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object uo

(scene, body)

↓

capture energy

(emitted, reflected)

↓

observed data v ←− perturbations

(signal, image) humans

⇓ ⇑

decision model =⇒←−
solution set =⇒ algorithm =⇒ output û

⇑ ⇓

prior knowledge automatic processing

(task dependent)

�
�

�



Knowledge of the full chain is important

to produce a satisfying output û

Mathematical model: v = Transform(uo) • (perturbations)

Some transforms: loss of pixels, blur, FT, Radon T., frame T. (· · · )

Processing tasks: û = recover(uo)
∣∣ û = objects of interest(uo)

∣∣ û = classify(uo)
∣∣ (· · · )

Mathematical tools: PDEs, Statistics, Functional anal., Matrix anal., (· · · )
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Editing Inpainting Denoising

↓ ↓ ↓

[Pérez, Gangnet, Blake 04] [Chan, Steidl, Setzer 08]
[M. Lebrun, A. Buades

and J.-M. Morel, 2113]



4�� ��Image/signal processing tasks often require to solve ill-posed inverse problems

Out-of-focus picture: v = a ∗ uo + noise = Auo + noise

A is ill-conditioned ≡ (nearly) noninvertible

Least-squares solution: û = argmin
u

{
∥Au− v∥2

}
Tikhonov regularization: û := argmin

u

{
∥Au− v∥2+β

∑
i

∥Giu∥2
}
for {Gi} ≈ ∇, β>0

Original uo Blur a Data v û: Least-squares û: Tikhonov
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An ill-posed inverse problem Example due to R.S.Wilson

uo (unknown) v (data)= Transform(uo)•n (noise)

uo = [ 1 1 1 1 ]T Transform: A =


10 7 8 7

7 5 6 5

8 6 10 9

7 5 9 10

 rank(A) = 4

• no noise: vo = Auo = [ 32 23 33 31 ]T ⇒ û = A−1v = uo

• with noise: v = Auo + n = [ 32.1 22.9 33.1 30.9 ]T 0.33 % relative error

Least-squares solution: û = arg min
u∈R4

{
∥Au− v∥2

}
= A−1v

⇒ û = [ 9.20 − 12.60 4.50 − 1.10 ]T 819.8 % relative error

Tikhonov regularization: û = arg min
u∈R4
Fv(u)

Fv(u) := ∥Au− v∥2 + β

3∑
i=1

(
u[i + 1]− u[i]

)2
β = 5 =⇒ û = [ 1.0059 1.0059 1.0019 0.9888 ]T 0.7026 % relative error
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θ (degrees)

0

2

4

6

8

10

12

Impulse noise Jitter (video) Radon (tomography)

⇓ ⇓ ⇓

Formulate your problem as the minimization (maximization) of a functional

(an objective) Fv whose solution is the sought after signal/image
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1 Variational regularization methods

uo (unknown) v (data) = Transform(uo)• (perturbations)

solution û

û
↗ close to data production model Ψ(u, v) (data-fidelity)

↘ coherent with priors and desiderata Φ(u) (prior – functional, constraint )

Combining models: û ∈ argmin
u∈Ω

Fv(u) (P)

Fv(u) := Ψ(u, v) + βΦ(u), β > 0

�� ��How to choose (P) to get a good û ?

Applications: Denoising, Segmentation, Deblurring, Tomography, Seismic imaging, Zoom,

Superresolution, Compression, Learning, Motion estimation, Pattern recognition (· · · )

The m× n image u is stored in a p = mn-length vector, u ∈ Rp, data v ∈ Rq
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Data-fidelity models

Ψ (usually) models the production of data:�� ��Ψ = − log
(
Likelihood(v|u)

)
Ψ involves a (linear) observation operator A (blur, projections, ...)– e.g. v = Auo + n (noise)

(N ) Gaussian noise (n ∼ N (0, σ2I)) ⇒ Ψ(Au, v) = 1
2σ2 ∥Au− v∥22

(L) Laplacian noise (centered, diversity b) ⇒ Ψ(Au, v) = 1
b
∥Au− v∥1

(P) Poisson observations ⇒ Ψ(Au, v)) = ⟨1lq, Au⟩ − ⟨v, log(Au)⟩, Au > 0

(M) Multiplicative noise (K records) ⇒ Ψ(Au, v)) = K
⟨
1lq,
(
log(Au) + v

Au

)⟩
, Au > 0

Impulse noise: P(vi = (Auo)i) = r, P(vi = γ) = 1− r where γ is random.

Remark 1.1 To deal with impulse noise, the Laplacian model (L) is commonly used.

The information on uo is implicitly contained in Ψ(·, v).
A good prior Φ is needed to extract the sought-after information (û) from the data (v).
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Prior models, Regularizers

Φ is a model for the sought-after û, in restoration for the unknown uo

Ingredients: statistics, smoothness, edges, textures, special features, self-similarity...

− Bayesian approach: to model the interactions between samples

− Variational approach: PDE-based (anisotropic) to select good smoothers

− Among others...

Regularizers of the form

�
�

�

Φ(u) =

∑
i

φi(∥Giu∥)

φ : R+ → R+ potential function (PF), usually φi = φ ∀ i. Examples =⇒
{Gi} — linear operators, ∇ is a discrete approximation of the gradient.

Some formulations

− Tikhonov ⇒ {Gi} ∈
{
I, ∇, ∇2,

(
∇,∇2

) }
, etc.

− Analysis ⇒ {Gi} =W for W a frame (e.g., a dictionary)

− Synthesis ⇒ A = BW and {Gi} = I (here u =W (image) contains the coefficients)

− Hybrid ⇒ {Gi} = ∇W † where W † is a left inverse of W

. Total Variation: TV(u) =
∑

i ∥ (∇u)i ∥2
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Convex PFs

φ(|t|) is smooth at zero φ(|t|) is nonsmooth at zero

φ(t) = tα, 1 < α 6 2 φ(t) = t

φ(t) =
√
α+ t2

φ(t) = |t| − α log
(
1 + |t|

α

)
φ(t) =

 t2/(2α) if |t| 6 α,

|t| − α/2 if |t| > α

Nonconvex PFs

φ(|t|) is smooth at zero φ(|t|) is nonsmooth at zero

φ(t) = min{αt2, 1} φ(t) = tα, 0 < α < 1

φ(t) =
αt2

1 + αt2
φ(t) =

αt

1 + αt

φ(t) = log(αt2 + 1) φ(t) = log (αt+ 1)

φ(t) = 1− exp (−αt2) φ(t) =

 0 if t = 0

1 if t ̸= 0

Commonly used PFs φ where α > 0 is a parameter.
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Some well known objective functions

Regularization [Tikhonov, Arsenin 77]: Fv(u) = ∥Au− v∥2+β∥Gu∥2, G = I or G ≈ ∇

Focus on edges, contours, segmentation, labeling

Statistical framework [1, 2, 3]

Potts model [Potts 52] (ℓ0 semi-norm applied to differences):

Fv(u) = Ψ(u, v) + β
∑
i,j

ϕ(u[i]− u[j]) ϕ(t) :=

 0 if t = 0

1 if t ̸= 0

Markov Random Fields with Line Process [Geman, Geman 84]: (û, ℓ̂) = argmin
u,ℓ
Fv(u, ℓ)

Fv(u, ℓ) = Ψ(u, v) + β
∑
i

( ∑
j∈Ni

φ(u[i]− u[j])(1− ℓi,j) +
∑

(k,n)∈Ni,j

V(ℓi,j, ℓk,n)
)

[
ℓi,j = 0 ⇔ no edge

]
,

[
ℓi,j = 1 ⇔ edge between i and j

]
, φ(t) = 1

i
Nitid d ddd

d tid d dd d dd d d
some possible neighbors Ni line model



13

Image credits: S. Geman and D. Geman 1984. Restoration with 5 labels using Gibbs sampler

“We make an analogy between images and statistical mechanics systems. Pixel gray levels and the presence and

orientation of edges are viewed as states of atoms or molecules in a lattice-like physical system. The assignment of an

energy function in the physical system determines its Gibbs distribution. Because of the Gibbs distribution, Markov

random field (MRF) equivalence, this assignment also determines an MRF image model.” [S. Geman, D. Geman 84]
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PDE’s framework Φ(u)

M.-S. functional [Mumford, Shah 89]: Fv(u, L)=

∫
Ω

(u− v)2dx +β

(∫
Ω \L
∥∇u∥2dx+α |L |

)
discrete version: Φ(u) =

∑
i

φ(∥Giu∥), φ(t) = min{t2, α}, {Gi} ≈ ∇

Total Variation (TV) [Rudin, Osher, Fatemi 92]: Fv(u) = ∥u− v∥22 + β TV(u)

TV(u) = sup

{∫
Ω

u divw dx
∣∣ w ∈ C1c (Ω), ∥w∥∞ 6 1

}
≈
∫
∥Du∥2 dx ≈

∑
i

∥Giu∥2

Edge-preserving functions φ [Charbonnier, Blanc-Féraud, Aubert, Barlaud 97] limt→∞
φ′(t)
t

= 0

G-norm [Meyer 2001]: ∥u∥G = inf
{
∥g∥∞| u = div(g), (g1, g2) ∈ L∞}

oscillating patterns

Total Generalized Variation (TGV) [Bredies,Kunish, Pock 2010]:

TGVkα(u) = sup

{∫
Ω

udivkw dx
∣∣ w ∈ Ckc (Ω, Symk(Rd), ∥divlw∥∞ 6 αl, l = 0, . . . , k − 1

}

Minimizer approach [4, 5, 6, 7, 8, 9, 10]

ℓ1− Data fidelity + Regu [MN 02]: Fv(u) = ∥Au− v∥1 + βΦ(u)

L1 − TV model [T. Chan, Esedoglu 05]: Fv(u) = ∥u− v∥1 + βTV(u)
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2 Analysing the optimal solutions

− Analyze the main properties exhibited by the (local) minimizers û of Fv as an implicit

function of the shape of Fv

Strong results

�� ��=⇒ tools for “inverse” modelling

The knowledge on the optimal solution for different families of Ψ and Φ gives us tools

how to design new variational problems whose solutions exhibit predictable features

− Conceive Fv so that the properties of û satisfy your requirements.

