
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 48, NO. 12, DECEMBER 2000 3437

Thresholding Implied by Truncated Quadratic
Regularization

Mila Nikolova

Abstract—We address the problem of the estimation of an un-
known signal that is known to involve sharp edges, from noisy data
given at the output of a linear system. The sought solution is de-
fined to be the global minimizer of an objective function combining
a quadratic data-fidelity term and a regularization term. The latter
term is a sum whose entries are obtained by applying a truncated
quadratic potential function to every difference between adjacent
samples. Such objective functions are naturally formulated either
in a statistical framework, or in a variational framework, and they
are customarily used in signal and image reconstruction. However,
these objective functions are nonsmooth and highly nonconvex, and
many questions related to their minimization, as well as to the fea-
tures of the resulting solutions, remain open.

In this paper, we present some new facts characterizing the fea-
tures exhibited by the minimizers of such objective functions. Our
main result states that the magnitude of the differences between
adjacent samples of a global minimizer are either smaller than a
first threshold or larger than a second, strictly larger threshold.
Conversely, no difference corresponding to a global minimizer of
the objective function can be placed among these thresholds for
any data. This explains how edges are recovered in a signal and
estimated using truncated quadratic regularization. These thresh-
olds are independent of the data but are related to the observation
system and to the regularization parameters. They can be used to
derive necessary conditions for the choice of the regularization pa-
rameters. We also show that the chance to get data for which the
objective function has two or more global minimizers is null. Nu-
merical experiments corroborate the obtained theoretical results.

Index Terms—Denoising, edge-detection, inverse problems,
MAP estimation, Mumford–Shah functional, reconstruction,
regularized estimation, segmentation, stability, weak string.

I. INTRODUCTION

WE ADDRESS the problem of the estimation of a signal
that is known to contain locally homogeneous

zones separated by sharp edges from observed data ,
where , is a linear operator, and
is observation noise. Since [1], [2] the following estimator for
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(2)

(3)
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where is a truncated quadratic potential function (PF)
parameterized by

if

if
(4)

provokes a considerable theoretical and practical interest. Its
rationale can be summarized as follows. The PFis applied
to the differences between adjacent samples for

. Being quadratic for and con-
stant elsewhere, expresses a wish to smooth small differences
( ) while suspending smoothing over large
differences ( ). A binary line variable that
is equal to zero in the first case and to one in the second is nat-
urally associated with each difference; see [2]. The estimation
method (1)–(4) thus involves a segmentation level. In the sequel,
we systematically assume thatand are strictly positive pa-
rameters. We will also identify with a matrix of .

In a statistical framework, the quadratic data-fidelity term in
(2) can be seen as a log-likelihood of the data under the hy-
pothesis that is Gaussian white random noise. The regulariza-
tion term can be seen as the energy of a piecewise Gaussian
Markov random chain [1], [3]–[6]. After [1], numerous works
were dedicated to both problems, computing the estimateby
using stochastic algorithms and selecting the parameters ()
[3]–[5], [7], [8]. Various techniques for deterministic minimiza-
tion of have also been investigated [2], [9]–[17], [6]. Ob-
jective functions of the form (2)–(4) are equivalently derived in
a variational framework [2], [9], [19]. In the case whenis the
identity matrix, the shape of was considered for several syn-
thetic noise-free data sets: a step, a characteristic function, and
a ramp [2]. The objective function in (2)–(4) was transposed in
a continuous setting in [20], which gave rise to important ques-
tions and to numerous works [21], [22]. More generally, solving
estimation problems by minimizing objective functions of the
form (1)–(3) by introducing various PFsin (3) is currently a
very active research field [3], [21], [23]–[25]–[27]. Beyond all
the experience that has been acquired, controlling the features
of the estimate by means of the shape ofis an intricate open
question. This work can be seen as an attempt to address the
latter question in the context of truncated quadratic PFs.

Our approach is to analyze some properties of the minimizer
in (1) that are entailed by the specific form of the objective

function (2)–(4). This paper presents some new facts charac-
terizing such an estimator in the context of general observation
systems , arbitrary original signals, and random noise pertur-
bations. Recall that is nonsmooth and highly nonconvex,
and that up to now, very little is known about the behavior of its
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minimizers in such a general context. Our study points out sev-
eral attractive properties exhibited by such minimizers. We start
by showing that is -continuous on a neighborhood sur-
rounding each one of its local minimizers, in spite of the non-
differentiability of at . Then, we show that any global
minimum of is strict for every and for every . More-
over, the local minimizers of are strict and are under
some pretty general conditions. These facts are essential for the
conception of minimization algorithms. Our main result states
that given and , with every , there
are associated two different thresholds such that the magnitude
of the difference relevant to a global minimizer of

