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One-iteration dejittering of digital video images
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a b s t r a c t

We propose several very fast algorithms to dejitter digital video images in one iteration. They are based
on an essential disproportion of the magnitude of the second-order differences along the columns of a
real-world image and all its jittered versions. The optimal row positions are found using non-smooth
and possibly non-convex local criteria, applied on the second-order differences between consecutive
rows. The dejittering iteration involves a number of steps equal to the number of the rows of the image.
These algorithms are designed for gray-value and color natural images, as well as to noisy images. A
reasonable version of these algorithms can be considered as parameter-free. We propose specific error
measures to assess the success of dejittering. We provide experiments with random and structured jitter.
The obtained results outperform by far the existing methods both in quality and in speed (the ours need
around 1 second for a 512 � 512 image on Matlab). Our algorithms are a crucial step towards real-time
dejittering of digital video sequences.

� 2009 Elsevier Inc. All rights reserved.

1. Intrinsic dejittering

Image jittering consists in a random horizontal displacement of
each row of the image. Jittering occurs in video images (frames)
when the synchronization signals—carrying the information about
the proper location of the rows relative to each other—are
corrupted e.g. by noise or degradation of the storage medium; it of-
ten occurs in wireless transmission. The visual effect is quite dis-
turbing since each row is randomly displaced within a range of
�6 pixels or even much more. Then shapes appear to be jagged
in the vertical direction—see e.g. Fig. 6(a). Structured (e.g. sinusoi-
dal jitter)—can be provoked by acoustic, electrical or other interfer-
ences [9]. The rows of the image are displaced with a number of
pixels corresponding to the frequency and the amplitude of the
perturbation; then vertical lines are transformed into sinusoids,
as in Fig. 11. Time base corrector machines process with some suc-
cess the analogue video signal in order to recover the row synchro-
nization information [8]. In many cases, such an operation is
unsuccessful or impossible. The alternative approach—restoring
the image frames directly from the observed jittered data, often
called intrinsic dejittering [9], is much more flexible and widely
applicable. It naturally uses prior assumptions on natural images.
We focus on such an intrinsic approach.

1.1. State of the art

The very trivial solution to this problem—searching for the shift
between consecutive lines that maximizes their correlation—is
known to cause a bias towards vertical lines and fails in most of
the cases [8]. Intrinsic dejittering was invented by Kokaram et al.
in [7]. An improved version of the method, based on a 2D autore-
gressive model (2D AR) of the image, is explained in the textbook
on film and video of Kokaram [8, Chapter 5]. The unknown 2D
AR coefficients and row displacements are considered by blocks.
Thy are estimated jointly using an iterative algorithm. A drift com-
pensation finalizes the restoration. Laborelli proposes in [9] a dif-
ferent approach where the ‘1 norm of the differences between
(two or three) consecutive shifted rows is compared. The optimal
shifts are recovered during the backward iteration of a dynamic
programming method. Later on, Shen proposed a fully Bayesian
method using a Total Variation (TV) prior model for the underlying
image [14] for joint dejittering and denoising. It requires to mini-
mize a non-smooth function for each frame, which is time consum-
ing. A two-step method, called Bake and Shake is proposed by Kang
and Shen in [5]. It relies on the idea that a good PDE-based image
restoration method, such as the Perona–Malik diffusion, can help
to find the right row positions. Recently, the same authors analyze
in [6] the slicing moments of images of bounded variation (BV) and
derive an original variational method based on Bayesian regulari-
zation of the vertical slicing moments. It is numerically cheaper
but the according to the authors, it is less efficient under strong
jitter than the previous method.
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1.2. Our approach and plan of the paper

In Section 2 we exhibit a pertinent prior on the columns of nat-
ural images and construct a criterion that efficiently discriminates
the wrong row shifts. More precisely, a non-smooth and possibly
non-convex local criterion is applied to the magnitude of the 2-
nd order vertical differences between consecutive rows. Its ratio-
nale and properties are explained as well. Specific error measures
to evaluate the quality of dejittering are proposed in Section 3.
The dejittering algorithm for gray-value, noise-free (natural) jit-
tered images is presented in Section 4, along with some possible
refinements. Numerous illustrations are provided. A large-scale
experiment (4�1000) on four images is described in Section 5
and the main conclusions are summarized; the relevant tables
are given in Appendix A. Straightforward extensions of the dejitter-
ing algorithms to color images, corroborated by illustrations, are
presented in Section 6. In Section 7 we extend these algorithms
in order to deal with noisy jittered images within a two-stage ap-
proach. In all experiments, we consider both independent jitter
and structured (sinusoidal) jitter. Conclusions and perspectives
are outlined in Section 8.

