle-point for L : V ×W → R. Then

sup
λ∈W

inf
u∈V

L(u, λ) = L(û, λ̂) = inf
u∈V

sup
λ∈W

L(u, λ).

Proof. One has inf
u∈V

(
sup
λ∈W

L(u, λ)
)
� sup

λ∈W
L(û, λ)

Def.Saddle Pt.
= inf

u∈V
L(u, λ̂) � sup

λ∈W
inf
u∈V

L(u, λ).

Compare with Lemma 7 (p. 64) to conclude. �

For the reminder:

CHAPTER 3. CONSTRAINED OPTIMIZATION 65

(P) find û such that F (û) = min
u∈U

F (u) where U = {u : hi(u) � 0, 1 � i � q}

The Lagrangian associated to (P): L(u, λ) = F (u) +

q∑
i=1

λi hi(u)

Theorem 44 Let F : V → R and hi : V → R, 1 � i � q, where V is a Hilbert space.

1. (û, λ̂) ∈ V × R
q
+ is a saddle-point of L ⇒ û ∈ U solves (P)

2. Let û ∈ U solve (P). Suppose also that

⎧⎨⎩
− F and hi, 1 � i � q are differentiable at û
− F and hi, 1 � i � q are convex
− constraints are qualified (convex sense)

⇒ ∃λ̂ ∈ R
q
+ such that (û, λ̂) is a saddle point of L

Proof. 1). By L(û, λ) � L(û, λ̂), ∀λ ∈ R
q
+,

L(û, λ)− L(û, λ̂) � 0, ∀λ ∈ R
q
+.

By the definition of L the latter reads

F (û) +

q∑
i=1

λihi(û)− F (û)−
q∑

i=1

λ̂ihi(û) � 0, ∀λ ∈ R
q
+

⇔
q∑

i=1

(
λi − λ̂i

)
hi(û) � 0, ∀λ ∈ R

q
+. (3.36)

Since λ̂ ∈ R
q
+, for any i ∈ {1, · · · , q} apply (3.36) with

λi →∞, λj = λ̂j , j �= i ⇒ hi(û) � 0.

Then hi(û) � 0, 1 � i � q, hence û ∈ U.

• Let λi = 0, 1 � i � q
(3.36), û∈U

=⇒
q∑

i=1

λ̂ihi(û) � 0

•
[
hi(û) � 0 and λ̂i � 0

]
, 1 � i � q ⇒

q∑
i=1

λ̂ihi(û) � 0

⇒
q∑

i=1

λ̂ihi(û) = 0.

Using that L(û, λ̂) � L(u, λ̂), ∀u ∈ U

F (û) = F (û) +

q∑
i=1

λ̂ihi(û) = L(û, λ̂) � L(u, λ̂)

= F (u) +

q∑
i=1

λ̂ihi(u) � F (u), ∀u ∈ U (remind λ̂ihi(u) � 0, ∀u ∈ U)

CHAPTER 3. CONSTRAINED OPTIMIZATION 66

2). Let û solve (P). By KT theorem (see (3.34)-(3.35), p. 63), ∃ λ̂ ∈ R
q
+ such that

∇F (û) +
q∑

i=1

λ̂i∇hi(û) = 0 and

q∑
i=1

λ̂ihi(û) = 0︸ ︷︷ ︸ . (3.37)

We have to check that (û, λ̂) is a saddle point of L.

∀λ ∈ R
q
+, L(û, λ) = F (û) +

q∑
i=1

λihi(û)�F (û) = F (û) +

q∑
i=1

λ̂ihi(û)︸ ︷︷ ︸ = L(û, λ̂).

u→ F (u) +

q∑
i=1

λ̂ihi(u) = L(u, λ̂) is convex and reaches its minimum at û. Hence

L(û, λ̂) = F (û) +

q∑
i=1

λ̂ihi(û)� L(u, λ̂) = F (u) +

q∑
i=1

λ̂ihi(u), ∀u ∈ U.

Hence (û, λ̂) is a saddle point of L. �

For λ ∈ R
q
+ (called the dual variable) we define uλ ∈ V (Hilbert space) and K : Rq

+ → R by:

(Pλ) uλ ∈ V | L(uλ, λ) = inf
u∈V

L(u, λ)

K(λ)
def
= L(uλ, λ). (3.38)

Dual Problem:

(P ∗) λ̂ ∈ R
q
+ | K(λ̂) = sup

λ∈Rq
+

K(λ)

Lemma 8 Assume that

(i) hi : V → R, i = 1, . . . , q, are continuous;

(ii) ∀λ ∈ R
q
+ (Pλ) admits a unique solution uλ;

(iii) λ→ uλ is continuous on R
q
+

Then K in (3.38) is differentiable and 〈∇K(λ), η〉 =
q∑

i=1

ηi hi(uλ), ∀η ∈ R
q.

The proof of this lemma is outlined in Appendix 7.9 on p. 119.

Theorem 45 Two “reciprocal” statements.

1. Assume that⎧⎪⎪⎨⎪⎪⎩
(i) hi : V → R, i = 1, . . . , q, are continuous;
(ii) ∀λ ∈ R

q
+ (Pλ) admits a unique solution uλ;

(iii) λ→ uλ is continuous on R
q
+;

(iv) λ̂ ∈ R
q
+ solves (P ∗)

⇒ uλ̂ solves (P)

CHAPTER 3. CONSTRAINED OPTIMIZATION 67

2. Assume that⎧⎪⎪⎨⎪⎪⎩
(i) (P) admits a solution û;
(ii) F : V → R and hi : V → R, 1 � i � q are convex;
(iii) F and hi, 1 � i � q, are differentiable at û;
(iv) (convex) constraints are qualified.

⇒ (P ∗) admits a solution

Proof. Statement 1. Let λ̂ solve (P ∗). Then

K(λ̂) = L(uλ̂, λ̂) = inf
u∈V

L(u, λ̂)

K is differentiable (Lemma 8 (p. 66)) and has at λ̂ a maximum w.r.t. Rq
+ (convex set), hence〈

∇K(λ̂), λ− λ̂
〉
�0, ∀λ ∈ R

q
+.

This, combined with Lemma 8, yields〈
∇K(λ̂), λ

〉
=

q∑
i=1

λihi(uλ̂) �
q∑

i=1

λ̂ihi(uλ̂) =
〈
∇K(λ̂), λ̂

〉
, ∀λ ∈ R

q
+.

⇒ L(uλ̂, λ)︸ ︷︷ ︸ = F (uλ̂) +

q∑
i=1

λihi(uλ̂) �︸︷︷︸F (uλ̂) + q∑
i=1

λ̂ihi(uλ̂) = L(uλ̂, λ̂)︸ ︷︷ ︸, ∀λ ∈ R
q
+︸ ︷︷ ︸ .

⇒ sup
λ∈Rq

+

L(uλ̂, λ) = L(uλ̂, λ̂).

Consequently (uλ̂, λ̂) is a saddle point of L. By Theorem 44-1 (p. 65), uλ̂ solves (P).

Statement 2. Using Theorem 44-2 (p. 65), ∃λ̂ ∈ R
q
+ such that (û, λ̂) is a saddle point of L.

L(û, λ̂) = inf
u∈V

L(u, λ̂) = sup
λ∈Rq

+

L(û, λ) ⇔ K(λ̂) = sup
λ∈Rq

+

L(û, λ).

The proof is complete. �

3.6.3 Uzawa’s Method

Compute λ̂ = a solution of (P ∗)

Maximization of K using gradient with projection:

λk+1 = Π+ (λk + ρ∇K(λk)) “+ρ > 0” because we maximize

(Π+λ)[i] = max{λ[i], 0}, 1 � i � q, ∀λ ∈ R
q

∇K(λk)[i] = hi(uλk
), 1 � i � q

uk
def
= uλk

= argmin
u∈V

L(u, λk)

Alternate Optimization (uk, λk) ∈ V × R
q
+. For k ∈ N

uk = arg inf
u∈V

{
F (u) +

q∑
i=1

λk[i] hi(u)

}
λk+1[i] = max {0, λk[i] + ρ hi(uk)} , 1 � i � q

CHAPTER 3. CONSTRAINED OPTIMIZATION 68

Theorem 46 Assume that

(i) F : Rn → R is strongly convex with constant μ > 0

(ii) U = {u ∈ Rn : Au � b} �= ∅, A ∈ Rq×n, b ∈ Rq

(iii) 0 < ρ <
2μ

‖A‖22
Then

lim
k→∞

uk = û (the unique solution of (P))

If moreover rankA = q ⇒ lim
k→∞

λk = λ̂ (the unique solution of (P ∗))

Emphasize that (uk) converges even if (λk) diverges.

Remind: ‖A‖2 = supu
‖Au‖2
‖u‖2 , ‖.‖ Euclidean norm ‖u‖2 =

√〈u, u〉.
Proof. Denote by h : Rn → R

q the function

h(u)
def
= Au− b ∈ R

q. (3.39)

Then the constraint set U reads

U =
{
u ∈ R

n | (h(u))[i] � 0, 1 � i � q
}
.

For λ ∈ R
q
+,

L(u, λ) = F (u) + 〈λ, h(u)〉 = F (u) + 〈λ, Au− b〉
Then ∃λ̂ ∈ R

q
+ such that (û, λ̂) is a saddle point of L. The latter is defined by the system

∇F (û) + AT λ̂ = 0 (3.40)〈
h(û), λ− λ̂

〉
� 0, ∀λ ∈ R

q
+. (3.41)

In order to proceed, one looks how to apply the projection theorem (29, p. 48). For any ρ > 0,

(3.41) is equivalent to 〈
λ̂− (

λ̂+ ρ h(û)
)
, λ− λ̂

〉
� 0, ∀λ ∈ R

q
+.

By the Projection theorem, λ̂ is the projection of λ̂+ ρh(û) on R
q
+, i.e.

λ̂ = Π+

(
λ̂ + ρ h(û)

)
.

Iterates solve the system for k ∈ N:

∇F (uk) + ATλk = 0

λk+1 = Π+

(
λk + ρ h(uk)

)
.

∇F (uk)−∇F (û) + AT (λk − λ̂) = 0 ⇔ AT (λk − λ̂) = −(∇F (uk)−∇F (û)) (3.42)

CHAPTER 3. CONSTRAINED OPTIMIZATION 69

Convergence of uk:

‖λk+1 − λ̂‖22 = ‖Π+

(
λk + ρ h(uk)

)− Π+

(
λ̂+ ρ h(û)

)‖22
� ‖λk − λ̂+ ρA(uk − û)‖22 by (3.39): h(uk)− h(û) = A(uk − û)

= ‖λk − λ̂‖22 + 2ρ
〈
AT (λk − λ̂) , uk − û

〉
+ ρ2 ‖A(uk − û)‖22

= ‖λk − λ̂‖22 − 2ρ 〈∇F (uk)−∇F (û) , uk − û〉+ ρ2 ‖A(uk − û)‖22 (using (3.42))

� ‖λk − λ̂‖22 − ρ2μ ‖uk − û‖22 + ρ2 ‖A‖22 ‖uk − û‖22 (F is strongly convex, see (i))

= ‖λk − λ̂‖22 − ρ
(
2μ− ρ ‖A‖22

) ‖uk − û‖22

Note that by (iii), we have 2μ − ρ ‖A‖22 > 0. It follows that ‖λk+1 − λ̂‖2 � ‖λk − λ̂‖2, hence(
‖λk+1 − λ̂‖2

)
k∈N

is decreasing. Being bounded from below,
(
‖λk+1 − λ̂‖2

)
k∈N

converges (not

necessarily to 0), that is

lim
k→∞

(
‖λk+1 − λ̂‖22 − ‖λk − λ̂‖22

)
= 0

Then

0 � ρ
(
2μ− ρ ‖A‖22

) ‖uk − û‖2 � ‖λk − λ̂‖22 − ‖λk+1 − λ̂‖22 → 0 as k →∞.

Consequently, ‖uk − û‖2 → 0 as k →∞.

Possible convergence for λk

(λk)k�0 bounded (because ‖λk − λ̂‖ decreasing) ⇒ ∃ subsequence λk
′ → λ̂′ such that

∇F(û) + AT λ̂′ = lim
k′→∞

(
∇F(uk

′
) + ATλk

′
)

If rankA = q, then:[
Range(A) = Rq ⇔ kerAT = {0}

]
hence ∇F(û) + AT λ̂ = 0 has a unique solution. �

Remark 21 The method of Uzawa amounts to projected gradient maximization with respect to λ

(solving the dual problem).

3.7 Unifying framework and second-order conditions

Find û such that F (û) = inf
u∈U

F (u) where

U =

{
u ∈ R

n :
gi(u) = 0, 1 � i � p
hi(u) � 0, 1 � i � q

}
�= ∅

Associated Lagrangian:

L(u, λ, μ) = F (u) +

p∑
i=1

λi gi(u) +

q∑
i=1

μi hi(u), μi � 0, 1 � μ � q.

CHAPTER 3. CONSTRAINED OPTIMIZATION 70

3.7.1 Karush-Kuhn-Tucker Conditions (1st order)

Theorem 47 (KKT) Let û ∈ U be a solution (local) of inf
u∈U

F (u) and

1. F : Rn → R, {gi} and {hi} be C1 on O(û)

2. {∇gi(û), 1 � i � p & ∇hi(û), i ∈ I(û)} linearly independent

⇒ ∃ λ̂ ∈ Rp and μ̂ ∈ R
q
+ such that for

∇uL(û, λ̂, μ̂) = 0

1 � i � p : gi(û) = 0 and λ̂igi(û) = 0
1 � i � q : hi(û) � 0, μ̂i � 0 and μ̂ihi(û) = 0

Note that μ̂i > 0, ∀i ∈ I(û) - complementarity conditions (facilities for numerical methods). For

details – see [10, p. 331].

λ̂, μ̂ uniqueness by assumption 2.

3.7.2 Second order conditions

(To verify if û is a minimum indeed)

Critical cone Ĉ =

{
v ∈ C(û) : 〈∇gi(û), v〉 = 0, 1 � i � p

〈∇hi(û), v〉 = 0, if i ∈ I(û) and μ̂i > 0

}
Theorem 48 (CN) Suppose that F : Rn → R, {gi} and {hi} are C2 on O(û) and that all conditions

of Theorem 47 hold.

(CN) Then ∇2
uuL(û, λ̂, μ̂)(v, v) � 0, ∀v ∈ Ĉ.

(CS) If in addition ∇2
uuL(û, λ̂, μ̂)(v, v) 0, ∀v ∈ Ĉ \ {0} then û = strict (local) minimum of

infu∈U F (u).

Lagrangian convex (non-negative curvature) for all directions in Ĉ.

3.7.3 Standard forms (QP, LP)

A. Linear programming (LP) We are given: c ∈ Rn, A ∈ Rp×n, b ∈ Rp, C ∈ Rq×n and f ∈ Rq.

Assumption: the constraint set is nonempty and it is not reduced to one point.

min 〈c, u〉 subject to

{
Au− b = 0 ∈ Rp

Cu− f � 0 ∈ Rq

L(u, λ, μ) = 〈c, u〉+ 〈λ,Au− b〉 + 〈μ, Cu− f〉. Dual problem (KKT):

c + ATλ+ CTμ = 0

Au− b = 0

〈μ, Cu− f〉 = 0

μ � 0

CHAPTER 3. CONSTRAINED OPTIMIZATION 71

B. Quadratic programming (QP) We are given: B ∈ Rn×n with B 0 and BT = B, A ∈ Rp×n,

b ∈ Rp, C ∈ Rq×n and f ∈ Rq. The same assumption as in LP.

F (u) =
1

2
〈Bu, u〉 − 〈c, u〉 subject to

{
Au− b = 0 ∈ R

p

Cu− f � 0 ∈ Rq

There is exactly one solution.

Associated Lagrangian

L(u, λ, μ) = 1
2
〈Bu, u〉 − 〈c, u〉+ 〈λ,Au− b〉 + 〈μ, Cu− f〉. Dual problem (KKT), similarly.

N.B. Various algorithms to solve LP or QP can be found on the web. Otherwise, see next subsec-

tion.

3.7.4 Interior point methods

Constraints yield numerical difficulties. (When a constraint is satisfied, it can be difficult to realize

a good decrease at the next iteration.)

Interior point methods—main idea: satisfy constraints non-strictly. Constraints are satisfied

asymptotically. At each iteration one realizes an important step along the direction given by ∇2F

even though calculations are more tricky.

Actually interior point methods are considered among the most powerful methods in presence of

constraints (both linear or non-linear). See [10] (chapters 14 and 19) or [52] (chapter 1).

Sketch of example: minimize F : Rn → R subject to Au � b, b ∈ Rq.

Set y = b−Au then y � 0.

Notations: 1l = [1, . . . , 1]T , Y = diag(y1, . . . , yq), Λ = diag(λ1, . . . , λq)

We need to solve:

S(u, y, λ)
def
=

⎡⎣ ∇F (u) + ATλ
Au− b+ y

Y Λ1l

⎤⎦ = 0 subject to y � 0, λ � 0.

Note that Y Λ1l = 0 is the complementarity condition.

Duality measure: μ =
1

q
yTλ.

Central path defined using τ = σμ for σ ∈ [0, 1] fixed.

At each iteration, one derives a central path (uτ , yτ , λτ), τ > 0 by solving

S(uτ , yτ , λτ) =

⎡⎣ 0
0
τ1l

⎤⎦ , yτ > 0, λτ > 0

The step to a new point is done so that we remain in the interior of U . The complementary condition

is relaxed using τ .

The new direction in the variables u, λ, y is found using Newton’s method.

Often some variables can be solved explicitly and eliminated from S.

Interior point methods are polynomial time methods, and were definitely one of the main events

in optimization during the last decade, in particular, in linear programming.

CHAPTER 3. CONSTRAINED OPTIMIZATION 72

3.8 Nesterov’s approach

For V a Hilbert space, consider F : V → R convex and Lipschitz differentiable and U ⊂ V a closed

and convex domain. The problem is to solve

inf
u∈U

F (u) (3.43)

The Lipschitz constant of ∇F is denoted by �.

It is shown in 2004 by Nesterov, [53, Theorem 2.1.7], that no algorithm that uses only values F (uk)

and gradients ∇F (uk) has a better rate of convergence than O(1/k2) uniformly on all problems of the

form (3.43) where k is the iterations number. The convergence rate is in term of objective function,

that is |F (uk)− F (û)| � C/k2 where C is a constant proportional to �‖u0 − û‖2. This result alone
gives no information on the convergence rate of uk to û.

Nestorov’s algorithm [54].

• � is the Lipschitz constant of ∇F ;

• ‖ · ‖ is a norm and d is a convex function such that there exists σ > 0 satisfying

d(u) � σ

2
‖u0 − u‖2, ∀u ∈ U.

• For k = 0 set u0 ∈ U and x0 = 0.

For k � 1:

1. ηk = ∇F (uk)

2. zk = argmin
z∈U

(
〈ηk, z − uk〉+ �

2
‖z − uk‖2

)
3. xk = xk−1 +

k + 1

2
ηk

4. wk = argmin
w∈U

(
�d(w)

σ
+ 〈xk, w〉

)

5. uk+1 =
2

k + 3
wk +

k + 1

k + 3
zk

Proposition 3 ([54]) This algorithm satisfies

0 � F (uk)− F (û) � 4�d(û)

σ(k + 1)(k + 2)

The rationale: similarly to CG, one computes the direction at iteration k by using the information

in
{∇F (uk−1), · · · ,∇F (u0)

}
.

For details and applications in image processing, see [55] and [56].

Y. Nesterov proposes an accelerated algorithm in [57] where the estimation of the Lipschitz

constant is adaptive and improved.