can never be placed between these thresholds for any
. Notice that these thresholds are independent of. In

other words, if for is a global minimizer of ,
then is either smaller than the smallest threshold,
or it is larger than the largest threshold. This fact explainshow
an estimator involving a truncated quadratic regularization per-
forms edge detection and gives rise to estimates exhibiting sharp
edges and how this behavior is related toand . On the
other hand, the smoothness ofat zero entails that the zones in

beyond the edges exhibit weak variations without being con-
stant [28]. The edge-detection thresholds evoked above admit
a simple explicit form, which is given in Section IV. They can
be used to derive necessary conditions for the choice of the pa-
rameters . Next, we show that the chance to get data
for which has two or more global minimizers is null. Fi-
nally, we show that a global minimizer of the objective function
is almost surely continuous under small perturbations of.

The results presented in this paper can be extended to regu-
larizers of the form , where
is any collection of vectors. However, deriving explicit expres-
sions for the edge-detection phenomenon in such a situation
seems more difficult. We leave this question for future works.

A. Organization of the Paper

Section II focuses on the local behavior ofin the vicinity
of its minimizers. The core of the thresholding effect—the ex-
istence of regions where the differences of a global minimizer
cannot be placed—is developed in Section III. The behavior of
a global minimizer, as a function of the data, is discussed in
Section IV. Numerical experiments are presented in Section V.
Concluding remarks are summarized in Section VI.

The proofs of the assertions in this paper are outlined in the
Appendixes B–D. Most of them use an equivalent representation
of , which is given in Appendix A.

II. L OCAL CONTINUITY OF THE MINIMIZERS OF

The objective function in (2)–(4) is nonsmooth on the
union of hyperplanes

(5)
Our first question is to see whether a global or a local minimizer
of can belong to this union. Its issue gives a first char-

acterization of and determines the tools that can be used to
pursue this study.

Proposition 1: Given , let be
as introduced in (2)–(4).

Then, for every , each local or global minimizer of
, say , satisfies

for any (6)

or equivalently, does not belong to the union of hyperplanes
given in (5).

Recall that is the point of truncation of ; see (4). Let
us emphasize that (6) holds for anyand for any . Intuitively, it
may seem unlikely that the minimizers of an objective function
corresponding to noisy data belong to the special set of hyper-
planes given in (5). However, recall that whenever the left and
the right derivatives of at zero satisfy [e.g.

], then the minimizers of the relevant objective func-
tion do belong to the intersection of a large number of hyper-
planes since for many indexes —see [28]. There-
fore, Proposition 1 provides an useful precision. Moreover, it
asserts that is not only unlikely, but that it is
impossible, even for specially chosen data.

Hereafter, denotes an open
ball with radius , which is defined with respect to the Eu-
clidian norm , whereas stands for transposition.
Proposition 1 means that any local minimizeris contained in
a ball , where is -continuous, where

for (7)

Then, having implies that

if

if (8)

Let be the mapping that, for each signal , gives
the set of itsjumps(or edges), which are the indexes of all dif-
ferences whose magnitude is larger than:

(9)

Consequently, is composed of signals whose edges are
located in the same way, that is, for all ,
where we put .

Let stand for the characteristic function if is true
and otherwise. The letterwill denote the identity ma-
trix of whatever size appropriate to the context. Furthermore,
and will denote vectors or matrices composed of zeros and of
ones, respectively. When necessary, their size will be indicated
in superscript. Given a subset , we define
the following diagonal matrix:

Diag (10)
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Thus, we determine a mapping . The next Proposition
is a straightforward consequence of (8).

Proposition 2: For and , consider
as given in (2)–(4).

Then, a point is a local or a global minimizer of
if and only if

where

(11)

In the last expression, , where is the mapping
defined in (9), is as defined in (10), and is the
difference matrix whoseth row reads ,

and otherwise.
The local behavior of an estimator is tightly dependent on

the shape of the objective function in the vicinity of its global
minimizers. In particular, a crucial point is to know whether a
minimizer is strict or not. The cases whenis injective (i.e.,
rank ) or noninjective (then rank ) need to be
considered separately.

Proposition 3: Suppose that is injective, and
consider , as given in (2)–(4).

Then for every , all local and global minimizers of
arestrict.

However, if is noninjective, can exhibit nonstrict
local minima, as can be seen in the next example.