1.3. Notations

Remind that Z is the set of all integers and Nþ the subset of all
positive integers. For any m 2 Nþ and n 2 Nþ, the rows of a matrix
h 2 Rm�n are systematically denoted by hi; 1 6 i 6 m and the com-
ponents of a row hi by hiðjÞ; 1 6 j 6 n. The components of any n-
length vector u are denoted by ui; 1 6 i 6 n. For any q P 1, the ‘q

norm is denoted by k:kq. For any u 2 Rn we write
kzk0 ¼

def
# i 2 f1; � � � ;ng : zi–0gf g where # stands for cardinality. By

1n we denote the n-length vector composed of ones. Zero-mean
Gaussian distribution with standard deviation r is denoted by
Nð0;r2Þ.

The original (unknown) image, of size r � c, is denoted by f and
its degraded version by g 2 Rr�c . The jittering vector is denoted by
d 2 Rr . The restored image and row displacements are denoted by f̂
and d̂, respectively.

2. Choice of a criterion

Given an original image f the usual model for the production of
a jittered image g reads [8]

8j 2 f1; � � � ; cg;8i 2 f1; � � � ; rg;

giðjÞ ¼
fiðjþ diÞ; if 1 6 jþ di 6 c

any; e:g: ¼ 0; otherwise

�
di 2 Z; jdij 6 M: ð1Þ

In practice, M is around 6 pixels or more [8]. Different types of
jitter are systematized in [9]:

� Independent line jitter, often modeled using a (truncated and
quantized) Gaussian or a Uniform distribution.

� Structured jitter—such as low-frequency or high-frequency
sinusoidal jitter.

Both types of jitter are considered only in [9], as well as in our
paper.

2.1. Local criteria based on consecutive lines

For each jittered row gi we wish to estimate its displacement d̂i

based on the previously restored rows f̂ i�1; f̂ i�2; . . .. Let us have a
look at Fig. 1(b): the left side shows a column of a natural image
while its right side shows the ‘‘same” column of the jittered image.
See also Fig. 3, p. 4.

Remark 1. One observes that the gray-value of the columns of
natural images can be seen as pieces of 2nd or 3rd order
polynomials which is hard to claim for their jittered versions. This
is a sound basis to discriminate a natural image from its jittered
versions.

Suppose that d̂1; . . . d̂i�1 (and hence f̂ 1; . . . f̂ i�1) are already recov-
ered. Based on Remark 1, we are going to estimate the next row
displacement d̂i by comparing several previously dejittered rows
f̂ i�1; f̂ i�2; . . . with all possible shifts of the next data row giðjþ diÞ
for di 2 ½�N;N� where N P M is an overestimate of M. Once we ob-
tain an estimate d̂i for the displacement di, (1) tells us that the re-
stored row reads

f̂ iðjÞ ¼ giðj� d̂iÞ if 1 6 j 6 c and 1 6 j� d̂i 6 c: ð2Þ
Let us now focus on the left-hand and the right-hand side

boundaries of a jittered image, see Fig. 5, p. 6.

Remark 2. Each row of g has at one of its extremes a certain
number of undetermined pixels (zero-valued in practice) dues to
the jitter. We know that their number is at most equal to N.
Involving such pixels in our criterion is risky since this can distort
its meaning. For this reason, our criterion includes only columns of
g indexed by fN þ 1; . . . ; c � Ng since they are guaranteed to
contain information on the true image.