Chapter 4

Non differentiable problems

Textbooks: [17, 18, 7, 8, 58, 4]. If not specified, V is a real Hilbert space.

4.1 Specificities

4.1.1 Examples

Non-differentiable functions frequently arise in practice.

Minimax problems

Minimize F (u) = maxi∈I ϕi(u) where I is a finite set of indexes and ∀i ∈ I, ϕi is convex and smooth.

Regularized objective functionals on Rn

The minimizers of functionals of the form F (u) = Ψ(u) + βΦ(u) (remind (1.5)-(1.6), p. 8, and the

explanations that follow) are very popular to define a restored image or signal. They are often

used in learning theory, in approximation and in many other fields. Nonsmooth F have attracted a

particular attention because of the specific properties of their solutions.

• Non-differentiable regularization term

Φ(u) =
∑
i

ϕ(‖Diu‖), with ϕ′(0+) > 0

Note that ϕ′(0+) > 0 entails that Φ is nonsmooth.

– For ϕ(t) = t and Di the discrete approximation of the gradient of u at i, along with

‖.‖ = ‖.‖2 = Total Variation (TV) regularization [59];

For ϕ(t) = t and Di ∈ R
1×n = median pixel regularization (approximate TV) [60];

– Other non-differentiable (nonconvex) potential functions ϕ:

∗ ϕ(t) =
t

α+ t
, see [37, 25] :

∗ ϕ(t) = tα, α ∈]0, 1[
– If u = the coefficients of the decomposition of the image in a wavelet basis or a frame

and Di = ei, ∀i, then û = shrinkage estimation of the coefficients [61, 62, 63, 64]). See

Examples 8 (p. 74) and 8 (p. 91).

73

CHAPTER 4. NON DIFFERENTIABLE PROBLEMS 74

• Non-differentiable data-fitting

Since 2002, very popular in imaging science [65, 66, 67, 68, 69].

F (u) = ‖Au− v‖1 + βΦ(u), ψ′(0+) > 0, (4.1)

The first term is known as �1 data fitting.

A = an m× n matrix with rows = aTi , 1 � i � m.

Constrained nonsmooth problems

Typical forms are

minimize ‖u‖1 subject to ‖Au− v‖ � τ

or

minimize ‖u‖1 subject to Au = v

These are frequently used in Compression, in Coding and in Compressive sensing. The reason is

that they lead to sparse solution, i.e. û[i] = 0 for many indexes i.

4.1.2 Kinks

Definition 22 A kink is a point u where ∇F (u) is not defined (in the usual sense).

Theorem 49 (Rademacher, [7, p. 189]) Let F : Rn →] −∞,+∞] be convex and F �≡ +∞. Then

the subsetset
{
u ∈ int domF : � ∃∇F (u)} is of Lebesgue measure zero in R

n.

The statement extends to nonconvex functions [70, p.403] and to mappings F : Rn → Rm [71, p.81].

Hence F is differentiable at almost every u. However minimizers are frequently located at kinks.

Example 8 Consider F (u) =
1

2
‖u− w‖2 + β|u| for β > 0 and u, w ∈ R. The minimizer û of F reads

û =

⎧⎨⎩
w + β if w < −β

0 if |w| � β
w − β if w > β

(û is shrunk w.r.t. w.)

−1 0 1 −1 0 1 −1 0 1 −1 0 1

β = 1, w = −0.9 β = 1, w = −0.2 β = 1, w = 0.5 β = 1, w = 0.95

4.2 Basic notions
Definition 23 Γ0(V) is the class of all l.s.c. convex proper functions on V (a real Hilbert space) .

(Remind Definitions 4, 6 and 8 on p. 13.)

CHAPTER 4. NON DIFFERENTIABLE PROBLEMS 75

4.2.1 Preliminaries

Definition 24 f : V → R ∪ {+∞}, is said to be positively homogeneous if f(νu) = νf(u), ∀ν >

0, ∀u ∈ V .
Definition 25 f : V → R ∪ {+∞}, is said to be sublinear if it is convex and positively homogeneous.

Lemma 9 f is positively homogeneous ⇐⇒ f(νu) � νf(u), ∀ν > 0, ∀u ∈ V

Proof. (⇒) is obvious. Next: (⇐). Let f(νu) � νf(u), ∀ν > 0, ∀u ∈ V . Since νu ∈ V and ν−1 > 0

f(u) = f(ν−1νu) � ν−1f(νu) ⇔ νf(u) � f(νu), ∀ν > 0, ∀u ∈ V
hence f(νu) = νf(u), ∀ν > 0, ∀u ∈ V . �

Inequalities are usually easier to check that equalities.

Proposition 4 f is sublinear ⇔ f(νu+ μv) � νf(u) + μf(v), ∀(u, v) ∈ V 2, ∀ν > 0, ∀μ > 0

Proof. (⇒) Set η = ν + μ. Using the convexity of f for 1− μ

η
=
ν

η
> 0,

f(νu+ μv)︸ ︷︷ ︸ = f

(
η

(
ν

η
u+

μ

η
v

))
= ηf

(
ν

η
u+

μ

η
v

)
�︸︷︷︸ η

(
ν

η
f(u) +

μ

η
f(v)

)
= νf(u) + μf(v)︸ ︷︷ ︸

(4.2)

(⇐) Taking μ+ ν = 1 in (4.2) shows that f is convex. Furthermore

f(νu)︸ ︷︷ ︸ = f
(ν
2
u+

ν

2
u
)

�︸︷︷︸ 2ν2f(u) = νf(u)︸ ︷︷ ︸ .
f is positively homogeneous by Lemma 9. �

Sublinearity is stronger than convexity—it does not require μ + ν = 1—and weaker than

linearity—it requires that μ > 0, ν > 0.

Definition 26 Suppose that U ⊂ V is nonempty.

• Support function σU (u) = sup
s∈U

〈s, u〉 ∈ R ∪ {∞}

• Indicator function ιU(u) =
{

0 if u ∈ U
+∞ if u �∈ U

• Distance from u ∈ V to U : dU(u) = infv∈U ‖u− v‖.
We denote by f � : V � → R the convex conjugate of the function f : V → R (see (1.14), p. 17).

When U �= ∅ is convex and closed, we have

ι�U(u) = sup
v∈V

(〈u, v〉 − ιU(v)) = sup
v∈U

〈u, v〉 = σU(u) and σ�
U(v) = ι��U (v) = ιU(v) (4.3)

where the second part results from Theorem 9 (p. 18).

Proposition 5 (p. 19, [17]) σU is l.s.c. and sub-linear. Moreover

σU (u) <∞ ∀u ∈ V ⇔ U ⊂ V is bounded.

Lemma 10 Any �p-norm is the support function of the unit ball Bq of the dual norm �q (
1

p
+

1

q
= 1).

Note that this is the kind of functions we deal with in practical optimization problems.

CHAPTER 4. NON DIFFERENTIABLE PROBLEMS 76

4.2.2 Directional derivatives

Lemma 11 Let F : V → R be convex, where V is a n.v.s. The function

t→ F (u+ tv)− F (u)

t
, t ∈ R+

is increasing.

Proof. For any t > 0, choose an arbitrary τ � 0. Set

α
def
=

τ

t+ τ
, then 1− α =

t

t+ τ

We check that

αu+ (1− α)(u+ (t+ τ)v) =
τ

t + τ
u+

t

t+ τ
u+

t

t + τ
(t+ τ)v = u+ tv

Hence

F
(
αu+ (1− α)(u+ (t+ τ)v)

)
= F (u+ tv).

Using the last result and the convexity of F yield

F (u+ tv)︸ ︷︷ ︸ = F (αu+ (1− α)
(
u+ (t + τ)v

)
�︸︷︷︸ τ

t+ τ
F (u) +

t

t+ τ
F
(
u+ (t+ τ)v

)
= F (u) +

t

t + τ

(
F
(
u+ (t+ τ)v

)− F (u)
)

︸ ︷︷ ︸
It follows that

F (u+ tv)− F (u)

t
�
F
(
u+ (t + τ)v

)− F (u)

t + τ
, ∀t > 0, ∀τ ∈ R+ .

�

Definition 27 Let F : V → R be convex and proper. The (one-sided) directional derivative of F at

u ∈ V along the direction of v ∈ V reads

δF (u)(v) = lim
t↘0

F (u+ tv)− F (u)

t
, ∀u ∈ V (4.4)

= inf
t>0

F (u+ tv)− F (u)

t
, ∀u ∈ V (4.5)

Whenever F is convex and proper, the limit in (4.4) always exists (see [17, p. 23]). The definition

in (4.4) is equivalent to (4.5) since by Lemma 11 (p. 76), the function t→ F (u+tv)−F (u)
t

, t ∈ R+ goes

to its unique infimum when t↘ 0.

Remark 22 For nonconvex functions, defined on more general spaces, directional derivatives can be

defined only using (4.4); they do exist whenever the limit in (4.4) do exist.

δF (u)(v) is the right-hand side derivative. The left-hand side derivative is −δF (u)(−v).

F convex ⇒ − δF (u)(−v) � δF (u)(v).

When F is differentiable at u in the usual sense, δF (u)(v) = 〈∇F (u), v〉, ∀v ∈ V .

CHAPTER 4. NON DIFFERENTIABLE PROBLEMS 77

Proposition 6 Let F : V → R be convex and proper. For any u ∈ V fixed, v → δF (u)(v) is sublinear.

Proof. By Definition 27—(4.4), it is obvious that v → δF (u)(v) is positively homogeneous, i.e.

δF (u)(λv) = λδF (u)(v), ∀λ > 0. Let us check that it is convex. Choose μ > 0 and ν > 0 such that

μ+ ν = 1, and v ∈ V and w ∈ V .

F
(
u+ t(μv + νw)

)− F (u) = F
(
μ(u+ tv) + ν(u+ tw)

)− (
μF (u) + νF (u)

)
, ∀t > 0

� μ
(
F (u+ tv)− F (u)

)
+ ν

(
F (u+ tw)− F (u)

)
, ∀t > 0.

Divide by t > 0

F
(
u+ t(μv + νw)

)− F (u)

t
� μ

F (u+ tv)− F (u)

t
+ ν

F (u+ tw)− F (u)

t
, ∀t > 0.

For t↘ 0 we get δF (u)(μv + νw) � μδF (u)(v) + νδF (u)(w). �

Proposition 7 (p. 239, [7]) If F ∈ Γ0(V) is Lipschitz with constant � > 0 on B(u, ρ), ρ > 0 then

‖z − u‖ � ρ ⇒ |δF (z)(v)− δF (z)(w)| � �‖v − w‖, ∀v, w ∈ V.

Proposition 8 (1st-order approximation) Let F : Rn → R be convex and proper, with Lipschitz constant

� > 0 and u ∈ Rn. Then ∀ε > 0, ∃ρ > 0 such that

‖v‖ < ρ ⇒ |F (u+ v)− F (u)− δF (u)(v)| � ε‖v‖.

The proof of the proposition is outlined in Appendix, p. 120

4.2.3 Subdifferentials

For a given space V , the class of all subsets of V is denoted by 2V . For a mapping T from V to 2V

one uses the notations

T : V → 2V and T ⇒ V

If T is single-valued, these amount to T : V → V .

Definition 28 Let F : V → R be convex and proper. The subdifferential of F is the set-valued operator

∂F : V → 2V whose values at u ∈ V are given by

∂F (u) = {g ∈ V : 〈g, v〉 � δF (u)(v), ∀v ∈ V } (4.6)

= {g ∈ V : F (z) � F (u) + 〈g, z − u〉 , ∀z ∈ V } (4.7)

A subgradient of F at u is a selection g ∈ V such that g ∈ ∂F (u).

If F is differentiable at u then ∂F (u) = {∇F (u)}.

Lemma 12 The two formulations for ∂F in (4.6) and in (4.7), Definition 28, are equivalent.

CHAPTER 4. NON DIFFERENTIABLE PROBLEMS 78

Proof. Since by Lemma 11, the function t → F (u+tv)−F (u)
t

, t ∈ R+, has its infimum for t ↘ 0, using

the definition for δF in (4.5), we can write

∂F (u) = {g ∈ V : 〈g, v〉 � δF (u)(v), ∀v ∈ V } =

{
g ∈ V : 〈g, v〉 � F (u+ tv)− F (u)

t
, ∀v ∈ V, ∀t > 0

}
(use z = u+ tv ⇔ v = (z − u)/t) =

{
g ∈ V :

1

t
〈g, z − u〉 � F (z)− F (u)

t
, ∀z ∈ V, ∀t > 0

}
= {g ∈ V : 〈g, z − u〉 � F (z)− F (u), ∀z ∈ V }

The conclusion follows from the observation that when (u, v) describe V 2 and t describes R+, then

z = u+ tv describes V . �

Observe that by the definition of ∂F in (4.6) (p. 77),

δF (u)(v) = sup
{ 〈g, v〉 : g ∈ ∂F (u)} = σ∂F (u)(v)

where σ is the support function (see Definition 26, p. 75). Moreover,

−δF (u)(−v) � 〈g, v〉 � δF (u)(v), ∀(g, v) ∈ (∂F (u)× V)

Property 7 Let F ∈ Γ0(V). Then the set {∂F (u)} is closed and convex [p. 277, [72]].

Theorem 50 Let F ∈ Γ0(V). Then ∂F is a monotone mapping [58, Theorem 3.1.11]:

∀u1, u2 ∈ V ⇒ 〈g2 − g1, u2 − u1〉 � 0, ∀g1 ∈ ∂F (u1), g2 ∈ ∂F (u2)

Theorem 51 (p. 281,[7]) A function F ∈ Γ0(V) is strictly convex if and only if

∀u1, u2 ∈ V ⇒ 〈g2 − g1, u2 − u1〉 > 0, ∀g1 ∈ ∂F (u1), g2 ∈ ∂F (u2)

Proposition 9 (p. 263, [73]) Let G ∈ Rm×n and F : Rn → R read

F (u) = ‖Gu‖2

Then

∂F (u) =

⎧⎪⎪⎨⎪⎪⎩
GTGu

‖Gu‖2 if Gu �= 0

{
GTh | ‖h‖2 � 1, h ∈ Rm

}
if Gu = 0

(4.8)

CHAPTER 4. NON DIFFERENTIABLE PROBLEMS 79

Proof. Form the definition of the subdifferential (see Definition 28)

∂F (u) =
{
g ∈ R

n | ‖Gz‖2 − ‖Gu‖2 � 〈g, z − u〉 , ∀z ∈ R
n
}

(4.9)

If Gu �= 0 then F is differentiable at u and ∂F (u) = {∇F (u)}, hence the result 1.

Consider that Gu = 0. Clearly, ‖Gz‖2 = ‖G(z−u)‖2. After setting w = z−u, (4.9) equivalently
reads

∂F (u) =
{
g ∈ R

n | ‖Gw‖2 � 〈g, w〉 , ∀w ∈ R
n
}

(4.10)

Define the set

S
def
=
{
GTh | ‖h‖2 � 1, h ∈ R

m
}

If GTh ∈ S, then Schwarz inequality yields〈
GTh , w

〉
= 〈h ,Gw〉 � ‖Gw‖2, ∀w ∈ R

n

By (4.10), GTh ∈ ∂F (u) and hence S ⊆ ∂F (u).

Suppose that

∃ g ∈ ∂F (u) obeying g �∈ S (4.11)

Then using the H-B separation Theorem 8 (p. 16), there exist w ∈ Rn and α ∈ R so that the

hyperplane {x ∈ Rn | 〈w, x〉 = α} separates g and S so that

〈g, w〉 > α > 〈z, w〉 , ∀z ∈ S

Consequently,

〈g, w〉 > α � sup
h

{ 〈
GTh, w

〉 | ‖h‖2 � 1, h ∈ R
m
}
= ‖Gw‖2

A comparison with (4.10) shows that g �∈ ∂F (u). Hence the assumption in (4.11) is false. Conse-

quently, ∂F (u) = S. �

Example 9 Let F : R→ R read F (u) = |u|. By (4.8)

u �= 0 ⇒ ∂F (u) = u
|u| = sign(u)

u = 0 ⇒ ∂F (0) =
{
h ∈ R | |h| � 1

}
= [−1,+1]

Some calculus rules ([58, 7, 74])

• Ψ ∈ Γ0(V) and Φ ∈ Γ0(V), and ∃ũ ∈ domΨ ∩ domΦ where Ψ or Φ is continuous

∂(μΨ+ νΦ)(u) = μ∂Ψ(u) + ν∂Φ(u), μ, ν � 0, ∀u ∈ V.
1Let f

def
= ‖u‖2 =

(∑
i u[i]

2
)1/2

. Then

u �= 0 ⇒ ∇f(u) =
u

‖u‖2
We have F = f ◦G. For Gu �= 0, noticing that ∇Gu = GT , chain rule entails the first equation in (4.8).

CHAPTER 4. NON DIFFERENTIABLE PROBLEMS 80

• Ψ ∈ Γ0(V) and Φ ∈ Γ0(V)

∂
(
Ψ(u) + Φ(v)

)
= ∂Ψ(u)× ∂Φ(v), ∀u ∈ V, ∀v ∈ V.

• A : V →W bounded linear operator, A∗ its adjoint, b ∈ W and F ∈ Γ0(W)

∂
(
F ◦ (Au+ b)

)
= A∗ ◦ ∂F (Au + b)

• Ψ ∈ Γ0(W), Φ ∈ Γ0(V), A : V →W bounded linear operator, 0 ∈ int
(
dom(Ψ−A(domΦ)

)
∂(Ψ ◦ A+ Φ) = A∗ ◦ (∂Ψ) ◦ A+ ∂Φ

• Let U ⊂ V be nonempty, convex and closed. For any u ∈ V \U we have ∂dU (u) =

{
u−ΠUu

dU(u)

}
.�

Continuity properties of the subdifferential of F ∈ Γ0(R
n)

Theorem 52 (Mean-value theorem [7], p.257.) Let F : Rn → R be convex and proper. If u �= v then

∃θ ∈ (0, 1) and ∃g ∈ ∂F (θv + (1− θ)u) such that F (v)− F (u) = 〈g, v − u〉

Property 8 ([7]) ∂F (u) is compact for any u ∈ Rn.

Property 9 (p.282, [7]) u→ ∂F (u) is locally bounded: B ⊂ Rn bounded ⇒ ∂F (B) ⊂ Rn bounded.

Moreover [p. 282, [7]]:

• B ⊂ Rn compact ⇒ ∂F (B) compact.

• B ⊂ Rn compact and connected ⇒ ∂F (B) compact and connected.

• B ⊂ Rn convex — in general ∂F (B) is not convex.

∂F takes its values in a compact set when u itself varies in a compact set, according to

Theorem 53 (Continuity [7], p.283) ∂F is outer semi-continuous at any u ∈ Rn :

∀ε > 0∃ρ > 0 : ‖u− v‖ � ρ ⇒ ∂F (v) ⊂ ∂F (u) +B(0, ε).

Corollary 1 (p. 283 [7]) For F : Rn → R convex, the function u→ δF (u)(v) is upper semi-continuous:

u ∈ R
n ⇒ δF (u)(v) = lim sup

z→u
δF (z)(v), ∀v ∈ R

n.

CHAPTER 4. NON DIFFERENTIABLE PROBLEMS 81

4.3 Optimality conditions

4.3.1 Unconstrained minimization problems

Necessary and sufficient condition for a global minimizer of a proper, convex function:

Theorem 54 (Fermat’s rule) Let F ∈ Γ0(V), then

F (v) � F (û), ∀v ∈ V ⇔ 0 ∈ ∂F (û) ⇔ δF (û)(v) � 0, ∀v ∈ V.