Example 1:Consider

with either

or for (12)

Now, , and it is noninvective. Let us check that the
point , where and is a nonstrict
local minimizer of . First, we remark that

for any of the form
with . Next, for any , we have

in which case, .
Thus, we deduce that for any

with .
A naturally arising concern is to see the shape of the con-

nected set of points yielding an isolated nonstrict minimum of
. These kinds of sets can be “quite irregular” for general

nonconvex objective functions.
Proposition 4: For and , suppose that

, as defined in (2)–(4), reaches a minimum at.
Then, there is aconvexset containing such that

for all .
In fact, (8) shows that is quadratic in the vicinity of

any local minimizer, hence, the proposition. Ifis a strict min-
imizer, then trivially, . More generally, the expressions

(58), arising in the proof of Theorem 1, show thatcontains
elements of the form

where

and
Ker

if
(13)

with , as defined in (7). It follows that is strictly larger than
only if Ker contains nonzero vectorscomposed of

constant segments. However, the latter is a quite an atypical sit-
uation. Otherwise, if Ker does not contain such vectors,
all minimizers of are strict for every . Whenever

is strictly larger than , then it is composed of signalsthat
share the same homogeneous regions (
if ) but whose jumps may have different
magnitudes.

In any case, there is a stronger result stating that a global
minimizer is always strict. In Example 1, the global minimizer
of reads and it is easy to see that it is
strict.

Theorem 1: Assume that , and consider as defined
in (2)–(4).

Then, for any , any global minimum of
is strict.

The assumption means that preserves the mean
of the original signal. Such are most of the observation oper-
ators encountered in practice. Conversely, if , then

for any real , and hence, the mean
of the signal is undetermined. In such a situation, the problem
should be reformulated as suggested in Remark 2 of Appendix
A. Henceforth, we systematically assume that . Let us
emphasize that Theorem 1 also addresses the situations where

is noninjective and when Ker can contain locally con-
stant vectors.

The next Theorem formalizes the main conclusion of this sec-
tion.

Theorem 2: For , let be as in (2)–(4). Given
, assume that is astrict local or global minimizer of

.
Then, there exist and a differentiable mapping

such that and is a
strict local or global minimizer of if .

In other words, is a local minimizer function relevant to
. Theorem 2 only states that is continuous on , but

if is a global minimizer of , it remains unknown
whether , relevant to , is still a global mini-
mizer of or not. This question is considered in Section
IV.

III. Z ONESWHERE A GLOBAL MINIMIZER CANNOT LIE

The result found next is guaranteed to hold at any global min-
imizer of for any . It exhibits the presence of in-
tervals of positive length that cannevercontain the differences
of any global minimizer of for any . It can be
expected that the same kind of behavior is exhibited by some or
many among the local minimizers of .



3440 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 48, NO. 12, DECEMBER 2000

Let and be the following projection
matrix and unit step-sequence:

(14)

if

if
for

(15)

The subsequent analysis reveal an essential distinction in the
behavior of the differences whose indexes are such
that and the differences for which . The
differences of the first kind will be calledobservable, whereas
those of the second kind areunobservable.

Theorem 3: For , consider as given in (2)–(4).
Let and assume that , with
and as given in (14)–(15).

Then there exists a constant such that for any
, anyglobalminimizer of the relevant , satisfies

the alternative:

either or

where (16)

More precisely, reads

with (17)

Moreover, the inequalities in (16) arestrict whenever
has only one global minimizer.

If is such that , then for any ,
the difference , relevant to a global min-
imizer of lies beyond two intervals, namely,

. By (17),
these intervals are independent of , and they have a
strictly positive length since .

Example 2: Let read

(18)

In this case, , , and hence

Let be as defined in (16). We have the following situations:

a) satisfies ; then, has a local
minimizer without edge, whose entries read

and

(19)

Let us verify that is a local minimizer of . From
, we get

. It remains to be checked that satisfies (11) with
respect to . Notice that

However, if , then and
in (19) is not a minimizer of .

b) satisfies , and then, has a local
minimizer involving an edge

and (20)

Since , , and
(11) shows that is a local minimizer of . Now,

.
However, if , then

and , and hence, is not a minimizer of
.

We draw the following conclusions.

i) If , then has a unique minimizer
that is . We check that

, which corroborates (16).
ii) If , then has a unique minimizer,

which is . Now, clearly, ,
as stated in (16).

iii) If , then has two local min-
imizers, which are and . The global minimizer of

, which is denoted by , is determined by com-
paring and . Consequently

leads to (21)

leads to (22)

In the first case, , whereas in the second,
, which is the alternative asserted in (16).

