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Thresholding Implied by Truncated Quadratic
Regularization

Mila Nikolova

Abstract—\We address the problem of the estimation of an un- wherey: R — R is a truncated quadratic potential function (PF)
known signal that is known to involve sharp edges, from noisy data parameterized bya > 0, A > 0)
given at the output of a linear system. The sought solution is de-
fined to be the global minimizer of an objective function combining 242 i
a quadratic data-fidelity term and a regularization term. The latter o(t) = {)\ £, < ve/A
a, i E = Va/A

term is a sum whose entries are obtained by applying a truncated
quadratic potential function to every difference between adjacent

samples. Such objective functions are naturally formulated either provokes a considerable theoretical and practical interest. Its
in a statistical framework, or in a variational framework, and they  (ationale can be summarized as follows. TheP’ applied

are customarily used in signal and image reconstruction. However, . .

these objective functions are nonsmooth and highly nonconvex, and to the differences betlween adjac_:ent Samplgs— .| for
many questions related to their minimization, as well as to the fea- ¥ = 1, ---, n — 1. Being quadratic foft| < \/cr/A and con-
tures of the resulting solutions, remain open. stant elsewherey expresses a wish to smooth small differences

In this paper, we present some new facts characterizing the fea- (|z3, — zr41| < +/a¢/\) while suspending smoothing over large
tures exhibited by the minimizers of such objective functions. Our  (ifferences ex — 2uq1] > V/a/A). A binary line variable that
main result states that the magnitude of the differences between is equal to zero in the first case and to one in the second is nat-

adjacent samples of a global minimizer are either smaller than a ) . . . . .
first threshold or larger than a second, strictly larger threshold.  Urally associated with each difference; see [2]. The estimation

Conversely, no difference corresponding to a global minimizer of method (1)—(4) thus involves a segmentation level. In the sequel,
the objective function can be placed among these thresholds for we systematically assume thatand A are strictly positive pa-

any data. This explains how edges are recovered in a signal and rgmeters. We will also identifyl with a matrix ofR™>",
estimated using truncated quadratic regularization. These thresh- . . R .
olds are independent of the data but are related to the observation N @ statistical framework, the quadratic data-fidelity term in

system and to the regularization parameters. They can be used to (2) can be seen as a log-likelihood of the data under the hy-
derive necessary conditions for the choice of the regularization pa- pothesis that is Gaussian white random noise. The regulariza-
e o e w1 e, g sl 100 BT ca b s e eriergy of  ecewe Gassir
meJricaI experiments corroborate théJ obtained theoretical results. Markov ra_mdom chain [1], [3]-6]. After [1].’ numerou_sAworks
o _ ) were dedicated to both problems, computing the estirhdig
A st oSt nchonal. apchocson 1SnG tochastc agortms and seectng the paramater)
regularized estim:ation, segmentation, stability,’weak string. ’ [_3]_[5]' [7], [8]. Various teChn'_ques for deterministic minimiza-
tion of £(., y) have also been investigated [2], [9]-[17], [6]. Ob-
jective functions of the form (2)—(4) are equivalently derived in
. INTRODUCTION a variational framework [2], [9], [19]. In the case whdris the

E ADDRESS the problem of the estimation of a Signdﬂentity matrix, the shape af was considered for several syn-
z € R" that is known to contain locally homogeneouéhetic noise-free data sajsa step, a characteristic function, and

zones separated by sharp edges from observegdatdz +n, 2 amp [2]. The objective function in (2)—(4) was transposed in
wherey € R™, A: R” — R™ is a linear operator, and € R™ @ continuous setting in [20], which gave rise to important ques-

is observation noise. Since [1], [2] the following estimatorfor ions and to numerous works [21], [22]. More generally, solving
estimation problems by minimizing objective functions of the

(1) form (1)—(3) by introducing various Pksin (3) is currently a
very active research field [3], [21], [23]-[25]-[27]. Beyond all

(4)

i := argmin &(x, y)

E(z, y) =||Az — y|* + @(=) (2)  the experience that has been acquired, controlling the features
nl of the estimatd; by means of the shape ¢fis an intricate open
d(z) = Z (zr — Tr1) @) question. This work can be seen as an attempt to address the
k=1 latter question in the context of truncated quadratic PFs.

Our approach is to analyze some properties of the minimizer
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minimizers in such a general context. Our study points out seacterization ofz and determines the tools that can be used to
eral attractive properties exhibited by such minimizers. We stantirsue this study.

by showing tha€ (., ¥) isC2-continuous on a neighborhood sur- Proposition 1: Given A4 € R™*", let£: R™ x R™ — R be
rounding each one of its local minimizers, in spite of the noras introduced in (2)—(4).

differentiability of ¢ at+/«/A. Then, we show that any global Then, for everyy € R™, each local or global minimizer of
minimum of £(., y) is strict for everyA and for every. More-  £(.. y): R® — R, sayz, satisfies

over, the local minimizers of (., y) are strict and are under
some pretty general conditions. These facts are essential for the
conception of minimization algorithms. Our main result states
that glvenA and(a, )‘_)' with everyk € {1, .-, n — 1}, there_ or equivalentlyz does not belong to the union of hyperplanes
are associated two different thresholds such that the magnit nin (5).

of the differencei; — #x41| relevant to a global minimizer of Recall that,/a/\ is the point of truncation of; see (4). Let

(., y)mcan never be placed between these thresholds for gemnhasize that (6) holds for apgnd for anyA. Intuitively, it
y € R™. Notice that these thresholds are independemt f 1\, seem unlikely that the minimizers of an objective function

other words, if fory € R™ & is a global minimizer of'(., y), corresponding to noisy data belong to the special set of hyper-
cblanes given in (5). However, recall that whenever the left and

then|z; — #41| is either smaller than the smallest threshol
or it is larger than the largest threshold. This fact explios right derivatives of at zero satisfy’(0-) < ¢/(07) [e.g.
= [¢|], then the minimizers of the relevant objective func-

an estimator involving a truncated quadratic regularization p% £)
forms edge detection and gives rise to estimates exhibiting shﬂ do belong to the intersection of a large number of hyper-
_ planes sincé;, = &1 for many indexeg—see [28]. There-

edges and how this behavior is relatedd@nd(c«, A). On the
ore, Proposition 1 provides an useful precision. Moreover, it

|55k—55k+1|7£@ foranyk=1,---,n—1 (6)

other hand, the smoothnessgét zero entails that the zones i
z beyond the edges exhibit weak variations without being coQzqartg thaltés, — &x41| = @ is not only unlikely, but that it is
stant [28]. The edge-detection thresholds evoked above admibossible even for specially chosen data.

a simple explicit form, which is given in Section IV. They can Hereafte’r,B(:c- p) = {z': ||a’ — || < p} denotes an open

be used to derive necessary conditions for the choice of the Ba1 with radiusp > 0, which is defined with respect to the Eu-
rameter(a, A). Next, we show that the chance to get dgta igjan norm||z|| = VT x, wheread stands for transposition.

for which£(., y) has two or more global minimizers is null. Fi-p 5 4gition 1 means that any local minimizeis contained in
nally, we show that a global minimizer of the objective functiony ball B(&; p), where&(., y) is C2-continuous, where
? ’ *? ’

is almost surely continuous under small perturbationg. of

The results presented in this paper can be extended to regu- 1 .
larizers of the form®(z) = >, (gt ), where{g,, k > 1} P=3 mm{
is any collection of vectors. However, deriving explicit expres-
sions for the edge-detection phenomenon in such a situation fork=1,---,n— 1} . @)
seems more difficult. We leave this question for future works.