“There is nothing quite as practical as a good theory.” Kurt Lewin
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Illustration: the role of the smoothness of Fv

stair-casing
Fv(u) =

p∑
i=1

(ui − vi)
2 + β

p−1∑
i=1

|ui − ui+1|

smooth non-smooth

exact data-fit
Fv(u) =

p∑
i=1

|ui − vi| + β

p−1∑
i=1

(ui − ui+1)
2

non-smooth smooth

both effects
Fv(u) =

p∑
i=1

|ui − vi| + β

p−1∑
i=1

|ui − ui+1|

non-smooth non-smooth

Data (−−−), Minimizer (—)

Fv(u) =

p∑
i=1

(ui − vi)
2 + β

p−1∑
i=1

(ui − ui+1)
2

smooth smooth

We shall explain why and how to use
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Original uo Data v = a ∗ uo + n φ(t) = |t|α∈(1,2) φ(t) = |t|

Row 54 Row 54

Row 90 Row 90

φ

c

o

n

v

e

xFv(u) = ∥Au − v∥2 + β
∑
i φ((∇u)[i])

φ smooth at 0 φ nonsmooth at 0

φ(t) = αt2/(1 + αt2) φ(t) = α|t|/(1 + α|t|)

Row 54 Row 54

Row 90 Row 90

φ(t) = min{αt2, 1} φ(t) = 1− 1l(t=0)

Row 54 Row 54

Row 90 Row 90

n

o

n

c

o

n

v

e

x
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Optimization problems

u

Fv(u)

two local
minimizers

u

Fv(u)

No minimizer

u

Ω

Fv nonconvex Fv convex non coercive Ω = R Fv convex non coercive Ω compact

u

Fv(u)

Ω Ω

u

Fv(u)

minimizers

u

Fv strictly convex, Ω nonconvex Fv non strictly convex Fv strictly convex coercive
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Fv : Ω → R Ω ⊂ Rp

• Set of globally optimal solutions Û = {û ∈ Ω : Fv(û) 6 Fv(u) ∀ u ∈ Ω}

If Fv is coercive or if Fv lower semi continuous (lsc) and Ω compact then Û ̸= ∅
If in addition Fv is strictly convex, then Û = {û}

Otherwise – check:

If there is λ finite such that {u ∈ Rp |Fv(u) 6 λ} is bounded then Û ̸= ∅

If Fv is asymptotically level stable then Û ̸= ∅ [11]

• Nonconvex problems

Their optimal solutions often exhibit very desirable features

Computing a global minimizer is seldom possible but progress [12, 13]

Convex relaxation methods can sometimes do the job [14, 15, 16, 17]

Nowadays – convergent algorithms for nonconvex problems [18, 19]

Definition 2 1 Let f : Rn → R and S ⊆ Rn. Consider the problem min {f(u) | u ∈ S}.

• û is a strict minimizer if there is a neighborhood O⊂S, û∈O so that f(u)>f(û) ∀u∈O\ {û}.
• û is an isolated (local) minimizer if û is the only minimizer in an open subset O′ ⊂ O [20]
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On the assessment of properties and assumptions

Definitions 2.2 and 2.3

A property (an assumption) is called generic on Rq if it holds on a dense open subset of Rq.

I.e. it can fail on a set N such that N ⊆ N ′ ⊂ Rq where N ′ is closed in Rq and its

Lebesgue measure in Rq is Lq(N ′) = 0.

A property holds almost everywhere (i.e. with probability one) in Rq if it fails only on a set

N with Lq(N) = 0. Its closure N in Rq can have Lq(N) > 0 in which case Rq \N does not

contain open subsets. E.g., N = {x ∈ [0, 1] | x is rational} then L1(N) = 0 and L1(N) = 1.

property is generic ⇒
: property holds with probability one

N := {(s, t) : t = ± arctan(s)}

N is closed in R2 and L2(N) = 0
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Non-smooth functions

Rademacher’s theorem: If fv : Rn → R is Lipschitz continuous, then fv is differentiable

almost everywhere in Rn. [21, 22]

A kink is a point u where ∇fv(u) is not defined (in the usual sense).

The (one-sided) directional derivative of f at u ∈ Rn along the direction of d ∈ Rn reads as

δf(u)(d) := lim
t↘0

f(u+ td)− f(u)
t

δf(u)(d) is the right-hand side derivative. The left-hand side derivative is −δf(u)(−d).
At a kink: δf(u)(d) ̸= −δf(u)(−d).
Directional derivatives are ”simple” to use for nonconvex functions.

Example: Fv(u) = 1
2
(u− v)2 + β|u| for β = 1 > 0 and u, v ∈ R

−1 0 1

1

−1 0 1

1

−1 0 1

1

−1 0 1

v = −0.9 v = −0.2 v = 0.95 v = 1.2

û =


v + β if v < −β

0 if |v| 6 β

v − β if v > β
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Definition 2.4 U : O → Rp, O ⊂ Rq open, is a (strict) local minimizer function for

FO := {Fv : v ∈ O} if Fv has a (strict) local minimum at U(v), ∀ v ∈ O

Minimizer functions – a tool to analyze the properties of minimizers.

Fv(u)

u0

Fv(u)

u

Fv(u)

u

Fv(u) = (u− v)2 + β
√
α+ u2 Fv(u) = (u− v)2 + β αu2

1+αu2 Fv(u) = (u− v)2 + β
α|u|

1+α|u|

minimizer function (••••) local minimizer functions (••••) global minimizer function (••••)

Each blue curve curve: u → Fv(u) for v ∈ {0, 2, · · · }

Question 1 What these plots reveal about the local / global minimizer functions?
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An extension of the Implicit Functions Theorem

Lemma 2.1 Let fv : Rn → R be Cm>2.

Let û be such that ∇fv(û) = 0 and ∇2fv(û) is positive definite.

Then there exist ρ > 0 and a unique Cm−1 strict local minimizer function

U : B(v, ρ) → Rn such that U(v) = û. [23]

• The lemma can be extended the the whole domain Rp if Fv is strongly convex and

coercive.

• The usual objective functions do not fulfill these conditions.

• We shall present different extensions of this lemma.
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3 Stability of the (local) minimizers under perturbations�
�

�
�

Fv(u) = ∥Au− v∥2
2 + βΦ(u)

Φ(u) =
∑
i

φ(∥Giu∥2)

u ∈ Rp

v ∈ Rq


φ : R+ → R

φ increasing, continuous

φ(t) > φ(0), ∀t > 0

{Gi} linear operators Rp → Rs, s > 1

φ′(0+) > 0 =⇒ Φ is nonsmooth on
∪
i

{
u : Giu = 0

}

Systematically: kerA ∩ kerG = {0} G :=


G1

G2

· · ·


Fv nonconvex =⇒ there may be (many) local minimizers

no criteria for unimodal nonconvex functions
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[Durand, MN 06]

H 3.1 φ : R+ → R is continuous and Cm>2 on R+ \ {θ1, · · · θn},
Assumptions: edge-preserving, possibly non-convex and rank(A) = p

Local minimizers

Theorem 3.1 Let H3.1 hold. Then there is a closed N ⊂ Rq with Lebesgue measure

Lq(N) = 0 such that ∀v ∈ Rq \N , every (local) minimizer û of Fv is given by

û = U(v) where U is a Cm−1 (local) minimizer function. [24]

Question 2 Why knowledge on local minimizers is important?

Global minimizers

Theorem 3.2 Let H3.1 hold. Then

− ∃ N̂ ⊂ Rq with Lq(N̂) = 0 and Int(Rq \ N̂) dense in Rq such that ∀v ∈ Rq \ N̂ , Fv

has a unique global minimizer.

− There is an open subset of Rq \ N̂ , dense in Rq, where the global minimizer function Û
is Cm−1-continuous. [25]
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Question 3 For v ∈ Rq \N, compare U(v) and U(v + ε) where ε ∈ Rq is small enough.

Questions about the assumption rank(A) = p (homework)

Question 4 Let Fv(u) = (u− v)2 + φ(u) where φ(u) =

 1− (|u| − 1)2 if 0 6 |u| 6 1

1 if |u| > 1

Compute the sets N and N̂.

Hint: consider the cases |y| > 1, y ∈ {−1, 1} and y ∈ (−1, 1).

Question 5 Let Fv(u) = (u1 − u2 − v)2 + β(u1 − u2)
2 where β > 0.

Compute the sets N and N̂.

Question 6 Let Fv(u) = (u− v)2 + φ(u) where φ(u) = min{u2, 1}.

Find the local minimizer functions and determine N̂.
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4 Minimizers under Non-Smooth Regularization

�
�

�

Fv(u)=Ψ(u, v)+β

r∑
i=1

φ(∥Giu∥), Ψ∈Cm>2, φ∈Cm(R∗
+), 0<φ

′(0+)6∞

φ(t) tα, α∈(0, 1)
α t

α t + 1
ln(αt + 1) 1− αt α ∈ (0, 1) (· · · ) , α > 0

0 10

3

t

φ

α = 0.6

0 10

1

t

α = 4

0 10

2

t

φ

α = 2

0 10

1

t

φ

α = 0.5

0 10

in
f

φ′

0 10

4

φ′

0 10

2

φ′

0 10

0.7

φ′

φ(t) = t and Giu ≈ (∇u)i ⇒ Φ(u) = TV(u) (total variation) [Rudin, Osher, Fatemi 92]
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Example

(u, v) ∈ Rp

Fv(u) =
1

2
∥u− v∥2 + β∥u∥1

The entries Ui of the minimizer function are

Ui(v) =

 0 if |v| 6 β

v − βsign(v) if |v| > β

ĥ := {i | Ui(v) = 0} =
{
i | |v[i]| 6 β

}

Oĥ := {v ∈ Rp | |v[i]| 6 β, ∀ i ∈ ĥ and |v[i]| > β, ∀ i ∈ ĥc}

Oĥ is open in Rp and

v ∈ Oĥ and û = U(v) =⇒ {i | û[i] = 0} = ĥ

i.e. every minimizer û for v ∈ Oĥ has the same index set of null values which is equal to ĥ.