Therefore, the magnitude of an observable difference arising
at a global minimizer of the objective function is either smaller
than asmallfirst threshold or larger than a second threshold that
is larger then the first one. These thresholds are independent of
the data. The differences that are smaller than the first threshold
aresmooth, and they form the homogeneous zones in, whereas
the differences larger than the second threshold correspond to
edges. This neat classification of the differences at a global min-
imizer is nicely observed in the experiments presented in Fig. 1.
In a global plan, the bounds in (16) and (17) are specific for each
position of the difference along the signal. The latter is seen
in the simulations in Section V and especially in Fig. 5.

Theorem 4: Let satisfy . Consider
as given in (2)–(4).

Then, for any , any global minimizer of
satisfies

(23)

Let us now come back to Example 1. It is easy to see that for
any , the point is a global minimizer of
the relevant since it yields . The latter result
is an application of (23).

Remark 1: Speaking more loosely, means that
the operator is blind to catch any information relevant to the
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Fig. 1. Deconvolution. (a) Noisy datayyy = xxx � hhh + nnn with h = exp(�0:4k )=1:41 for jkj � 5 andnnn white Gaussian noise, 10 dB SNR. Reconstructions
using differents PFs" in (1)–(3), where the latter are plotted above the relevant solutions. (b) Huber PF with� = 0:1 and� = 1. (c) Modulus PF� = 2. (d)
Truncated quadratic PF(�; �) = (0:7; 7:7).

magnitude of the original . Next, we explain this
assertion. Since Ker is spanned by , the equality

means that

• either and , hence, there exists
such that ;

• or , which amounts to the previous case if we
take .

Given an original signal , let us consider the family all signals
, , which is obtained from by modifying only its th

difference

(Clearly, for , whereas
.) When transformed

by the observation operator, this family yields

In the data , the contribution of the th difference is thus con-
founded with the contribution of. In particular, if

. This is the reason why a difference , whose
index is such that , is said to beunobservable.

The operators , such that for some , are rare
since their columns have to satisfy the equa-
tion , where is the constant
given above. This is a very special requirement that is not satis-
fied customarily.

Both Theorems 3 and 4 show that there are regions inthat
cannot be reached by the differences of any global minimizer of
the objective function for any data . Such “prohibited”
regions exist for any and for any ; their extent is fixed
by and . Notice that the bounds found in (16) and (17)
arenecessary, whereas (23) is both necessary and sufficient.

IV. THRESHOLDING AND LOCAL STABILITY AT A GLOBAL

MINIMIZER

In this section, we focus on the behavior of the global mini-
mizers of when ranges over . We begin these con-
siderations by emphasizing that the global minimizer in Ex-
ample 2 involves a typicaldetectionstage since it satisfies

if and if
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. In the first case, the data reflect a weak
contribution of the original difference , and its esti-
mate is subject to smoothing, whereas in the second
case, the contribution of is strong, and its estimate

is large and corresponds to a jump (an edge). Qual-
itatively speaking, the estimation of signals by the method in
(1)–(4) is based on the same effect. This question is considered
below in several steps.

The necessary and sufficient condition for minimum,
which is given in Proposition 2, can be reformulated as

, where . More-
over, a (local or global) minimizer is strict if and only if

is invertible. Therefore, we have the
following:

(24)

If , no strict minimizer of , for any , has
as the set of its jumps. Reciprocally, all edge configurations

that may arise at a strict local or global minimizer of for
any are elements of . If is a strict minimizer of

, then .
Proposition 5: With every , let there be associated

with it the following matrix and set :

(25)

if

and otherwise (26)

where and are as in Proposition 2. Suppose is non
empty.

Then, for any , the point

(27)

is a strict local minimizer of that satisfies .
From (26), , which is the domain of , is the union of

several polyhedrons of . An identification with Theorem 2
allows us to write that for every .

Let the entries of be for , where
means cardinality. Given , the set ofall strict (local

or global) minimizers of reads , where

(28)

Given , the set contains the indexes of all jump con-
figurations such that has a strict minimizer with

. Since for every , is discrete and finite,
has only a finite number of strict minimizers.

Given a set of edges , let be a local
minimum-value function

(29)

We wish to check whether for some , can exhibit
strict minimizers at which takes the same value. To this
end, we seek dataleading to for some

. A first remark is that if , cannot
have simultaneously a strict minimizer with edges and
another minimizer with edges . However, can
be nonempty for numerous indexesand .

Theorem 5: Consider and elements of , as given in
(24), and the domains and ,which are defined in (26).

A) If rank and if , assume that
rank .

Then, all the leading to
are contained in a set , which is closed and negligible
with respect to the Lebesgue measure on.