Then, havinge € B(%; p) implies that

N N &
|2 — x| — %

A. Organization of the Paper

2 2
Section Il focuses on the local behavior&®in the vicinity Plan = Lip1) = A (xk Tht1)

of its minimizers. The core of the thresholding effect—the ex- if o(@1 — Erg1) = N (Er — Frgr)’

istence of regions where the differences of a global minimizer olay — Try1) = if p(&p — Tpy1) = . (8)

cannot be placed—is developed in Section Ill. The behavior of
a global minimizer, as a function of the data, is discussed liet 7 be the mapping that, for each signaE R", gives.7 (z)
Section IV. Numerical experiments are presented in Sectiontlie set of itgumps(or edges), which are the indexes of all dif-

Concluding remarks are summarized in Section VI. ferences whose magnitude is larger tifan
The proofs of the assertions in this paper are outlined in the
Appendixes B-D. Most of them use an equivalentrepresentation J(z) :={k € {1, ---, n — 1}: |z — 41| 2 0} (9)

of £(., ), which is given in Appendix A.

ConsequentlyB(&; p) is composed of signals whose edges are
located in the same way, that i§(x) = J for all z € B(z; p),
where we put/ := 7(&).

The objective functio (., y) in (2)—(4) is nonsmooth onthe  Letl stand for the characteristic functi®¥") = 1 if T is true

Il. LOCAL CONTINUITY OF THE MINIMIZERS OF £(., )

union of hyperplanes andl(T") = 0 otherwise. The lettef will denote the identity ma-
trix of whatever size appropriate to the context. Furthermore,
nei and1 will denote vectors or matrices composed of zeros and of
U {[zr = 241 = Va/A] U [an — 241 = —Va/A]}. ones, respe_ctivel_y. When necessary, their size will be in_dicated
) in superscript. Given a subsétC {1, ---, n — 1}, we define

(5) the following diagonah — 1 x n — 1 matrix:
Our first question is to see whether a global or a local minimizer

of £(., y) can belong to this union. Its issue gives a first chari{; := I-Diag{l(1 € J), (2 € J), ---, I{n—1 € J)}. (10)
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Thus, we determine a mapping— U ;. The next Proposition (58), arising in the proof of Theorem 1, show tt&tontains
is a straightforward consequence of (8). elements: of the form
Proposition 2: Fory € R™ and A € R™*", consider
E(., y): R* — R as given in (2)-(4).
Then, a pointz € R” is a local or a global minimizer of ’
&(., y) if and only if and {v € Ker (A" A) ) (13)
Ve = Vk+1, if/ﬂﬁj

z=%+ v where|{| <p

2AT (Ax —y) +VE(3) =0
where with p, as defined in (7). It follows that is strictly larger than
Va(z) = 222 DT U, Ds. (11) {z} only if Ker (A* A) contains nonzero \./ectoos_composed.of .
constant segments. However, the latter is a quite an atypical sit-
uation. Otherwise, if KefA” A) does not contain such vectors,
all minimizers of€(., y) are strict for every € R™. Whenever
= is strictly larger tha{ %}, then it is composed of signatshat

In the last expressionf = J(%), whereJ is the mapping
defined in (9) is as defined in (10), anfP is the(n — 1) x n
i i ’ A .
c11|ffErenlc§nn;3tr|f< Vzhgz?:;rmyz:’“ readsdy[k] = 1 di[k + 5016 the same homogeneous regieRs{ zx1+1 = &x — Lit1
I=- Kl = WISE. if |&x — Zr+1] < +/a/A) but whose jumps may have different

The local behavior of an estimator is tightly dependent Orﬂagnitudes.

th_e _sh_ape of the objectlve funct_lon '”_‘h?‘ vicinity of its global In any case, there is a stronger result stating that a global
minimizers. In particular, a crucial point is to know whethera_. . .~ " | ict In E le 1. the alobal minimi
minimizer is strict or not. The cases whehis injective (i.e n}'?mlzer 'S zaways strict. In xarr:jp e 1, the globa mr|]n|m|zer
L oof £(. reads:; = y/2 = &, and it is easy to see that it is
rankA = n < m) or noninjective (then rank < ») need to be strici 'Y 1= y/2 =5 H y H
conS|der§q sepz':\rately. e Theorem 1: Assume thatd1 # 0, and considef as defined
Proposition 3: Suppose that € R™*"™ is injective, and in (2)—(4)
consider: R* x R™ — R, as given in (2)-(4). '
Then for everyy € R™, all local and global minimizers of
E(., ¥): R" — R arestrict.
However, if A is noninjective,£(., y) can exhibit nonstrict
local minima, as can be seen in the next example.
Example 1:.Consider

Then, for anyy € R™, any global minimum of
E(., y): R" — Ris strict.

The assumptiom1 # 0 means thatd preserves the mean
of the original signal. Such are most of the observation oper-
ators encountered in practice. ConverselyAdif = 0, then
E(z + 11, y) = £(z, y) for any real/, and hence, the mean
of the signal is undetermined. In such a situation, the problem
should be reformulated as suggested in Remark 2 of Appendix
ory>—6, for .= ﬂ (12) A. Henc_eforth, we systematically assume tHat +# 0 L_et us

emphasize that Theorem 1 also addresses the situations where

. .« . . T .
Now, A = [1, 1], and it is noninvective. Let us check that theA Is noninjective and when K&r” 4) can contain locally con

oint(Z, #2), wheret; = 26 4+ y andi, = —26 is a nonstrict stant vectors.
E)cal milr;iinz,er ofS(xl y_) Firsil we re2m_ark thah = (7, + The next Theorem formalizes the main conclusion of this sec-
b) . y - 1

N2 a ;] Y tion.
by —y)” = (3;1 +v1+ 22 + vy — y)” for anyw of the form Theorem 2:For A € R™*", let £ be as in (2)—(4). Given
v = [v1, —v1]* with v; € R. Next, for any|jv|| < 6, we have . . A

y € R™, assume that is astrict local or global minimizer of

E(x, y) = (v1+12—y)? +@(r1 —22) With eithery < —76

.. £ y).

|81 — &2 + (01 — v2)] Then, there exisx > 0 and a differentiable mapping
=40+ y+ (v1 —v2)| = [40 + y| — |v1 — v X: B(y; 1) — R™ such that¥(y) = & and#’ := X(v/) is a
> 30 — 2|jv|| > 6 strict local or global minimizer of (., ¥') if ¥ € B(y; ).

In other words &’ is a local minimizer function relevant to
in which casep[(#1 + v1) — (£2 + v2)] = (21 — £2) = . €. Theorem 2 only states that is continuous orB(y; 1), but
Thus, we deduce that(z + v, y) = £(%, y) = « for any if X(y) is a global minimizer of(., y), it remains unknown
v = [v1, —v1]% with |v;| < 8/+/2. A whetherX(y'), relevant tay’ € B(y; 1), is still a global mini-

A naturally arising concern is to see the shape of the comizer of £(., ¥') or not. This question is considered in Section
nected set of points yielding an isolated nonstrict minimum &Y.
&(., v). These kinds of sets can be “quite irregular” for general
nonconvex objective functions.

iti ll. ZONESWHERE A GLOBAL MINIMIZER CANNOT LIE
Proposition 4: Fory € R™ andA € R™*", suppose that ONES GLo CANNO

&(., y), as defined in (2)—(4), reaches a minimunzat The result found next is guaranteed to hold at any global min-
Then, there is @onvexset= C R™ containingz such that imizer of £(., y) for anyy € R™. It exhibits the presence of in-
E(z,y) = E(F, y)forall z € =. tervals of positive length that carevercontain the differences

In fact, (8) shows tha£(., ¥) is quadratic in the vicinity of of any global minimizer of(., ¢) for anyy € R™. It can be
any local minimizer, hence, the propositionZlfs a strict min- expected that the same kind of behavior is exhibited by some or
imizer, then trivially,= = {&}. More generally, the expressionsmany among the local minimizers 6f., y).
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Let M € R™*™ andw; € R™ be the following projection
matrix and unit step-sequence:

A117 A"
M=I-——— (14)
e
0, ifi=1,---,k,
'u,k[L]:{ . fork=1,---,n—1.
1, fi=k+1,---,n
(15)

The subsequent analysis reveal an essential distinction in the

behavior of the differences, — Zx+1 whose indexes are such
thatM Awy, # 0 and the differences for whichf Au;, = 0. The
differences of the first kind will be calledbservablewhereas
those of the second kind aumobservable

Theorem 3: For A € R™*™, consider€ as given in (2)—(4).
Letk € {1, ---, n— 1} and assume thaf Au;. # 0, with M
andwuy as given in (14)—(15).