29
Main result Fv(u)=Ψ(u, v)+β

r∑
i=1

φ(∥Giu∥) Ψ∈Cm>2, φ′(0+)>0 [MN 97,00,04]

H4.1 φ is piecewise Cm on R>0, increasing on R>0, and φ
′(0+) > 0, and Ψ(·, v) ∼ C2.

[26, 27]

Theorem 4.1 Assume H4.1. For û a local minimizer of Fv define ĥ := {i : Giû = 0}.
Then ∃ O ⊂ Rq open, ∃ U ∈ Cm−1 (local) minimizer function so that

v′ ∈ O, û′ = U(v′) =⇒ Giû
′ = 0, ∀ i ∈ ĥ

This holds for any û such that ĥ := {i : Giû = 0} ≠ ∅. Consequences:

Oĥ :=
{
v ∈ Rq : GiU(v) = 0, ∀ i ∈ ĥ

}
=⇒ Lq(Oĥ) > 0

�
�

�

Data v yield (local) minimizers û of Fv such that

Giû = 0 for a set of indexes ĥ

{Gi} ≈ ∇ ⇒ û[i] = û[j] for many neighbors (i, j) (“stair-casing” effect)

Giu = u[i] ⇒ many samples û[i] = 0 – used in Compressed Sensing

Question 7 {Gi} = second-order differences =⇒ ???
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The same original signal corrupted with two different noise realizations

1 100

0

4

1 100

0

4

1 100

0

4

1 100

0

4

1 100

0

4

1 100

0

4

φ(t) =
√
α+ t2, φ′(0) = 0 (smooth at 0) φ(t) = (t+ αsign(t))2, φ′(0+) = 2α

1 100

0

4

1 100

0

4

1 100

0

4

1 100

0

4

φ(t) = |t|, φ′(0+) = 1 φ(t) = α|t|/(1 + α|t|), φ′(0+) = α

Fv(u) = ∥u− v∥2

+β
∑
φ(|u[i]− u[i− 1]|)
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Analyzing the local minimizers of Fv under variations of v

(û, v) ∈ Rp × Rq ĥ := {i : Giû = 0} and Kĥ :=
{
u ∈ Rp

∣∣ Giu = 0 ∀ i ∈ ĥ
}

Can we have minimizers in Kĥ?

Fv = fv+gv where fv(û) := Ψ(û)+β
∑
i∈ĥc

φ(∥Giû∥) and gv(û) := β
∑
i∈ĥ

φ(∥Giû∥) = 0

Conditions for a local minimizer function of Fv: check only Kĥ ∪K⊥
ĥ

Theorem 4.2 Let H4.1 hold and (û, v) ∈ Rp × Rq. Assume there is ρ > 0 so that [27]

(a) Dfv(û)d+ δgv(û)(d) > 0 ∀ d ∈ K⊥
ĥ
∩ bdB(v, ρ); here δgv(û)(d) = βφ′(0+)

∑
i∈ĥ

∥Gid∥

(b) fv
∣∣
K

ĥ

has a local minimizer function Uĥ : B(v, ρ) → Kĥ continuous at v and û = Uĥ(v).

Then ∃ ρ′ 6 ρ such that ∀ v′ ∈ B(v, ρ′), û′ = Uĥ(v
′) ∈ Kĥ is a minimizer of Fv.

Three main ingredients:

− (Fermat’s rule) fv has a local minimum at û ⇒ δfv(û)(d) > 0, ∀ d ∈ Rn (directional derivative)

− φ′(0+) > 0 then ∀ γ ∈ (0, 1) there is ρ > 0 such that φ′(t) > γφ′(0+)|t|, ∀ t ∈ B(0, ρ).

− For (b): Lemma 2.1 (p. 23) or Theorem 3.1 (p. 25) or an extension.

The necessary condition: Dfv(û)d+ δgv(û)(d) > 0 ∀ d ∈ K⊥
ĥ
∩ bdB(v, ρ) and (b)
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Minimizers of Fv(u) = ∥u− v∥22 + βTV(u), β = 100 and β = 180.

Black curves between constant (up to 10−5) parts.
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TV objective: Fv(u) = ∥Au− v∥2 + βTV(u)

Original Data Restored: TV energy

Image credit to the authors: D. C. Dobson and F. Santosa, “Recovery of blocky images

from noisy and blurred data”, SIAM J. Appl. Math., 56 (1996), pp. 1181-1199.

In 1996 there was no explanation to this effect.
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Disparity estimation [28]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Left input image (b) Right input image (c) True disparity

Figure 7. Rectified stereo image pair and the ground truth disparity. Light gray pixels indicate structures

near to the camera, and black pixels correspond to unknown disparity values.

−2 0 2 −2 0 2 −2 0 2 −2 0 2

quadratic TV Huber Lipschitz

Image credits to the authors: Pock, Cremers, Bischof, and Chambolle “Global Solutions of

Variational Models with Convex Regularization”, SIIMS 3(4) 2010, pp. 1122-1145
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5 Nonconvex Regularization�
�

�

Fv(u) = ∥Au− v∥2 + β

∑
i∈J

φ(∥Giu∥) J = {1, · · · , r}

H5.1 (standard) φ is C2 on R+ with lim
t→∞

φ′′(t) = 0 and [29]

φ′(0) = 0 (Φ is smooth) φ′(0+) > 0 (Φ is nonsmooth)

0 1

1

φ(t)=
αt2

1 + αt2

0 1

0

τ T
<0

>0

increase, 60

φ′′(t)

0 1
0

1

φ(t) =
αt

1 + αt

0 1

0

increase, 60

<0

φ′′(t)

The empirical distribution of ∇u in natural images is nonconvex [Zhu, Mumford 97]
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Illustration on R
Fv(u) = (u− v)2 + βφ(|u|), u, v ∈ R

Fermat’s rule: û solves v = u+
β

2
φ′(u)

Graphical solution of this equation

ξ0

ξ1

v

u
θ0 θ1

u+ β
2
φ′(u)

φ′(0) = 0

ξ0

ξ1

v

u

θ0 θ1

u+ β
2
φ′(u)

φ′(0) > 0

No local minimizer in (θ0,θ1)

∃ ξ0 > 0, ∃ ξ1 > ξ0

|v| 6 ξ1 ⇒ |û0| 6 θ0
strong smoothing

|v| > ξ0 ⇒ |û1| > θ1

loose smoothing

Further one can prove that

∃ ξ ∈ (ξ0, ξ1)
|v| 6 ξ ⇒ global minimizer = û0 (strong smoothing)

|v| > ξ ⇒ global minimizer = û1 (loose smoothing)

For v = ξ the global minimizer jumps from û0 to û1 ≡ decision on smoothing regime

Since [Geman21984] various nonconvex Φ to produce minimizers with smooth regions and

sharp edges
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Sharp edge property

Theorem 5.1 Assume H5.1 for φ with φ′(0) = 0 and that the set {GT
i} is linearly

independent. Let µ := maxi∈J ∥GT(GGT)−1ei∥2

β0 :=
2µ2∥ATA∥2
φ′′(T )

With β > β0 there are associated θ0 ∈ (τ,T ) and θ1 > T such that every local minimizer of Fv
satisfies

either ∥Giû∥ 6 θ0 or ∥Giû∥ > θ1 ∀ i ∈ J

When β increases, θ0 decreases and θ1 increases. [30]

The values of (θ0, θ1) and β0 are independent of v.�
�

�

{Gi} = ∇ =⇒

ĥ0 =
{
i : ∥Giû∥ 6 θ0

}
homogeneous regions

ĥ1 =
{
i : ∥Giû∥ > θ1

}
edges

For φ(t) = min{αt2, 1} the theorem holds if û is a global minimizer.
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Comparison with Convex Edge-Preserving Smooth Regularization

φ(t) = |t|1.4 φ(t) = αt2/(1 + αt2) φ(t) = min{αt2, 1}

Restored images and their rows 54 and 90
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Sharp edges and sparsity

Theorem 5.2 Assume H5.1 for φ with φ′(0+) > 0. Then there exist θ1 > 0, as well as β0

such that for β > β0 every local minimizer of Fv satisfies

either ∥Giû∥ = 0 or ∥Giû∥ > θ1 ∀ i ∈ J

In particular, β0|φ′′(0+)| ∝ ∥ATA∥2. [30, 31]�
�

�
�{Gi} = ∇ =⇒

ĥ0 =
{
i : ∥Giû∥ = 0

}
constant regions

ĥ1 =
{
i : ∥Giû∥ > θ1

}
edges

=⇒ û is a fully segmented image where we note that A is a general linear operator.

Bound θ1 for ℓp non-Lipschitz, box constraints and {Gi} first-order differences in [32].

Analysis, huberization, thrust regions and fast solver for TVp, 0 < p < 1 in [33].

Question 8 Explain the features of an image when {Gi} are 2nd order differences.
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Image Reconstruction in Emission Tomography

0

1

2

3

4

Original phantom Emission tomography simulated data

0

1

2

3

4

0

1

2

3

4

φ is smooth (Huber function) φ(t) = t/(α+ t) (non-smooth, non-convex)

Reconstructions using Fv(u) = Ψ(u, v) + β
∑
j∈Ni

φ(|u[i]− u[j]|), Ψ = smooth, convex
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Selection for the global minimizer

Additional assumptions: ∥φ∥∞ <∞, {Gi}—1st-order differences, A∗A invertible

1lΣi =

 1 if i ∈ Σ ⊂ {1, .., p}

0 else

Original: uo = ξ1lΣ, ξ > 0

Data: v = ξ A 1lΣ = Auo

û = global minimizer of Fv

Sketch of the results

∃ ξ1 > 0 such that ξ > ξ1 ⇒ û—perfect edges

Moreover ∃ ξ1 > 0 such that:

• Φ non smooth, then ξ > ξ1 ⇒ û = c uo, c < 1, lim
ξ→∞

c=1

• φ(t) = η, t > η, then ξ > ξ1 ⇒ û = uo

This holds true also for φ(t) = min{αt2, 1} and for φ(t) =

 0 if t = 0

1 if t ̸= 0
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Fv(u)

u

v=0v=22

0 θ1

v=0v=22

uθ0 θ1

Fv(u)

u

Fv(u) = (u− v)2 + β
α|u|

(1+α|u|) Fv(u) = (u− v)2 + β αu2

(1+αu2)
Fv(u) = (u− v)2 + β

√
α+ u2

global function (••••) global minimizer functions (••••) unique minimizer function (••••)

Each blue curve curve: u → Fv(u) for v ∈ {0, 2, · · · }

Question 9 How to describe the global minimizer when v increases?
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One-step real-time dejittering of digital video [MN 09]

• Image u ∈ Rm×n, rows ui, its pixels ui[j]

• Data vi[j] = ui[j + di], di integer,
∣∣di∣∣ 6 M , typically M 6 20.