By Remark 2 and Eq. (2), we involve into our criterion only por-
tions of the previously restored rows f̂ n:

for n ¼ k� 1; k� 2; � � � ; f̂ nðjÞ for j 2 fN þ 1þ d̂n; � � � ; c � N þ d̂ng:
ð3Þ

Fig. 1. A 50� 50 zoom of Lena (512� 512). (a) Original. (b) One column of the original against one column of the jittered image. (c) The same zoom of the jittered image (�6
pixel random displacements).
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By Remarks 1 and 2, and the theoretical results [11–13], we sug-
gest several criteria in (4)–(6) below.

d̂i ¼ arg min J1;aðdiÞ : jdij 6 N
� �

for

J1;aðdiÞ ¼
1

n�mþ 1

Xn

j¼m

jgiðj� diÞ � f̂ i�1ðjÞja; a 2 ð0;1�; ð4Þ

where

m ¼ N þ 1þmaxfdi; d̂i�1g; n ¼ c � N þminfdi; d̂i�1g:

The constants m and n here, as well as in (5), (6), ensure that the
recommendations of Remark 2 are satisfied; they are easily derived
from (3). The factor 1

n�mþ1 (here and in (5), (6)) accounts for the fact
that the number of terms in the criterion varies according to the
value of di.

For any a 2 ð0;1�, criterion J1;a favors the recovery of nearly con-
stant gray-value vertical pieces, i.e. giðjþ d̂iÞ � f̂ i�1ðjÞ. Fig. 1(b) left
and Fig. 3 suggest that this is quite exceptional for natural images.

Consider now second-order vertical differences between three
consecutive lines:

d̂i ¼ arg min J2;aðdiÞ : jdij 6 N
� �

J2;aðdiÞ ¼
1

n�mþ 1

Xn

j¼m

jgiðj� diÞ � 2f̂ i�1ðjÞ þ f̂ i�2ðjÞja; a 2 ð0;1�;

ð5Þ

where
m ¼ N þ 1þmaxfdi; d̂i�1; d̂i�2g
and n ¼ c � N þminfdi; d̂i�1; d̂i�2g.

J2;� promotes the recovery of vertical pieces with nearly linearly
varying gray-value, i.e. d̂i is such that for numerous pixels j of the
ith row, giðjþ d̂iÞ � 2f̂ i�1ðjÞ � f̂ i�2ðjÞ. This is true for numerous sub-
sets along each columns of a natural image (see Fig. 3) but it is false
for the arbitrary displacements in g, such as in Fig. 1(b).

Remark 3. The ‘1 norm of the first-order and the second-order
differences between consecutive rows was used in [9]. Note that all
pixels were involved in the criterion (which does not take into
account Remark 2). In the 3-row method in [9], fixing the optimal
shifts by dynamic programming during the backward iteration
does not prevent the algorithms from recovering nearly constant
gray-values vertical pieces.

Yet another option that seems reasonable with respect to
Fig. 1(b) is to consider third-order vertical differences,

d̂i ¼ arg min
jdi j6N

J3;aðdiÞ for

J3;aðdiÞ ¼
Xc�N

j¼Nþ1

jgiðj� diÞ � 3f̂ i�1ðjÞ þ 3f̂ i�2ðjÞ � f̂ i�3ðjÞja; a 2 ð0;1�;

ð6Þ

where
m ¼ N þ 1þmaxfdi; d̂i�1; d̂i�2; d̂i�3g
and n ¼ c � N þminfdi; d̂i�1; d̂i�2; d̂i�3g:

This criterion favors the recovery of columns where numerous
sets of 4 neighboring pixels in the vertical direction have a gray-va-
lue following a nearly quadratic shape. This may also hold for some
slightly wrong estimates of the row displacements, so this criterion
should be less effective than J2;�.

Remark 4. (Choice ofN). Suppose that we choose N ¼ M and that a
wrong d̂i reads either d̂i ¼ �M or d̂i ¼ M. Then the possible optimal
shifts for the next row iþ 1 are restricted only to d̂iþ1 P �M in the
first case and d̂iþ1 6 M in the second case. It can happen that the
true position of row iþ 1 with respect to row i is in the opposite
side, in which case d̂iþ1 is erroneous. For this reason why we
strongly recommend to choose N > M. Taking N ¼ M þ 1 is usually
enough since the method is quite precise.