Proof. Using Definition 28, (4.7) (p. 77)

g = 0 ∈ ∂F (û) ⇔ F (v) � F (û) + 〈0, v − u〉 , ∀v ∈ V ⇔ F (v) � F (û), ∀v ∈ V

Using Definition 28, (4.6), namely ∂F (u) = {g ∈ V : 〈g, v〉 � δF (u)(v), ∀v ∈ V },

g = 0 ∈ ∂F (û) ⇔ 0 � δF (û)(v), ∀v ∈ V �

Denote the set of minimizers of F by

Û = {u∣∣u ∈ (∂F)−1(0)} (4.12)

The set Û is closed and convex.

Remark 23 If F is strictly convex and coercive, then Û = {û}, i.e. the minimizer is unique.

4.3.2 General constrained minimization problems

Consider the problem

F (û) = min
u∈U

F (u) (4.13)

where U ⊂ V is closed, convex and nonempty.

Remark 24 For any F ∈ Γ0(V) and U ⊂ V convex and closed and U �= ∅, the problem in (4.13) can

be redefined as an unconstrained nondifferentiable minimization problem via

F(u) = F (u) + ιU(u) ⇔ argmin
u∈V

F(u) = argmin
u∈U

F (u).

where ι stands for indicator function (see Definition 26, p. 75).

Definition 29 A direction v is normal to U ⊂ V at u if

〈w − u, v〉 � 0, ∀w ∈ U

Definition 30 The normal cone operator for U , for any u ∈ U reads

NU (u) =

{ {v ∈ V : 〈w − u, v〉 � 0, ∀w ∈ U} if u ∈ U
∅ if u �∈ U (4.14)

CHAPTER 4. NON DIFFERENTIABLE PROBLEMS 82

NU(u) convex and closed. Note that if u
def
= ΠU(v) then v − u ∈ NU(u), ∀v ∈ V.

Lemma 13 For ιU indicator function of U and NU as given in (4.14), we have

∂ιU = NU .

Proof. By Corollary 3 (p. 90) and using that ι∗U(v) = supz∈U 〈z, v〉 = σU(v) one has

∂ιU(u) = {v ∈ V : ιU(u) + ι∗U(v) = 〈u, v〉} = {v ∈ V : ιU(u) + sup
z∈U

〈z, v〉 = 〈u, v〉}

If u �∈ U , obviously ∂ιU(u) = ∅. Consider next that u ∈ U in which case ιU(u) = 0. We obtain:

∂ιU(u) = {v ∈ V : sup
z∈U

〈z, v〉 = 〈u, v〉} = {v ∈ V : 〈z, v〉 � 〈u, v〉 , ∀z ∈ U} �

Theorem 55 Let F ∈ Γ0(V) and U ⊂ V be closed, convex and nonempty, and ∃ũ ∈ domF ∩U where

F is continuous. Then

F (û) = min
u∈U

F (u) ⇔ δF (û)(v − û) � 0, ∀v ∈ U ⇔ 0 ∈ ∂F (û) +NU(û)

Proof. ∀v ∈ U and t ∈]0, 1] we have û+ t(v − û) ∈ U .

F (û) = min
u∈U

F (u) ⇔ F
(
û+ t(v − û)

)
� F (û), ∀t ∈]0, 1], ∀v ∈ U

⇔ F
(
û+ t(v − û)

)− F (û)

t
� 0, ∀t ∈]0, 1], ∀v ∈ U

⇔ inf
t∈]0,1]

F
(
û+ t(v − û)

)− F (û)

t
� 0, ∀t ∈]0, 1], ∀v ∈ U

⇔ δF (û)(v − û) � 0, ∀v ∈ U. (4.15)

By Lemma 13 (p. 82) we get

∂F (u) +NU(u) = ∂F (u) + ∂ιU(u) = ∂
(
F (u) + ιU(u)

)
.

Using Theorem 54 (p. 81) and Remark 24 (p. 81),

F (û) = min
u∈U

F (u) ⇔ 0 ∈ ∂(F (û) + ιU(û)) = ∂F (û) +NU(û)
�

Remark 25 If U = V , the condition of Theorem 55 reads: δF (û)(v) � 0, ∀v ∈ V .

4.3.3 Minimality conditions under explicit constraints

Consider problem (4.13), namely F (û) = min
u∈U

F (u), for hi ∈ Γ0(R
n), 1 � i � q

U =

{
u ∈ R

n :
〈ai, u〉 = bi, 1 � i � p (Au = b ∈ Rp)
hi(u) � 0, 1 � i � q

}
�= ∅ (4.16)

The set of active constraints at u reads I(u)
def
= {i : hi(u) = 0}

CHAPTER 4. NON DIFFERENTIABLE PROBLEMS 83

Theorem 56 ([7], Theorem 2.1.4 (p. 305) and Proposition 2.2.1 (p. 308).) Consider U as in (4.16) and

F ∈ Γ0(R
n) Then the following statements are equivalent:

1. û solves the problem F (û) = min
u∈U

F (u);

2. ∃λ ∈ Rp, μ ∈ Rq such that

0 ∈ ∂F (û) +
p∑

i=1

λiai +

q∑
i=1

μi∂hi(û), μi � 0 and μihi(û) = 0, 1 � i � q (4.17)

3. 0 ∈ ∂F (û) +NU(û) where

NU(u) =
{
ATλ+

∑
i∈I(u)

μizi : λ ∈ R
p, μi � 0, zi ∈ ∂hi(u), ∀i ∈ I(u)

}
(4.18)

Remark 26 Note that the condition in 2, namely (4.17) ensures that the normal cone at û w.r.t. U

reads as in (4.18) which entails that the constraints are qualified.

The existence of coefficients satisfying (4.17) is called Karush-Kuhn-Tucker (KKT) conditions. The

requirement μihi(û) = 0, 1 � i � q is called transversality or complementarity condition (or equiva-

lently slackness).

(λ, μ) ∈ R
p × R

q
+ are called Lagrange multipliers. The Lagrangian function reads

L(u, λ, μ) = F (u) +

p∑
i=1

λi(〈ai, u〉 − bi) +

q∑
i=1

μi hi(u) (4.19)

Theorem 57 ([7], Theorem 4.4.3 (p. 337).) We posit the assumption of Theorem 56. Then the fol-

lowing statements are equivalent:

1. û solves the problem F (û) = min
u∈U

F (u);

2.
(
û, (λ̂, μ̂)

)
is a saddle point of L in (4.19) over R

n × (Rp × R
q
+

)
.

4.4 Some minimization methods

Descent direction −d : ∃ρ > 0 such that F (u− ρd) < F (u) ⇔ 〈gu, d〉 > 0, ∀gu ∈ ∂F (u)
Note that d = −gu for some gu ∈ ∂F (u) is not necessarily a descent direction.

not a descent directionExample

F (u) = |u[1]|+ 2|u[2]|
δF (1, 0)(v) = lim

t↘0

|1 + tv[1]| − 1 + 2|tv[2]|
t

= v[1] + 2|v[2]|
∂F (1, 0) = {g ∈ R

2 | 〈g, v〉 � δF (1, 0)(v), ∀v ∈ R
2}

= {g ∈ R
2 | g[1]v[1] + g[2]v[2] � v[1] + 2|v[2]|, ∀v ∈ R

2}
= {1} × [−2, 2]

The steepest descent method:

−dk ∈ arg min
‖d‖=1

max
g∈∂F (uk)

〈g, d〉

is unstable and may converge to non-optimal points [7, 4].

CHAPTER 4. NON DIFFERENTIABLE PROBLEMS 84

Some difficulties inherent to the minimization of non-smooth functions

• Usually one cannot compute ∂F (u), but only some elements g ∈ ∂F (u).

• Stopping rule: 0 ∈ ∂F (uk) is difficult to implement.

An approximation like ‖gk‖ � ε can never be satisfied.

• uk → û, gû ∈ ∂F (û) �⇒ ∃{gk ∈ ∂F (uk)} → gû

• Minimizing a smooth approximation of F may generate large numerical errors while the prop-

erties of the minimizer of F and the one of its smoothed version are usually very different.

• Specialized minimization algorithms are needed.

4.4.1 Subgradient methods

Subgradient projections are significantly easier to implement than exact projections and have been

used for solving a wide range of problems.

Subgradient algorithm with projection

Minimize F : Rn → R subject to the constraint set U (closed, convex, nonempty, possibly = Rn)

For k ∈ N

1. if 0 ∈ ∂F (uk), stop (difficult to verify); else

2. obtain gk ∈ ∂F (uk) (easy in general);

3. (possible) line-search to find ρk > 0;

4. uk+1 = ΠU

(
uk − ρk

gk
‖gk‖

)

Remark 27 −dk = − gk
‖gk‖ is not necessarily a descent direction. This entails oscillations of the value

(F (uk))k∈N.

Theorem 58 ([75, 4]) Suppose that F : Rn → R is convex and reaches its minimum at û ∈ Rn. If

(ρk)k�0 satisfies ∑
k

ρk = +∞ and
∑
k

ρ2k < +∞ ⇒ lim
k→∞

uk = û. (4.20)

By (4.20), ρk converges fast to 0 which means that the convergence of uk is slow (sub-linear).

(E.g., ρk = 1/(k + 1) for k ∈ N.)

CHAPTER 4. NON DIFFERENTIABLE PROBLEMS 85

4.4.2 Gauss-Seidel method for separable non-differentiable terms

Consider that u ∈ Rn and

F (u) = Ψ(u) +

n∑
i=1

βiϕi(|u[i]|), βi � 0, ϕi
′(0+) > 0, ∀i (4.21)

Algorithm.

∀k ∈ N, each iteration k has n steps:

1 � i � n, compute

ξ =
∂

∂u[i]
Ψ
(
u(k)[1], . . . , u(k)[i− 1], 0, u(k−1)[i+ 1], . . . , u(k−1)[n]

)
;

if |ξ| � βiϕ
′
i(0

+) ⇒ u(k)[i] = 0; (�)

else u[i](k) solves the equation on R \ {0}
βiϕ

′
i(u

(k)[i]) +
∂

∂u[i]
Ψ
(
u(k)[1], . . . , u(k)[i− 1], u(k)[i], u(k−1)[i+ 1], . . . , u(k−1)[n]

)
= 0,

where sign
(
u(k)[i]

)
= −sign(ξ)

The components located at kinks are found exactly in (�). Note that for t �= 0, we have d
dt
ϕi(|t|) =

ϕ′
i(|t|)sign(t). In particular, for ϕi(t) = |t|, we have good simplifications: ϕ′

i(0
+) = 1 and ϕ′

i(t) =

sign(t) if t �= 0.

Theorem 59 Let F : Rn → R in (4.21) be convex, proper and coercive, Ψ ∼ C1 be convex, βi � 0 and

ϕi : R+ → R be convex, C1 and ϕ′
i(0) > 0, 1 � i � n.

1. Ψ is coercive;

2. ∀ρ > 0, ∃η > 0 such that ‖u‖ � ρ, |t| � ρ ⇒ Ψ(u+ tei)−Ψ(u) � t
∂Ψ(u)

∂ui
+ t2η, 1 � i � n.

Then the Gauss-Seidel method given above converges to a minimizer û of F .

For the proof under condition 1 see [6] and under condition 2 [66].

Comments

• Condition 2 is quite loose since it does not require that Ψ is globally coercive and is often easy

to verify.

• The method cannot be extended to a non separable nonsmooth term.

Remark 28 Note that an objective with nonsmooth data fidelity of the form (4.1), e.g.

F (u) =
m∑
i=1

ϕ(| 〈ai, u〉 − vi|) + βΨ(u), ϕ′(0) > 0, m � n, can be rewritten in the form of (4.21),

provided that {ai, 1 � i � m} is linearly independent. Let A ∈ Rn×n be an invertible matrix whose

first m columns are ai, 1 � i � m. Setting ṽi = vi, 1 � i � m and ṽi = 0, m + 1 � i � n, we can

apply a change of variables z = Au− ṽ and consider

F(z) =

n∑
i=1

ϕ(|zi|) + βΨ
(
A−1(z − ṽ)

)

CHAPTER 4. NON DIFFERENTIABLE PROBLEMS 86

4.4.3 Algorithms based on a reformulation of �1

For any w ∈ Rn we consider the decomposition

w = w+ − w− where w+[i] := max(w[i], 0) � 0, w−[i] = max(−w[i], 0) � 0, 1 � i � n

Alliney (1994) [76] exhibited that

min ‖w‖1 ⇔ min
∑
i

(
w+[i] + w−[i]

)
subject to w+[i] � 0, w−[i] � 0, 1 � i � n. (4.22)

Full algorithms are developed in [77] in the cases given next where G is a finite differences operator

(e.g., it can approximate anisotropic TV model) and 1l is the vector of all ones of appropriate size.

(a) F (u) = ‖Au − d‖1 + β‖Gu‖1 subject to u � 0 (image pixels are non negative). By setting

h := Au − d and w := βGu, the minimization of F can be written as a linear programming

problem

min
u,h+,h−,w+,w−

1lT (h+ + h−) + 1lT (w+ + w−)

subject to Au− d = h+ − h−

βGu = w+ − w−

u, h+, h−, w+, w− � 0

(b) F (u) = ‖Au−d‖22+β‖Gu‖1 subject to u � 0. By setting w := βGu, the problem can be written

as quadratic programming problem:

min
u,w+,w−

‖Au− d‖22 + 1lT (w+ + w−)

subject to βGu = w+ − w−

u, w+, w− � 0

The solutions of these problems are characterized using the Lagrange multipliers. They are solved

by interior point method with CG iterations, starting from a feasible point.

Chapter 5

Resolvent and Proximal operators

5.1 Maximal monotone and resolvent operators

5.1.1 Nonexpansive operators

For an overview – see [78] and the monograph [3]. Here V is a real Hilbert space.

Definition 31 (chap. 4.1 [3]) An operator T : V → V is

1. nonexpansive if ‖Tu− Tv‖ � ‖u− v‖, ∀(u, v) ∈ V 2

2. firmly nonexpansive if one of the following equivalent conditions holds:

‖Tu− Tv‖2 � 〈Tu− Tv, u− v〉
‖Tu− Tv‖2 � ‖u− v‖2 − ‖(Id− T)u− (Id− T)v‖2 ∀(u, v) ∈ V 2 (5.1)

An obvious consequence is that

Lemma 14 ([78]) T : V → V is firmly nonexpansive if and only if (Id− T) is firmly nonexpansive.

If T is firmly nonexpansive, then it is nonexpansive; the converse, however, is false (e.g., −Id).
When T is Lipschitz continuous with a constant in (0, 1), then T is referred to as a contraction.

The set of fixed points of T reads as

FixT := {u ∈ V : u = Tu}

Remark 29 In many applications FixT is not a singleton in which case the reached fixed point depends

on the starting value u(0).

Proposition 10 (chap. 4.3 [3]) Let T : V → V is firmly nonexpansive. Then FixT is convex, closed

and

FixT =
⋂
u∈V

{v ∈ V : 〈v − Tu, u− Tu〉 � 0}

Definition 32 Let T : V → V be nonexpansive. Then T is averaged with constant α ∈]0, 1[(or
α-avereged) if there exists a nonexpansive operator R such that T := (1− α)Id + αR.

Note that if T is nonexpansive, it is not necessarily averaged; consider e.g., T = −Id.

87

CHAPTER 5. RESOLVENT AND PROXIMAL OPERATORS 88

Proposition 11 Let T : V → V be nonexpansive and let α ∈]0, 1[. Then

T is α-averaged ⇔ R := (1− α)Id + αT is nonexpansive.

Further, if T is α-averaged for α ∈]0, 1
2
] then T is is firmly nonexpansive.

Corollary 2 [chap. 4.4 [3]] T : V → V is firmly nonexpansive if and only if

R :=
1

2
Id +

1

2
T

is 1
2
-averaged.

Then, assuming that FixT �= ∅, on has

u = Ru ⇔ 2u = (Id + T)u ⇔ u = Tu

Therefore, FixR = FixT : any fixed point of R can be obtained by the fixed point iteration (5.2)

using the 1
2
-averaged operator in Lemma 60.

An operator T : V → V is asymptotically regular if un − Tun → 0 as n → ∞. This property

does not imply convergence, even boundedness cannot be guaranteed. However, it is satisfied by any

firmly nonexpansive operator. This fact plays an important role in the proof of the theorem below

which is a generalization of the celebrated Opial’s theorem (1976).

Theorem 60 [chap. 5.2 [3]] Let T be firmly nonexpansive with FixT �= ∅. Then

(a) the sequence (known as Picard iterates)

uk+1 = T (uk) (5.2)

converges weakly to a point in FixT .

(b) Let (λk)k∈N be a sequence in [0, 2] such that
∑

k∈N λk(2− λk) = +∞. The sequence

uk+1 = uk + λk
(
T (uk)− uk

)
(5.3)

converges weakly to a point in FixT .

5.1.2 Maximally monotone operators

Firmly nonexpansive mappings are closely related to maximally monotone operators. Recall that a

mapping A on V is monotone if for any u1, u2 ∈ V one has 〈g2 − g1, u2 − u1〉 � 0, ∀g1 ∈ A(u1), g2 ∈
A(u2). (This should be compared with Theorem 50, p. 78).

Definition 33 An operator A on V is maximally monotone if there is no monotone operator that

properly contains it (i.e., no enlargement of its graph is possible without destroying its monotonicity).

Examples of maximally monotone operators: continuous linear monotone operators, (sub)differential

operators of functions that are convex, lower semicontinuous, and proper (i.e. all functions in Γ0(V)).

CHAPTER 5. RESOLVENT AND PROXIMAL OPERATORS 89

Definition 34 Given a maximally monotone operator A : V ⇒ V , the associated resolvent operator is

JA := (Id + A)−1

Example 10 We consider the set-valued function

A(u) :=

⎧⎨⎩
{−1} u < 0
[−1, 1] u = 0
{1} u > 0

which is the subdifferential of u �→ |u|.

A A−1 Id + γA (Id + γA)−1

Correspondences between maximally monotone and firmly nonexpansive operators:

Theorem 61 (Minty 1962)

• T : V → V is firmly nonexpansive ⇒ B := T−1−Id is maximally monotone (and JB = T).

• A : V ⇒ V is maximally monotone ⇒ JA is firmly nonexpansive (and A = J−1
A − Id).

Based on the two classes and dualizing one gets the resolvent identity (see [78, p. 123])

Id = JA + JA−1

A consequence of Theorem 61 is that an operator T is firmly nonexpansive if and only if it is the

resolvent of a maximal monotone operator A, i.e. T = JA (see, e.g., [72, sec. 12]).

5.1.3 Resolvent operator

We can identify A with the (sub)gradient of a function in Γ0(V). From Fermat’s rule (Theorem 54,

p. 81), minimizing F ∈ Γ0(V) amounts to solving the inclusion

0 ∈ ∂F (u) ⇔ 0 ∈ γ∂F (u), ∀ γ > 0 ⇔ u ∈ u+ γ∂F (u) = (Id + γ∂F)(u), ∀ γ > 0

or equivalently, to finding a solution to the fixed point equation

u = (Id + γ∂F)−1(u) (5.4)

where (Id + γ∂F)−1 is the resolvent operator associated to ∂F , γ > 0 is a stepsize. This is a

fundamental tool for finding the root of any maximal monotone operator [79, 80], such as e.g. the

subdifferential of a convex function.