Then there exists a constalif, €]0, 1[ such that for any
y € R™, anyglobalminimizerz of the relevanf (., ¥), satisfies
the alternative:

either |2y — Tp41| < 0% Or &g — Tpyr| > 1%
where 6 := @ (16)
More preciselyl';. reads
Ty = & ith & =ul AT MAw, >0.  (17)
A2+ &,

Moreover, the inequalities in (16) asgrict wheneverE(., y)
has only one global minimizer.

If k& is such thatM Aw;, # O, then for anyy € R™,
the difference & — 341, relevant to a global min-
imizer of &£(.,y) lies beyond two intervals, namely,
T = Irpr € {[=0/Tw, —00:]UIOT, 0/1%]}. By (17),

these intervals are independentipfe R™, and they have a

strictly positive length sincé’, €10, 1.
Example 2: Let £ read

E(z, y) = (1

In this casek = 1, A = I, and hence

— )’ + (@2 — y2)? + @(z1 —22).  (18)

. T 1 1 -1
_[07 1] ’ M_2|:_1 1

1 1

- = —
=g h VIt 2N

Let 8 be as defined in (16). We have the following situations:

a) y satisfies|y; — 1| < 6/I'?; then,&(., y) has a local
minimizer £, without edge, whose entries read

@o[1] =I5 (14 M%) + A?ye]

and
(19)

#o[2] =[Ny 4 y2(1 4+ A7)

Let us verify that, is a local minimizer of (., y). From
|o[1]—&o[2]] = TTlyr —v2| < 6, we geUO = J(%o) =
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{0}. It remains to be checked thay satisfies (11) with
respect td{; . Notice that

E(xo, y) y2)2-

However, ifly; —y2| > 6/1?, then (&) =
in (19) is not a minimizer of (., y).

b) y satisfies|y;y — y2| > 6, and then£(.,
minimizer z; involving an edge

= F%)‘Q(yl -
{1} andz,

y) has a local

Ii'l[l] =Y and .’2,'1[2] = Y2. (20)
Since|#,[1] — #1[2]] > 6, J1 == J(&1) = {1}, and
(11) shows tha#; is a local minimizer of («, y). Now,

8("".17 y) Q.

However, if|y1 — 12| < 6, then|z1[1] — #1[2]| < €
and J (%) = {0}, and henceg; is not a minimizer of
£, y)

We draw the following conclusions.

i) If Jy1 — y2| < 6, thené&(., y) has a unique minimizer
that iszo. We check thalzo[1] — o[2]| = I'#|y1 — v2| <
I'?6 < I'16, which corroborates (16).

i) If Jy1 —2| > 6/12, then&(., ¥) has a unique minimizer,
whichisz;. Now, clearly,|#:[1]—%1[2]| > 6/I'% > /T,
as stated in (16).

iii) If /T2 < |y1 —u=2| < 6, then&(., y) has two local min-
imizers, which are;y andz;. The global minimizer of

&(., ), which is denoted by, is determined by com-
paring€ (o, y) and&(%,, y). Consequently
ly1 — 2| <O leadsto & = &g (21)
ly1 —yo| > 60" leadsto & = ;. (22)

In the first case|#; — &2| < 6T, whereas in the second;; —
#2| > 6071, which is the alternative asserted in (16). A

Therefore, the magnitude of an observable difference arising
at a global minimizer of the objective function is either smaller
than asmallfirst threshold or larger than a second threshold that
is larger then the first one. These thresholds are independent of
the data. The differences that are smaller than the first threshold
aresmoothand they form the homogeneous zoneg,iwhereas
the differences larger than the second threshold correspond to
edgesThis neat classification of the differences at a global min-
imizer is nicely observed in the experiments presented in Fig. 1.
In a global plan, the bounds in (16) and (17) are specific for each
positionk of the difference along the signal. The latter is seen
in the simulations in Section V and especially in Fig. 5.

Theorem 4: Let A € R™*™ satisfyM Awu;, = 0. Considerg
as given in (2)—(4).

Then, for anyy € R™, any global minimizeg: of £(., y)
satisfies

T = Thgt- (23)

Let us now come back to Example 1. It is easy to see that for
anyy € R, the pointi = (y/2, y/2) is a global minimizer of
the relevant (., y) since it yields€(z, y) = 0. The latter result
is an application of (23).

Remark 1: Speaking more looselW Au;, = 0 means that
the operator is blind to catch any information relevant to the
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() (8)

Fig. 1. Deconvolution. (a) Noisy datg= z * h + n with b, = exp(—0.4k?)/1.41 for |k| < 5 andn white Gaussian noise, 10 dB SNR. Reconstructions
using differents PFs in (1)—(3), where the latter are plotted above the relevant solutions. (b) Huber PR witi).1 andA = 1. (c) Modulus PF\ = 2. (d)
Truncated quadratic Pfey, A\) = (0.7,7.7).

magnitude of the originglz;, — xx+1|. Next, we explain this Aw; = 0. Thisis the reason why a differengg — x41, whose

assertion. Since K3 is spanned byl1, the equalityM Au;,, = indexk is such thatM Aw,, # 0, is said to bainobservable A
0 means that The operators, such thatM Au;, = 0 for somek, are rare
« either Au;, # 0 and Au;, € KerM, hence, there exists Since their columna;, ¢ = 1, ---, n have to satisfy the equa-
¢ # 0 such thatdu;, = cAl; tion (1 — ¢) E?:kﬂ a = chzl a;, wherec is the constant
« or Au;, = 0, which amounts to the previous case if wdliven above. This is a very special requirement that is not satis-
takec = 0. fied customarily.

Both Theorems 3 and 4 show that there are regiof®'ithat
cannot be reached by the differences of any global minimizer of
the objective function for any dagae R™*. Such “prohibited”
regions exist for anyl and for any(«, A); their extent is fixed
by A and(«, A). Notice that the bounds found in (16) and (17)
arenecessarywhereas (23) is both necessary and sufficient.

Given an original signat, let us consider the family all signals
xg, 4 € R, which is obtained fromz by modifying only itskth
difference

xg =z + Suy.

(Clearly,z[i] — zs[i + 1] = z[i] — z[i + 1] for ¢ # k, whereas
as[k] — x[k + 1] = 2[k] — [k + 1] — 5.) When transformed IV. THRESHOLDING AND LOCAL STABILITY AT A GLOBAL
by the observation operatet, this family yields MINIMIZER
In this section, we focus on the behavior of the global mini-
Azg = Az + JAuy, = Ax + fcAl. mizers of£(., y) wheny ranges oveR™. We begin these con-

siderations by emphasizing that the global minimizer in Ex-
In the datay, the contribution of théth difference is thus con- ample 2 involves a typicaletectiorstage since it satisfie$; —
founded with the contribution df. In particular,Azs = Az if 2] < 6L if |y — 42| < 60! and|2; — &3] > 601 if
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ly1 — y2| > 601, In the first case, the data reflect a weald,. A first remark is that ifY; NY; = 0, £(., y) cannot
contribution of the original differencgr; — «2|, and its esti- have simultaneously a strict minimizeéf, with edgesJ,, and
mate|£; — #2| is subject to smoothing, whereas in the secorghother minimizets, with edges/,. However,Y; NY; can
case, the contribution df;; — z»| is strong, and its estimate be nonempty for numerous indexgesndg.

|#1 — #2| is large and corresponds to a jump (an edge). Qual-Theorem 5: ConsiderJ,, and.J, elements ofM, as given in
itatively speaking, the estimation of signals by the method {@4), and the domaing; andY’;, ,which are defined in (26).
(1)—(4) is based on the same effect. This question is considere@)  |f rankA < » and if Y; NYs, # 0, assume that
below in several steps. rankA(X;, — X)) > 1.