By using the notation introduced in (29), we can specify that

(30)

Provided that A) is true for any , all the data ,
for which can take the same value at two ore moredif-
ferentstrict local or global minimizers, are hence contained in
the union of a few nonempty closed sets of the form (30). Such a
union is a closed negligible subset of . The chance that noisy
data come on such an union, leading to multiple minimizers at
which takes the same value, is null. In particular, the
probability that has more than one global minimizers is
null.

There may exist situations where A) fails to hold, as seen in
the next example.

Example 3: Consider the following objective function:

(31)
We have

Diag
Diag
Diag

Recall that , and hence, no strict mini-
mizer of for any can involve two edges. Notice that

and that . After some cal-
culations similar to those outlined in Example 2, we see that
if , then both
and are strict global minimizers, yielding

. In other words, the jump can equiv-
alently be placed either between and or between and

. Neither data nor prior gives any reason to choose the one
among these minimizers.

More generally, A) is falseonly if all the columns of
are in the null space of . Then, if in addition ,

the set in (30) reads , whereas
if . In any case, having

is a truly pathological situation. Assumption A) is
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generally satisfied by the observation operators used in prac-
tice. Note that the latter is easy to test off line.

Now, we would like to have some more facts about the global
minimizers of . Given , Theorem 3 shows that
every for which has aglobalminimizer with

belongs to the following set:

if

and otherwise

where (32)

Clearly, , where the inclusion is strict. Since each
contains an open subset of , the probability to get noisy data
belonging to such a set is strictly positive, and hence, we can
really get minimizers whose set of edges is. In a global plan,
when ranges over , we get strict minimizers involving all
edge configurations in .

Next , we focus on the way in which behaves under
small variations of the data.

Theorem 6: Let A) of Theorem 5 hold for every , in
, as defined in (24).
Then, for almost any , if is a global minimizer of

, then there exists such that , where
, and is defined according to (25) and is a global

minimizer of if .
Given , consider to be a global minimizer of

and the relevant edge estimate . By Theorem 6,
it is almost sure that this edge estimate will be kept constant

under small data variations , which
can be due to noise contamination. This behavior can be seen as
a local stabilityproperty exhibited by an estimator of the form
of (1)–(4). However, stronger data variations—which reverse
the sign of for some —reverse the config-
uration of the jumps at the global minimizer. By Theorem 3,
the magnitudes of all differences whose indexes belong to

are modifieddiscontinuouslywith a jump from a
value larger than to a value smaller then . Inversely,
the magnitudes of differences relevant to
jump from a value smaller then to a value larger than .
This effect is the core of the edge detection performed by an es-
timator of the form (1)–(4).

V. NUMERICAL EXPERIMENTS

The first experiment, which is presented in Fig. 1, concerns
the deconvolution of noisy data. Its goal is to illustrate the ability
of different PFs , involved in (3), to recover both smoothly
varying zones and sharp edges. The data, which are processed,
are presented with a solid line in Fig. 1(a); they are obtained
from the original signal and plotted with a dashed line in all
figures from (a) to (d) using , where

for and otherwise, and
is white Gaussian noise leading to 10 dB SNR. The shape of the
PF that is used in each reconstruction is plotted above the ob-
tained solution.

Fig. 2. Pointwise linear operator applied to the original signals whose
differnces are depicted in Fig. 3(a).

Fig. 3. Distribution of the differences. In (a) and (b), the thresholds
��� ;��=� for k = 1; . . . ; 127 are plotted with a solid line (—).
X—axis: positions of differnecesk = 1; . . . ; 127. Y-axis: a dot at positionk
is the value of thekth difference of a signal. Thus, the differences of 100
signals (each having 128 samples) are represented. (a) Differences of the
original signals. It is worth noting that numerous differences are placed in the
intervals] � �=� ;��=� [and]�=� ; �=� [: (b) Differences of the global
minimizers of the objective functions. As predicted,no difference is placed in
] � �=� ;��� [[]�� ; �=�

Fig. 1(b) shows an estimation using aHuber PF that is
quadratic near the origin [ if ]
and affine beyond it [ ] if .
The relevant objective function is convex. This PF smoothes
small differences while it adds a constant bias to large differ-
ences. The solution in Fig. 1(b) corresponds to and

. Fig. 1(c) illustrates an estimation using amodulusPF
with . This PF is nonsmooth at zero, which

leads to estimates that are constant over large zones [28]. The
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solution thus involves several large differences, but the fact
that the local variations beyond them are reduced to constant
segments is often undesirable. In contrast, the solution reached
using atruncated quadraticPF, which is given in Fig. 1(d),
exhibits a nice reconstruction of both edges and smooth regions.
It corresponds to and was calculated using
the generalized GNC algorithm proposed in [6].