• Restore û ≡ restore d̂i, 1 6 i 6 m

original jittered

Original (b) One column Jittered

(b) The same column in the original (left) and in the jittered (right) image

The gray-values of the columns of natural images can be seen as large pieces of 2nd (or 3rd)

order polynomials which is false for their jittered versions.

The results of Theorems 4.1 and 5.2 hold for β → ∞.

Restoration model: minimize the second-order differences between the rows. [34]
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Each column ûi is restored using d̂i = arg min
|di|6N

F(di)

F(di) =

c−N∑
j=N+1

∣∣ vi[j + di]− 2ûi−1[j] + ûi−2[j]
∣∣α, α ∈ {0.5, 1}, N > M

Question 10 What changes if α = 1 or if α = 0.5?

Question 11 Is it easy to solve the numerical problem?

Monte-Carlo experiments – in almost all cases α = 0.5 is better.

Jittered, [−20, 20] α = 1 Jitter: 6 sin
(
n
4

)
α=1 ≡ Original



45

original

restored

Jittered {−8, . . . , 8} Original image α = 1 Zooms

(512×512)JitterM=6 α∈{1, 1
2
}=Original Lena (256× 256) Jitter {−6, .., 6} α∈{1, 1

2
}
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Jitter {-15,..,15} α = 1, α = 0.5 Original image
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Jitter Jittered Image Bayesian TV Bake & Shake

Original Column model α=0.5 Error uo − û

[35, 36, 37, 38] [Kokaram98, Laborelli03, Shen04, Kang06, Scherzer11]
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Least squares regularized with ℓ0 norm [MN [39]]

A =
(
a1, · · · , ap

)
∈ Rq×p ai ̸= 0 ∀ i p > q

Fv(u) = ∥Au− v∥22 + β∥u∥0 where ∥u∥0 := ♯
{
i ∈ Ip : u[i] ̸= 0

}
Ip = {1, · · · , p} index set. For ω ⊂ Ip set ωc := Ip \ω and

Aω :=
(
aω[1], · · · , aω[ ♯ ω]

)
∈ Rq× ♯ ω uω := (u[ω[1]], · · · , u[ω[ ♯ ω]]) ∈ R ♯ ω

Theorem 4.2 Given v ∈ Rq and ω ⊂ Ip consider the problem

(Pω) min
u∈Rp

∥Au− v∥2
2 subject to u[i] = 0 ∀i ∈ ωc

Let û solve (Pω). Then for any β > 0, û is a (local) minimizer of Fv and supp(û) ⊆ ω.

Lemma 4.2 Let Fv have a (local) minimum at û. Set σ̂ := supp(û). Then û solves (Pσ̂).

�
�

�

Solving (Pω) for some ω ⊂ Ip is equivalent to finding a local minimizer of Fv.

Such a local minimizer is independent of the value of β
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How to recognize a strict (local) minimizer of Fv?

Theorem 4.3 Let û be a (local) minimizer of Fv. Set σ̂ := supp(û). Then

û is strict ⇐⇒ rankAσ̂ = ♯ σ̂ 6 p

If Fv has a strict (local) minimum at û, then ûσ̂ =
(
AT

σ̂Aσ̂

)−1
AT

σ̂ v and ûIp \ σ̂ = 0.

All strict minimizers of Fv are moreover isolated minimizers (see p. 19)

Question 12 Is it difficult to compute a (strict) local minimizer of Fv?

On the global minimizers of Fv

Theorem 4.4 Let v ∈ Rq and β > 0. Then the set Û of the global minimizers of Fv obeys

Û :=

{
û ∈ Rp : û = min

u∈Rp
Fv(u)

}
̸= ∅

− every û ∈ Û is an isolated (hence strict) minimizer of Fv [40]

− every û ∈ Û satisfies |û[i]| >
√
β

∥ai∥2
∀ i ∈ supp(û)

The proof that Û ̸= ∅ consists in showing that Fv is asymptotically level stable. [11, 39]
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A Continuous Exact ℓ0 Penalty [41] [Soubies, Blanc-Féraud, Aubert 15]

There is no global minimizers such that |û[i]| ∈
(
0,

√
β

∥ai∥2

)
– Continuous Exact ℓ0 penalty

FCEL0
v (u) := ∥Au− v∥2 +

∑
i∈Ip

φ(ui ; ∥ai∥, β)

φ(t ; a, β) = β − a2
(
|t| −

√
β

a

)2

1l|t|6
√

β
a

a ∈ R>0 t ∈ R
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Figure 1. Plot of g (blue) and g⋆⋆ (red) for a = 0.7, λ = 1, and d = 0.5 (left) or d = 2 (center). Right:
Plot of λ| · |0 (blue) and φ(a, λ; ·) for a = 0.7 and λ = 1.

Image credits to the authors Soubies, Blanc-Féraud, Aubert [41]
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a

− FCEL0
v and FL0

v (p. 48) have the same global minima

− From every local minimizer of FCEL0
v one can extract easily a local minimizer of FL0

v

− FCEL0
v has less local (not global) minima than FL0

v

− u 7→ FCEL0
v is continuous nonsmooth and nonconvex

− u[i] 7→ FCEL0
v (u) is convex ∀ i

aRemind the difference between minimum and minimizer.
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6 Minimizers relevant to non-smooth data-fidelity

Example (u, v) ∈ Rp

Fv(u) = ∥u− v∥1 +
β

2
∥u∥2

=

p∑
i=1

|u[i]− v[i]|+ β

2

p∑
i=1

(u[i])2

The entries Ui of the minimizer function are

Ui(v) =

 v[i] if |v[i]| 6 1
β

1
β
sign(v) if |v| > β

ĥ := {i | Ui(v) = v[i]} =
{
i | |v[i]| 6 1

β

}
Oĥ :=

{
v ∈ Rp | |v[i]| 6 1

β
, ∀ i ∈ ĥ and |v[i]| > 1

β
, ∀ i ∈ ĥc

}
Oĥ is open in Rp and

v ∈ Oĥ and û = U(v) =⇒ {i | û[i] = v[i]} = ĥ

i.e. every minimizer û for v ∈ Oĥ fits exactly the same data entries with indexes in ĥ.
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General case [MN 02]�
�

�

Fv(u)=

∑
i

ψ(|aiu− v[i]|) + βΦ(u), ai∈ R1,p, ψ′(0+) > 0

H6.1 Φ ∈ Cm>2 and ψ ∈ Cm(R>0) with ψ
′(0+) > 0 finite.

Teorem 6.1 Assume H6.1. Let û be a local minimizer of Fv. Set ĥ := {i : aiû = v[i]}.
Assume that the set {ai, i ∈ ĥ} is linearly independent. Then ∃ Oĥ ⊂ Rq open,

∃ U ∈ Cm−1 local minimizer function so that

v′ ∈ Oĥ, û′ = U(v′) ⇒ ai û
′ = v′[i] ∀ i ∈ ĥ and ai û

′ ̸= v′[i] ∀ i ∈ ĥc

The result holds for any ĥ ⊂ {1, · · · , q} such that ĥ ̸= ∅. It follows that

Oĥ :=
{
v ∈ Rq : ai U(v) = v[i], ∀ i ∈ ĥ ai U(v) ̸= v[i], ∀ i ∈ ĥc

}
=⇒ Lq(Oĥ) > 0�

�
�



Local minimizers û of Fv achieve an exact fit to (noisy) data

aiû = v[i] for a certain number of indexes i
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Question 13 Suggest cases when you would like that your minimizer obeys this property.

Question 14 Find a relationship between the properties of the minimizer

when φ′(0+) > 0 (chapter 4, p. 27) and when ψ′(0+) > 0 (this chapter, p. 52)
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Original image uo Data v = uo+outliers

Restoration û for β = 0.14 Residuals v − û

Fv(u) =
∑
i

|u[i] − v[i]| + β
∑
j∈Ni

|u[i] − u[j]|1.1
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Restoration û for β = 0.25 Residuals v − û

Fv(u) =
∑
i

∣∣u[i] − v[i]
∣∣ + β

∑
j∈Ni

|u[i] − u[j]|1.1

Restoration û for β = 0.2 Residuals v − û

TV-like objective: Fv(u) =
∑
i

(u[i] − v[i])2 + β
∑
j∈Ni

|u[i] − u[j]|
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Analyzing the local minimizers of Fv under variations of v

(û, v) ∈ Rp × Rq ĥ := {i : aiû = v[i]} Kĥ(v) := {u ∈ Rp : aiû = v[i]}
Kĥ := {u ∈ Rp : aiû = 0}

Fv = fv + gv for fv(û) =
∑
i∈ĥ

ψ (|aiû− v[i]|) and gv(û) =
∑
i∈ĥc

ψ (|aiû− v[i]|) + βΦ(û)

Conditions for a local minimizer function of Fv near û: check only
(
Kĥ ∪K⊥

ĥ

)
Theorem 6.2 Let H 6.1 hold. Given v ∈ Rq and û ∈ Rp, let ĥ := {i ∈ Iq : aiû = v[i]}.
Suppose that {ai, i ∈ ĥ} are linearly independent and that

(a) Dgv(û)d = 0 and dT
(
D2gv(û)

)
d > 0 ∀ d ∈ Kĥ

(b) δfv(û)(d) +Dgv(û)d > 0 ∀ d ∈ K⊥
ĥ

∥d∥ = 1

Then ∃ρ > 0 and a Cm−1 local minimizer function U : B(v, ρ) → Rp obeying û = U(v) and

v′ ∈ B(v, ρ) =⇒ ai U(v′) = v′[i] ∀ i ∈ ĥ and aiU(v′) ̸= v′[i] ∀ i ∈ ĥc

Details

- gv(û) = Fv|K
ĥ
(û) =

∑
i∈ĥc ψ (|aiû− v[i]|) + βΦ(û) is Cm near û

- fv(û) = 0 and δfv(û)(d) = ψ′(0+)
∑

i∈ĥ |aid| > 0 ∀ d ∈ K⊥
ĥ
\ {0}

- assumption {ai, i ∈ ĥ} are linearly independent can fail only if v is in a proper subspace
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Other facts

− The existence of a Cm−1 local minimizer function shows the stability of the local

minimizers of Fv and extends Lemma 2.1 (p. 23)

− v′ 7→ ĥ(v′) is constant on B(v, ρ) hence stable under perturbations.