The necessary and sufficient condition for minimum, Then, all they € R™ leading to€(X ;. y, y) = £(X 1.y, v)
which is given in Proposition 2, can be reformulated agre contained in a seét';, ., which is closed and negligible
(ATA + \*D'U; D)z = A'y, whereJ = J(&). More- with respect to the Lebesgue measureish
over, a (local or global) minimize is strict if and only if By using the notation introduced in (29), we can specify that
ATA + X2D" U;D is invertible. Therefore, we have the
following: Ny s, ={yeR™: G, (y) =G, (v)}
= {y S YJP N qu: yTA(XJq - ij)y

— a(#J, — #J,) =0} . (30)

, . N - Provided that A) is true for any € M, all the datay € R™,
If,’] ¢ M, no strict minimizer of£(., y), foranyy € R™, has ¢4 yhich (., 4) can take the same value at two ore mdife
J' as the set of its jumps. Reciprocally, all edge configurationsentstrict local or global minimizers, are hence contained in
that may arise at a strict local or global minimizewd, y) for  the ynjon of a few nonempty closed sets of the form (30). Such a
anyy € R™ are elements oM. If & is a strict minimizer of nion is a closed negligible subsetf. The chance that noisy

M={JC{1, -, n—1}
rank(A"A+ X D"U;D)=n}.  (24)

£(., y), thenJ (&) € M. ~ data come on such an union, leading to multiple minimizers at
[Proposition 5: With every.J € M, let there be associated,hich &(., y) takes the same value, is null. In particular, the
with it the following matrixX'; € R**™ and set’; C R™: probability that€(., ) has more than one global minimizers is
AT 2T —1 AT null.
Xy = (A A+ DUD)A (25) There may exist situations where A) fails to hold, as seen in
Y; = {y e R™: |dkTXJy| > @7 ifkeJ the next example.
A Example 3: Consider the following objective function:

T Ve :
andd oy < X ottenvisd 29 (s, ) - (1= = o)+t e)
1
whered;, and D are as in Proposition 2. Suppo¥g is non \We have
empty.

) U, = Diag{1, 1}

Then, for anyy € Y}, the point A Ll) 8 (1)} U, = D?ag{l, 0}

&= Xy (27) Uy, = Diagi0, 1}

_ _ o o 1 2422 )2

is a strict local minimizer of(., y) that satisfies7(z) = J. X, = 1422 1422
From (26),Y;, which is the domain oft’;, is the union of 2(1+A%) A2 2 4+ A2
several polyhedrons d&&™. An identification with Theorem 2 10 10
allows us to write tha®t’(y) = X yy for everyy € Y. X, =10 X, =0 1
Let the entries ofM be.J, forp =0, ---, #M — 1, where ! 0 1 ’ 2 0 1

# means cardinality. Giveg € R™, the set ofall strict (local
or global) minimizers of (., y) reads{X ; y: p € Sy}, where Recall thatJs; = {1, 1} ¢ M, and hence, no strict mini-
mizer of £(., y) for anyy can involve two edges. Notice that
Sy={pe{0, -, #M-1LyeY,} (28) A(X; — X;,) = 0and that#J; = #J,. After some cal-
culations similar to those outlined in Example 2, we see that
if |y1 - y2| > \/a/)\\/l + A2, then bothz; = (yl, Y1, yg)
and#» = (y1, y2, y2) are strict global minimizers, yielding
E(%1, y) = £(%2, y) = «. In other words, the jump can equiv-
alently be placed either betweef andz» or betweenz, and
xz3. Neither data nor prior gives any reason to choose the one
among these minimizers. A
— (X — lyll2 — 4T AX i More generally, A) is falsenly if all the columns oY’ ;, —
G:(9) =Xy ) =wl" ~y 7y toft.  (29) & ;, areinthe null space of. Then, if in addition#t J,, = #J,,
We wish to check whether for sorgec R™, £(., y) can exhibit the set\; ;. in (30) reads\; ;, = Y; (Y , whereas
strict minimizers at whicl€(., y) takes the same value. To this\; 5, = 0 if #J, # #J,. In any case, havingl(X ;, —
end, we seek dataleading toG s (y) = G, (y) forsomeJ, # X&'; ) = 0 is a truly pathological situation. Assumption A) is

Given y, the setS, contains the indexeg of all jump con-
figurations.J,, such that(., y) has a strict minimize£, with
J(%,) = J,. Since for every, S, is discrete and finitef (., y)
has only a finite number of strict minimizers.

Given a set of edged € M, letG;: Y; — R be a local
minimum-value function
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generally satisfied by the observation operators used in prac-1.5
tice. Note that the latter is easy to test off line.

Now, we would like to have some more facts about the global
minimizers of£(., y). GivenJ € M, Theorem 3 shows that
everyy forwhich&(., y) has aglobalminimizerz with 7 (%) =

J belongs to the following set: ot , .
1 64 128
YJ =<y cR™ |dTXJy| > i ifkeJ Fig. 2. Pointwise linear operator applied to the original signals whose
k I ’ differnces are depicted in Fig. 3(a).
and|di X yy| < 6T, otherwise} ()
¥ L . ‘
where§ = £ (32) .
)\ Tk — Thy1

Clearly,Y; C Y, where the inclusion is strict. Since eakh
contains an open subseti®f*, the probability to get noisy data | | i
belonging to such a s&f; is strictly positive, and hence, we can jikalm H]WHNHH]IIHU!HIHH
really get minimizers whose set of edges/idn a global plan, Imu{mlwmm”m """""" i
wheny ranges oveR™, we get strict minimizers involving all i
edge configurations i 1.

Next, we focus on the way in which = 7 (z) behaves under
small variations of the data

Theorem 6: Let A) of Theorem 5 hold for every,,, .J, in L
M, as defined in (24). T LI

Then, for almost any € R™, if z is a global minimizer of 1 64 ko127
&(., y), then there exist§ > 0 such thatt’ = X 54/, where
J=J@&), and&’; is defined according to (25) and is a globa '
minimizer of £(., ¥/) if ¥/ € B(y, &). ;

Giveny € R™, considet to be a global minimizer of (., y)
and the relevant edge estimafe = 7(z). By Theorem 6,
it is almost sure that this edge estimate will be kept conste
J(Xyy') = J under small data variationg € B(y, £), which
can be due to noise contamination. This behavior can be see
alocal stability property exhibited by an estimator of the forn
of (1)—(4). However, stronger data variations—which rever:
the sign ofG; — G; for someq € S,—reverse the config-
uration of the jumps at the global minimizer. By Theorem :
the magnitudes of all differences whose indexes belor{g te
J: k ¢ J,} are modifieddiscontinuouslywith a jump from a R AT S B T I N
value Iarger tha®/I";, to a value smaller thefll';.. Inversely, 1 64 k 127
the magnitudes of differences relevant{te ¢ J: k € J,}

(=]

iRt
um il

umlIIlHIHHtHI
e mlu

g — &k |

Fig. 3. Distribution of the differences. In (a) and (b), the thresholds

jump from a value smaller theil";, to a value larger thafy/T';. 46T,.46/Ty for k = 1,....127 are plotted with a solid line (—).
This effect is the core of the edge detection performed by an es~axis: positions of differneces = 1. ..., 127. Y-axis: a dot at positioh
timator of the form (1) (4) is the value of thekth difference of a S|gnal Thus, the differences of 100

signals (each having 128 samples) are represented. (a) Differences of the
original signals. It is worth noting that numerous differences are placed in the