The next experiment, which is given in Figs. 2 and 3, shows
the distribution of a large set of estimated differences with re-
spect to the thresholds found in Section III. To this end, 100 orig-
inal 128-length signals were generated. The data corresponding
to an original signal are obtained by multiplying, pointwise,
each one of its samples with the relevant element of the vector

presented in Fig. 2 and by adding white Gaussian noise:
. In Fig. 3(a), the positions of the

differences of these original signals are placed
along the axis, whereas their values are represented along the

axis. The subsequent reconstructions of these original signals
from the noisy data are calculated for . The
relevant thresholds , with as given in (16), are
calculated using (17) and are plotted with a solid line in both
Fig. 3(a) and (b).

For any , the original signals havenumerousdifferences
belonging to or to ; see

Fig. 3(a). The estimates, which are used to plot Fig. 3(b), are cal-
culated by means of a Viterbi algorithm [9], which guarantees
that they yield a global minimum of the objective function. It is
striking to observe how the differences of the obtained estimates

avoidthe intervals and
for all and for all .

The last experiment in Figs. 4 and 5 concerns the inversion
of a discrete Laplace transform. The dataplotted in Fig. 4(a)
are obtained according to

for and
, whereas is white Gaussian noise yielding 15 dB SNR. The

attenuation factor involved in this transform,
is given in Fig. 4(b). The data are plotted with a dashed line
in Fig. 5(a).

Because of the attenuation involved in, the threshold
is rapidly increasing with , whereas is decreasing at the
same time. Consequently, it will be increasingly difficult to re-
cover edges when increases. This effect is obvious in the re-
construction presented in Fig. 5(a). The obtained estimate cor-
responds to . The edges, which are located
in the first part of the signal, are well recovered. However, those
located in its second part are not detected at all and are approx-
imated by an almost constant piece. Since the above Laplace
transform can be represented as a discrete Fourier transform
applied to the attenuated signal , , it was
possible to calculate the estimate by using a Viterby algorithm.
In Fig. 5(b), the differences of the original signal (plotted with
“o”) and the differences of the reconstructed signal (plotted with
“ ”) are compared with the magnitude of the thresholds ,

. The sought signal containing constant zonesis about
0.1, and are close to zero. The upper threshold
rapidly increases with , which underlies the impossibility for
the reconstructed signal to contain edges forlarge, whereas
the original one does contain such large differences.

Fig. 4. Discrete Laplace transform. (a) Real part (—) and imaginary part (- -)
of the data. (b) Attenuation factorh = exp[�0:2(l� 1)] for l = 1; . . . ; 128.

Fig. 5. Reconstruction. (a) Original signal (- -), reconstruction (—),
corresponding to(�; �) = (1;10:5). (b) Differences of the original signal (o)
differnces of the solution (�). Thresholds��� ;��=� plotted with (—).
The increase of�=� with k is worth noting.

VI. CONCLUSION

In this paper, we analyzed an estimator involving truncated
quadratic regularization. The relevant objective function is non-
smooth and highly nonconvex, and we examined the regularity
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of its minimizers. It was shown that this function is differen-
tiable in the vicinity of each one of its local minimizers and that
its global minimizers are strict; therefore, they determine locally
continuous minimizer functions.

Then, we considered the way in which edges are recovered
in an estimated signal. It was exhibited that with each differ-
ence between adjacent samples, there is associated with it an
interval of positive length so that the magnitude of this dif-
ference at any global minimizer, for any data, cannot lie in
this interval. When the data vary, the differences of the global
minimizers jump over these intervals, which corresponds to an
edge detection. This is the mathematical cause that underlies
the edge-enhancement effect induced by regularization with a
truncated quadratic PF. We demonstrated that at the same time,
almost all global minimizers are continuous on some neighbor-
hood, which can be interpreted as a local stability property of
the estimator.

APPENDIX A
FAMILY OF EQUIVALENT OBJECTIVE FUNCTIONS

The regularization term in (2) involves differences of
the form . Then, can equivalently be expressed
as a function of all these differences plus an auxiliary component

for (33)

(34)

where is such that the mapping defined in
(33) and (34) is invertible. Putting ,

, where is the matrix given in Proposition 2. For
as specified above, we have

(35)

where with (36)

(37)

is equivalent to in the sense that any local min-
imizer of is related to the corresponding local mini-
mizer of through

(38)

In the following, we will need to know the form of the
columns of .

Lemma 1: For any for which (33) and (34) is invert-
ible, there exists with so that the columns of ,
as defined in (36), read

for (39)

(40)

with as given in (15).

Proof: We start by calculating the matrix , which is
given in the right side of (36). This matrix is partitioned as

... , where contains the first
columns of . Then, the identity in the right of (36) can be
reformulated as the following system:

These conditions are examined next.