Set A :=


a1

. . .

aq

 and let ψ(t) = t. Let v′ ∈ B(v, ρ).

(a) =⇒ Dgv(u)d =
(
Aĥc{sign (aiu− v′[i])}i∈ĥc + βDΦ(u)

)
d = 0 ∀ d ∈ Kĥ

(b) =⇒
∑
i∈ĥ

|aid|+ β
(
Aĥc{sign (aiu− v′[i])}i∈ĥc + βDΦ(u)

)
d > 0 ∀ d ∈ K⊥

ĥ

Only v′[i] for i ∈ ĥ need to be in B(v, ρ) in order to keep ĥ constant; and

∀ v′[i] i ∈ ĥc such that sign (aiu− v′[i]) = sign (aiu− v[i])

cannot change the minimizer. Therefore,�� ��v′[i] ∀ i ∈ ĥc can be outliers
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L. Bar, A. Brook, N. Sochen and N. Kiryati,

“Deblurring of Color Images Corrupted by Impulsive Noise”,

IEEE Trans. on Image Processing, 2007

Fv(u) = ∥Au− v∥1 + βΦ(u)

[42]

blurred, noisy (r.-v.) zoom - restored
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6 Limits on noise removal using likelihood and regularization

Numerous works on image restoration use data-fidelity = − log(Likelihood) and

regularization.

Context

n noise with known distribution fN (n)

v = Au+ n

fV |U (v|u) = fN (v −Au) =⇒ Ψ(u; v) = − log
(
Likelihood(v|u)

)
= − log fN (v −Au)

How the noise is processed at a minimizer of Fv = Ψ+ βΦ ?

• We know what we want.

• We want to understand what we do

We can say that the noise is properly cleaned if the residual

n̂ = v −Aû has a distribution similar to fN .

How Ψ, Φ and β can help ? The maximum a posteriori (MAP) estimator will be evoked, see p. 107
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Normal noise and edge-preserving regularization

v = Auo + n n ∼ (0, σ2I)

Fv(u) =
1

2
∥Au− v∥22 + β

∑
i

φ(∥Giu∥)

For (convex) edge-preserving potential functions typically ∥φ′∥∞ is finite. a We can set ∥φ′∥∞ = 1.

H7.1 φ is piecewise C1, increasing on R>0 and ∥φ′∥∞ = 1.

Theorem 7.1. Assume H7.1 with ∥φ′∥∞ = 1 and rankA = q 6 p. [43]

Let û be a (local) minimizer û of Fv. Then

∥n̂∥∞ = ∥Aû− v∥∞ 6 β
∥∥(ATA)−1A

∥∥
∞ ∥G∥1

If G ≈ {∇i} then ∥G∥1 = 4 for u an image. Let also A = I. Then ∥n̂∥∞ 6 4β

n ∼ N (0, σ2I) =⇒ a.s. ∃|ni| > 4β =⇒ ∥n̂∥∞ < ∥n∥∞

aAll functions on p. 11 satisfy this assumption except for φ(t) = |t|α, 1 < α < 2
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Sketch of the proof – 1D signal A = I and Φ smooth

G :=


−1 1

. . .
. . .

−1 1

 = (GT
1 , · · · , GT

r )
T

Fv(u) =
1

2
∥u− v∥22 + β

∑
i

φ(|Giu|)

∇Fv(û) = 0 =⇒ v − û = βGTφ′(GT û)

=⇒ ∥v − û∥∞ 6 β∥G∥1∥φ′(GT û)∥∞ = 2β

Question 15 If v = uo + n for n ∼ N (0, σ2I) Gaussian noise, are we sure

to clean v from this noise by minimizing Fv?
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Denoising in a frame domain

x =Wuo +Wn Wn ∼ N (0, σ2)

Clean coefficients follow Generalized Gaussians (GG) distributions: [59, 60]

fX(x) =
1

Z
e−λ|x|α , x ∈ R, λ > 0 α > 0

x̂ = argminx Fv(x)

Fv(x) =
∑
i

(
(x[i]− ⟨wi, v⟩)2 + β|x[i]|α

)
β = 2σ2λ

Then û =W †x̂ where W † is a left-inverse of W

−10 0 10
0
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−10 0 10
0
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500

−2 0 2
0

500

1000

−2 0 2
0

500

1000

GG for α = 1.2, λ = 0.5 True MAP x̂ N (0, σ2), σ = 0.6 n̂ = y − x̂

Histograms for 10 000 independent trials.
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Non-smooth at zero noise models

fN (t) =
1

Z
exp (−λψ(t)) ψ′(0−) < ψ′(0+)

Fv(u) =
∑
i

ψ(aTi u− v[i]) + β
∑
i

φ(∥Giu∥)

ψ is continuous and C2(R>0), and φ is C1

Example: Generalized Gaussian Markov chain under Laplacian noise, MAP denoiser

uo — Markov chain, U [i]− U [i+ 1] ∼ f∆U are i.i.d.

f∆U (t) =
1

Z
e−µ|t|α

V = U +N where Ni, 1 6 i 6 p are i.i.d. with fN (t) = λ
2 e

−λ|t|

Fv(u) =

p∑
i=1

∣∣u[i]− v[i]
∣∣+ β

p−1∑
i=1

|u[i]− u[i+ 1]|α where β =
µ

λ
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1 50 100

−10

0

1 50 100

−10

0

GG Markov chain uo (—) for α=1.2, µ=1 True MAP û (—)

data v = uo + n (· · · ) versus the original uo (· · · )

1 50 100

−1

1

1 50 100

−1

1

Laplacian i.i.d. noise n for λ = 2.5 The residual n̂ = v − û.

uo[i] ̸= v[i] ∀ i ♯ {i : n̂[i] = 0} = 93%
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From Theorems 6.1 and 2 (p. 52 and p. 57) we know that for ψ′(0+) > 0 and weak assumptions if

û is minimizer of Fv, the set ĥ := {i : aiû = v[i]} is typically nonempty and that there is an open

subset Oĥ ⊂ Rq and a local minimizer function U ∈ Cm−1 so that

v′ ∈ Oĥ, û′ = U(v′) ⇒ ai û
′ = v′[i] ∀ i ∈ ĥ and ai û

′ ̸= v′[i] ∀ i ∈ ĥc

A consequence:�

�

�

�
P(N̂ = 0) = P(aTi Û − V = 0) = P(V ∈ Oĥ) =

∫
O

ĥ

fV (v)dv > 0

whereas P(N = 0) =

∫
fN (n)δ(n− 0)dn = 0

For all i ∈ ĥ, the regularizer Φ has no influence on the solution.
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A Laplace noise model to remove outliers

F1
v (u) =

∑
i

|u[i]− v[i]|+ β
∑
i

∑
j∈Ni

φ(|u[i]− u[i]|)

Ni neighborhood of pixel i

1 50 100

−10

0

1 50 100

−10

0

Original uo (—), data v (- - -) The minimizer û of F1
v for β = 0.4 (—)

with 10% random valued impulse noise. original uo (- - -), removed outliers (⋄).
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[44]

Detection and cleaning of outliers using ℓ1 data-fidelity [MN 04]

Fv(u) =

p∑
i=1

|u[i] − v[i]| +
β

2

p∑
i=1

∑
j∈Ni

φ(|u[i] − u[j]|) tid d dNid d d
d d d

dd
d
dd
db b bbb
b

φ: smooth, convex, edge-preserving

Data v should contain samples that we want to keep (“uncorrupted”)

v ∈ Rp ⇒ û = argmin
u

Fv(u)

ĥ = {i : û[i] = v[i]}

 v[i] is regular if i ∈ ĥ

v[i] is outlier if i ∈ ĥc

�
�

�
�

Outlier detector: v → ĥc(v) = {i : û[i] ̸= v[i]}
Smoothing: û[i] for i ∈ ĥc = estimate of the outlier
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Theorem 7.2 Let φ be C1 and convex. Then Fv has a minimum at û iff

∀ i ∈ ĥ

∣∣∣∣∣∣
∑
j∈Ni

φ′(v[i]− û[j])

∣∣∣∣∣∣ 6 1

β

∀ i ∈ ĥc
∑
j∈Ni

φ′(û[i]− û[j]) = σi

β
σi = sign

∑
j∈N2

i

φ′(y[i]− û[j])


where ĥ := {i : û[i] = v[i]}

Theorem 7.3 Let φ be strictly convex and Fv has a minimum at û. Consider ĥ ⊂ {1, . . . , p} and
σi ∈ {−1, 1} for any i ∈ ĥc as in Theorem 7.2. Then there is ρ > 0 such that for

Õĥ :=

v ∈ Rp

∣∣∣∣∣∣ |v′[i]− v[i]| 6 ρ ∀ i ∈ ĥ

σiv
′[i] > σiv[i]− ρ ∀ i ∈ ĥc

 ⊂ Oĥ

every Fv′ reaches its minimum at a û′ obeying

û′[i] = v′[i] ∀ i ∈ ĥ

û′[i] ̸= v′[i] ∀ i ∈ ĥc

The components v[i] for i ∈ ĥc are outliers; they can take arbitrary values with no influence on û
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Original image uo 10% random-valued noise Median (∥û−uo∥2=4155)

Recursive CWM (∥û−uo∥2=3566) PWM (∥̂u−uo∥2=3984) ℓ1 data term (∥û−uo∥2 = 2934)
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Normal noise removal using a frame and ℓ1 data-fidelity [Durand, MN 07]