V. NUMERICAL EXPERIMENTS intervals] — 6/T'y, —6/T'[and]6/T,6/T«[. (b) Differences of the global
minimizers of the objective functions. As predictea, difference is placed in

The first experiment, which is presented in Fig. 1, concerhs ¢/T'«x, —6Tx[U]6Ty, 6/,
the deconvolution of noisy data. Its goal is to illustrate the ability
of different PFsyp, involved in (3), to recover both smoothly Fig. 1(b) shows an estimation usingHuber PF that is
varying zones and sharp edges. The data, which are procesgeddratic near the origing{t) = aXt?/2 if |t| < 1/a]
are presented with a solid line in Fig. 1(a); they are obtaineshd affine beyond it(t) = A(J¢t] — 1/2a)] if |t| > 1/«.
from the original signak and plotted with a dashed line in allThe relevant objective function is convex. This PF smoothes
figures from (a) to (d) using/ = z x h + n, whereh;, = small differences while it adds a constant bias to large differ-
exp(—0.4k%)/1.41 for |k| < 5 andh; = 0 otherwise, ancdh  ences. The solution in Fig. 1(b) correspondsite= 0.1 and
is white Gaussian noise leading to 10 dB SNR. The shape of the= 1. Fig. 1(c) illustrates an estimation usingreodulusPF
PF that is used in each reconstruction is plotted above the @l§#) = Ajt| with A = 2. This PF is nonsmooth at zero, which
tained solution. leads to estimates that are constant over large zones [28]. The
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solution thus involves several large differences, but the fact (a)
that the local variations beyond them are reduced to constant 4 " 7
segments is often undesirable. In contrast, the solution reached , L
using atruncated quadratid®F, which is given in Fig. 1(d), AW MY Dasirh XYy,
exhibits a nice reconstruction of both edges and smooth regions. ) p
It corresponds t@«, \) = (0.7, 7.7) and was calculated using 30},
the generalized GNC algorithm proposed in [6]. 1 P
The next experiment, which is given in Figs. 2 and 3, shows (B)
the distribution of a large set of estimated differences with re- ! '
spectto the thresholds found in Section 1. To this end, 100 orig-
inal 128-length signals were generated. The data corresponding

128

to an original signak are obtained by multiplying, pointwise, o3
each one of its samples with the relevant element of the vector
h presented in Fig. 2 and by adding white Gaussian ngise: 0 o 128

zrhy + ng. In Fig. 3(a), the positiong = 1, ---, 127 of the
differenceszy, — w41 of these original signals are placed Fig. 4. Discrete Laplace transforn_”l. (a) Real part (—) and i_maginary.part (-9
along ther axis, whereas their values are represented along t féhe data. (b) Attenuation factdr; = exp[~0.2(1 — 1)] for = 1., 128.
y axis. The subsequent reconstructions of these original signals
from the noisy data are calculated fa¥, A) = (1, 10). The (a)
relevant thresholds-6T";,, +6/T, with 8 as given in (16), are '
calculated using (17) and are plotted with a solid line in bot
Fig. 3(a) and (b).

For anyk, the original signals havaumerousdifferences & (=)
xy — Tx41 belonging tafly, 6/1] orto[—8/['y, —61'%]; see
Fig. 3(a). The estimates, which are used to plot Fig. 3(b), are ci
culated by means of a Viterbi algorithm [9], which guarantee
that they yield a global minimum of the objective function. It is
striking to observe how the differences of the obtained estimat
Iy — &r41 avoidthe intervald—6/1';,, —60';] and[61', 68/0]
for all £ and for ally.

The last experiment in Figs. 4 and 5 concerns the inversic
of a discrete Laplace transform. The dgtplotted in Fig. 4(a)
are obtained according 9. = Z}i‘q{ exp[—2mi(k — 1)(I —
1)/128]hyx; + ny for k =1, .-+, 128 andhy = exp[—0.2(1 —
1)], whereas: is white Gaussian noise yielding 15 dB SNR. The 3t
attenuation factor involved in this transform I = 1, ---, 128 %* ~ Tk+1
is given in Fig. 4(b). The datg are plotted with a dashed line *~
in Fig. 5(a). Tk (:)zk“

Because of the attenuation involvedAnthe threshold /L',
is rapidly increasing withk, whereadl';, is decreasing at the
same time. Consequently, it will be increasingly difficult to re-
cover edges wheh increases. This effect is obvious in the re-
construction presented in Fig. 5(a). The obtained estimate ct
responds tde, A) = (1, 10.5). The edges, which are located
in the first part of the signal, are well recovered. However, thos
located in its second part are not detected at all and are appr
imated by an almost constant piece. Since the above Laple .
transform can be represented as a discrete Fourier transfc 1 64 k 127
applied to the attenuated sigrale;, [ = 1, ---, 128, itwas - o oricinal sianal o

H H H . H . O nstruction. rgin 1gn - =), r nstruction (—

posglble to Calcu'?‘te the estimate by_ u_smg ?‘Vlterby algom_h@o%respond?ncg;)tt()sa,u;) O: (1{?0.5).%b)aDif?e?eﬁce(s of)t‘he%??gir?alugig%al ((o) )
In Fig. 5(b), the differences of the original signal (plotted withiffernces of the solutions(). Thresholds+6T, +6/T; plotted with (—).
“0") and the differences of the reconstructed signal (plotted wiffie increase of /I, with k is worth noting.

“x") are compared with the magnitude of the threshatd$’;,,
+6/I';.. The sought signal containing constant zofiésabout
0.1, and+6I';, are close to zero. The upper threshéld;
rapidly increases witlt, which underlies the impossibility for  In this paper, we analyzed an estimator involving truncated
the reconstructed signal to contain edgesifdarge, whereas quadratic regularization. The relevant objective function is non-
the original one does contain such large differences. smooth and highly nonconvex, and we examined the regularity

Tk (‘ ') st

VI. CONCLUSION
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of its minimizers. It was shown that this function is differen-  Proof: We start by calculating the matri®, which is
tiable in the vicinity of each one of its local minimizers and thagiven in the right side of (36). This matrix is partitioned as

its gI_obaI minimi_zgrs are stri_ct; therefore, they determine Iocall,g - P! : p,], whereP"~! contains the first, — 1
continuous minimizer functions. . . columns ofP. Then, the identity in the right of (36) can be
. Then, we con5|_dered the way in V.Vh'Ch edge_s are recovet (i]ormulated as the following system:

in an estimated signal. It was exhibited that with each differ-

ence between adjacent samples, there is associated with it an Dpt =1t

interval of positive length so that the magnitude of this dif- Dp, =0""!

ference at any global minimizer, for any dagacannot lie in hip, =1

this interval. When the data vary, the differences of the global oyl e INT
minimizers jump over these intervals, which corresponds to an h™P =(0"7)".

edge detection. This is the mathematical cause that underliémse conditions are examined next.

the edge-enhancement effect induced by regularization with a« pp»—1 — ! Then, each colump, of P must sat-
truncated quadratic PF. We demonstrated that at the same time, jsfy Dp, = e, whereey, is thekth vector of the standard
almost all global minimizers are continuous on some neighbor-  hasis ofR™~! (i.e.,ex[k] = 1 andex[i] = 0 for i # k).
hood, which can be interpreted as a local stability property of  The matrixD is partitioned as

the estimator.