CHAPTER 5. RESOLVENT AND PROXIMAL OPERATORS 90

5.2 Moreau’s conjugacy and proximal calculus

5.2.1 Conjugate dual functions theorem

Theorem 62 [p. 277, [72]] Let F ∈ Γ0(V) and F � : V � → R be its convex conjugate (see (1.14),

p. 17). Then

v ∈ ∂F (u) ⇔ F (u) + F �(v) = 〈u, v〉 ⇔ u ∈ ∂F �(v) (5.5)

Proof. By (4.7) and using that F = F �� (see Theorem 9, p. 18):

v ∈ ∂F (u)︸ ︷︷ ︸ ⇔ F (z) � F (u) + 〈v, z − u〉 , ∀z ∈ V
⇔ 〈v, z〉 − F (z) � 〈v, u〉 − F (u), ∀z ∈ V
⇔ F �(v) = sup

z∈V

{
〈v, z〉 − F (z)

}
= 〈v, u〉 − F (u),

⇔ F �(v) = 〈v, u〉 − F (u)

⇔︸︷︷︸ F (u) + F �(v) = 〈u, v〉︸ ︷︷ ︸
⇔ F �(v) + F ��(u) = 〈u, v〉 ⇔ u ∈ ∂F �(v)︸ ︷︷ ︸

Corollary 3 We posit the conditions of Theorem 62. Then

∂F (u) = {v ∈ V : F (u) + F ∗(v) = 〈u, v〉} .

5.2.2 Proximity operators

Proximal operators were inaugurated by Moreau in 1962 [81] as a generalization of convex projection

operators.

Proposition 12 (p. 278, [72].) Let f ∈ Γ0(V). For any v ∈ V and γ > 0, the function Pf : V → R

below

Pγf (u) =
1

2γ
‖v − u‖2 + f(u) (5.6)

admits a unique minimizer.

Definition 35 The unique minimizer in Proposition 12 is denoted by

proxγf v = argmin
u∈V

Pγf (u). (5.7)

proxγf v is the proximal point of v with respect to γf and proxγf is the proximity operator for γf .

Remark 30 From (5.6) and (5.7), the optimality conditions (Theorem 54, p. 81) yield

û = proxγf v ⇔ 0 ∈ ∂Pγf (û) ⇔ 0 ∈ û− v + γ∂f(û) ⇔ v − û ∈ γ∂f(û)
⇔ v ∈ (Id + γ∂f)(û) ⇔ û = (Id + γ∂f)−1(v)

(5.8)

where the last equality comes from the fact that û is the unique minimizer of Pγf (Proposition 12).

Hence proxγf (the proximal operator of γf) coincides with the resolvent operator associated to ∂f :

(I + γ∂f)−1 = proxγf (5.9)

CHAPTER 5. RESOLVENT AND PROXIMAL OPERATORS 91

see (5.4) (p. 89). Observe that argminu{ 1
2γ
‖u− v‖2 + f(u)} = argminu{1

2
‖u− v‖2 + γf(u)}. From

(5.8) one also has

v − proxγf v ∈ γ∂f(proxγf v) (5.10)

Example 11 Several examples of proxf for f ∈ Γ0(V) – see [82]:

1. f(u) = 〈a, u〉 − β, a ∈ V , β ∈ R. Then proxf v = v − a (translation)

2. U ⊂ V is closed, convex and �= ∅. f(u) = ιU(u) then proxιU v = ΠU(v)

3. f(u) = β‖u‖22, β � 0. Then proxf v =
1

1 + 2β
v

4. f(u) = β‖u‖2, β � 0. Then proxf v = max{‖v‖2 − β, 0} v

‖v‖2 (see Lemma 15, p. 93)

5. f(u) = Ψ(−u) then proxfv = −proxΨ(−v)

6. f(u) = Ψ(u− z), z ∈ V . Then proxf v = z + proxΨ (v − z)

7. f(u) = Ψ(u/β), β ∈ R \ {0}. Then proxf v = βproxΨ/β2 (v/β).

8. f(u) =
n∑

i=1

βi
∣∣u[i]− z[i]

∣∣, βi > 0, ∀i. Then (proxf v)[i] = z[i] + T βi
(
v[i]− z[i]

)
, ∀i, where

T β(t)
def
=

{
0 if |t| < β
t− βsign(t) otherwise

T β is a soft shrinkage operator (Example 8 on p. 74).

Definition 36 The Moreau envelope or Moreau-Yoshida regularization is given by the infimal convo-

lution:
γf(v) := inf

u∈V

{
1

2γ
‖v − u‖2 + f(u)

}

5.2.3 Proximal decomposition

Relationship with the classical Projection Theorem:

Theorem 63 ([72], p. 280.) Let f ∈ Γ0(V) and f � ∈ Γ0(V) be its convex conjugate. For any u, v, w ∈
V we have the equivalence

w = u+ v and f(u) + f �(v) = 〈u, v〉 ⇔ u = proxf w, v = proxf� w.

Meaning: Link with the Projection theorem; see item 2 in Example 11, p. 91.

Proof. Two parts.

(⇒) By the definition of the convex conjugate1 f �(v) = supz∈V
(〈z, v〉 − f(z)

)
, we have

〈u, v〉 − f(u) = f �(v) � 〈z, v〉 − f(z), ∀z ∈ V ⇒ f(z)− f(u) � 〈z − u, v〉 , ∀z ∈ V (5.11)

1This definition was already given in (1.14) on p. 17.

CHAPTER 5. RESOLVENT AND PROXIMAL OPERATORS 92

Pf(z)− Pf (u)︸ ︷︷ ︸ =
1

2
‖z − w‖2 + f(z)− 1

2
‖u− w‖2 − f(u), ∀z ∈ V

=
1

2
‖z − u− v‖2 − 1

2
‖v‖2 + f(z)− f(u), ∀z ∈ V set v = w − u

�︸︷︷︸ 1

2
‖z − u− v‖2 − 1

2
‖v‖2 + 〈z − u, v〉 , ∀z ∈ V (by (5.11))

=
1

2
‖z − u‖2 − 〈z − u, v〉+ 1

2
‖v‖2 − 1

2
‖v‖2 + 〈z − u, v〉 , ∀z ∈ V

=
1

2
‖z − u‖2 � 0︸ ︷︷ ︸, ∀z ∈ V.

It follows that u is the unique point such that Pf (u) < Pf (z), ∀z ∈ V, z �= u. Hence u = proxf w.

In a similar way one establishes that v = proxf� w.

(⇐) Since u = proxf w for w ∈ V , we know that u is the unique minimizer of Pf on V for this w

(see Proposition 12 on p. 90). Hence

Pf

(
t(z − u) + u

)
=

1

2
‖t(z − u) + u− w‖2 + f

(
t(z − u) + u

)
� 1

2
‖u− w‖2 + f(u) = Pf (u) =

1

2
‖ṽ‖2 + f(u), ∀z ∈ V, t ∈ R

where we set

ṽ = w − u

Rearranging the obtained inequality yields

1

2
‖ṽ‖2 − 1

2
‖t(z − u)− ṽ‖2 + f(u) � f

(
t(z − u) + u

)
, ∀z ∈ V, t ∈ R.

Noticing that 1
2
‖ṽ‖2− 1

2
‖t(z−u)− ṽ‖2 = −1

2
t2‖z−u‖2+ t 〈z − u, ṽ〉, the last inequality entails that

−1

2
t2‖z − u‖2 + t 〈z − u, ṽ〉+ f(u) � f

(
t(z − u) + u

)
, ∀z ∈ V, t ∈ R. (5.12)

Remind that t(z − u) + u = tz + (1− t)u. Since f is convex, for t ∈]0, 1[we have

f
(
t(z − u) + u

)
� tf(z) + (1− t)f(u) = f(u) + t

(
f(z)− f(u)

)
, ∀t ∈]0, 1[, ∀z ∈ V.

Inserting the last inequality into (5.12) leads to

−1

2
t2‖z − u‖2 + t 〈z − u, ṽ〉+ f(u) � t

(
f(z)− f(u)

)
+ f(u), ∀t ∈]0, 1[, ∀z ∈ V,

⇔ −1

2
t2‖z − u‖2 + t 〈z − u, ṽ〉 � t

(
f(z)− f(u)

)
, ∀t ∈]0, 1[, ∀z ∈ V,

⇔ −1

2
t‖z − u‖2 + 〈z − u, ṽ〉 � f(z)− f(u), ∀t ∈]0, 1[, ∀z ∈ V,

⇔ 〈z, ṽ〉 − f(z) � 〈u, ṽ〉 − f(u) +
1

2
t‖z − u‖2, ∀t ∈]0, 1[, ∀z ∈ V.

Letting t→ 0 yields

〈z, ṽ〉 − f(z) � 〈u, ṽ〉 − f(u), ∀z ∈ V.
Then

sup
z∈V

(〈z, ṽ〉 − f(z)
)
= f �(ṽ) = 〈u, ṽ〉 − f(u)

Taking v = ṽ = w − u achieves the proof. �

In words, it was proven that ∀w ∈ V , for a given f ∈ Γ0(V), we have a unique decomposition

CHAPTER 5. RESOLVENT AND PROXIMAL OPERATORS 93

w = proxfw + proxf�w

which provides a tool to compute prox.

5.2.4 Computing the prox of a function: the case of ‖ · ‖2
Comparing (5.4) (p. 89) with (5.8) (p. 90) shows that the prox of a function yields its minimizer. By

(5.6) and Definition 35, computing the prox of a function generally requires to solve a minimization

problem. Finding closed-form prox operators for important classes of functions f is a lively area of

research.

The result (4) in Example 11 was obtained in 2009 and is actually used in many algorithms.

Lemma 15 ([83], p. 577) For α > 0, β > 0 and v ∈ Rn, where n is any positive integer, set

f(u) =
α

2
‖u− v‖22 + β‖u‖2

The unique minimizer of f is given by

û = max

{
‖v‖2 − β

α
, 0

}
v

‖v‖2 (5.13)

where the convention 0 · (0/0) = 0 is followed.

Proof. Since f is strictly convex, bounded below, and coercive, it has unique minimizer û. Using

Proposition 9 (p. 78) with G = Id, the subdifferential of f reads

∂f(u) = α(u− v) + β

⎧⎪⎨⎪⎩
u

‖u‖2 if u �= 0

{
h ∈ Rn | ‖h‖2 � 1

}
if u = 0

According to the optimality conditions, 0 ∈ ∂f(û), hence⎧⎪⎪⎨⎪⎪⎩
α(û− v) + β

û

‖û‖2 = 0 if û �= 0

αv ∈ {h ∈ R
n | ‖h‖2 � β

}
if û = 0

From the second condition, it is obvious that

û = 0 ⇔ ‖v‖2 � β

α
(5.14)

Consider next that û �= 0 in which case ‖v‖2 > β

α
. One has

û

(
1 +

β

α‖û‖2

)
= v

Noticing that
(
1 + β

α‖û‖2

)
> 0, we extract 2 û from the equation above. Thus

û =

(
1− β

α‖v‖2

)
v =

(
‖v‖2 − β

α

)
v

‖v‖2 and ‖v‖2 − β

α
> 0 (5.15)

2One derives ‖u‖2(1 + β
α‖û‖2

) = ‖v‖2, hence ‖u‖2 = ‖v‖2 − β
α . Therefore

v = û

(
1 +

β

α‖v‖2 − β

)
= û

α‖v‖2
α‖v‖2 − β

where α‖v‖2 > β

CHAPTER 5. RESOLVENT AND PROXIMAL OPERATORS 94

Combining (5.14) and (5.15) leads to (5.13). �

Remark 31 If n = 1 in Lemma 15, that is f(u) = α
2
(u − v)2 + β|u|, u ∈ R then (5.13) amounts to

the soft-shrinkage operator in Example 8, p. 74.

Remark 32 For i = 1, · · · , k and ui ∈ Rni suppose that f(u) =
∑k

i=1 fi(ui). Then

proxγf (v) = (proxγf1(v1), . . . , proxγfk(vk))

which offers a major computational simplification.

5.2.5 Contraction properties

Proposition 13 ([74], Lemma 2.4.) For f ∈ Γ0(V), proxf and (Id− proxf) are firmly nonexapnsive

Proof. From the definition of the subdifferential of f in (4.7) (p. 77)

∂f(u) = {g ∈ V : 〈g, z − u〉+ f(u) � f(z), ∀z ∈ V }

and from (5.10) v − proxf v ∈ ∂f(proxf v) for any v ∈ V . Hence〈
v − proxfv, proxfz − proxfv

〉
+ f(proxfv) � f(proxfz)〈

z − proxfz, proxfv − proxfz
〉
+ f(proxfz) � f(proxfv)

Adding these two inequalities yields〈
v − proxfv, proxfz − proxfv

〉− 〈
z − proxfz, proxfz − proxfv

〉
� 0〈

v − z + proxfz − proxfv, proxfz − proxfv
〉
� 0

and finally

‖proxfz − proxfv‖2 �
〈
z − v, proxfz − proxfv

〉
The conclusion follows from Definition 31. �

Since f ∈ Γ0(V), ∂f and γ∂f are maximally monotone. By Proposition 13, its resolvent operator,

see (5.9) (p. 90) is firmly nonexpansive. Thus the proximal point algorithm given next converges by

Theorem 60.

Proximal Point Algorithm

Initialization: u0, γ > 0. Iterates: for k ∈ N

uk+1 = proxγf(u
k) = argmin

u

{
1

2γ
‖u− uk‖2 + f(u)

}
= (Id + γ∂f)−1(uk)

Often, (Id + γ∂f)−1 cannot be calculated in closed-form.

CHAPTER 5. RESOLVENT AND PROXIMAL OPERATORS 95

Lemma 16 ([72]) Let f ∈ Γ0(V). For w ∈ V and z ∈ V set

u = proxfw u′ = proxfz

v = proxf�w v′ = proxf�z
(5.16)

The operator proxf is monotonous in the sense that

〈u− u′, v − v′〉 � 0

The property of Lemma 16 reads as〈
proxfw − proxfz , proxf�w − proxf�z

〉
� 0, ∀w ∈ V, ∀z ∈ V

Proof. By Theorem 63 one has

f(u) + f �(v) = 〈u, v〉 and f(u′) + f �(v′) = 〈u′, v′〉 (5.17)

and that by Fenchel-Young inequality (1.15) (p. 17)

f �(v′) � 〈u, v′〉 − f(u) and f(u′) � 〈v, u′〉 − f �(v) (5.18)

we obtain

〈u− u′, v − v′〉 = 〈u, v〉+ 〈u′, v′〉 − 〈u, v′〉 − 〈u′, v〉
use (5.17) = f(u) + f �(v) + f(u′)︸ ︷︷ ︸+ f �(v′)︸ ︷︷ ︸−〈u, v′〉 − 〈u′, v〉
use (5.18) �︸︷︷︸ f(u) + f �(v) + 〈u, v′〉 − f(u) + 〈v, u′〉 − f �(v)− 〈u, v′〉 − 〈u′, v〉 = 0.

The proof is complete. �

Proposition 14 ([72]) For any w, z ∈ V

‖proxfw − proxfz‖ � ‖w − z‖ (5.19)

so that proxf : V → V is continuous.

Proof. We use the notations introduced in (5.16).

‖w − z‖2 = ‖u+ v − u′ − v′‖2
= ‖u− u′‖2 + ‖v − v′‖2 + 2 〈u− u′, v − v′〉

use Lemma 16 � ‖u− u′‖2

�

Moreover, equality in (5.19) holds if and only if proxf�w = proxf�z.

The proposition states a kind of distance reduction.

CHAPTER 5. RESOLVENT AND PROXIMAL OPERATORS 96

5.3 A proximal algorithm for the ROF functional

5.3.1 Discrete approximations of the operators ∇ and div

If u ∈ V = R
M×N , its gradient ∇u ∈ W := V × V is given by [1] forward Euler discretization

(∇u)ij = ((∇xu)ij, (∇yu)ij)

where

(∇yu)ij =

{
ui+1,j − ui,j i < M
0 i =M

(∇xu)ij =

{
ui,j+1 − ui,j j < N
0 j = N

Other choices of discretization are possible. The scalar product in W is defined by

〈ζ, ξ〉 :=
∑
ij

ζxijξ
x
ij + ζyijξ

y
ij

where ζ = (ζx, ζy) and ξ = (ξx, ξy). By analogy with the continuous setting, one must have

div = −∇∗ (where ∇∗ is the adjoint of ∇). Thus for any w ∈ W and u ∈ V it holds that

〈∇u, ξ〉W = −〈u, divξ〉V
One easily deduces that

(divξ)ij =

⎧⎨⎩
ξyi,j − ξi,j+1 1 < i < M
ξyij i = 1
−ξyi−1,j i =M

+

⎧⎨⎩
ξxi,j − ξi,j−1 1 < j < N
ξxij j = 1
−ξxi,j−1 j = N

For what follows, it is convenient to mention that [1]

‖∇‖2 = ‖div‖2 � 8. (5.20)

5.3.2 �2−TV minimization (Chambolle 2004, [1])

Minimize F (u) = 1
2
‖u− v‖22 + βTV(u) where

TV(u) = sup
{∫

u(x)divξ(x)dx : ξ ∈ C1c (Ω,R2), |ξ(x)| � 1, ∀x ∈ Ω
}

(5.21)

Let u ∈ Rn×n and v ∈ Rn×n. Define

K =
{
divξ | ξ ∈ (Rn×n

)2
, ‖ξi,j‖2 � 1, 1 � i, j � n

} ⊂ R
n×n (5.22)

where ‖ξi,j‖2 =
√

(ξxij)
2 + (ξyij)

2. Let us emphasize that K is convex and closed3. The discrete

equivalent of the TV regularization in (5.21) reads

TV(u) = sup
{ 〈u, w〉 : w ∈ K} = sup

w∈K
〈u, w〉 = σK(u)

Its convex conjugate (see (1.14), p. 17)

TV∗(w) = sup
u

(〈u, w〉 − TV(u)) = ιK(w)

3The set K is composed out of “oscillatory” components.

CHAPTER 5. RESOLVENT AND PROXIMAL OPERATORS 97

where we use the fact that σ∗
K = ιK , see (4.3) (p. 75). Since TV ∈ Γ0(R

n×n), using Fenchel-Moreau

Theorem 9 (p. 18), TV(u) = TV∗∗(u).

Using that

∂F (u) = u− v + β∂TV(u),

Theorem 54 (p. 81) implies that F has a minimum at û if and only if

0 ∈ ∂F (û) ⇔ 0 ∈ û− v + β∂TV(û) ⇔ v − û

β
∈ ∂TV(û)

(Use Theorem 62 p. 90)⇔ û ∈ ∂TV∗
(
v − û

β

)
⇔ 0 ∈ − û

β
+

1

β
∂TV∗(ŵ) where ŵ

def
=
v − û

β

⇔ v

β
∈ v

β
− û

β
+

1

β
∂TV∗(ŵ) ⇔ v

β
∈ ŵ +

1

β
∂TV∗(ŵ)

⇔ 0 ∈ ŵ − v

β
+

1

β
∂TV∗(ŵ)

⇔ ŵ minimizes the function F below

F(ŵ) = min
w∈Rn×n

{
1

2

∥∥∥∥w − v

β

∥∥∥∥2 + 1

β
TV∗(w)

}
= min

w∈K

{
1

2

∥∥∥∥w − v

β

∥∥∥∥2
2

}
⇔

ŵ = ΠK

(
v

β

)
⇔ û = v − βΠK

(
v

β

)
(5.23)

where ΠK is the orthogonal projection onto K. To calculate û, we need to find Divξ̂ that solves the

nonlinear projection onto ΠK :

min

{∥∥∥∥Div ξ − v

β

∥∥∥∥2 : ξ ∈ (Rn×n)2, ‖ξ[i, j]‖22 − 1 � 0, 1 � i, j � n

}

KT optimality conditions (Theorem 42, p. 63) ⇒ see [1] for details.