• . Then, each column of must sat-
isfy , where is the th vector of the standard
basis of (i.e., and for ).
The matrix is partitioned as1

...

...

...

row

where is of size , and is
. Vector is partitioned correspondingly as

and as
.

Using that the null space of both and is com-
posed of the constant vectors, the requirement
is equivalent to the system

then with (41)

then with (42)

then (43)

From the first expression in (43), , whereas from
the second, , and hence, .
Combining this with (41) and (42) shows that the columns
of have the form

for (44)

where are real constants.
• . Then, , where is a real number.
• . By using the last result, we have

(45)

Note that , since otherwise,
... is

singular. Hence

(46)

1More precisely,DDD andDDD are the following submatrices ofDDD:

DDD (i; j) =DDD(i; j)

for i = 1; � � � ; k � 1 andj = 1; � � � ; k

DDD (i; j) =DDD(k + i; k + j)

for i = 1; � � � ; n� k � 1 andj = 1; � � � ; n� k:
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• . Since rank , we get
Ker , or equivalently, for every

. Introducing (44) into the last system yields

hence

for (47)

It is easy to check that the obtained matrixis the sought
inverse. The columns of come from .

Remark 2: It may occur that . In such a case, the
columns of read

for while

Since , the quadratic term in (35) can be expressed as
, where is formed by

the first columns of . Therefore, is not involved in
. The minimization problem should be reformulated in

terms of only:

All results established in this paper hold for as well, but
they take a simpler form.

APPENDIX B
PROOFSRELEVANT TO SECTION II

A. Proof of Proposition 1

Since (33) and (34) is an isomorphism, this proposition is
proven by checking whether there exists such that

has local minimizers belonging to the union of hyper-
planes

where

Suppose the contrary, namely, that there exists for
which has a local or a global minimizer such that

for , where is a subset
of indices. For some , we will analyze at along
the direction . Without loss of generality, suppose that
(the reasoning is the same for ). Define the function

to read

(48)

The fact that is a local minimizer of implies that has
a local minimum at . Consequently, its side derivatives at
zero satisfy both inequalities:2

(49)

We will take . The left and the right derivatives of at
zero read

and

2Numerous references can be cited about (49), e.g., [29]. Let us recall its
proof. Sincef has a minimum at zero, for any sufficiently smalls > 0, we have
f(�s)� f(0) � 0 andf(s)� f(0) � 0. Then,[f(�s)� f(0)]=(�s) � 0,
and[f(s)� f(0)]=s � 0. The necessary condition (49) is obtained at the limit
whens ! 0.

respectively. Then

Noticing that and that for
, we get

Consequently

On the other hand, for any , we have
, and hence, . In a similar way,

we find

Clearly, , which contradicts the necessary con-
dition (49). Hence, we have the result.

B. Proof of Proposition 2

Necessary Condition:By (38), we consider equivalently
to be a local minimizer of . Clearly, is on

, where is as given in (7). Then, the gradient of
at is null, that is, :

(50)

Using that for all and that if
, we get

with (51)

where we use the equivalent forms of (9) and (10):

(52)

Diag (53)

Notice that is .
Sufficient Condition:Let satisfy . The equiv-

alent form of (8) shows that ensures that

if

if
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Next, we consider for :

(54)

Hence, is a local minimizer of .

C. Proof of Proposition 3

Equivalently, we will see that all minimizers of are
strict whenever is invertible. Using the same arguments
as in the proof of Proposition 2, we see that now,
ensures that the expression in (54) is strictly positive. Hence, we
have the result.

D. Proof of Proposition 4

Note that satisfies (50), and we get . By assump-
tion, there is , with as in (7), so that

and

Using that for all we have , and hence
, we can see that

Consider with ; then,
. We get

By Proposition 2, has a local minimum at anyplaced
on the segment that linksand .

E. Proof of Theorem 1

From (40), assuming that means that .
To prove this theorem, we will check whether the global mini-
mizers of are strict when is singular with .
We prove this by contradiction.

Suppose we are given, which is anonstrict globalminimizer
of . From Proposition 4, there exists a normalized di-

rection with , and there exist , where
, such that

for all (55)

whereas with as the radius
specified in (7).

Let denote the complement function that extracts the in-
dexes of the differences in the homogeneous zones:

(56)

Make . The identity (55) can be reformulated as

for all

(57)

where denotes cardinality. It follows that

for all

Hence, the coefficients of the above second-order poly-
nomial with respect to must be null. In particular,

implies that there exists
such that

Ker

for all (58)

The result is trivial if no satisfies (58). Now, suppose that
there exists satisfying (58). Note that by and by
(58), there exists such that . For such a , make

. Then, . For any
other , two situations can occur:

— If , then .
— If , then

.
In all cases

Then, we have
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However, this contradicts the hypothesis that has a
global minimum at . Hence, we have the result.