The image in Fig. 2(b) is corrupted with jitter which is uniform
on f�5; . . . ;5g, so the displacements are important with respect to
the size of the image and the details it contains. We observe that
J1;a works badly—it tends to recover vertically constant pieces. Both
criteria J2;0:5 and J2;1 yield the original image with no error, i.e.
d̂ ¼ d. Obviously, J3;0:5 and J3;1 perform less well: they cannot dis-
criminate well enough between the true image and its slightly
shifted versions. According to our numerous experiments, J2;� gives
systematically much better results than the other suggested criteria.
Hence we focus basically on J2;�.

2.2. Interpretation of J2;�

Since [12,13], the minimizer of J2;a, for a 6 1, looks to recover d̂i

such that giðjþ d̂iÞ � 2f̂ i�1ðjÞ � f̂ i�2ðjÞ, i.e. that giðjþ d̂iÞ nearly lies
on the gray-value line determined by the previously recovered

Fig. 2. A toy image—My Sun—128� 128 in (a), uniform jitter on f�5; . . . ;5g in (b).
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f̂ i�1ðjÞ and f̂ i�2ðjÞ. The latter corresponds to monotone gray value in
the vertical direction, which is fully coherent with Fig. 3.

For a fixed i, let us set ĥiðjÞ ¼
def 2f̂ i�1ðjÞ � f̂ i�2ðjÞ; which is a con-

stant at the step when we estimate the optimal d̂i. Let us also set
I ¼deffm; . . . ;ng. Problem (5) can be reformulated as

find â ¼ arg min
u2D

JðaÞ where ð7Þ

JðaÞ ¼
X
j2I

ja� ĥiðjÞja and D ¼ giðj� dÞ : d 2 f�N; . . . ;Ngf g 	 R:

The optimal solution â can be seen as an M-estimator [15,18]
constrained to the discrete, finite set D. For a ¼ 1, the optimal â
is the median of fĥiðjÞ : j 2 Ig constrained to D. For 0 < a < 1; J is
non-convex and has numerous local minima and in our case—
one for each element of D. The attractive properties of non-convex
M-estimators—in terms of robustness and edge-enhancement—are
discussed in [16] and in [17, Chapter 3]. Note that this case is not
well understood in the literature, even without constraints. The
global solution â of problem (7) is easy to compute by exhaustive
search since the cardinality of D is only 2N þ 1. The formulation
provided in (7) reveals several important facts:

1. Problem (7) promotes solutions â 2 D such that jâ� ĥiðjÞja is
small, i.e. f̂ iðjþ d̂Þ � 2f̂ i�1ðjÞ � f̂ i�2ðjÞ, for a maximum number
of components j.

2. The weight of all terms such that jâ� ĥiðjÞja 
 0, i.e.
jf̂ iðjþ d̂iÞ � 2f̂ i�1ðjÞ þ f̂ i�2ðjÞja 
 0 is small and it decreases as
far as a 6 1 decreases. Such terms correspond to edge points
between f̂ iðjþ d̂Þ and the past 2f̂ i�1ðjÞ � f̂ i�2ðjÞ, so they are less
penalized when a 6 1 decreases. This is coherent with Fig. 3.

3. Both items 1 and 2 suggest that a pertinent choice for a should
be a 2 ð0;1Þ. For stability reasons the function j:ja should be
increasing enough, so we consider only a 2 1

2 ;1
� �

.

Criteria J2;a for a ¼ 1 and a ¼ 1=2, corresponding to several ‘‘dif-
ficult” rows of Barbara and Peppers are illustrated in Fig. 4. In all
cases, right answer (d̂i ¼ 0) is a neat global minimizer.

3. Error measures for dejittering

The standard tools to assess the quality of a dejittered image
with respect to the original one—e.g. SNR, PSNR, MAE, etc.—cannot be

applied directly since the restored image f̂ is shifted with respect
to f and the extremities of its rows are unknown (zero-valued in
practice), because of the jitter. A possible way out is described
next. We shrunk f̂ to f̂ s according to

f̂ s
i ðjÞ ¼ f̂ iðjþ NÞ; 1 6 j 6 c � 2N; 8i 2 f1; . . . ; rg;

so that f̂ s
i contains only proper image information (and has no gaps

at the ends of its rows). Then we choose a shrunk by 2N columns
version of the original f, say f s, that matches f̂ s the best so that
we can evaluate the error of f s � f̂ s. Different criteria can be used
to define an optimal matching for f s. Note that any error measure
on f s � f̂ s is sensitive to the choice of f s. Having in mind that the
‘1 norm is well suited for image evaluation, we seek for an
f s 2 Rr�ðc�2NÞ such that

kf s � f̂ sk1 ¼ min
06k62N

Xr

i¼1

Xc�2N

j¼1

jfiðjþ kÞ � f̂ sðjÞj:

For the same reason, we use the ‘1-based mean absolute error
(MAE), defined by

maeðf̂ ; f Þ ¼ 1
rðc � 2NÞ kf

s � f̂ sk1: ð8Þ

The dynamic range of ðf̂ s; f sÞ reads d ¼def max
n

maxi;jff s
i ðjÞg;

maxi;jff̂ s
i ðjÞg

o
� min mini;jff s

i ðjÞg;mini;jff̂ s
i ðjÞg

n o
. Then we consider

the peak signal to noise ratio (PSNR), defined by:

psnrðf̂ ; f Þ ¼ 10log10
d2rðc � 2NÞ
kf s � f̂ sk2

2

: ð9Þ

Remind that PSNR ¼ 1 if f s ¼ f̂ s.
The quality of dejittering can also be evaluated based on d� d̂

where we remind that d 2 Rr is the vector of the horizontal dis-
placements that degrade the original image f in (1) and that d̂ is
its estimate. We will use error measures for d� d̂, based on the
‘1-norm, the ‘1-norm, or the ‘0 ‘‘norm”.

Remark 5. Dejittering an isolated video frame inevitably produces
a shifted version of the displacement estimate, say p̂ ¼ d̂þ C. When
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Fig. 4. X-axis: di 2 f�M; . . . ;Mg for M ¼ 7. Y-axis: J2;aðdiÞ ¼ 1
n�mþ1

Pn
i¼mjfiðjþ diÞ � 2f i�1ðjÞ þ fi�2ðjÞj for i 2 f173;298;419;478g (Barbara) and i 2 f23;123;273;477g (Peppers).

The true solution is naturally d̂i ¼ 0.

Fig. 3. The gray value of pieces of columns from different natural images used in this paper. The gray value of each pixel is emphasized.
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d is known, we can estimate d̂ by selecting C so that d̂i ¼ di for a
maximum number of samples, i.e.
C ¼ arg min

C2Z
kp̂� C � dk0:

More details are given in Section 4—Algorithm: Shift recovery, p. 6.

The following ‘1-based error measure e1

e1ðd̂;dÞ ¼
1
r
kd� d̂k1; ð10Þ

evaluates the average displacement of the pixels along each column. It
is the same for the pixels along any column of the image. It is quite
relevant for the quality of dejittering.

The ‘0-based error measure e0 below

e0ðd̂;dÞ ¼
100

r
kd� d̂k0% ð11Þ

gives the percentage of displaced rows in the restored image with re-
spect to the original one.

The following two error measures are quite interesting:

e1ðd̂; dÞ ¼def 100
c
kd� d̂k1%; ð12Þ

eD
0 ðd̂; dÞ ¼

def 100
r � 1

# ðd̂i � diÞ � ðd̂iþ1 � diþ1Þ–0; 1 6 i 6 r � 1
n o

%:

ð13Þ
The first one e1 measures the maximum horizontal error with

respect to the width c of the image. The second one eD
0 measures

the number of changes in d� d̂ with respect to the height r of
the image. Qualitatively speaking, eD

0 assess up to what degree
our model for the underlying image, involved in the criterion that
is used, fits the image that is considered.

Remark 6. When both e1 and eD
0 are small (e.g. e1 6 0:4% and

eD
0 6 0:8%), we are guaranteed that dejittering is nearly perfect,

independently of any other error measure (see Figs. 9, 10, 13 and
16). Indeed, for a 512� 512 image, the proposed error bounds
mean that no more than 4 rows have a horizontal erroneous shift
which is no more than 2 pixels. For a natural image, such an error is
invisible to the naked eye. However, if one of these values is larger,
their value is meaningless.