D Ok—l xn—k
APPENDIX A D= 1 : 1 (row k)
FAMILY OF EQUIVALENT OBJECTIVE FUNCTIONS ) .
Onfkflxk : D//

The regularization tern® in (2) involvesrn, — 1 differences of
the formz;, —z.41. Then£(., y) can equivalently be expressed
as a function of all these differences plus an auxiliary component

whereD' is of sizek — 1 x k,andD” isn —k—1 x n
—k. Vector ¢, is partitioned correspondingly as, =
[(0* DT, 1, (0" * HT]" andp,, aspy = [(#')7, pr,

IINT1T
th =k —apprfork=1,-.-,n—-1 (33) (pU)si]ng that the null space of both’ and D" is com-
t, =h'z (34) posed of the constant vectors, the requireni2pt = e,
is equivalent to the system
whereh € R" is such that the mapping — ¢ defined in D'y —0F1
(33) and (34) is invertible. Putting’=" := [t1, -, tn_1]%, P o
t"—! = Dz, whereD is the matrix given in Proposition 2. For thenp’ = c1withe €R (41)
h as specified above, we have D'p’ ="t
thenp” = "1 with’ e R (42)
F(t, y) =[Pty = Bt —y|* +¥(t)  (35) dTp, =1,
_ imp_ | 2] pilk = 1] = py[K] = 0
whereB = AP, withP = {hT} (36) then {pk[/f] Cp k1] = 1. (43)

it From the first expression in (43)[k] = ¢/, whereas from
L) = Z p(tr)- (37) the secondp(k] = 1 — ¢’, and hence¢” = ¢ — 1.
k=1 Combining this with (41) and (42) shows that the columns

n—1
F(., y) is equivalent t&€(., ) in the sense that any local min- of 7" have the form

imizer ¢ of F(., y) is related to the corresponding local mini- p=cl—wfork=1---,n-1 (44)

mizer of £(., y) through wherec,, are real constants.

* Dp, = 0"~L. Thenp, = c,1, wherec, is areal number.

~n—1

o= fﬂ% & & — Ph (38) « h'p, = 1. By using the last result, we have
o= A2 e hT1 = 1. (45)
In the following, we will need to know the form of the Note thath”1 # 0, since otherwise[D¥ : &]T is
columns ofB. singular. Hence
Lemma 1: For anyh € R™ for which (33) and (34) is invert-
ible, there existe € R™ with ¢,, # 0 so that the columns dB, Cn = hTLl £0. (46)

as defined in (36), read
IMore preciselyD’ andD’’ are the following submatrices d:

b, =crAl — Ay fork=1,---, n—1 (39) D'(i, j) =D(4, j)
b, =c, Al (40) fori=1,.--, k—1landj =1, ---, k
D”(i, j) =D(k +1, k+j)

with ;€ R™ as given in (15). fori=1,---,n—k-1landj=1,---,n—k.
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« ”"P" ! = 0T, Since ranP™ ! = n — 1, we geth € respectively. Then
KerP" ¥, or equivalentlyh’p, = 0 for everyk =

1, -, n— 1 Introducing (44) into tr;e last system yields fL(0) = 18%1
cxh®1 = KTu;, hencery, = ’;Tul |B(E—sex)—yl*+U(E—sen)— | Bi—yl>~ ¥(H)
fork=1,-- n—1. (47) -
Itis easy to check that the obtained mathis the sought Noticing thaté;, = 6 and thate(6 — s) = A*(6 — s)* for
inverse. The columns d8 come fromB = AP. s €]0, 26[, we get
Remark 2: It may occur thatAl = 0. In such a case, the el
columns ofB read _ U(E - sep) = Z o(t; — sexli])
by = —Au,fork=1,---,n—1, whiled, =0. el
Sinceb, t,, = 0, the quadratic term in (35) can be expressed as = Z o(t) + ot — 5)
|Bt — y||? = ||B"~'t"~* — y||?, whereB"! is formed by o
the firstn — 1 c_ol_urr_ms_ofB. Thereforeg,, is not involved in _ :\If(i) (tk) + (p( N —8) = \I/(%)'
F(t, v). The minimization problem should be reformulated in
terms Oftn_l Only: Consequent|y
n—1
FE ) = 1BY T =yl + Y wltn). £.0) = lim
k=1 8
All results established in this paper hold {8t ., y) as well, but 8[| Bex||” —2s¢fB” (Bi—y)+A*(6—5)” —\?6°
they take a simpler form. A -8
= 2bi(Bt—y)+2)%6.
APPENDIX B
PROOFSRELEVANT TO SECTION I On the other hand, for any > 0, we havep(f + s) = o =
— \2p2 3 _ 3 mi
A. Proof of Proposition 1 \f/(eel)‘in_d)\ 8%, and hence¥ (t + se;,) = U(¢). In a similar way,

Since (33) and (34) is an isomorphism, this proposition is

proven by checking whether there exigtse R™ such that £1.(0) = s?||Bey||* — 2sef BT (Bt — y)
F(., y) has local minimizers belonging to the union of hyper- + 10 s
planes =2b] (Bt — y).
_ _ _ Ve . .
U {ftx = 61U [t = —6]} wheret := 1 Clearly, f.(0) > f(0), which contradicts the necessary con-
k=1 dition (49). Hence, we have the result.

Suppose the contrary, namely, that there e>y’sts R™ for
which F(., y) has a local or a global minimizer such that B. Proof of Proposition 2
ltx| = 6 for k € K, whereX C {1, ---,n — 1} is a subset
of indices. For somé € K, we will analyze?’-"(., y) att along
the directione;,. Without loss of generality, suppose that= 6

Necessary ConditionBy (38), we consider equivalently
to be a local minimizer ofF(., y). Clearly, F(., y) is C* on
B(t, p), wherepis as given in (7). Then, the gradient5t., y)

(the reasoning is the same for = —6). Define the function até is null, that is,VJ—“(i, y) = O:
f: R~ Rtoread
L f(8) = F(E+ Ler, y). (48) 2BT (Bt —y) + VU(E) = 0. (50)

The fact that is a local minimizer ofF (., y) implies thatf has ) )
a local minimum af = 0. Consequently, its side derivatives at/Sing thatlé,| # 6 for all & and thaty’(t) = 2X%#([¢| < 6) if

zero satisfy both inequalities: |t| # 0, we get
! ! ~ A A~ ~
_ F-(0) 0 < f1(0). (49 VU@ = 2\, with J = 7(B) (51)
We will take s > 0. The left and the right derivatives ¢f at
zero read where we use the equivalent forms of (9) and (10):
fL0) = gy FEZ 20 V) 2 T D) T ={ke{l . n—1}|nl >0} (52)
s —S

and I:lJ :Dlag{“(|tl| < 9)7 T "(|tn71| < 9)7 0} (53)

fL(0) == hm Ft+ sex, y) = 7t y) Notice thatZf; is n x n.
0 s Sufficient Condition: Let# satisfyV F(%, 4) = 0. The equiv-

2Numerous references can be cited about (49), e.g., [29]. Let us recall@&nt form of (8) shows thdly|| < p ensures that
proof. Sincef has a minimum at zero, for any sufficiently smafi> 0, we have
f(=s)—f(0) > 0andf(s) — f(0) > 0. Then,[f(—s) — f(0)]/(—s) <0, £ 3 =\, )? if &
and[f(s) — f(0)]/s > 0. The necessary condition (49) is obtained at the limit w(ék + Uk) A (tk + UkA) ’ i |tk| <9
whens — 0. e(ty +u) =« if [£x] > 6.
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Next, we considefF (¢ + v, y) — F(¢, y) for 0 < ||v|| < p: rectionv € R™ with ||v|| = 1, and there exisp;, p2, Where
p1 < 0 < pz, such that
F(%—i_vv y) _F(iv y)

. . F(t+ v, y) = F(t, y) forall £ € [py, 55
— |BG +v) —y|? — ||BE — y]|? t+4lv, y)=F(t y) [p1, p2]  (55)

n—1 ~ ~ . .
9,z 2 \27.2m1/1F whereas(t + fv: p; < £ < p2} C B(t; p) with p as the radius
+ kz_l[)‘ (B + on)” = AR < 0) specified in (7).
~ Let 7¢ denote the complement function that extracts the in-
_ . TRT T T _ <
=v B Bv+v B (Bt -y ) dexes of the differences in the homogeneous zones:
+Z )\2 |tk| <) +22 )\QUktkﬂ(|tk|<9) jC(t) ={ke{l, -, n—1}|t| <6}. (56)
k=1

= ”TBTB”+ NolUyv+v' VE@E y) 2 0. (54)  Make J€ := JC(%). The identity (55) can be reformulated as

Hence is a local minimizer ofF(., y). | Bt + tv) — y||* + Z N2 (Eg + o) + atJ

C. Proof of Proposition 3 ke
001 OF FTOPOSTIN o — Bt gl + > N+ agtdforall £ € [ps. po]
Equivalently, we will see that all minimizers (., y) are rejo

strict whenevem3” B is invertible. Using the same arguments (57)
as in the proof of Proposition 2, we see that noWB* Bv > 0

ensures that the expression in (54) is strictly positive. Hence, » Where# denotes cardinality. It follows that
have the result.