F. Proof of Theorem 2

Recall first that is positive definite on ,
i.e., it determines an isomorphism on this ball. The im-
plicit function theorem can then be applied. Then, there
exists and a unique function so
that on . From the preceding,

is a strict minimizer.

APPENDIX C
PROOFSRELEVANT TO SECTION III

A. Proof of Theorem 3

As previously, we will consider . Let be a global
minimizer of .

The last equation in the system (50) reads

It allows us to express as a function of , that is

(59)

Focus on the th component of and decompose (59) into
terms involving and terms not involving :

where

(60)

Notice that is a function of
and of . The following expression will simplify further calcu-
lations

(61)

with as given in (14). The last equality is obtained by using
the fact that , as found in Lemma 1. Combining (39)
and (14) shows that

Using the above expression, (61) yields

(62)

(63)

where we recall that and . The th equa-
tion in the system (50), where , can be reformulated
as

(64)

with , as defined in (17). For the moment, we only know
that , but we do not know whether or .
Let us examine both situations.

• satisfies (64) for some . Then (64) yields

(65)

• satisfies (64) with . By (64)

(66)

Define the vectors and as follows:

with and , as given in (65) and (66), respectively. Since the
th entry of is either or , we have either

or . The fact that is a global minimizer yields that

and (67)

and that equality is reached for one of the vectorsor .
More precisely, whenever has a unique global mini-
mizer, equality is reached for exactly one among the vectors
and , and this is the vector equal to, whereas the other vector
may or may not be a stationary point of . However, it may
happen that both equalities are reaches in (67), which means that
both and are global minimizers.

In order to test whether or not, we will
compare, with zero

Let us split into terms involving and terms not in-
volving :

where we used (62)–(64) combined with (17). Then,reads

Substituting the expressions forand into while recalling
that , it is found that

According to the sign of , two situations arise.
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• If , then is global minimizer. The inequality
yields

After identification with (65), it is equivalent to

Hence

with , as introduced in (17).
• If , then is a global minimizer. From

which, by identification with (66), is the same as

Then

Since is either or , it follows that its th
entry satisfies the following:

either or

Notice that is impossible if has a unique
global minimizer. In the latter case, theth entry of sat-
isfies

either or

B. Proof of Theorem 4

For as in Remark 1, define the following vector and func-
tion:

From the comments given in the beginning of Remark 1,
. On the other hand, by construction, for every

, whereas . These facts show that

The fact that has a strict global minimum at implies
that reaches a strict minimum at . Two situations arise
according to the magnitude of .

• If , then whenever
; hence, is not a strict minimizer. By

Theorem 1, cannot be a global minimizer of .

• It remains that . If , then
reaches its minimum for , but then,

, and since
strictly, whenever . The latter conclusion

contradicts the fact that is a global minimizer. It remains
that .

APPENDIX D
PROOFSRELEVANT TO SECTION IV

A. Proof of Proposition 5

By (25), in (27) satisfies ,
whereas (26) shows that . Then, Proposition 2 allows
us to make the conclusion.

B. Proof of Theorem 5

Take and in with . The result is
trivial if since then, .

Consider the case when is nonempty. In the fol-
lowing, we consider , as introduced in (35). Note that
(24)–(26) and (29) are equivalently reformulated as

rank

for

if

and otherwise

where is given in (53). Similarly to (30), reads

(68)

Since , rank . If rank , then
is not identically null. Otherwise, the latter ma-

trix is nonzero by assumption (A). In both cases, the second-
order polynomial with respect toin (68) involves nonzero co-
efficients; therefore, it cannot remain zero on any open subset
of . Hence, we have the result.

C. Proof of Theorem 6

Since every , as introduced in (26), is open, there exists
such that

where is the set given in (28). Each minimum-value function
, as given in (29), corresponding to , is well defined

and continuous on . In the following, we compare the
value of with the value of every , when ranges
over .

By the fact that is a strict minimizer of , there exists
such that . Put . The statement

of this theorem being valid for almost any, we consider

where

since by Theorem 5, the set is closed and negligible in .
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In such a case, saying that is a global minimizer is
equivalent to saying that

for every

Put

Then, ensures that . Furthermore, since ,
there exists such that . By the
continuity of the minimum-value functions and , and
there are radii for such that

leads to

Put . Then, we see that for every ,
we have

for all

Hence, we have the result.
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