− Data: v = uo + n where n is centered iid Gaussian noise

− Approach: to transform v into data containing ”uncorrupted” samples

− Frame coefficients: y =Wv =Wuo + ñ with ñ centered iid Gaussian noise

− Hard thresholding yT [i] :=

 0 if |y[i]| 6 T

y[i] if |y[i]| > T

Keep relevant information if T small but outliers appear

− W † =left inverse of W

− ũ =W †yT — Gibbs oscillations and frame-shaped artifacts

− Hybrid objective methods—combine fidelity to yT with prior Φ(u)

[Bobichon, Bijaoui 97], [Coifman, Sowa 00], [Durand, Froment 03]...
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Desiderata: Fy convex and

Keep x̂[i] = yT [i] Restore x̂[i] ̸= yT [i]

significant coefs: y[i] ≈ (Wuo)[i] outliers: |y[i]| ≫ |(Wuo)[i]| (frame-shaped artifacts)

thresholded coefs: (Wuo)[i]≈0 edge coefs: |(Wuo)[i]|> |yT [i]|=0 (“Gibbs” oscillations)

Then:
minimize Fy(x) =

∑
i

λi
∣∣(x− yT )[i]

∣∣+ ∫
Ω

φ(|∇W †x|) ⇒ x̂

û =W †x̂ for W † left inverse of W, φ edge-preserving

Motivation: “good” coefficients fitted exactly, “bad” coefficients corrected by the prior.
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1 250 500

0

100

1 250 500

0

100

1 250 500

0

100

Original and data Sure-shrink method Hard thresholding

1 250 500

0

100

1 250 500

0

100

410 425

23

50

◦ original
× threshold
∗ restored

Total variation ℓ1 data term in frame Magnitude of coefficients

Restored signal (—), original signal (- -).
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8. Nonsmooth data-fidelity and regularization

Consequence of §4 and §6: if Φ and Ψ non-smooth,

 Giû = 0 for i ∈ ĥφ ̸= ∅

aiû = v[i] for i ∈ ĥψ ̸= ∅

[10]

L1-TV objective [T. Chan, S. Esedoglu 05]

Fv(u) = ∥u− 1lΩ∥1 + β

∫
Rd

∥∇u(x)∥2 dx where 1lΩ(x) :=

 1 if x ∈ Ω

0 else

− ∃ û = 1lΣ (Ω convex ⇒ Σ ⊂ Ω and û unique for almost every β > 0)

− contrast invariance: if û minimizes for v = 1lΩ then cû minimizes Fcv

− critical values β∗

 β < β∗ ⇒ objects in û with good contrast

β > β∗ ⇒ they suddenly disappear

=⇒ data-driven scale selection
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Binary images by L1 − TV [T. Chan, S. Esedoglu, MN 06]

Classical approach to find a binary image û = 1lΣ̂ from binary data 1lΩ, Ω ⊂ R2

Σ̂ = argmin
Σ

{∥∥1lΣ − 1lΩ∥22 + βTV(1lΣ)
}

nonconvex geometric problem (⋆)

usual techniques (curve evolution, level-sets) fail [45]

Σ̂ solves (⋆) ⇔ û = 1lΣ̂ minimizes
∥∥u− 1lΩ∥1 + β TV(u) (convex)

Data Restored

This work gave rise to numerous convex relaxation methods to solve non-convex imaging problems

Comparison with G-norm for textures [46]
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Multiplicative noise removal on frame coefficients [Durand, Fadili, MN 09] [47]

Multiplicative noise arises in various active imaging systems e.g. synthetic aperture radar

− Original image: So

− One shot: Σk = Soηk

− Data: Σ =
1

K

K∑
k=1

Σk = So
1

K

K∑
k=1

ηk = So η where pdf(η) = Gamma density

− Log-data: v = logΣ = log So + log η = u0 + n

− Approach: to transform v into data containing ”uncorrupted” samples

− Frame Coefficients: y = Wv = Wu0 +Wn (W curvelets)

0 5 −6 0 2 −1 0 1 1 2 −1 0 1 −1 0 1

K=1

η = η1

K=1 K=1 K=10 K=10 K=10

pdf(η) = pdf(ηk) pdf(n) pdf
(
Wn

)
pdf(η) pdf(n) pdf

(
Wn

)
Question 16 Comment the noise distribution of Wn
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− Hard Thresholding: yT [i] =

{
0 if |y[i]| 6 T,

y[i] otherwise
∀i ∈ I, T > 0 (suboptimal).

I1 = {i ∈ I : |y[i]| > T} and I0 = I \ I1

− Restored coefficients: x̂ = argmin
x

Fy(x) (ℓ1 − TV objective)

Fy(x) = λ0
∑
i∈I0

∣∣x[i]∣∣+ λ1
∑
i∈I1

∣∣x[i]− y[i]
∣∣+ ∥W †x∥TV

Ŝ = B exp
(
W †x̂

)
, where W † left inverse, B bias correction

Some comparisons [48, 49, 50]

− BS [Chesneau,Fadili,Starck 08]: Block-Stein thresholds the curvelet coefficients, ≈
minimax(large class of images with additive noises), optimal threshold T = 4.50524

− MAP [Aubert,Aujol 08]: Ψ = − Log-Likelihood(Σ), Φ = TV(Σ)

− ISS [Shi,Osher 08]: relaxed inverse scale-space for Fv(u) = ∥v − u∥22 + βTV(u) ≈ MAP(u)

stopping rule: k∗ = max{k ∈ IN : Var(u(k) − uo) > Var(n)}.
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Noisy Fields K = 1 (512×512) ISS: PSNR=9.59 MAP: PSNR=15.74

BS: PSNR=22.52 Fields (original) ℓ1-TV: PSNR=22.89
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Noisy K = 10 ISS: PSNR=25.36 MAP: PSNR=17.13

BS: PSNR=27.24 Fields (original) ℓ1-TV: PSNR=28.04
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Noisy City K = 1 (512×512) SO: PSNR=18.39 MAP: PSNR=22.18

BS: PSNR=22.25 City (original) ℓ1-TV: PSNR=22.64
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Noisy K = 4 ISS: PSNR=24.40 MAP: PSNR=24.55

BS: PSNR=24.92 City (original) ℓ1-TV: PSNR=25.84
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C. Clason, B. Jin, K. Kunisch

“Duality-based splitting for fast ℓ1 − TV image restoration”, 2012,

http://math.uni-graz.at/optcon/projects/clason3/

Scanning transmission electron microscopy (2048× 2048 image)

true image noisy image restoration
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ℓ1 data-fidelity with concave regularization [MN, Ng, Tam 13]�
�

�
�

Fv(u) =
∑
i∈I

∣∣aiu− v[i]
∣∣ + β

∑
j∈J

φ(∥Gju∥2), φ′(0+) > 0, φ′′(t) < 0, ∀t > 0

I = {1, · · · , q} , J = {1, · · · , r}

No conditions on the rank of the matrix formed by the rows ai

H8.2 φ is strictly concave on [0,+∞), increasing, φ′′ 6 0 and limt→∞ φ′′(t) ↗ 0

φ(t)
α t

α t + 1
1− αt, α∈(0, 1) ln(αt + 1) (t + ε)α, α∈(0, 1), ε>0 (· · · )

0 10

1

t

α = 4

0 10

1

t

φ

α = 0.5

0 10

2

t

φ

α = 2

0 10

2

t

φ

α = 0.3
ε = 0.02

Motivation

− New family of objective functions

− Fv can be seen as an extension of L1− TV

− û – (local) minimizer of Fv
?

=⇒ many i, j such that aiû = v[i] and Gjû = 0
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Minimizers of Fv(u) = ∥u− v∥1 + β

p−1∑
i=1

φ(|u[i + 1]− u[i]|)

φ(t) = αt
αt+1

for α = 4 φ(t) = ln(αt + 1) for α = 2

71

0

10

71

0

5

β ∈ {78, · · · , 156} β ∈ 0.1× {10, · · · , 14}

71

0

10

71

0

5

β ∈ {157, · · · , 400} β ∈ 0.1× {16, · · · , 30}
Data samples (◦◦◦), Minimizer samples û[i] (+++).
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5 20 53 71

0

10

5 20 53 71

0

10

(a) φ(t) = α t
α t+1 , α = 4, β = 3 (b) φ(t) = 1− αt, α = 0.1, β = 2.5

5 20 53 71

0

10

5 20 53 71

0

10

(c) φ(t) = ln(αt+ 1), α = 2, β = 1.3 (d) φ(t) = (t+ 0.1)α, α = 0.5, β = 1.4

Denoising: Data samples (◦◦◦) are corrupted with Gaussian noise. Minimizer samples

û[i] (+++). Original (−−−). β—the largest value so that the gate at 71 survives.
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Zooms

0

10

53 71

(a) (b) (c) (d)

5 20

12

11

12.5

Constant pieces—solid black line.

Data points v[i] fitted exactly by the minimizer û (�).
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5 20 53 71

0

10

5 20 53 71

0

10

φ(t) = t, β = 0.8 (ℓ1 − TV) φ(t) = (t+ 0.1)α, α = 0.1, β = 2.5

the convex relaxation of Fv closest to (ℓ1 − TV)

0

10

5 20 53 71

0

10

error for φ(t) = α t
α t+1

, α = 4, β = 3 φ(t) = α t
α t+1 , α = 4, β = 3

∥original− û∥∞ = 0.24 original ∈ [0, 12], data v ∈ [−0.6, 12.9]
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On the figures, û are global minimizers of Fv (Viterbi algorithm)

Numerical evidence:

critical values β1, · · · , βn such that

- β ∈ [βi, βi+1) =⇒ the minimizer remains unchanged

- β > βi+1 =⇒ the minimizer is simplified

Result known for the minimizers of L1 − TV [10]
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Facts [51]

(a) Fv does have global minimizers, for any {ai}, for any v and for any β > 0.

Let û be a (local) minimizer of Fv. Set

Î0 = {i ∈ I : aiû = v[i]}

Ĵ0 = {j ∈ J : Gj û = 0}

(b) Then û is the unique point solving the liner system aiû = v[i] ∀i ∈ Î0

Gj û = 0 ∀j ∈ Ĵ0�
�

�



Each pixel of a (local) minimizer û of Fv is involved in (at least) one equation

aiû = v[i], or in (at least) one equation Gj û = 0, or in both types of equations.