D. Proof of Proposition 4 C Bl + A of

Note thatf satisfies (50), and we get = 7 (%). By assump-
tion, there ist' € B(%, p), with p as in (7), so that
+ 2/ TBT —|— A2 Z vt | =
FE,y)=FE y)andVFF, y) = 0.
forall £ € [p1, p2]-
Using that for allt € B(t; p) we haveJ(t) = J, and hence

U ;4 = U;, we can see that Hence, the coefficients of the above second-order poly-

nomial with respect to/ must be null. In particular,

. N . IBu||? + A2, .50 v2 = 0 implies that there existw
VFE, y)=2BT(BY —y)+2\U¢ . such that Zkere
Considerz = 8t + (1 — B)f with 3 € [0, 1]; then,z € v €KerB" B,
B(i, p). We get v =0forall k e JC. (58)
VF(z,y)=2B"(Bz—y) + 2)\21;13z The result is trivial if nov satisfies (58). Now, suppose that

there exists satisfying (58). Note that bylv|| = 1 and by

_opT 7 gy _ 1
=287 [B(B+ (1 - F)t) ~y] (58), there existg € J such that; # 0. For such g, make

-~ ~ ~!
+ 20U [Pt + (1 - p)E] ° = —t;/v;. Then,p(f; + £°v;) = 0 < ¢(f;) = a. For any
=32BY (Bt —y)+ (1 — /3)QBT(Bi’ —y) otherk € J \ {j}, two situations can occur:
+ 220U+ 227 (1 - SU5E — I [+ 2w > 6, thenp(ty + £o0) = a = <p( 5)
. N A/ _ —_ If |tk + E"vk| < 0, then<p(tk + K"vk) = (t
=pVF@E y)+ (1 - HVFE, y) = 0. P < oz old)
. o In all cases
By Proposition 2,7(., y) has a local minimum at anyplaced
. ~ ~ ~ ~
on the segment that linksandt . Z oty +0m) < Z o(fr) —
kcJ kcJ

E. Proof of Theorem 1

From (40), assuming thall # O means thab, # 0. |Nen, we have
To prove this theorem, we will check whether the global mini-

3 0 _ 3 2 £.3\2
mizers of 7 (., y) are strict wherB” B is singular withb,, # 0. Ft+ v, y) =Bt —yl” + Z (Atx)
We prove this by contradiction. keJje
Suppose we are givénwhich is anonstrict globaminimizer + Z (tr + £o0) < F(t, ).

of (., y). From Proposition 4, there exists a normalized di- ked
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However, this contradicts the hypothesis tif&t., ¥) has a where we recallthad’ = M andM* M = M. Thekth equa-
global minimum at. Hence, we have the resuilt. tion in the system (50), where < n — 1, can be reformulated

as
F. Proof of Theorem 2 .
T " 27 N _

Recall first thatV2&(x, y) is positive definite onB(z, p), —up AT M2 + Gt + A0([E] < 0) =0 (64)
€., I det_ermmes an isomorphism on th|_s ball. The Miith & > 0, as defined in (17). For the moment, we only know
pllglt function theorem can the_n be applied. Then, thertﬂatfk £ 6, but we do not know whethdt,| > 6 or |#,| < 6.
existsp > 0 and a unique functio®’: B(y, u) — R™ so Let us examine both situations.

! ! _ H
tflat VEX(y), y] = 0 on Bly, ). From the preceding, t) = 7o satisfies (64) for somgr| < 4. Then (64) yields

' = X(y') is a strict minimizer.

T AT
TqukA MZk (65)
APPENDIX C A2 4 &,
PROOFSRELEVANT TO SECTION I . i, = 7, satisfies (64) with:| > 6. By (64)
A. Proof of Theorem 3 ) u}fATMZk
As previously, we will considertF(., ). Let ¢ be a global 1= T (66)
minimizer of (., y). ) _
The last equation in the system (50) reads Define the vectors, andt, as follows:
1 to:=[t1, ", tre1, To, Pty s tnea]”
bz <Z bzgz + bni\n - y) = 0 tl = [517 ) tAk—]n 71, tAk+17 T En—l]T
=1

with 75 andr, as given in (65) and (66), respectively. Since the
kth entry oft is either|#,.| < 6 or|#| > 6, we have eithet = ¢,
ort = t,. The fact that is a global minimizer yields that

. bE <y B "z’:l bﬁl) . F(t, y) < Flto, y) andF(¢, y) < Fltr,y)  (67)
i=1

It allows us to expres, as a function of" ", that is

n
n
16112

(59)

and that equality is reached for one of the vectkysor #;.
More precisely, wheneveF(., ) has a unique global mini-

Focus on théth component o tand decompose (59) into Mizer, equality is reached for exactly one among the vegtors

terms involving?, and terms not involving: andt;, and this is the vector equaltpwhereas the other vector
may or may not be a stationary point®f., y). However, it may

R Lz, bty happen that both equalities are reaches in (67), which means that

ty, = — e - 162 both#, and¢; are global minimizers.
where ’ ’ In order to test whetheF(ty, y) < F(t1, y) or not, we will

k—1 n—1 compare, with zero
=2 bk 2 by ©0) A = Flto, v) — Ft, v).
Let us splitF(., ¥) into terms involvingf;, and terms not in-
Notice thatZ;, is a function oftq, - -, tr—1, thg1, ~ -, tai volving #,:
and ofy. The following expression will simplify further calcu- . o R R
lations Ft, y) = IM2, — MAuwb|* + > o) + o)
i#k
k—1 n—1 2 2 T AT " T
o ~ ~ ~ ~ :tkfk —ZtkukA MZk—i-(p(tk)—i-Zk M2z,
Bt —y= Z bit; + bt + Z bit; +bptn, —y 1 i
i=1 i=k+1 2 ;
bobT " b.b" T Z p(ti) + Z plti)
:Zk + bkfk _ I;l n2 Zk _ I;l n2 bkgk =1 1=k+1
U | 16 where we used (62)—(64) combined with (17). ThAmeads
=M2Z, + Mb,t, 61
, Wk D) A =728 — 2roul AT M 2, + (7o)

with M as given in (14). The last equality is obtained by using — 728 + 2muf ATM Z;, — (7).

the fact thab,, = ¢,, A1, as found in Lemma 1. Combining (39)

and (14) shows that Substituting the expressions foyandr; into A while recalling

thatp(m) = «, it is found that

Mby, = c,MAl — MAu, = —M Au,,. (wfA"MZ,)? (W ATMZ,)?

A= — + -
M4 & “
Using the above expression, (61) yields )\Q(U{ATMZk)Q
Bt —y =M Z), — M Auyfy, (62) T “

bi (Bt —y) = —ul ATM 2, + L AT MAw,f;,, (63) According to the sign of\, two situations arise.