For instance, Fig. 9 is almost perfectly dejittered and we have
e1ðd; d̂Þ ¼ 0:39%; eD

0 ðd; d̂Þ ¼ 0:6% whereas PSNR is not very favor-
able. Note that if an image is homogeneous on wide horizontal re-
gions, even though dejittering is fine, these errors can be high.
Fig. 12 is visually nicely restored but we have e1 ¼ 3:76% and
eD

0 ¼ 4:19%; for this image, MAE and e1 are small and PSNR is very
high. Yet another example is Fig. 7 which is nicely dejittered (e.g.
PSNR is high and MAE is small) but e1 ¼ 4:49% and eD

0 ¼ 1:96%. In-
deed, both images involve wide homogeneous regions.

For jitter degradation, the visual convenience still remains of
paramount importance. Let us notice that the error measures given
above do not take into account the content of the image f.

4. Algorithms for gray-value jittered natural images

The goal of this section is to furnish a detailed implementable
algorithm enabling to find d̂ and f̂ according to J2;�—as given in
(5)—along with some possible refinements.

Additional notations. We systematically denote by hn the zero-
valued row-vector of length n:

hn ¼ ½0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
n

�: ð14Þ

The classical notation ½a..
.
b..
.
c� means that we concatenate hori-

zontally a; b and c (which can be row-vectors or matrices). We
write a b when we replace a by b. Remind that the rows of a ma-
trix c are denoted by ci.

4.1. Main algorithm with explanations

Before to run the algorithm, we have to fix the following
choices:

� Fix N > M, e.g., N ¼ M þ 1 (see Remark 4);
� Fix a 2 ð0;1�, e.g. a ¼ 1 or a ¼ 0:5 (especially if the image

involves regions with well organized texture).

Algorithm 1. (Gray value images)

1. Put ~f 1 ¼ ½hN
..
.
g1

..

.
hN� 2 R1�ðcþ2NÞ.

2. Split data g into 3 sub-matrices g ¼ ½gL..
.
c..
.
gR� where

gL 2 Rr�N; c 2 Rr�ðc�2NÞ

and gR 2 Rr�N .
3. Put p̂0 ¼ p̂1 ¼ N þ 1 and /1 ¼ /2 ¼ ½hN

..

.
c1

..

.
hN � 2 R1�c.

4. For any i ¼ 2; . . . ; r do the following:
(a) for any k ¼ 1; . . . ;2N þ 1

i. Put hk ¼ ½hk�1
..
.
ci

..

.
h2N�kþ1� 2 R1�c;

ii. Find m ¼maxfk; p̂i�1; p̂i�2g and n ¼ minfk; p̂i�1; p̂i�2gþ
c � 1;

iii. calculate JðkÞ ¼ 1
n�mþ1

Pn
j¼mjh

kðjÞ � 2/1ðjÞ þ /2ðjÞj
a;

(b) find p̂i ¼ arg minfJðkÞ : 1 6 k 6 2N þ 1g;
(c) Substitute: /2  /1 and /1  hp̂i ¼ ½hp̂i�1

..

.
ci

..

.
h2Nþ1�p̂i

�;
(d) Put ~f i ¼ ½hp̂i�1

..

.
gi

..

.
h2N�p̂iþ1� 2 R1�ðcþ2NÞ;

5. Extract f̂ 2 Rr�c from ~f 2 Rr�ðcþ2NÞ by eliminating 2N columns
at the extreme left and right ends that contain the largest
number of zeros or jitter.

The shift of the top line can be assigned arbitrarily (since we
have a single image). The algorithm constructs a wider
r � ðc þ 2NÞ matrix ~f ; at step 1, we insert g1 in the middle of
its first row ~f 1; hence p̂1 ¼ N þ 1. Following Remark 2, c at step
2 is the r � c � 2N submatrix of g containing only image data.
Row displacements p̂i are estimated based on c only. In this ver-
sion, we initialize p̂0 ¼ p̂1 (step 3). At step 4, we successively
estimate the positions p̂i, for i P 2, according to Eq. (5). At each
sub-step, /1 and /2 are c-length row vectors corresponding to
the estimates of ci�1 and ci�2, respectively. In the inner iteration
4a, hk realizes all possible shifts (k ¼ 1; � � � ;2N þ 1) for the row ci.
The constants m and n have the same meaning as in Eq. 5 and J