Algorithm:

ξk+1[i, j] =
ξk[i, j] + ρ

(
∇(Div ξk − v/β

))
[i, j]

1 + ρ
∣∣∣ (∇(Div ξk − v/β

))
[i, j]

∣∣∣
Theorem 64 (p. 91, [1]) For ρ � 1/8, convergence of Div ξk to ŵ = ΠK(v/β) as k →∞ and

û = v − βŵ

This algorithm amounts to a special instance of Bermùdez and Moreno’s Algorithm (1979), see

Aujol 2009 [55]. Hence convergence for ρ � 1/4.

Chapter 6

Splitting and penalty methods

Different splittings lead to different implementations of the proximal gradient method for the same

original problem.

6.1 Proximal algorithms

Let V be a Hilbert space1 and Ψ ∈ Γ0(V) and Φ ∈ Γ0(V) Consider the problem

find û = argmin
u
F (u), F (u) = Ψ(u) + Φ(u).

The astuteness of splitting methods for F = Ψ+ Φ is to use separately

proxγΨ = (Id + γ∂Ψ)−1 and proxγΦ = (Id + γ∂Φ)−1

Usually these are much easier to obtain than the resolvent for F , namely proxγF = (Id + γ∂F)−1.

Even though the literature is abundant, these can basically be systematized into three main

classes:

• forward-backward, see [84, 85, 86];

• Douglas/Peaceman-Rachford, see [87];

• double-backward (little-used), see [88, 89].

A theoretical overview of all these methods can be found in [90, 91]. They are essentially based on

proximal calculus.

6.1.1 Forward-Backward (FB) splitting

Forward-backward can be seen as a generalization of the classical gradient projection method for

constrained convex optimization. One must assume that either Ψ or Φ is differentiable.

Proposition 15 ([74], Proposition 3.1.) Assume that Ψ ∈ Γ0(V), Φ ∈ Γ0(V), where V is a Hilbert

space, that Ψ is differentiable and that F = Ψ+ Φ is coercive. Let γ ∈]0,+∞[. Then

F (û) = min
u∈V

F (u) ⇔ û = proxγΦ
(
û− γ∇Ψ(û)

)
.

Moreover, û is unique if either Ψ of Φ is strictly convex.

1Hence V = V �.

98

CHAPTER 6. SPLITTING AND PENALTY METHODS 99

Proof. A sequence of equivalences:

F (û) = min
u∈V

F (u) ⇔ 0 ∈ ∂(Ψ + Φ)(û) = ∂Ψ(û) + ∂Φ(û) = ∂Φ(û) + {∇Ψ(û)}
⇔ −∇Ψ(û) ∈ ∂Φ(û)
⇔ − γ∇Ψ(û) ∈ γ∂Φ(û)
⇔ (

û− γ∇Ψ(û)
)− û ∈ γ∂Φ(û) (use (5.8), p. 90 identify

(
û− γ∇Ψ(û)

)
with v)

⇔ û = proxγΦ
(
û− γ∇Ψ(û)

)
F is strictly convex if either Ψ of Φ is so, in which case û is unique. �

FB splitting relies on the fixed-point equation

u = proxγΦ
(
u− γ∇Ψ(u)

)
The basic iteration consists in two steps:

uk+ 1
2

= uk − γ∇Ψ(uk) (forward, explicit)

uk+1 = proxγΦ

(
uk+ 1

2

)
(backward, implicit)

Formally, the second step amounts to solving an inclusion, hence its implicit nature.

A practical algorithm proposed by Combettes and Wajs in [74] is a more general iteration where

γ is iteration-dependent, errors are allowed in the evaluation of the operators proxγΦ and ∇Ψ and a

relaxation sequence (λk)k∈N is introduced. Admission of errors allows some tolerance in the numerical

implementation of the algorithm, while the iteration-dependent parameters (γk)k∈N and (λk)k∈N can

improve its convergence speed.

Theorem 65 ([74], Theorem 3.4.) Assume that Ψ ∈ Γ0(V), Φ ∈ Γ0(V), where V is a Hilbert space,

that Ψ is differentiable with a 1/β-Lipschitz gradient, β ∈]0,∞[, and that F = Ψ + Φ is coercive.

Let the sequences (γk)k∈N ⊂ R+, (λk)k∈N ⊂ R+, (ak)k∈N ⊂ V and (bk)k∈N ⊂ V satisfy

• 0 < inf
k∈N

γk � sup
k∈N

γk < 2β;

• 0 < inf
k∈N

λk � sup
k∈N

λk � 1;

•
∑
k∈N

‖ak‖ < +∞ and
∑
k∈N

‖bk‖ < +∞.

Consider the iteration:

uk+1 = uk + λk

(
proxγkΦ

(
uk − γk(∇Ψ(uk) + bk

)
+ ak − uk

)
, k ∈ N.

Then

1. (uk)k∈N converges weakly to û ∈ Û .
2. (uk)k∈N converges strongly to û ∈ Û if one of the following conditions hold:

• intÛ �= ∅;

• either Ψ or Φ satisfy the condition below on Û :

f ∈ Γ0(V); ∀(vk)k∈N, ∀(wk)k∈N belonging to V and v ∈ V and v ∈ ∂f(w) ∈ V we have[
wk ⇀ w, vk ⇀ v, vk ∈ ∂f(wk), ∀k ∈ N

] ⇒ w is a strong cluster point of (wk)k∈N.

Let us emphasize that if V = Rn, convergence is always strong.

CHAPTER 6. SPLITTING AND PENALTY METHODS 100

6.1.2 Douglas-Rachford splitting

Douglas-Rachford splitting, generalized and formalized in [87], is a much more general class of

monotone operator splitting methods. A crucial property of the Douglas-Rachford splitting scheme

is its high robustness to numerical errors that may occur when computing the proximity operators

proxΨ and proxΦ, see [90].

Proposition 16 ([92], Proposition 18.) Assume that Ψ ∈ Γ0(V), Φ ∈ Γ0(V) and that F = Ψ + Φ is

coercive. Let γ ∈]0,+∞[. Then

F (û) = min
u∈V

F (u) ⇔ û = proxγΦz where z =
(
(2proxγΨ − Id) ◦ (2proxγΦ − Id)

)
(z).

Moreover, û is unique if either Ψ or Φ is strictly convex.

Given a function f , the expression (2proxf − Id) is also called reflection operator.

Proof. Since F is coercive, Û �= ∅. The following chain of equivalences yields the result.

F (û) = inf
u∈V

F (u) ⇔ 0 ∈ ∂F (û) ⇔ 0 ∈ (∂Ψ + ∂Φ)(û) ⇔ 0 ∈ γ∂Ψ(û) + γ∂Φ(û)

⇔ ∃z ∈ V :

⎧⎨⎩
û− z ∈ γ∂Ψ(û) ⇔ 2û− z ∈ (Id + γ∂Ψ)(û)

z − û ∈ γ∂Φ(û) ⇔ z ∈ (Id + γ∂Φ)(û) ⇔ û = (Id + γ∂Φ)−1(z) (a)

⇔ ∃z ∈ V :

⎧⎨⎩
2(Id + γ∂Φ)−1(z)− z ∈ (Id + γ∂Ψ)(û) (use (a) for û)

û = (Id + γ∂Φ)−1(z)

⇔ ∃z ∈ V :

⎧⎨⎩
(
2(Id + γ∂Φ)−1 − Id

)
z ∈ (Id + γ∂Ψ)(û)

û = (Id + γ∂Φ)−1(z)

⇔ ∃z ∈ V :

⎧⎨⎩
û =(Id + γ∂Ψ)−1 ◦ (2(Id + γ∂Φ)−1 − Id

)
(z) = proxγΨ ◦

(
2proxγΦ − Id

)
(z) (b)

û = proxγΦz (c)

⇔ ∃z ∈ V :

⎧⎨⎩
z = 2û− (2û− z) = 2proxγΨ ◦

(
2proxγΦ − Id

)
(z)− (2proxγΦ − Id)(z)

û = proxγΦz (above: insert (b) for the first 2û and (c) for the second term)

⇔ ∃z ∈ V :

⎧⎨⎩
z = (2proxγΨ − Id) ◦ (2proxγΦ − Id

)
z

û = proxγΦz

F is coercive by assumption. When either Ψ of Φ is strictly convex, F is strictly convex as well.

Hence F admits a unique minimizer û. �

CHAPTER 6. SPLITTING AND PENALTY METHODS 101

Thus DR splitting is based on the fixed point equation

z = (2proxγΨ − Id) ◦ (2proxγΦ − Id
)
(z)

and F reaches its minimum at û = proxγΦz where z is the fixed point of the equation above.

Remark 33 Note that the roles of Φ and Ψ can be interchanged since they share the same assumptions.

Given a fixed scalar γ > 0 and a sequence λk ∈ (0, 2), this class of methods can be expressed via

the following recursion written in a compact form

z(k+1) =

((
1− λk

2

)
Id +

λk
2
(2proxγΨ − Id) ◦ (2proxγΦ − Id)

)
z(k)

A robust DR algorithm is proposed by Combettes and Pesquet in [92].

Theorem 66 ([92], Theorem 20.) Assume that Ψ ∈ Γ0(V), Φ ∈ Γ0(V) and that F = Ψ+Φ is coercive

and γ ∈]0,∞[. Let the sequences (λk)k∈N ⊂ R+, (ak)k∈N ⊂ V and (bk)k∈N ⊂ V satisfy

(i) 0 < λk < 2, ∀k ∈ N and
∑
k∈N

λk(2− λk) = +∞;

(ii)
∑
k∈N

λk
(‖ak‖+ ‖bk‖

)
< +∞.

Consider the iteration for k ∈ N:

zk+ 1
2

= (2proxγΦ − Id
)
zk + bk

zk+1 = zk + λk

(
proxγΨ(2zk+ 1

2
− zk) + ak − zk+ 1

2

)
Then (zk)k∈N converges weakly to a point ẑ ∈ V and

û = proxγΦẑ = argmin
u∈V

F (u).

When V is of finite dimension, e.g. V = Rn, the sequence (zk)k∈N converges strongly.

The sequences ak and bk model the numerical errors when computing the proximity operators.

They are under control using (ii). Conversely, if the convergence rate can be established, one can

easily derive a rule on the number of inner iterations at each outer iteration k such that (ii) is

verified.

This algorithm naturally inherits the splitting property of the Douglas-Rachford iteration, in the

sense that the operators proxγΨ and proxγΦ are used in separate steps. Note that the algorithm

allows for the inexact implementation of these two proximal steps via the incorporation of the error

terms ak and bk. Moreover, a variable relaxation parameter λk enables an additional flexibility.

6.2 Conjugacy based primal-dual algorithms

6.2.1 A max-representation tool

Main tool: any function h ∈ Γ0(V) (i.e., l.s.c. convex proper function) satisfies h∗∗ = h (Theorem 9,

p. 18) and thus 2 it admits the following variational max-representation [18]:

h(u) = max
z∈V ∗

{ 〈u, z〉 − h∗(z)
}

2Here h∗ is the convex conjugate of h given by h∗(z) = sup 〈z, u〉 − h(u), see Definition 13, p. 17.

CHAPTER 6. SPLITTING AND PENALTY METHODS 102

This well known and fundamental relation is in fact the key player not only for handling constraints,

but also for deriving “full splitting” of most optimization problems.

Notation: V and W – real n.v.s. (e.g., V = RM×N and W =
(
RM×N

)2
). Unit balls with respect

to the �∞ norm3

B1,∞ :=

{
u ∈ V : ‖u‖∞ := max

ij
|uij| � 1

}
(6.1)

B2,∞ :=

{
x = (x′, x′′) ∈ W : ‖x‖∞ := max

ij

√
(x′i,j)2 + (x′′i,j)2 � 1

}
(6.2)

Example 12 Let h(u) := ‖u‖1 where u ∈ V = Rp.

h∗(z) = sup
u∈Rp

{ 〈u, z〉−‖u‖1} = sup
u∈Rp

∑
uizi−|ui| = sup

u∈Rp

∑
|ui|(zisign(ui)−1) = sup

u∈Rp

∑
|ui|(|zi|−1)

because u must satisfy sign(ui) = sign(zi). If there is i such that |zi| > 1 then h∗(z) = +∞.

Conversely, if |zi| � 1 then h∗(z) = 0.

h∗(z) =
{

0 if ‖z‖∞ � 1
+∞ if ‖z‖∞ > 1

= ιB∞(1)(z)

Therefore

h(u) = sup
z∈Rp

{ 〈z, u〉 − ιB∞(1)(z)
}
= sup

‖z‖∞�1

〈z, u〉

We know this fact from Lemma 10 (p. 75).

h(Au− d) = sup
z∈Rp

{ 〈z, Au− d〉 − h∗(z)
}

In particular,

‖Au− d‖1 = sup
z∈Rp

{ 〈z, Au− d〉 − ιB1,∞(z)
}

(6.3)

Remark 34 Let p, u ∈ R2. One has

sup
p
{p1u1 + p2u2 |

√
p21 + p22 � 1} =

√
u21 + u22

Using Schwarz inequality, one has for u ∝ p

sup
‖p‖2�1

〈p, u〉 = sup
‖p‖2�1

‖p‖2‖u‖2 = ‖u‖2

For an image u ∈ RM×N , the isotropic discrete form of the TV semi-norm reads as

TV(u) =
∑
ij

√
(∇yu)

2
ij + (∇xu)

2
ij (6.4)

Lemma 17 Let u ∈ V := RM×N and W := V × V . Using B2,∞ as in (6.2) it holds

TV(u) = sup
ξ∈W

(〈ξ,∇u〉 − ιB2,∞(ξ)
)

3If V = CM×N then B1,∞ :=
{
u ∈ V : ‖u‖∞ := maxij

√%(uij) + &(uij) � 1
}
.

CHAPTER 6. SPLITTING AND PENALTY METHODS 103

Proof. The term on the right admits a component-wise representation in W . Thus

sup
ξx,ξy

〈ξ,∇u〉 − ιB2,∞(ξ) = sup
(ξx,ξy)∈B2,∞

∑
ij

ξxij(∇xu)ij + ξyij(∇yu)ij

=
∑
ij

sup√
(ξxij)

2+(ξyij)
2�1

ξxij(∇xu)ij + ξyij(∇yu)ij =
∑
ij

√
(∇yu)2ij + (∇xu)2i

where the last equality comes from Remark 34. �

Remark 35 The dual
(
1
2
‖Au− d‖22

)∗
is explicit if and only if ATA is invertible (easy to verify).

Otherwise 1
2
‖Au− d‖22 can be dualized. Using that

sup
v
〈v, z〉 − 1

2λ
‖v‖22 =

λ

2
‖z‖22

one has
λ

2
‖Au− d‖22 = sup

v∈Z
〈v, Au− d〉 − 1

2λ
‖v‖2

6.2.2 Elements of saddle-point formulations

Let h : W → R and g : V → R be proper, l.s.c. convex functions. Consider the minimization of

F (u) = h(Bu) + g(u) (6.5)

where B : V → W is a linear operator with induced norm ‖B‖ := max{‖Bu‖ : u ∈ V, ‖u‖ � 1}.
Using the fact that

h(Bu) = max
w∈W

〈Bu,w〉 − h∗(w) = max
w∈W

〈u,B∗w〉 − h∗(w)

we end up with he following saddle point problems:

min
u∈V

max
w∈W

{F(u, w) := 〈Bu,w〉+ g(u)− h∗(w) = 〈u,B∗w〉+ g(u)− h∗(w)
}

(6.6)

In the case of (6.6) consider the induced optimization problems:

(P) inf
u∈V

{
r(u) := sup

w
F(u, w)

}
and (D) sup

w∈W

{
q(w) = inf

u
F(u, w)

}
From Lemma 7 (p. 64) one always has supw∈W q(w) � infu∈V r(u), which is referred to as “weak

duality”. The inequality in the weak duality case can be strict, in which case the quantity

ΓPD := inf
u∈V

r(u)− sup
w∈W

q(w) = inf
u∈V

sup
w∈W

F(u, w)− sup
w∈W

inf
u∈V

F(u, w)

is called the duality gap between the pair of problems (P)− (D).

Our standing assumption is that the convex-concave function F has a saddle-point (Definition 21,

p. 64), i.e., there exists û and ŵ such that

F(û, w) � F(û, ŵ) � F(u, ŵ) ∀ u ∈ V, ∀w ∈ W

CHAPTER 6. SPLITTING AND PENALTY METHODS 104

The existence of a saddle-point corresponds to zero duality gap ΓPD = 0. According to Definition 21

(p. 64) and Theorem 43 (p. 64), (û, ŵ) is a saddle-point of F if and only if û is an optimal solution

of the primal problem (P), ŵ is an optimal solution of the dual problem (D). In this case

inf
u∈V

sup
w∈W

F(u, w) = sup
w∈W

inf
u∈V

F(u, w) = F(û, ŵ)

where F(û, ŵ) is the saddle-point value.

From Theorem 10 (FencheL-Rockafellar, p. 18), the minimization of F in (6.5) is equivalent to

max
w∈W

{− h∗(−B∗w)− g∗(w)
}
= min

u∈V
{
h(Bu) + g(u)

}
More details can be found e.g. in [18], [15, Chapter 5]. Since we have assumed that the problem in

(6.6) has at least one solution (û, ŵ) ∈ V ×W , it holds that

Bû ∈ ∂h∗(û) and − (B∗ŵ) ∈ ∂g∗(û)

We recall two basic facts:

(a) For g ∈ Γ0(V) one has by (5.4) (p. 89) and (5.9) (p. 90)

uk+1 = (Id + γ∂g)−1 = proxγg(u
k) = argmin

u

{
1

2γ
‖u− uk‖2 + g(u)

}
(b) for a concave u.s.c. function f : W → R one has

argmax
v
f(v) = argmin

v
−f(v)

max
v
f(v) = −min

v
−f(v)

6.2.3 The context of imaging applications

Typically we have to find the minimizers of functions of the form

F (u) = λΨ(Au) + βΦ(Hu)

The use of two parameters (λ, β) is redundant :

argmin
u
F (u) = argmin

u

λ

β
Ψ(Au) + Φ(Hu) (6.7)

= argmin
u

Ψ(Au) +
β

λ
Φ(Hu) (6.8)

We will set either λ = 1 or β = 1 in order to obtain better step-sizes which is closely dependent on

the values of (λ, β) and also of ‖A‖ and ‖H‖. The choice λ = 1 or β = 1 can play a crucial role on

the speed of an algorithm.

CHAPTER 6. SPLITTING AND PENALTY METHODS 105

6.2.4 Full proximal primal-dual algorithm

First we focus on the saddle-point formulation in (6.6),

min
u∈V

max
w∈W

{F(u, w) := 〈Bu,w〉+ g(u)− h∗(w)
}

(6.9)

Chambolle and Pock [93] propose a full proximal primal-dual algorithm based on the formulation

in (6.9). It is assumed that h and g are simple in the sense that their resolvent operators

u = (Id + τ∂g)−1 (z) = argmin
u

{
1

2τ
‖u− z‖2 + g(u)

}
have a closed-form representation or are easy to solve.

Algorithm (Algorithm 1, [93])

Initialization: Choose τ , σ > 0, τσ‖B‖2 < 1, θ ∈ [0, 1], (u0, w0) ∈ (V,W), ū0 = u0

Iterations n � 0 ⎧⎪⎨⎪⎩
wn+1 = (I + σ∂h∗)−1(wn + σBūn)

un+1 = (I + τ∂g)−1(un − τB∗wn+1)

ūn+1 = un+1 + θ(un+1 − un)

(6.10)

Theorem 67 (Theorem 1, [93]) Assume that problem (6.6) has a saddle point (û, ŵ) ∈ V ×W . Choose

θ = 1, τσ‖B‖2 < 1, and let (un, ūn, wn) be defined by (6.10). Then:

(a) For any n, (un, wn) remains bounded.