« If A < 0, thenty is global minimizer. The inequality

A < 0vyields
(Wi ATM2,)  (WfATMZ)P (N + &) _ o
(A2 + &) (A2 +&)26 = a2

After identification with (65), it is equivalent to
2
Tg (A + &) < Rl
&k A2
Hence
€k
A2+ &,

with [';, €]0, 1[, as introduced in (17).
If A > 0, thent; is a global minimizer. Frond\ > 0

(ui ATM 2,  (u} AT M Z,)%¢, e

|7'0| §9 —Hl“k

(V2 + &) (&) T
which, by identification with (66), is the same as
22 Sk a
LA 46 T2
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* It remains thaiz, — Zxq1| < 6. If 2 # Zpq1, thenf
reaches its minimum foél: —&y + &p41 # 0, but then,
@(Fk —Zrt1) > 0,andf(£) = —p(dp —2p41) < Osince
©(t) > 0 strictly, whenevet # 0. The latter conclusion
contradicts the fact thatis a global minimizer. It remains
thatﬁ:k = i’k+1.

APPENDIX D
PROOFSRELEVANT TO SECTION IV

A. Proof of Proposition 5

By (25), % in (27) satisfief AY A + \2DTU ; D)z = Ay,
whereas (26) shows that(z) = J. Then, Proposition 2 allows
us to make the conclusion.

B. Proof of Theorem 5

Takep andg in {0, -- -, #M — 1} with p # ¢. The resultis
trivial if Y; NY; =0 sincethenN;, ; = 0.

Consider the case whery;, N Yy, is nonempty. In the fol-
lowing, we considerF(., y), as introduced in (35). Note that

(24)—(26) and (29) are equivalently reformulated as
M={Jc{l, -, n—1}:rankKBTB+ ) U;) =n}
T;=(B"B+)NU;) B forJ e M
Yy={yeR"™: Tyl >0ifkeJ

and|7 yy| < 6 otherwisg
F(Tsy,y) = yl> —y" BT sy + a#tJ

wherel{ ; is given in (53). Similarly to (30WV5,, s, reads
Notice thatA = 0 is impossible ifF(., ) has a unique

— L —
global minimizer. In the latter case, théh entry off sat- Nay, s, = {y €Y, (Vo 9" BT, =T, )y
isfies — a(#Jy — #1y) =0} (68)

; 2 2 -1
either|zy| < 0Ly or [tx] > 61" SinceJ, # J,, rank7;, —T;) > 1. If rankB = n, then
B(T,;, —7T,,)is notidentically null. Otherwise, the latter ma-
trix is nonzero by assumption (A). In both cases, the second-
For ¢ as in Remark 1, define the following vector and funcerder polynomial with respect #in (68) involves nonzero co-
tion: efficients; therefore, it cannot remain zero on any open subset
of R™. Hence, we have the result.

Then

A2 .
|| >0 %QZHFZI.

Sincet is eithert = t, or & = ¢, it follows that itskth
entryt; satisfies the following: Gi(y) =

either|ty| < 6Ty, or |£,] > 61"

B. Proof of Theorem 4

=cl —up

) :=E@+ v, y) — E(&, y)
=|AZ + tv) — y|” — || AZ — o]

n—1
. Z 0@ — Zig1 + L(vi —vig1)]

_ e
Z +) wheresS,, is the set given in (28). Each minimum-value function
From the comments glven in the beginning of Remarka = G,, as given in (29), corresponding §oc Sy, is well defined
0. On the other hand, by construction, = v, for every and continuous o#3(y, n). In the following, we compare the
i # k, whereasy, — v, = 1. These facts show that value O(fgj \)Nith the value of everg;_, ¢ € Sy wheny' ranges
N N N N over B(y, ).
FO) = plin — Iner +0) — p(n — Irr). By the fact thati is a strict minimizer of (., y), there exists
The fact thatf(., ) has a strict global minimum & implies  y e S, suchthat7 () = J,. PutS, := S, \ {p}. The statement
that f reaches a strict minimum dt= 0. Two situations arise of th|s theorem being Va||d for almost agywe consider
according to the magnitude 6f, — Zx41.
o If |#1 — &py1| > 6, then f(¢) = 0 whenever|| < y & N where\; := U Nj,Jq
|Zx — Zr+1| — 6; hencez is not a strict minimizer. By 165y
Theorem 1 cannot be a global minimizer &¥., y).

C. Proof of Theorem 6

Since eveny; , as introduced in (26), is open, there exists
7 > 0 such that
c () v,

g€ Sy

since by Theorem 5, the sé’i:, is closed and negligible iR™.
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In such a case, saying thaat= & ;y is a global minimizeris  [11] J. Zerubia and R. Chellappa, “Mean field approximation using com-
equivalent to saying that pound Gauss Markov random field for edge detection and image restora-
tion,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Proce90,
= pp. 2193-2196.
gf](y) < ng (y) for everyq € Sy' [12] D. Geiger and F. Girosi, “Parallel and deterministic algorithms from
MRF’s: Surface reconstructionlEEE Trans. Pattern Anal. Machine In-
Put tell., vol. 13, pp. 401-412, May 1991.
[13] G. Bilbro, W. Snyder, S. Garnier, and J. Gault, “Mean-field annealing:
& A formalism for constructing gnc-like algorithmdEEE Trans. Neural

v :=min{Gs,(y) — G;5(y): g € Sy} Networks vol. 3, pp. 131-138, Jan. 1992.
~ ~ [14] D Geiger and A. YuiQ/e, “Alcommon framework for image segmenta-
Then,y ¢ N; ensures that > 0. Furthermore, sincg ¢ N3, tion,” Int. J. Comput. Vis.vol. 6, no. 3, pp. 227-243, 1991.
h y € J, az h oy ./\/ 4 € h [15] J. Marroquin, “Deterministic interactive particle models for image pro-
t ere e)_(|5t37 €lo, 77] suc thatB(y; n )_ﬂ 5 = (. By the cessing and computer graphic§bmput. Vis. Graph. Image Process.
continuity of the minimum-value function§; andg;, and vol. 55, no. 5, pp. 408-417, 1993.
i / & [16] M. Figueiredo and J. Leitao, “Simulated tearing: An algorithm for
there are rad|£q 6]0’ 77 ] forg € Sy such that discontinuity-preserving visual surface recconstructionPioc. IEEE
-~ CVPR 1993, pp. 28-33.
y' € B(y; &) leads toG,_(y') — G;(y') > 2 [17] W. Snyder, Y.-S. Han, G. Bilbro, R. Whitaker, and S. Pizer, “Image re-

laxation: restoration and feature extractiolEEE Trans. Pattern Anal.
. ~ ~ Machine Intell, vol. 17, pp. 620-624, June 1995.
Put{ := min{¢,: ¢ € S,}. Then, we see that for evegye Sy, [18] P. Charbonnier, L. Blanc-Féraud, G. Aubert, and M. Barlaud, “Deter-
we have ministic edge-preserving regularization in computed imagingEE
Trans. Image Processingol. 5, pp. 1-44, Dec. 1996.
lad / / . [19] D. Terzopoulos, “Regularization of inverse visual problems involving
QJ(y ) < g“’q (y ) forally’ € B(y, 5) discontinuities,” IEEE Trans. Pattern Anal. Machine Intellvol.
PAMI-8, pp. 413-424, July 1986.
Hence, we have the result. [20] D. Mumford and J. Shah, “Boundary detection by minimizing func-
tionals,” Proc. IEEE Int. Conf. Acoust., Speech, Signal Procgsgs.
22-26, 1985.
A. Chambolle, “Image segmentation by variational methods: Mumford
_The_ _agthor wishes to express her gratitude to E. Hansen for &”{gh'slbi? ;%r’mrfg).nslp%ﬁ%;gfsdézfrfg;ﬁppmx'mathM 3. Appl.
his criticism and suggestions about Remark 1. [22] A.Chambolle, “Finite-differences discretizations of the Mumford—Shah
functional,” RAIRO-Model. Math. Anal. Numefl997.
[23] L.Rudin, S. Osher, and C. Fatemi, “Nonlinear total variation based noise
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