(c) Contrast invariance of (local) minimizers

(d) The matrix with rows
(
ai, ∀i ∈ Î0, Gj , ∀j ∈ Ĵ0

)
has full column rank

(e) Each (local) minimizer of Fv is strict and isolated
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Proposition 8.1. Let H8.2 hold and û is a local minimizer of Fv. Then Î0 ∪ Ĵ0 ̸= ∅.

Kû = {w ∈ Rp : aiw = v[i] ∀ i ∈ Î0 and Gjw = 0 ∀ j ∈ Ĵ0} (⋄)

Kû = {w ∈ Rp : aiw = 0 ∀ i ∈ Î0 and Gjw = 0 ∀ j ∈ Ĵ0}

û ∈ Kû and û+ w ∈ Kû ∀ w ∈ Kû

F := Fv|Kû
F (u) =

∑
i∈Îc

0

|aiu− v[i]|+ β
∑
j∈Ĵc

0

φ(∥Giu∥)

Lemma 8.1. Suppose also that dimKû > 1. Then wTD2F (û)w < 0 ∀ w ∈ Kû.

Details on the main results: Under additional assumption, ∃ρ > 0 such that

∀ w ∈ Kû ∩B(0, ρ) F (û) = F(û) = F(û+ w) = F (û+ w)

Then F should have a (local) minimum at û and

satisfy wTD2F (û)w > 0 ∀ w ∈ Kû ∩B(0, ρ) – impossible by Lemma 8.1.

=⇒ dimKû = 0
∃û (a)
=⇒ Kû = {û} (⋄)

=⇒ (b), (d) and (e)
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MR Image Reconstruction from Highly Undersampled Data

0-filling Fourier ∥ · ∥22 +TV ∥ · ∥1 +TV ℓ1−concave

Reconstructed images from 7% noisy randomly selected samples in the k-space.

ℓ1−concave for φ(t) =
αt

αt+ 1
.

Here the best CS recommendation is ∥ · ∥22 +TV. Observe ∥ · ∥1 +TV.
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MR Image Reconstruction from Highly Undersampled Data

0-filling Fourier ∥ · ∥22+TV ∥ · ∥1+TV ℓ1−concave

Reconstructed images from 5% noisy randomly selected samples in the k-space.

ℓ1−concave for φ(t) =
αt

αt+ 1
.
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9. Fully smoothed ℓ1 − TV�

�

�

�
Fv(u) = Ψ(u, v) + βΦ(u), β > 0

Ψ(u, v) =

p∑
i=1

ψα1(u[i] − v[i]) and Φ(u) =
∑
i

φα2(|Giu|)

ψ(·) := ψ(·, α1)

φ(·) := φ(·, α2)

(α1, α2) > 0

{Gi ∈ R1×p} – forward discretization:

N4 Only vertical and horizontal differences;

N8 Diagonal differences are added.

i
Ni4sic c ccc

c si Ni8c c cc c cc c c

(ψ,φ) belong to the family of functions θ(·, α) : R → R satisfying

H1 For any α > 0 fixed, θ(·, α) is Cm>2-continuous, even and θ′′(t, α) > 0, ∀ t ∈ R.

H2 For any α > 0 fixed, |θ′(t, α)| < 1 and for t > 0 fixed, it is strictly decreasing in α > 0

α > 0 ⇒ lim
t→∞

θ′(t, α) = 1 θ′(t, α) :=
d

dt
θ(t, α)

t ∈ R ⇒ lim
α→0

θ′(t, α) = 1 and lim
α→∞

θ′(t, α) = 0 .

=⇒ Fv is a fully smoothed ℓ1 − TV objective.
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Goal: to obtain a restoration û of v whose pixels are all different from each other while

being close to v but “better” than v

− By H1 û should be nowhere constant

− H2 enables the recovery of edges and details

− û will remain close to v by “nearly L1” data term

− Some removal of the quantization noise is expected

Real-valued original v quantized on {0, · · · , 15} Restored û
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θ θ′

f1
√
t2 + α

t√
t2 + α

f2 α log

(
cosh

(
t

α

))
tanh

(
t

α

)
f3 |t| − α log

(
1 +

|t|
α

)
t

α+ |t|

Choices for θ(·, α) obeying H1 and H2. When α↘ 0, θ(·, α) becomes stiff near the origin.

−3 0 3

3

−3 0 3

−1

0

1

−1 0 1

−5

0

5

θ(t) =
√
t2 + α θ′(t) = t√

t2+α
(θ′)

−1
(y) = y

√
α

1−y2

Plots of f1 for α = 0.05 (—–) and for α = 0.5 (−−−).
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[52] [MN, Wen, R. Chan 12]

Proposition 9.1 Let Fv satisfy H1. Then ∀ β, Fv(Rp) has a unique minimizer function

U : Rp → Rp which is Cm−1 and DU(v) ∈ Rp×p satisfies rankDU(v) = p ∀ v ∈ Rp

Define G :=

p∪
i=1

p∪
j=1

{
g ∈ R1×p : g[i] = −g[j] = 1, i ̸= j, g[k] = 0 if k ̸∈ {i, j}

}
Any 1st-order difference operator Gi belongs to G.

NG :=
∪
g∈G

{
v ∈ Rp : g U(v) = 0

}
and NI :=

p∪
i=1

p∪
j=1

{
v ∈ Rp : Ui(v) = v[j]

}

Details about NG

− fg(v) := g U(v) then fg ∼ Cm−1;

− DU(v) invertible, rankfg(v) = 1 and fg does not have critical points;

− Ng := f−1
g (0) = {v ∈ Rp : g U(v) = 0} (by extension of the Constant Rank Theorem)

− Ng – manifold with dimNg = p− 1, closed because fg ∼ Cm−1 hence L(Ng) = 0
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Theorem 9.1 Let Fv satisfy H1. Then the sets NG and NI are closed in Rp and obey

Lp(NG) = 0 and Lp(NI) = 0

The property is true for any β > 0 and (α1, α2) > 0.

− Rp \ (NG ∪NI) is open and dense in Rp

=⇒ the elements of (NG ∪NI) are highly exceptional in Rp.

− The minimizers û of Fv generically satisfy û[i] ̸= û[j] for any (i, j) such that i ̸= j and

û[i] ̸= v[j] for any (i, j).

�
�

�

The minimizers û of Fv have pixel values that are different from

each other and different from any data pixel.

Question 17 Describe the consequences if ℓ1 − TV is approximated

by a smooth function like Fv.
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Bounds on the minimizer [53] [Bauss, MN, Steidl 13]

• For any α1 > 0 fixed, there is an inverse function
(
ψ′
α1

)−1
: (−1, 1) → R which is odd,

Cm−1 and strictly increasing.

Example how to find (ψ′)
−1

Let ψ(t) = |t| − α log

(
1 +
|t|
α

)
y := ψ′(t) = sign(t)− α

α+ |t| sign(t) =
t

α+ |t|

sign(y) = sign(t)

yα+ y|t| = t = yα+ y t sign(y) ⇒ t(1− |y|) = αy ⇒ t =
αy

1− |y| ≡
(
ψ′)−1

(y)

Question 18 Compute (θ′)−1 for all functions on p. 95.

• α1 7→
(
ψ′
α1

)−1
is also strictly increasing on (0,+∞), for any y ∈ (0, 1).
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Theorem 9.2 Let H1 and H2 hold. Assume that β <
1

∥G∥1
. Then

∥û− v∥∞ 6
(
ψ′
α1

)−1 (
β∥G∥1

)
∀ v ∈ Rp

Furthermore, ∥û− v∥∞ ↗
(
ψ′
α1

)−1 (
β∥G∥1

)
as α2 ↘ 0.

Sketch of the proof

From Fermat’s rule û satisfies ∇uΨ(û, v) = −β∇uΦ(û). Componentwise, using that |φ′
α2
| 6 1:

ψ′
α1

(û[i]− v[i]) = −β
(
GTφ′

α2
(Gû)

)
[i] ∀ i

| û[i]− v[i] | =
∣∣∣(ψ′

α1

)−1
(
β
(
GTφ′

α2
(Gû)

)
[i]
)∣∣∣ 6 (ψ′

α1

)−1
(β∥G∥1) ∀ i

− The upper bound depends only on ψα1 and β.

− ∥G∥1 = 4 for 1st-order horizontal and vertical differences between adjacent pixels.

− The value ∥û− v∥∞ − (ψ′
α1

)
−1 (

β∥G∥1
)

depends on v and on α2 and can be computed.

− ∥û− v∥∞ 6 δ for any α1 ∈ (0, α̂1] and there does not exist α1 > α̂1 such that

∥û− v∥∞ 6 δ holds true.
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Examples

η := ∥G∥1 and b(β, α1) :=
(
ψ′
α1

)−1 (
βη

)
We need β < 1

η and want to fix ∥û− v∥∞ 6 δ

ψ(t) =
√
t2 + α1 b(β, α1) =

√
α1(βη)2

1− (βη)2
α̂1 = δ2

(
1

(βη)2
− 1

)
ψ(t) = |t| − α1 log

(
1 +

|t|
α1

)
b(β, α1) =

α1βη

1− βη
α̂1 = δ

(
1

βη
− 1

)

�� ��Full control on the minimizer with respect to the parameters.
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Exact histogram specification

• v – input digital gray value m× n image / stored as an p := mn vector

• v[i] ∈ {0, · · · , L− 1} ∀ i ∈ {1, · · · , p} 8-bit image ⇒ L = 256

• Histogram of v: Hv[k] =
1
p ♯

{
v[i] = k : i ∈ {1, · · · , p}

}
∀ k ∈ {0, · · · , L− 1}

• Target histogram: ζ = (ζ[1], · · · , ζ[L])

• Goal of histogram specification (HS): convert v into û so that Hû = ζ

order the pixels in v: i ≺ j if v[i] < v[j]

i1 ≺ i2 ≺ · · · ≺ iζ[1]︸ ︷︷ ︸ ≺ · · · ≺ ip−ζ[L]+1 ≺ · · · ≺ ip︸ ︷︷ ︸
ζ[1] ζ[L− 1]

• Ill-posed problem for digital (quantized) images since p≫ L

• An issue: obtain a meaningful total strict ordering of all pixels in v

Histogram equalization is a particular case of HS where ζ[k] = p/L ∀ k ∈ {0, · · ·L− 1}
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Modern sorting algorithms

For any pixel v[i], extract K auxiliary information, ak[i], k ∈ {1, · · · ,K, from v. Set a0 := v. Then

i ≺ j if v[i] 6 v[j] and ak[i] < ak[j] for some k ∈ {0, · · · ,K}.