(b) Set uN :=
(∑N

n=1 u
n
)
/N and wN :=

(∑N
n=1w

n
)
/N . The weak cluster points of (uN , wN) are

saddle-points of (6.6).

(c) There exists a saddle-point (u∗, w∗) such that un → u∗ and wn → w∗.

From (b), the sequence of iterates (un)n∈N is not necessarily strictly decreasing (can oscillate).

The choice θ = 1 corresponds to a simple linear extrapolation based on the current and previous

iterates.

The choice θ = 0 yields the classical Arrow-Hurwicz algorithm [94].

Acceleration of the algorithm is possible if h or g∗ is uniformly convex [93, Sec. 5]

Application to minimize an �1 − TV objective

F (u) = λ‖Au− d‖1 + β
∑
i,j

√
(∇yu)

2
ij + (∇xu)

2
ij

Using Lemma 17 (p. 102) and Example 12 (p. 102 one has to solve

min
u
F (u) = min

u∈V
max
ξ∈W

max
v∈Z

λ 〈Au, v〉 − λ 〈d, v〉 − ιB1,∞(v) + β 〈∇u, ξ〉 − ιB2,∞(ξ)

In order to apply the algorithm in (6.10) to solve the above saddle point-problem, we identify

B =

(
λA
β∇

)
, g(u) = 0, w = (v, ξ) and

h∗(v, ξ) = h∗1(v) + h∗2(ξ) h∗1(v) = λ 〈d, v〉+ ιB1,∞(v) h∗2(ξ) = ιB2,∞(ξ)

CHAPTER 6. SPLITTING AND PENALTY METHODS 106

Since ‖∇‖22 � 8, see (5.20) one has 4 ‖B‖22 � λ2‖A‖2 + β28. The step-sizes are determined by

θ ∈ [0, 1] τ > 0, σ > 0 and τσ‖B‖22 < 1, hence,

τσ
(
λ2‖A‖2 + β28

)
< 1

The iterates are computed as it follows:

(a) ξ(x,y)
n+1

i,j =
z
(x,y)
i,j

max
(
1,
√
(zxi,j)

2 + (zyi,j)
2
) where z = ξn + σβ∇ūn

(b) vn+1
i,j =

hi,j
max(1, |hi,j|) where h := λσ(Aūn − d) + vn

(c) un+1 = un − τ
(
λA∗vn+1 − βdiv(ξn+1)

)
(d) ūn+1 = un+1 + θ(un+1 − un)

Minimization of a quadratic plus TV objective

F (u) =
λ

2
‖Au− d‖2 + β

∑
i,j

√
(∇yu)2ij + (∇xu)2ij

Using Lemma 17 one has to solve

min
u
F (u) = min

u∈V
max
ξ∈W

λ

2
‖Au− d‖2 + β 〈∇u, ξ〉 − ιB2,∞(ξ)

Thus h∗(ξ) = ιB2,∞(ξ) and g(u) = λ
2
‖Au− d‖2 and B = β∇. The step-size parameters should obey

τσβ28 < 1; it is more beneficial to set β = 1 and use the first formulation in (6.7).

(a) ξ(x,y)
n+1

i,j =
z
(x,y)
i,j

max
(
1,
√
(zxi,j)

2 + (zyi,j)
2
) where z = ξn + σβ∇ūn

(b) un+1 = argmin
u

{
λ

2
‖Au− d‖2 − β 〈u, divξ〉+ 1

2τ
‖u− un‖2

}
, hence un+1 must solve

τ (λA∗A + Id) u = un + τ
(
λA∗d+ βdivξn+1

)
(c) ūn+1 = un+1 + θ(un+1 − un)

Unless A is diagonal, the solution in (b) may be difficult to find (in a simple way). If Au can

be written as a convolution, a circulant convolution approximation may be used to solve (b) using

FFT. Note that this approximation holds only if u satisfies the periodic boundary conditions.

4Note that ‖B‖22 = μmax(B
TB) where μmax stands for maximal eigenvalue. If A corresponds to a convolution

operator, ‖B‖22 can be approximated using the FFT.

CHAPTER 6. SPLITTING AND PENALTY METHODS 107

A∗A is difficult to compute Now dualization with respect to ‖Au − d‖2 is needed. Using

Remark 35 (p. 103) 5 one has

λ

2
‖Au− d‖22 = sup

v∈Z
〈v, Au− d〉 − 1

2λ
‖v‖2 (6.11)

Using (6.11) and Lemma 17 one has to solve

min
u
F (u) = min

u∈V
max
ξ∈W

max
v∈Z

〈Au, v〉 − 〈d, v〉 − 1

2λ
‖v‖2 + β 〈∇u, ξ〉 − ιB2,∞(ξ)

We identify

h∗(v, ξ) = h∗1(v) + h∗2(ξ) h∗1(v) =
1

2λ
‖v‖2 + 〈d, v〉 h∗2(ξ) = ιB2,∞(ξ)

g = 0 and

B =

(
A
β∇

)
w =

(
v
ξ

)
⇒ 〈Bu,w〉 = 〈Au, v〉+ β 〈∇u, ξ〉 (6.12)

‖B‖2 � ‖A‖2 + 8β2 hence

τσ‖B‖2 � τσ(‖A‖2 + 8β2) < 1

It seems more advantageous to fix β = 1 and use the first formulation in (6.7) (p. 104). We have

proxσh∗(x, y) =
(
proxσh∗

1
(x), proxσh∗

2
(y)
)

where

proxσh∗
1
(x) = argmin

v

1

2σ
||v − x‖2 + 1

2λ
‖v‖2 + 〈d, v〉 = λ

λ+ σ
(x− σd)

The iterates are computed as it follows:

(a) ξ(x,y)
n+1

i,j =
z
(x,y)
i,j

max
(
1,
√
(zxi,j)

2 + (zyi,j)
2
) where z = ξn + σβ∇ūn

(b) vn+1 =
λ

λ+ σ
(vn + σ(Aūn − d))

(c) un+1 = un − τA∗vn+1 + τβdiv(ξn+1)

(d) ūn+1 = un+1 + θ(un+1 − un)

The computation in (a) is the same as in the case of the �1 − TV objective.

6.2.5 A Proximal Alternating Predictor-Corrector Algorithm

In [95] the equivalent saddle point problem in (6.6) is considered (we write H := B∗)

min
u∈V

max
w∈W

{F(u, w) := 〈u,Hw〉+ g(u)− h∗(w)
}

(6.13)

where

5By Remark 35 : sup
v
〈v, z〉 − 1

2λ
‖v‖22 =

λ

2
‖z‖22

CHAPTER 6. SPLITTING AND PENALTY METHODS 108

• g : V → R is convex continuously differentiable and its gradient ∇g is Lipschitz continuous

with constant L, i.e. ∀ u1, u2 ∈ V it holds that ‖g(u1)− g(u2)‖ � L‖u1 − u2‖.

• h∗ :W → R is convex proper lsc (possibly nonsmooth).

• H :W → V is a linear map.

Algorithm PAPC

Initialization: u0 ∈ V , w0 ∈ W , τL � 1 and τσ‖H‖ � 1.

ūk+1 = uk − τ(Hwk +∇g(uk)
wk+1 = proxσh∗(wk + σH∗ūk+1)

uk+1 = uk − τ(Hwk+1 +∇g(uk))
(6.14)

One can notice that ūk is a prediction step and that uk is a correction.

Theorem 68 ([95]) Let {(ūk, wk, uk)}k∈N be the sequence generated by the PAPC algorithm with σL �
1 and στ‖H‖ � 1. Then the sequence {(wk, uk)}k∈N converges to a saddle-point (û, ŵ) of F in (6.13).

Application to minimize an �2 − TV objective

F (u) =
λ

2
‖Au− d‖22 + β

∑
i,j

√
(∇yu)2ij + (∇xu)2ij

Using Lemma 17 (p. 102) and Remark 35 (p. 103) we have

min
u
F (u) = min

u∈V
max
ξ∈W

λ

2
‖Au− d‖22 − β 〈u, div(ξ)〉 − ιB2,∞(ξ) (6.15)

Comparing with (6.13), one has H(w) = −βdiv(w), g(u) = λ
2
‖Au− d‖22 and h∗(w) = ιB2,∞(w). The

algorithm’s constants (τ, σ) satisfy

τ
λ

2
‖A‖ � 1 and στβ2‖div‖2 = στβ28 � 1

The iterates are given by

(a) ūk+1 = uk − τ(λv − βdivwk) where v := A∗(Auk − d)

(b) wk+1 = argmin
w

{
1

2σ
‖w − wk‖2 − β 〈∇ū, w〉+ ιB2,∞(w)

}

wk+1
ij =

z
(x,y)
i,j

max
(
1,
√
(zxi,j)

2 + (zyi,j)
2
) where z = wk + σβ∇ūk+1

(c) uk+1 = uk − τ(λv − βdivwk+1)

CHAPTER 6. SPLITTING AND PENALTY METHODS 109

6.2.6 Alternating direction method of multipliers (ADMM)

The ADMM, dating back to the early 1980’s, is a form of Augmented Lagrangian method (see

subsection 3.4.3 on p. 57) that became very popular in recent years because it can handle “big-data”

problems, imaging problems and learning, quite easily. It is worth emphasizing that ADMM is not

an approximate version of the classical augmented Lagrangian algorithm. Excellent overviews can be

found in [96, 97].

The ADMM is a (basically convex) optimization algorithm can take an advantage of the structure

of the optimization problem by breaking it into smaller pieces, each of which are then easier to handle.

It is relatively easy to implement and the code can run in a parallel manner. It has tendency towards

slow “tail convergence” so it is well suited for problems where high accuracy is not required.

Unconstrained problem

Let V = Rn and Ψ ∈ Γ0(V) and Φ ∈ Γ0(V). Consider the problem

find û ∈ arg min
u∈Rn

F (u), F (u) = Ψ(u) + Φ(Au) (6.16)

where A ∈ Rm×n. Solving this problem is equivalent to extract the optimal û out of the solutions of

(û, ẑ) ∈ argmin
u,z

{F(u, z) = Ψ(u) + Φ(z)
∣∣ Au− z = 0

}
. (6.17)

Note that F is separable in (u, z). Recall that the Lagrangian for this problem is given by

L(u, z, λ) = Ψ(u) + Φ(z) + 〈λ,Au− z〉

and that an optimal solutionû, ẑ, λ̂) satisfies minu,z maxλL(u, z, λ). Uzawa’s Method (p. 67) solves

such a problem.

The ADMM for this problem takes the form [97, 96, 98]

uk+1 ∈ arg min
u∈Rn

{
Ψ(u) + Φ(zk) +

〈
λk, Au− zk

〉
+
ω

2
‖Au− zk‖2

}
zk+1 ∈ arg min

z∈Rn

{
Ψ(uk+1) + Φ(z) +

〈
λk, Auk+1 − z

〉
+
ω

2
‖Auk+1 − z‖2

}
λk+1 ∈ λk + ω(Auk+1 − zk+1)

(6.18)

There are several constant terms in the first two subproblems that can be dropped out.

Unlike the classical ALM, the ADMM essentially decouples the functions Ψ and Φ. Often, this

decoupling makes it possible to exploit the individual structure of Ψ and Φ so that the first two

subproblems in (6.18) can be computed in an efficient (and parallel) way.

Example 13 Consider the minimization of

F (u) = ‖Au− v‖22 + β‖∇u‖2.

One do not want to tackle directly the minimization of nonsmooth functions. Similarly to (6.17),

one reformulates [73]

argmin
u,z

{F(u, z) =
{
‖Au− v‖22 + β‖z‖2

∣∣ ∇u− z = 0
}
.

CHAPTER 6. SPLITTING AND PENALTY METHODS 110

Following (6.18), the corresponding ADMM is given by

uk+1 ∈ arg min
u∈Rn

{
‖Au− v‖22 +

〈
λk,∇u〉+ ω

2
‖∇u− zk‖2

}
zk+1 ∈ arg min

z∈Rn

{
β‖z‖22 −

〈
λk, z

〉
+
ω

2
‖∇uk+1 − z‖2

}
λk+1 ∈ λk + ω(∇uk+1 − zk+1)

The minimization subproblems are easy to solve. Lemma 15 (p. 93) can be used to update zk.

General constraint problems

The convergence of the ADMM to a minimizer û of F in (6.16) was recently extended to objectives

with more than two summands in [99]. Let V = Rn and Θi ∈ Γ0(R
ni) for i = 1, . . . , p. The problem

to solve reads as

min

{
F(u1, . . . , up) =

p∑
i=1

Θ(ui)
∣∣∣ p∑

i=1

Aiui = b, ui ∈ Ui, i = 1, . . . , p

}
(6.19)

where Θi : R
ni → R is a closed, proper and convex function (not necessarily smooth), Ai ∈ Rm×ni ,

Ui ⊆ Rni is a closed, convex and nonempty set, b ∈ Rm is given and n1+n2+ . . .+np = n. Extending

the ADMM philosophy in (6.18) to this problem yields

uk+1
1 ∈ arg min

u1∈U1

⎧⎨⎩Θ(u1) +
〈
λk, Au1

〉
+
ω

2

∥∥∥∥∥A1u1 +

p∑
i=2

Aiu
k
i − b

∥∥∥∥∥
2
⎫⎬⎭

. . .

uk+1
i ∈ arg min

ui∈Ui

⎧⎨⎩Θ(ui) +
〈
λk, Aui

〉
+
ω

2

∥∥∥∥∥Aiui +

i−1∑
j=1

Aju
k
j +

p∑
j=i+1

Aju
k
j − b

∥∥∥∥∥
2
⎫⎬⎭

. . .

uk+1
p ∈ arg min

up∈Up

⎧⎨⎩Θ(up) +
〈
λk, Aup

〉
+
ω

2

∥∥∥∥∥Apup +

p−1∑
j=1

Aju
k
j − b

∥∥∥∥∥
2
⎫⎬⎭

λk+1 = λk + ω
(∑p

i=1Aiu
k+1
i − b

)
.

(6.20)

The efficiency of the scheme (6.20) has been verified empirically by some recent applications. The

following theorem is extracted from [99, Theorem 4.1].

Theorem 69 Let Θi ∈ Γ0(R
ni) be strongly convex with the modulus μi for i = 1, . . . , p. For any

0 < ω <
p

min
i=1

{
2μi

3(p− 1)‖Ai‖2
}

the sequence (uk1, . . . , u
k
p) generated by (6.20) converges to a solution of problem (6.19).

Chapter 7

Appendix

7.1 Proof of Property 2-1, p. 20

(⇒) Let u, v) ∈ U and θ ∈ (0, 1). Using that F is convex and the fact that θu+(1−θ)v = v+θ(u−v)

F (v + θ(u− v))− F (v) � θ(F (u)− F (v))

Dividing both sides by θ and letting θ↘ 0 yields

〈∇F (v), u− v〉 := lim
θ↘0

F (v + θ(u− v))− F (v)

θ
� F (u)− F (v)

(⇐) Replacing v by u+ θ(v − u) gives rise to

F (u) � F (u+ θ(v − u)) + 〈∇F (u+ θ(v − u)), u− (u+ θ(v − u)))〉
= F (u+ θ(v − u))− θ 〈∇F (u+ θ(v − u)), v − u〉

and thus

(1− θ)F (u) � (1− θ)F (u+ θ(v − u))− (1− θ)θ 〈∇F (u+ θ(v − u)), v − u〉 (7.1)

Similarly

F (v) � F (u+ θ(v − u)) + 〈∇F (u+ θ(v − u)), v − (u+ θ(v − u)))〉
= F (u+ θ(v − u)) + (1− θ) 〈∇F (u+ θ(v − u)), v − u〉

hence

θF (v) � θF (u+ θ(v − u)) + θ(1− θ) 〈∇F (u+ θ(v − u)), v − u〉 (7.2)

Summing up (7.1) and (7.2) leads to

θF (v)+(1−θ)F (u) � θF (u+θ(v−u))+(1−θ)F (u+θ(v−u)) = F (u+θ(v−u)) = F (θv+(1−θ)u)

7.2 Proof of Theorem 17, p. 28

Note that condition 1 in Wolfe’s rule corresponds to a descent scenario. By the expression for cos(θk)

in (2.16) and using that uk+1 = uk − ρkdk we get

ρkf
′(0) = −ρk 〈∇F (uk), dk〉 = − cos(θk)‖∇F (uk)‖ ‖ρkdk‖ = − cos(θk)‖∇F (uk)‖ ‖uk − uk+1‖ < 0.

111

CHAPTER 7. APPENDIX 112

Combining this result with condition 1(a) yields

0 < c0 ρk|f ′(0)| = c0 cos(θk)‖∇F (uk)‖ ‖uk − uk+1‖ �f(0)− f(ρk) = F (uk)− F (uk+1) (7.3)

Note that F (uk)− F (uk+1) is bounded from below by a positive number (descent is guaranteed by

test 1). Reminding that f(ρk) = F (uk − ρkdk) = F (uk+1), condition 1(b) reads

f ′(ρk) = −〈∇F (uk+1), dk〉 � c1f
′(0) = −c1 〈∇F (uk), dk〉

Add 〈∇F (uk), dk〉 to both sides of the above inequality:

−〈∇F (uk+1)−∇F (uk), dk〉 � (1− c1) 〈∇F (uk), dk〉 .

Using Schwarz’s inequality and the definition of cos(θk),

‖∇F (uk+1)−∇F (uk)‖ ‖dk‖ � (1− c1) cos(θk)‖∇F (uk)‖ ‖dk‖.

Division of both sides by ‖dk‖ �= 0 leads to

‖∇F (uk+1)−∇F (uk)‖ � (1− c1) cos(θk)‖∇F (uk)‖

Combining this result with the Lipschitz property, i.e. ‖∇F (uk+1)−∇F (uk)‖ � �‖uk+1−uk‖, yields

�‖uk+1 − uk‖ � ‖∇F (uk+1)−∇F (uk)‖ � (1− c1) cos(θk)‖∇F (uk)‖

Multiplying both sides by cos(θk)‖∇F (uk)‖ and using (7.3) for the underlined term below leads to

(1− c1)
(
cos(θk)

)2‖∇F (uk)‖2 � �

c0

(
c0 cos(θk)‖∇F (uk)‖ ‖uk+1 − uk‖

)
� �

c0

(
F (uk)− F (uk+1)

)
.

For

r =
c0(1− c1)

�
> 0

we obtain

r
(
cos(θk)

)2‖∇F (uk)‖2 � F (uk)− F (uk+1).

The proof is complete. �

Why in the proof we use only test 1 ?

7.3 Proof of Theorem 18, p. 28

Since
(
F (uk)

)
k∈N is decreasing and bounded from below, there is a finite number F̃ ∈ R such that

F (uk) � F̃ , ∀k ∈ N. Then (2.17) yields

∞∑
k=0

(cos θk)
2‖∇F (uk)‖2 � 1

r

∞∑
k=0

(
F (uk)− F (uk+1)

)
=

1

r

(
F (u0)− F (u1) + F (u1)− F (u2) + · · ·)

� 1

r

(
F (u0)− F̃

)
< +∞. (7.4)

If there was δ > 0 such that ‖∇F (uk)‖ � δ, for an infinite number of k’s, then (2.18) would yield∑
k

(cos θk)
2‖∇F (uk)‖2 � δ2

∑
k

(cos θk)
2 →∞

which contradicts (7.4). Hence the conclusion.

CHAPTER 7. APPENDIX 113

7.4 Proof of Proposition 1, p. 38

Put

θ(t) = −ϕ(√t), (7.5)

then θ is convex by (b) and continuous on R+ by (c). Its convex conjugate—see (1.14), p. 17—is

θ�(b) = supt�0 {bt− θ(t)} where b ∈ R. Define ψ(b) = θ�(−1
2
b) which means that

ψ(b) = sup
t�0

{
−1

2
bt− θ(t)

}
= sup

t≥0

{
−1

2
bt2 + ϕ(t)

}
. (7.6)

By Theorem 9, p. 18, we have (θ�)� = θ. Calculating (θ�)� at t2 and using (7.5) yields

−ϕ(t) = θ(t2) = sup
b�0

{
bt2 − θ�(b)

}
= sup

b�0

{
−1

2
bt2 − ψ(b)

}
.

Since θ(t) � 0 on R+, we have θ�(b) = +∞ if b > 0 and then the supremum of b → bt2 − θ�(b) in

the middle expression above necessarily corresponds to b � 0. Finally,

ϕ(t) = inf
b�0

{
1

2
bt2 + ψ(b)

}
. (7.7)

The statement ϕ⇒ ψ comes from the fact that (θ�)� = θ.

Next we focus on the possibility to achieve the supremum in ψ jointly with the infimum in ϕ.

For any b̂ > 0, define fb̂ : R+ → R by fb̂(t) = 1
2
b̂t + θ(t), then (7.6) yields ψ(b̂) = − inft�0 fb̂(t).

Observe that fb̂ is convex by (b) with fb̂(0) = 0 by (a) and limt→∞ fb̂(t) = +∞ by (e), hence fb̂ has

a unique minimum reached at a t̂ � 0. According to (7.6), ψ(b̂) = −1
2
b̂t̂2 + ϕ(t̂), then equivalently

the infimum in (7.7) is reached for b̂ since ϕ(t̂) = 1
2
b̂t̂2 + ψ(b̂). Notice that θ′(t) = −ϕ′(

√
t)

2
√
t

and that

f ′
b̂
(t) = 1

2
b̂+θ′(t) is increasing on R+ by (b). If f ′

b̂
(0+) � 0, i.e. if b̂ � ϕ′′(0+), fb̂ reaches its minimum

at t̂ = 0. Otherwise, its minimum is reached for a t̂ > 0 such that f ′
b̂
(t̂) = 0, i.e. b̂ = −2θ′(t̂). In

this case, t→ −1
2
b̂t2 + ϕ(t) in the last expression of (7.6) reaches its supremum for a t̂ that satisfies

b̂ = −2θ′(t̂2). Hence b̂ is as given in the proposition.

7.5 Proof of Proposition 2, p. 40

By (b) and (d),
(
1
2
‖t‖2 − ϕ(‖t‖)) is convex and coercive, so the maximum of ψ is reached. The

formula for ψ in (2.35) is equivalent to

ψ(‖b‖) + 1

2
‖b‖2 = max

t∈Rs

{
〈b, t〉 −

(
1

2
‖t‖2 − ϕ(‖t‖)

)}
(7.8)

The term on the left is the convex conjugate of 1
2
‖t‖2 − ϕ(‖t‖), see (1.14), p. 17. The latter term

being convex continuous and �≡ ∞, using convex bi-conjugacy (Theorem 9, p. 18), (7.8) is equivalent

to
1

2
‖t‖2 − ϕ(‖t‖) = sup

b∈Rs

{
〈b, t〉 −

(
ψ(‖b‖) + 1

2
‖b‖2

)}
(7.9)

Noticing that the supremum in (7.9) is reached, (7.9) is equivalent to

ϕ(‖t‖) = min
b∈Rs

{
−〈b, t〉+

(
ψ(‖b‖) + 1

2
‖b‖2

)
+

1

2
‖t‖2

}
= min

b∈Rs

(
1

2
‖t− b‖2 + ψ(‖b‖)

)

CHAPTER 7. APPENDIX 114

Hence (2.35) is proven.

Using (2.35), the maximum of ψ and the minimum of ϕ are reached by a pair (t, b) such that

b− t+ ϕ′(‖t‖) t

‖t‖ = 0.

For t fixed, the solution for b, denoted b̂ is unique and is as stated in the proposition.

7.6 Derivation of the CG algorithm, p. 44

Assume that ∇F (uk) �= 0, then the optimal g(αk) �= 0 for αk ∈ Rk+1 is the unique point defined by

(2.42). Then for all iterates 0 � j � k, we have g(αj) �= 0. We will express g(αj) in the form

g(αj) = ρjdj =

j∑
i=0

αj [i]∇F (ui), 0 � j � k, dj ∈ R
n, ρj ∈ R (7.10)

Since g(αj) �= 0, we have dj �= 0 and ρj �= 0, 0 � j � k. We will choose dj in such a way that

successive directions are easy to compute. Iterates read

uj+1 = uj − ρjdj = uj −
j∑

i=0

αj[i]∇F (ui), 0 � j � k (7.11)

(a) A major result. Combining (2.40) and (7.11),

∇F (uj+1) = ∇F (uj − ρjdj) = ∇F (uj)− ρjBdj , 0 � j � k. (7.12)

For k � 1, combining (2.43) and (7.12) yields

0 = 〈∇F (uj+1),∇F (ui)〉 = 〈∇F (uj),∇F (ui)〉−ρj 〈Bdj,∇F (ui)〉 = −ρj〈Bdj,∇F (ui)〉, 0 � i < j � k.

By (7.18), dj is a linear combination of ∇F (ui), 0 � i � j; this, joined to (2.43) yields

〈Bdj, di〉 = 0, 0 � i < j � k. (7.13)

We will say that the directions dj and di are conjugated with respect to B. Since B 0, this result

shows as well that dj and di, 0 � i < j � k are linearly independent. Till iteration k+1, (7.10) can

be put into a matrix form:

[
ρ0d0

... ρ1d1
... · · · ... ρkdk

]
=
[
∇F (u0) ... ∇F (u1) ... · · · ... ∇F (uk)

]⎡⎢⎢⎢⎣
α0[0] α1[0] · · · αk[0]

α1[1] · · · αk[1]
. . .

...
αk[k]

⎤⎥⎥⎥⎦
The linear independence of

(
ρidi

)j
i=0

and
(∇F (ui))ji=0

for any 0 � j � k implies

αj [j] �= 0, 0 � j � k. (7.14)

(b) Calculus of successive directions. By (7.12) we see that

−ρjBdj = ∇F (uj+1)−∇F (uj), 0 � j � k.

CHAPTER 7. APPENDIX 115

Using this results, the fact that B = BT , along with (7.13) yields

0 = 〈Bdk, dj〉 = 〈dk, Bdj〉 = 〈ρkdk,−ρjBdj〉 =
〈
ρkdk,∇F (uj+1)−∇F (uj)

〉
, 0 � j � k − 1.

Introducing ρkdk according to (7.10) in the last term above entails

0 =

〈
k∑

i=0

αk[i]∇F (ui),∇F (uj+1)−∇F (uj)
〉
, 0 � j � k − 1. (7.15)

Using that αj[j] �= 0—see (7.14)—and that ρj �= 0 in (7.10), for all 0 � j � k, the constants below

are well defined:

γj[i] =
αj [i]

ρjαj [j]
, 1 � i � j � k. (7.16)

Using (7.11)

dk =

k∑
i=0

αk[i]∇F (ui) = αk[k]

(
k−1∑
i=0

αk[i]

αk[k]
∇F (ui) +∇F (uk)

)
Then (7.15) is equivalent to

0 =

〈
k−1∑
i=0

γk[i]∇F (ui) +∇F (uk) , ∇F (uj+1)−∇F (uj)
〉
, 0 � j � k − 1.

Using (2.43), this equation yields:

j = k − 1 : −γk[k − 1] ‖∇F (uk−1)‖2 + ‖∇F (uk‖2 = 0

0 � j � k − 2 : −γk[j] ‖∇F (uj)‖2 + γk[j + 1] ‖∇F (uj+1)‖2 = 0

It is easy to check that the solution is

γk[j] =
‖∇F (uk‖2
‖∇F (uj)‖2 , 0 � j � k − 1. (7.17)

Note that with the help of γj[i] in (7.16), dj in (7.10) can equivalently written down as

dj =

j∑
i=0

γj[i]∇F (ui), 0 � j � k, (7.18)

provided that ρj solves the problem min
ρ
F (uj − ρdj), 0 � j � k. From (7.17) and (7.18),

dk =

k−1∑
i=0

γk[i]∇F (ui) +∇F (uk) =
k−1∑
i=0

‖∇F (uk‖2
‖∇F (ui)‖2∇F (ui) +∇F (uk)

= ∇F (uk) + ‖∇F (uk‖2
‖∇F (uk−1)‖2

(
k−2∑
i=0

‖∇F (uk−1‖2
‖∇F (ui)‖2 ∇F (ui) +∇F (uk−1)

)

= ∇F (uk) + ‖∇F (uk‖2
‖∇F (uk−1)‖2dk−1.

The latter result provides a simple way to compute the new dk using the previous dk−1:

d0 = ∇F (u0) and di = ∇F (ui) + ‖∇F (ui‖2
‖∇F (ui−1)‖2di−1, 1 � i � k.

CHAPTER 7. APPENDIX 116

(c) The optimal ρk for dk. The optimal step-size ρk is the unique solution of the problem

F (uk − ρkdk) = inf
ρ∈R

F (uk − ρdk).

ρk is hence the unique minimizer of f as given below,

f(ρ) =
1

2
〈B(uk − ρdk), (uk − ρdk)〉 − 〈c, (uk − ρdk)〉 .

hence the unique solution of

0 = f ′(ρ) = ρ 〈Bdk, dk〉 − 〈Buk, dk〉+ 〈c, dk〉 = ρ 〈Bdk, dk〉 − 〈∇F (uk), dk〉

reads

ρk =
〈∇F (uk), dk〉
〈Bdk, dk〉 .

All ingredients of the algorithm are established.

7.7 Proof of Lemma 2, p. 45

By (2.45), we have −Bk dk−1 =
1
ρk
(∇F (uk)−∇F (uk−1)). Then we can write

〈−Bkdk−1,∇F (uk)〉
〈Bkdk−1, dk−1〉 =

〈(∇F (uk)−∇F (uk−1)
)
,∇F (uk)

〉〈(−∇F (uk) +∇F (uk−1)
)
, dk−1

〉 =

〈(∇F (uk)−∇F (uk−1)
)
,∇F (uk)

〉
−〈∇F (uk), dk−1〉+ 〈∇F (uk−1), dk−1〉

If ρk−1 is optimal, i.e. if F (uk−1 − ρkdk−1) = infρ F (uk−1 − ρdk−1), then

〈∇F (uk−1 − ρk−1dk−1), dk−1〉 = 0 = 〈∇F (uk), dk−1〉

Then
〈−Bkdk−1,∇F (uk)〉
〈Bkdk−1, dk−1〉 =

〈(∇F (uk)−∇F (uk−1)
)
,∇F (uk)

〉
〈∇F (uk−1), dk−1〉

If ρk−2 is optimal as well, in the same way we have 〈∇F (uk−1), dk−2〉 = 0. Using this result and the

formula for dk−1 according to step 3 in PR, the denominator on the right hand side is

〈∇F (uk−1), dk−1〉 = 〈∇F (uk−1),∇F (uk−1) + ξk−1dk−2〉 = ‖∇F (uk−1)‖2.

It follows that 〈−Bkdk−1,∇F (uk)〉
〈Bkdk−1, dk−1〉 = ξk

for ξk as in the Lemma. Using the expression for ξk established above, we find:

〈Bkdk−1 , dk〉 = 〈Bkdk−1 , ∇F (uk) + ξkdk−1〉 = 〈Bkdk−1 , ∇F (uk)〉+ ξk 〈Bkdk−1 , dk−1〉
= 〈Bkdk−1 , ∇F (uk)〉 − 〈Bkdk−1,∇F (uk)〉

〈Bkdk−1, dk−1〉 〈Bkdk−1 , dk−1〉 = 0.

Hence the result.

CHAPTER 7. APPENDIX 117

7.8 Proof of the Farkas-Minkowski theorem 39, p. 60

Let 2 hold. Using that 〈ai, u〉 � 0, ∀i ∈ I, we obtain

〈b, u〉 =
∑
i∈I

λi 〈ai, u〉 � 0.

Thus 2 implies the inclusion stated in 1.

Define the subset

K
def
=

{∑
i∈I

λiai ∈ V | λi � 0, ∀i ∈ I
}

(7.19)

The proof of 1 ⇒ 2 is aimed at showing that b ∈ K. The proof is conducted ad absurdum and is

based of 3 substatements.

(a) K in (7.19) have the properties stated below.

• K is a cone with vertex at 0.

α > 0 ⇒ αλi � 0, ∀i ∈ I ⇒ α
∑
i∈I

λiai =
∑
i∈I

(αλi)ai ∈ K.

• K is convex.

Let 0 < θ < 1, λi � 0, ∀i ∈ I and μi � 0, ∀i ∈ I.

θ
∑
i∈I

λiai + (1− θ)
∑
i∈I

μiai =
∑
i∈I

(
θλi + (1− θ)μi

)
ai ∈ K

because θλi + (1− θ)μi � 0.

• K is closed in V .

– Suppose that {ai, i ∈ I} are linearly independent. Set A = span{ai : i ∈ I}—a finite

dimensional vector subspace (hence closed). Consider an arbitrary (vj)j∈N ⊂ K. For any

j ∈ N, there is a unique set {λj[i] � 0, i ∈ I} so that

vj =
∑
i∈I

λj[i]ai ∈ K ∩ A.

Let lim
j→∞

vj = v ∈ V then v ∈ V ∩A which is equivalent to

lim
j→∞

vj =
∑
i∈I

(
lim
j→∞

λj[i]

)
ai ∈ K ∩A.

Hence K is closed in V .

– Let {ai, i ∈ I} be linearly dependent. Then K is a finite union of cones corresponding

to linearly independent subsets of {ai}. These cones are closed, hence K is closed.

CHAPTER 7. APPENDIX 118

(b) Let K ⊂ V be convex, closed and K �= ∅. Let b ∈ V \K. Using the Hahn-Banach theorem 8,

∃h ∈ V and ∃α ∈ R such that

〈u, h〉 > α, ∀u ∈ K,
〈b, h〉 < α.

By the Projection Theorem 29 (p. 48), there is a unique c ∈ K such that

‖b− c‖ = inf
u∈K

‖b− u‖ > 0 (> 0 because b �∈ K)

c ∈ V satisfies

〈u− c, b− c〉 � 0, ∀u ∈ K. (7.20)

Then

‖c− b‖2 > 0 ⇔ ‖c‖2 − 〈c, b〉 − 〈c, b〉+ ‖b‖2 > 0

⇔ ‖c‖2 − 〈c, b〉 > 〈c, b〉 − ‖b‖2 ⇔ 〈c, c− b〉 > 〈b, c− b〉

Set h = c− b and α such that

〈c, c− b〉 = 〈c, h〉 > α > 〈b, h〉 = 〈b, c− b〉

From (7.20)

〈u− c, h〉 � 0 ⇒ 〈u, h〉 � 〈c, h〉> α, ∀u ∈ K.
Remark 36 The hyperplane {u ∈ V : 〈h, u〉 = α} separates strictly {b} and K.

(c) Let K read as in (7.19). Then

b �∈ K ⇒ ∃h ∈ V such that 〈ai, h〉 � 0, ∀i ∈ I and 〈b, h〉 < 0.

Since b �∈ K, then (b) shows that ∃h ∈ V and ∃α ∈ R such that (Theorem 8)

〈u, h〉 > α, ∀u ∈ K,
〈b, h〉 < α.

In particular

u = 0 ∈ K ⇒ 0 = 〈u, h〉 > α ⇒ α < 0.

Since K is a cone

〈λu, h〉 > α, ∀λ > 0, ∀u ∈ K ⇒ 〈u, h〉 > α

λ
, ∀λ > 0, ∀u ∈ K.

Since α/λ↗ 0 as λ↗∞ it follows that

〈u, h〉 � 0, ∀u ∈ K.

Choose arbitrarily ai ∈ K for i ∈ I. Then 〈ai, h〉 � 0, ∀i ∈ I.
(d) Conclusion. Statement 2 means that b ∈ K. By (c), we have

statement 2 fails ⇒ statement 1 fails.

Consequently, statement 1 implies statement 2.

CHAPTER 7. APPENDIX 119

7.9 Proof of Lemma 8, p. 66

Restate (Pλ):

K(λ) = inf
u∈V

L(u, λ) = L(uλ, λ).

Let λ, λ+ η ∈ R
q
+. We have:

(a) L(uλ, λ) � L(uλ+η, λ) and (b) L(uλ+η, λ+ η) � L(uλ, λ+ η)

(a) ⇒ K(λ) � F (uλ+η) +

q∑
i=1

(λi + ηi)hi(uλ+η)−
q∑

i=1

ηihi(uλ+η) = K(λ+ η)−
q∑

i=1

ηihi(uλ+η).

(b) ⇒ K(λ+ η) � F (uλ) +

q∑
i=1

λihi(uλ) +

q∑
i=1

ηihi(uλ) = K(λ) +

q∑
i=1

ηihi(uλ).

⇒
q∑

i=1

ηihi(uλ+η) � K(λ+ η)−K(λ) �
q∑

i=1

ηihi(uλ).

Then ∃ θ ∈ [0, 1] such that

K(λ + η)−K(λ) = (1− θ)

q∑
i=1

ηihi(uλ) + θ

q∑
i=1

ηihi(uλ+η)

=

q∑
i=1

ηihi(uλ) + θ

q∑
i=1

ηi

(
hi(uλ+η)− hi(uλ)

)
Since λ→ uλ is continuous and hi, 1 � i � q are continuous, for any λ ∈ R

q
+ we can write down

K(λ+ η)−K(λ) =

q∑
i=1

ηihi(uλ) + ‖η‖ε(η) where lim
η→0

ε(η) = 0

It follows that K is differentiable and that 〈∇K(λ), η〉 =
q∑

i=1

ηi hi(uλ).

7.9.1 Proof of Theorem 42, p. 63

To prove 1, we have to show that if the constraints are qualified in the convex sense (Definition 20) then

they are qualified in the general sense (Definition 19, p. 61), for any u ∈ U , which will allows us to apply

the KT Theorem 41.

• Let w �= û, w ∈ U , satisfy Definition 20. Set v = w − û. Using that hi(û) = 0, ∀i ∈ I(û), and

that hi are convex (see Property 2-1, p. 20),

i ∈ I(û) ⇒ 〈∇hi(û), v〉 = hi(û) + 〈∇hi(û), w − û〉 � hi(w).

By Definition 20, we know that hi(w) � 0 and that hi(w) < 0 is hi is not affine. Then

〈∇hi(û), w − û〉 = 〈∇hi(û), v〉 � 0 ,

where the inequality is strict if hi is not affine. Hence Definition 19 is satisfied for v.

CHAPTER 7. APPENDIX 120

• Let û = w ∈ U . Since hi(û) < 0 is impossible for any i ∈ I(û), Definition 20 means that all hi for

i ∈ I(û) are affine. Then Definition 19 is trivially satisfied.

The result in statement 1 follows from the KT relations (Theorem 41, p. 62).

To prove statement 2, we have to check that F (û) � F (u), ∀u ∈ U . Let u ∈ U (arbitrary). The

convexity of hi (Property 2-1) and the definition of U yield the two inequalities below:

i ∈ I(û) ⇒ 〈∇hi(û), u− û〉 � hi(u)− hi(û) � 0, ∀u ∈ U.