Local Mean Algorithm (LM) [54] [Coltuc, Bolon, Chassery 06]

− If two pixels are equal and their local mean is the same, take a larger neighborhood.

− The procedure smooths edges and sorting often fails.

Wavelet Approach (WA) [55] [Wan, Shi 07]

− Use wavelet coefficients from different subbands to order the pixels.

− Heavy and high level of failure.

Specialized variational approach (SVA) [MN, Wen and R. Chan 12]

− Minimize Fv for a parameter choice yielding ∥û− v∥∞ / 0.1. [52]

− Faithful order and fast algorithm. [56]
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Histogram Equalization (HE) using Matlab and SVA ordering

512
512

512
512

input image HE by ”histeq” HE by ”sort” HE by SVA

449 512

64

512
449 512

64

512
449 512

64

512
449 512

64

512

0 255 0 255 0 255

64 64 64 64
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Fringe removal [Soncco, MN 16]

Multiplicative Image Decomposition for Hyperspectral Imaging

v = u ◦ (1 + f) + n

− u panchromatic (fringe-less) image

− f image containing the interferometric pattern, −1 6 v 6 1

− n noise (small)

Fast solver based on fully smoothed L1-TV with constraint on FT(f)
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10 Combining models

Bayesian estimators

− U, V random variables

− Likelihood fV|U (v|u)
− Prior fU (u) = C exp{−λΦ(u)}
− Loss function L(u, u′) – measures the cost of estimating u′ instead of u

Bayes estimation: minimize the risk Eu|v (L(u, u
′))

argmin
u′

Eu|v (L(u, u
′)) using the posterior fU|V (u|v)

L(u, u′) = ∥u− u′∥2 =⇒ ûPM = E(u|v) =
∫
ufU |V (u|v)du posterior mean (PM)

L(u, u′) = 1lu=u′ =⇒ ûMAP = argmax
u

fU |V (u|v) maximum a posteriori (MAP)

Other loss-functions can considered

Well known fact: fV|U (v|u) and fU (u) have normal distributions =⇒ ûPM = ûMAP
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MAP estimators to combine data-production and prior models

− MAP yields the most likely solution û given the data V = v:

û = argmax
u

fU|V (u|v) = argmin
u

(
− ln fV|U (v|u)− ln fU (u)

)
= argmin

u

(
Ψ(u, v) + βΦ(u)

)
= argmin

u
Fv(u)

MAP is the most common way to combine models on data-acquisition and priors

MAP gives a direct connection to variational regularization objectives

=⇒ The objectives considered so far are usually interpreted as MAP estimators

There exist realist models for data-acquisition fV|U and for priors fU

If a MAP solution û had to be faithful (coherent), then [57] [MN 07]

− The main features of û should match the prior C exp
(
− Φ(u)

)
;

− The distribution of the recovered residual should fit the data-production model.

Analytical facts on the minimizers =⇒ both models (fV |U and fU ) are violated
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Example: MAP shrinkage in a frame domain

• Noisy wavelet coefficients y=Wv=Wuo+n = xo + n, n∼N (0, σ2I)

• Prior: xo[i] are i.i.d., f(xo[i]) = 1
Z
e−λ|xo[i]|α (Generalized Gaussian, GG)

Experiments have shown that α ∈ (0, 1) for many real-world images [58, 59, 60]

• MAP restoration ⇐⇒ x̂[i] = argmin
t∈R

(
(t− y[i])2 + λ|t|α

)
, ∀i

(α, λ, σ) fixed—10 000 independent trials:

(1) sample x ∼ fX and n ∼ N (0, σ2), (2) form y = x+ n, (3) compute the true MAP x̂

−10 0 10
0

250

500

−10 0 10
0

250

500

GG,α = 1.2, λ = 1
2

The true MAP x̂

−2 0 2
0

500

1000

−2 0 2
0

500

1000

Noise N (0, σ2) Recovered noise

−10 0 10
0

5000

−10 0 10
0

5000

−3 0 3
0

20

GG, α = 1
2
, λ = 2 True MAP x̂

−3 0 3
0

100

−3 0 3
0

100

Noise N (0, σ2) Recovered noise
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Example: MAP signal recovery with known distributions and parameters

Original differences Ui − Ui+1 i.i.d.∼ f(t) ∝ e−λφ(t) on [−γ, γ], φ(t) = α|t|
1+α|t|

1 50 100

0

20

1 50 100

0

20

Original uo (—) by f for α = 10, λ = 1, γ = 4 The true MAP û (—), β = 2σ2λ

data v = uo + n (· · · ), N ∼ N (0, σ2I), σ = 5. versus the original uo (· · · ).

Instead: focus on the effective models [57]�� ��Effective model: the properties that the minimizers û of the objective Fv satisfy
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− log fU continuous and non-smooth, φ′(0+) > 0 Ch. 4, p. 27

P(Giu = 0) = 0, ∀i

v∈Oĥ ⇒
[
Giû = 0,∀i ∈ ĥ

]
⇒ P(Giû=0, ∀i∈ ĥ) > P(v∈Oĥ) > 0

Effective prior: Giû = 0 for some (many) i. (If {Gi} = ∇ – locally constant images)

− log fU|V continuous and nonsmooth, ψ′(0+) > 0 Ch. 6, p. 52

P(ai u = vi) = 0 ∀i

v ∈ O
ĥ
⇒

[
ai û=vi, ∀i ∈ ĥ

]
⇒ P

(
ai û=vi, ∀i ∈ ĥ

)
> P(V ∈ O

ĥ
) > 0

Effective model: some data entries are fitted exactly.

− log fU (resp., φ) continuous and nonconvex Ch. 5, p. 37

P(θ0 < ∥Giu∥ < θ1) > 0, ∀i

P
(
θ0 < ∥Giû∥ < θ1

)
= 0, ∀i

Effective prior: ∥Giu∥ > θ1 − θ0. (If {Gi} = ∇ – high edges).

− log fU nonconvex, nonsmooth, continuous, φ′(0+) > 0 and φ′′ 6 0 Ch. 5, p. 39

P(0 < ∥Giu∥ < θ1) > 0, ∀i

P
(
0 < ∥GiÛ∥ < θ1

)
= 0, ∀i

Effective prior: ∥Giu∥ > θ1. (If {Gi} = ∇ – constant regions separated by edges > θ1).
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− MAP yields the most likely solution û given the data V = v:

MAP is the most very common way to combine models on data-acquisition and priors

MAP gives a direct connection to variational regularization objectives

“Theoretical drawback”: MAP takes the maximum, “forgets” the rest of the posterior

− PM seems statistically more sound but higher numerical complexity

The relevant loss function has a clear meaning:

PM is unbiased with respect to fU |V (u|v)

posterior mean (PM) ≡ conditional mean (CM) ≡ minimum mean-square error (MMSE)
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Normal noise: MAP and PM can be equal but for different priors [Gribonval 11]

Theorem [Gribonval 11] Let V = U +N where N ∼ N (0, I) and U be independent.

Then: [61]

− For any prior pU (u), the estimator ûPM with prior pU (u) equals ûMAP where MAP

correspond to a prior fU (u) = C exp
(
− Φ(u)

)
− vice-versa, for certain regularizers Φ the relevant ûMAP equals ûPM for a different

prior pU (u)

− In general pU (u) ̸= C exp
(
− Φ(u)

)
In regularized least squares, one must be cautious when interpreting the regularizer in terms

of prior in a statistical sense

A detailed study of the PM in the case of TV regularizer in [Louchet, Moisan 13] [62]

In particular, there is no stair-casing – a major concern with TV for 20 years
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What is the difference is between MAP and PM estimates? [Burger, Lucke 14]

“PM estimate is classically preferred for being the Bayes estimator for the mean squared

error cost, while the MAP estimate is classically discredited for being only

asymptotically the Bayes estimator for the uniform cost function.” [63]

)

)

Figure 4. Hypothetical, bimodal distributions to show that neither of the estimates is
better in general.

Image credits to the authors Burger and Lucke ”Maximum a posteriori estimates in linear inverse

problems with log-concave priors are proper Bayes estimators”, Inverse Problems, 2014

“Which of them is “better” in general, or for a specific task? - a matter of constant debate”
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ℓ

ℓ

)

Figure 5. A simple 2D deblurring example.

Figure 6. CM and MAP estimate for the 2D deblurring example.

Image credits to the authors Burger and Lucke [63]
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Rehabilitation of the MAP for linear problems with sparsity-promoting convex priors [63]

Φ – sparsity promoting and convex – constructed using ℓ1 norms

Definition 10.1 Let f : Rn → R ∪ {+∞} be convex.

The Bregman distance between u,w ∈ Rn is

Dg
f (u,w) := f(u)− f(w)− ⟨g, u− w⟩ g ∈ ∂f(w)

where ∂f(w) belongs to the subdifferential of f at w.

Using Bregman distance, fU |V (u|v) can be rewritten in a MAP-centered form.

[63, Theorem 2] E [DΦ(ûMAP, u)] 6 E [DΦ(ûPM, u)]

− Bregman distance is better suited than L2 norm when Φ is not quadratic

− With the Bregman distance, MAP outperforms PM in terms of theoretical statistics for

sparse images
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11. Concluding remarks

Combining models remains an open problem

How to solve?

− Non-local multiscale data-adaptive models [64]

− Strong priors based on dictionaries, splines, manifolds, etc... [65]

− Posterior-sampling based methods [67]

− Construction of specialized Fv whose minimizers fulfill the requirements (a young field)

�



�
	Knowledge on the features of the minimizers enables

new objectives yielding appropriate solutions to be conceived
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