Using these inequalities and noticing that λi(û) � 0, we can write down

F (û) � F (û)−
∑
i∈I(û)

λi(û)
(
hi(u)− hi(û)

)
� F (û)−

∑
i∈I(û)

λi(û) 〈∇hi(û), u− û〉

� F (û)−
〈

q∑
i=1

λi(û)∇hi(û) , u− û

〉 (
by (3.35), λi(û) = 0 if i �∈ I(û))

= F (û) + 〈∇F (û) , u− û〉 (by (3.34))

� F (u), ∀u ∈ U (F is convex).

7.10 Proof of Proposition 8, p. 77

Proof. By contradiction: let ∃ε > 0 and (vk)k∈N with

tk
def
= ‖vk‖ � 1

k + 1

such that ∣∣F (u+ vk)− F (u)− δF (u)(vk)
∣∣ > εtk = ε‖vk‖, ∀k ∈ N.

‖vk‖
tk

= 1, ∀k ∈ N ⇒ vk
tk
∈ {w ∈ R

n : ‖w‖ = 1} (compact set), ∀k ∈ N ⇒ ∃vkj such that

lim
j→∞

vkj
tkj

= v, ‖v‖ = 1 (7.21)

For � > 0 a local Lipschitz constant of F we have

εtkj <
∣∣F (u+ vkj)− F (u)− δF (u)(vkj)

∣∣
�

∣∣F (u+ vkj)− F (u+ tkjv)
∣∣+ ∣∣F (u+ tkjv)− F (u)− δF (u)(tkjv)

∣∣+ ∣∣δF (u)(tkjv)− δF (u)(vkj)
∣∣

� 2�‖vkj − tkjv‖+
∣∣F (u+ tkjv)− F (u)− tkjδF (u)(v)

∣∣
Note that by Lemma 7 (p. 77) we have

∣∣δF (u)(tkjv) − δF (u)(vkj)
∣∣ � �‖tkjv − vkj‖, which is used to

get the last inequality.

Using that lim
j→∞

tkj = 0 along with the definition of δF in (4.4) (p. 76) and (7.21)

ε � 2� lim
j→∞

∥∥∥∥vkjtkj − v

∥∥∥∥+ lim
j→∞

∣∣∣∣F (u+ tkjv)− F (u)

tkj
− δF (u)(v)

∣∣∣∣ = 0.

This contradicts the assumption that ε > 0.

Bibliography

[1] A. Chambolle, “An algorithm for total variation minimization and application”, Journal of Mathematical
Imaging and Vision, vol. 20, no. 1, Jan. -Mar. 2004.

[2] G. Aubert and P. Kornprobst, Mathematical problems in image processing, Springer-Verlag, Berlin, 2
edition, 2006.

[3] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert
Spaces, 2011.

[4] J. F. Bonnans, J.-C. Gilbert, C. Lemaréchal, and C. A. Sagastizábal, Numerical optimization (theoretical
and practical aspects), Springer, 2003.

[5] P. G. Ciarlet, Introduction à l’analyse numérique matricielle et à l’optimisation, Collection
mathématiques appliquées pour la mâıtrise. Dunod, Paris, 5e edition, 2000.

[6] R. Glowinski, J. Lions, and R. Trémolières, Analyse numérique des inéquations variationnelles, vol. 1,
Dunod, Paris, 1 edition, 1976.

[7] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex analysis and Minimization Algorithms, vol. I, Springer-
Verlag, Berlin, 1996.

[8] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex analysis and Minimization Algorithms, vol. II, Springer-
Verlag, Berlin, 1996.

[9] D. Luenberger, Introduction to Linear and Nonlinear Programming, Addison-Wesley, New York, 1
edition, 1973.

[10] J. Nocedal and S. Wright, Numerical Optimization, Springer, New York, 2 edition, 2006.

[11] J. Ortega and W. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic
Press, New York, 1970.

[12] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical recipes, the art of scientific computing,
Cambridge Univ. Press, New York, 1992.

[13] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert
Spaces, Springer, 2011.

[14] L. Schwartz, Analyse: Topologie générale et analyse fonctionnelle, vol. 2 of Enseignement des sciences,
Hermann, Paris, 1993.

[15] A. Auslender and M. Teboulle, Asymptotic Cones and Functions in Optimization and Variational
Inequalities, Springer, New York, 2003.

[16] H. Brézis, Analyse fonctionnelle, Collection mathématiques appliquées pour la mâıtrise. Masson, Paris,
1992.

[17] I. Ekeland and R. Temam, Convex Analysis and Variational Problems, SIAM, Amsterdam: North Holland,
1976.

[18] R. T. Rockafellar, Convex Analysis, Princeton University Press, 1970.

121

BIBLIOGRAPHY 122

[19] L. Ambrosio, N. Fusco, and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems,
Oxford Mathematical Monographs. Oxford University Press, 2000.

[20] L. Schwartz, Analyse II. Calcul différentiel et équations différentielles, vol. 2 of Enseignement des
sciences, Hermann, Paris, 1997.

[21] A. Avez, Calcul différentiel, Masson, 1991.

[22] C. Labat and J. Idier, “Convergence of conjugate gradient methods with a closed-form stepsize formula”,
J. of Optimization Theory and Applications, vol. 136, no. 1, pp. 43–60, 2008.

[23] E. Chouzenoux, J. Idier, and S. Moussaoui, “A majorizeâminimize strategy for subspace optimization
applied to image restoration”, IEEE Transactions on Image Processing, vol. 20, no. 6, pp. 1517–1528,
June 2011.

[24] P. Davis, Circulant matrices, John Wiley, New York, 3 edition, 1979.

[25] D. Geman and C. Yang, “Nonlinear image recovery with half-quadratic regularization”, IEEE Transactions
on Image Processing, vol. IP-4, no. 7, pp. 932–946, July 1995.

[26] G. Strang, Linear Algebra and its Applications, Brooks / Cole, 3 edition, 1988.

[27] R. Chan and M. Ng, “Conjugate gradient methods for toeplitz systems”, SIAM Review, vol. 38, no. 3,
pp. 427–482, Sep. 1996.

[28] R. H.-F. Chan and X.-Q. Jin, An Introduction to Iterative Toeplitz Solvers, Cambridge University Press,
2011.

[29] G. Strang, “A proposal for toeplitz matrix calculations”, Stud. Appl. Math., vol. 74, 1986.

[30] T. Chan, “An optimal circulant preconditioner for toeplitz systems”, SIAM J. Sci. Stat. Comput., , no.
9, pp. 766â–771, 1988.

[31] R. Chan, “Circulant preconditioners for hermitian toeplitz systems”, SIAM J. Matrix Anal. Appl., , no.
10, pp. 542â–550, 1989.

[32] E. Tyrtyshnikov, “Optimal and superoptimal circulant preconditioners”, SIAM J. Matrix Anal. Appl, ,
no. 13, pp. 459–â473, 1992.

[33] E. Weiszfeld, “Sur le point pour lequel la somme des distances de n points donnÃ c©s est minimum”,
TÃ´hoku Math. J, , no. 43, pp. 355–386, 1937.

[34] H. E. Voss and U. Eckhardt, “Linear convergence of generalized Weiszfeld’s method”, Computing, vol.
25, no. 3, pp. 243–251, 1980.

[35] T. Chan and P. Mulet, “On the convergence of the lagged diffusivity fixed point method in total variation
image restoration”, SIAM Journal on Numerical Analysis, vol. 36, no. 2, pp. 354–367, 1999.

[36] A. Beck and S. Sabach, “Weiszfeld’s method: Old and new results”, J Optim Theory Appl, vol. 164, no.
1, pp. 1–40, 2015.

[37] D. Geman and G. Reynolds, “Constrained restoration and recovery of discontinuities”, IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. PAMI-14, no. 3, pp. 367–383, Mar. 1992.

[38] P. Charbonnier, L. Blanc-Féraud, G. Aubert, and M. Barlaud, “Deterministic edge-preserving regularization
in computed imaging”, IEEE Transactions on Image Processing, vol. 6, no. 2, pp. 298–311, Feb. 1997.

[39] A. H. Delaney and Y. Bresler, “Globally convergent edge-preserving regularized reconstruction: an appli-
cation to limited-angle tomography”, IEEE Transactions on Image Processing, vol. 7, pp. 204–221, Feb.
1998.

[40] J. Idier, “Convex half-quadratic criteria and auxiliary interacting variables for image restoration”, IEEE
Transactions on Image Processing, vol. 10, no. 7, pp. 1001–1009, July 2001.

BIBLIOGRAPHY 123

[41] M. Nikolova and M. Ng, “Analysis of half-quadratic minimization methods for signal and image recovery”,
SIAM Journal on Scientific Computing, vol. 27, no. 3, pp. 937–966, 2005.

[42] M. Allain, J. Idier, and Y. Goussard, “On global and local convergence of half-quadratic algorithms”, IEEE
Transactions on Image Processing, vol. 15, no. 5, pp. 1130–1142, 2006.

[43] M. Nikolova and R. Chan, “The equivalence of half-quadratic minimization and the gradient linearization
iteration”, IEEE Transactions on Image Processing, vol. 16, no. 6, pp. 1623–1627, June 2007.

[44] M. C. Robini and Y. Zhu, “Generic half-quadratic optimization for image reconstruction”, SIAM Journal
on Imaging Sciences, vol. 8, no. 3, pp. 1752–1797, 2015.

[45] G. Aubert and L. Vese, “A variational method in image recovery”, SIAM Journal on Numerical Analysis,
vol. 34, no. 5, pp. 1948–1979, 1997.

[46] D. Luenberger and Y. Ye, Linear and Nonlinear Programming, Springer, New York, 3 edition, 2008.

[47] A. Lewis and M. Overton, “Nonsmooth optimization via quasi-newton methods”, Math. Programming,
online 2012.

[48] P. G. Ciarlet, Introduction to Numerical Linear Algebra and Optimization, Cambridge University Press,
1989.

[49] M. Minoux, Programmation mathématique. Théorie et algorithmes, T.1, Dunod, Paris, 1983.

[50] P. G. Ciarlet, Introduction à l’analyse numérique matricielle et à l’optimisation, Collection
mathématiques appliquées pour la mâıtrise. Masson, Paris, 1990.

[51] C. Vogel, Computational Methods for Inverse Problems, Frontiers in Applied Mathematics Series, Number
23. SIAM, 2002.

[52] S. Wright, Primal-Dual Interior-Point Methods, SIAM Publications, Philadelphia, 1997.

[53] Y. Nesterov, Introductory Lectures on Convex Optimization: a Basic Course, Kluwer Academic,
Dordrecht, 2004.

[54] Y. Nesterov, “Smooth minimization of non-smooth functions”, Math. Program. (A), vol. 1, no. 103, pp.
127–152, 2005.

[55] J.-F. Aujol, “Some first-order algorithms for total variation based image restoration”, Journal of Mathe-
matical Imaging and Vision, vol. 34, no. 3, pp. 307–327, July 2009.

[56] P. Weiss, L. Blanc-Féraud, and G. Aubert, “Efficient schemes for total variation minimization under
constraints in image processing”, SIAM Journal on Scientifigc Computing, vol. 31, no. 3, pp. 2047–2080,
2009.

[57] Y. Nesterov, “Gradient methods for minimizing composite objective function”, Tech. Rep., Université
catholique de Louvain, Center for Operations Research and Econometrics (CORE), CORE Discussion Papers
2007076, Sep. 2007.

[58] C. Zalinescu, Convex analyzis in general vector spaces, World Scientific, River Edge, N.J., 2002.

[59] L. Rudin, S. Osher, and C. Fatemi, “Nonlinear total variation based noise removal algorithm”, Physica,
vol. 60 D, pp. 259–268, 1992.

[60] J. E. Besag, “Digital image processing : Towards Bayesian image analysis”, Journal of Applied Statistics,
vol. 16, no. 3, pp. 395–407, 1989.

[61] D. Donoho, I. Johnstone, J. Hoch, and A. Stern, “Maximum entropy and the nearly black object”, Journal
of the Royal Statistical Society B, vol. 54, no. 1, pp. 41–81, 1992.

[62] P. Moulin and J. Liu, “Analysis of multiresolution image denoising schemes using generalized Gaussian and
complexity priors”, IEEE Transactions on Image Processing, vol. 45, no. 3, pp. 909–919, Apr. 1999.

BIBLIOGRAPHY 124

[63] M. Belge, M. Kilmer, and E. Miller, “Wavelet domain image restoration with adaptive edge-preserving
regularization”, IEEE Transactions on Image Processing, vol. 9, no. 4, pp. 597–608, Apr. 2000.

[64] A. Antoniadis and J. Fan, “Regularization of wavelet approximations”, Journal of Acoustical Society
America, vol. 96, no. 455, pp. 939–967, Sep. 2001.

[65] M. Nikolova, “Minimizers of cost-functions involving nonsmooth data-fidelity terms. Application to the
processing of outliers”, SIAM Journal on Numerical Analysis, vol. 40, no. 3, pp. 965–994, 2002.

[66] M. Nikolova, “A variational approach to remove outliers and impulse noise”, Journal of Mathematical
Imaging and Vision, vol. 20, no. 1, Jan. -Mar. 2004.

[67] T. Chan and S. Esedoglu, “Aspects of total variation regularized l1 function approximation”, SIAM Journal
on Applied Mathematics, vol. 65, pp. 1817â–1837, 2005.

[68] J. Yang, Y. Zhang, and W. Yin, “An efficient TVL1 algorithm for deblurring multichannel images corrupted
by impulsive noise”, SIAM Journal on Scientific Computing, vol. 31, no. 4, pp. 2842–2865, June 2009.

[69] V. Duval, J.-F. Aujol, and Y. Gousseau, “The TVL1 model: a geometric point of view”, SIAM Journal
on Multiscale Modeling and Simulation, vol. 8, no. 1, pp. 154–189, 2009.

[70] R. T. Rockafellar and J. B. Wets, Variational analysis, Springer-Verlag, New York, 1998.

[71] L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced
Mathematics. CRC Press, Roca Baton, FL, 1992.

[72] J.-J. Moreau, “Proximité et dualité dans un espace hilbertien”, Bulletin de la S. M. F.

[73] Y. Wang, J. Yang, W. Yin, and Y. Zhang, “A new alternating minimization algorithm for total variation
image reconstruction”, SIAM Journal on Imaging Sciences, vol. 1, no. 3, pp. 248â–272, 2008.

[74] P. L. Combettes and V. R. Wajs, “Signal recovery by proximal forward-backward splitting”, SIAM Multi-
scale Model. Simul., vol. 4, no. 4, pp. 1168–1200, 2005.

[75] N. Z. Shor, Minimization Methods for Non-Differentiable Functions, vol. 3, Springer-Verlag, 1985.

[76] S. Alliney and S. A. Ruzinsky, “An algorithm for the minimization of mixed l1 and l2 norms with application
to Bayesian estimation”, IEEE Transactions on Signal Processing, vol. SP-42, no. 3, pp. 618–627, Mar.
1994.

[77] H. Fu, M. Ng, M. Nikolova, and J. L. Barlow, “Efficient minimization methods of mixed �1− �l and �2− �1
norms for image restoration”, SIAM Journal on Scientific Computing, vol. 27, no. 6, pp. 1881–1902,
2006.

[78] H. Bauschke, S. M. Moffat, and X. Wang, “Firmly nonexpansive mappings and maximally monotone
operators: Correspondence and duality”, Set-Valued Anal., vol. 20, no. 1, pp. 131–153, 2012.

[79] R. T. Rockafellar, “Monotone operators and the proximal point algorithm”, SIAM Journal on Control
and Optimization, vol. 14, no. 5, pp. 877–898, Aug. 1976.

[80] J. Eckstein and D. P. Bertsekas, “On the Douglas-Rachford splitting method and the proximal point
algorithm for maximal monotone operators”, Math. Programming: Series A and B, vol. 55, no. 3, pp.
293–318, July . 1992.

[81] J.-J. Moreau, “Fonctions convexes duales et points proximaux dans un espace hilbertien”, CRAS Sér. A
Math., vol. 255, pp. 2897–2899, 1962.

[82] P. L. Combettes and J.-C. Pesquet, Proximal Splitting Methods in Signal Processing, p. 185â212,
Bauschke, H.H.; Burachik, R.S.; Combettes, P.L.; Elser, V.; Luke, D.R.; Wolkowicz, H. (Eds.), Springer-
Verlag, 2011.

[83] J. Yang, W. Yin, Y. Zhang, and Y. Wang, “A fast algorithm for edge-preserving variational multichannel
image restoration”, SIAM Journal on Imaging Sciences, vol. 2, no. 2, pp. 569–592, 2009.

BIBLIOGRAPHY 125

[84] D. Gabay, Applications of the method of multipliers to variational inequalities, M. Fortin and R. Glowin-
ski, editors, North-Holland, Amsterdam, 1983.

[85] P. Tseng, “Applications of a splitting algorithm to decomposition in convex programming and variational
inequalities”, SIAM Journal on Control and Optimization, vol. 29, no. 1, pp. 119–138, 1991.

[86] P. Tseng, “A modified forward-backward splitting method for maximal monotone mappings”, SIAM
Journal on Control and Optimization, vol. 38, no. 1, pp. 431–446, 2000.

[87] P.-L. Lions and B. Mercier, “Splitting algorithms for the sum of two nonlinear operators”, SIAM Journal
on Numerical Analysis, vol. 16, no. 6, pp. 964–979, Dec. . 1979.

[88] P.-L. Lions, “Une méthode itérative de resolution d’une inéquation variationnelle”, Israel Journal of
Mathematics, vol. 31, no. 2, pp. 204–208, June . 1978.

[89] G. B. Passty, “Ergodic convergence to a zero of the sum of monotone operators in hilbert space”, Journal
of Mathematical Analysis and Applications, vol. 72, 1979.

[90] P. L. Combettes, “Solving monotone inclusions via compositions of nonexpansive averaged operators”,
Optimization, vol. 53, no. 5, Dec. 2004.

[91] J. Eckstein and B. F. Svaiter, “A family of projective splitting methods for the sum of two maximal
monotone operators”, Math. Program., Ser. B, vol. 111, no. 1-2, pp. 173–199, Jan. . 2008.

[92] P. L. Combettes and J.-C. Pesquet, “A Douglas-Rachford splittting approach to nonsmooth convex varia-
tional signal recovery”, IEEE Journal of Selected Topics in Signal Processing, vol. 1, no. 4, pp. 564–574,
Dec. 2007.

[93] A. Chambolle and T. Pock, “A first-order primal-dual algorithm for convex problems with applications to
imaging”, J. Math. Imaging Vision, vol. 40, no. 1, pp. 120–145, 2011.

[94] K. J. Arrow, L. Hurwicz, and H. Uzawa, Studies in linear and nonlinear programming, Chenery, H.B.,
Johnson, S.M., Karlin, S., Marschak, T., Solow, R.M. (eds.). Stanford University Press, Stanford, 1958.

[95] Y. Drori, S. Sabach, and M. Teboulle, “A simple algorithm for a class of nonsmooth convex-concave
saddle-point problems”, Operations Research Letters, vol. 43, Feb. 2015.

[96] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning
via the alternating direction method of multipliers”, Foundations and Trends in Machine Learning,, vol.
3, no. 1, pp. 1–122, 2011.

[97] J. Eckstein, “Augmented Lagrangian and Alternating Direction Methods for convex optimization: A tutorial
and some illustrative computational results”, Tech. Rep., Rutgers University, NJ, RRR 32-2012, 2012.

[98] T. Goldstein, B. O’Donoghue, S. Setzer, and R. Baraniuk, “Fast alternating direction optimization meth-
ods”, SIAM Journal on Imaging Sciences, vol. 7, no. 3, pp. 1588–1623, 2014.

[99] D. Han and X. Yuan, “A note on the alternating direction method of multipliers”, Journal of Optimization
Theory and Applications, vol. 155, no. 1, pp. 227–238, Oct. 2012.