is calculated accordingly. Once we get the minimizer p̂i, the esti-
mate for ci is precisely hp̂i . We can hence update /1 and /2, as
specified at sub-step 4c. At sub-step 4d we insert in ~f i the whole
observed gi (and not only its restriction ci as we did in 4(a)i).
When i ¼ r, the matrix ~f is full. The dejittered image f̂ is an
r � c inner sub-matrix of ~f that we extract as described in
step 5.

Some preliminary illustrations of Algorithm 1 can be seen in
Fig. 2(e)–(f) as well as in Fig. 5.

As noticed in Remark 5, the vector p̂ 2 Rr is shifted with respect
to the estimate of the displacement d̂, namely d̂i ¼ p̂i � C;
8i 2 f1; . . . ; rg: The constant C satisfies 1� N 6 C 6 3N þ 1: Indeed,
8i 2 f1; . . . ; rg we have jdij 6 N and 1 6 p̂i 6 2N þ 1, hence
1� N 6 p̂i � di 6 3N þ 1. In order to compute the the error mea-
sures defined in (10), (11), (12) and (13), we have to find the shift
C. Given the true displacement d, we find C using the criterion gi-
ven in Remark 5. This can be done using the numerical scheme be-
low.
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Algorithm. Shift recovery

1. Define the set of integers I ¼ f�N þ 1; . . . ;3N þ 1g.
2. Let H be the histogram of p̂� d on I—i.e. HðnÞ ¼ # j 2f

I : p̂ðjÞ � dðjÞ ¼ ng, for n 2 I.
3. Obtain C ¼ arg maxn2IHðnÞ.Then d̂i ¼ p̂i � C;8i 2 f1; . . . ; rg.

Computation times. The computation time depends clearly on the
size of the image, on the value of N, and it is higher if we choose
a ¼ 0:5 instead of a ¼ 1. We did some comparisons using Matlab
7.2 on a PC with a Pentium 4 CPU 2.8GHz and 1GB RAM, running
on Windows XP Professional service pack 2. For a 512� 512 size
gray-value image and N ¼ 7 we got the solution in 0.62 second
for p ¼ 1 and in 1 second for p ¼ 0:5. Let us mention that our Matlab
implementation is not optimal.

4.2. Refinements

4.2.1. Boundary condition
The boundary condition in step 3 amounts to estimate d̂2 using

the first-order criterion given in (4). This is not fully satisfying. In
some cases, a mirror boundary condition can produce better re-
sults. Such a condition cannot be applied directly to a jittered im-
age: we have first to align in some way the first two rows of the
image. We propose a modification of Algorithm 1 where we first
align c1 and c2 (using J1;a in (4)) and take for /1 the aligned version
of c2 and for p̂0 its estimated position. This change concerns only
step 3 in Algorithm 1.

Algorithm 1(a)

Steps 1 and 2 are the same as in Algorithm 1. Step 3 is replaced by

3. Set p̂1 ¼ N þ 1 and /1 ¼ ½hN; c1; hN�;
(a) for any k ¼ 1; . . . ;2N þ 1, calculate:

i. hk ¼def
hk�1; c2; h2N�kþ1½ �;

ii. m ¼max k;N þ 1f g and n ¼min k;N þ 1f g þ c � 1;
iii. JðkÞ ¼ 1

n�mþ1

Pn
j¼mjh

kðjÞ � /1ðjÞj
a;

(b) set p̂0 ¼ arg min16k62Nþ1JðkÞ;
(c) set /2 ¼ hp̂0�1; c2; h2N�p̂0þ1

� �
.

Then continue with the steps 4 and 5 of Algorithm 1.

Algorithm 1(a) does not completely prevent from constant ver-
tical transitions between the first two rows.

Yet another possibility is to fix p̂1 as in Algorithm 1 and
then to find jointly p̂2 and p̂3 by considering all possible shifts
for c2 and c3. Then we choose p̂2 such that J2;a is minimal for
ðp̂2; p̂3Þ.

Algorithm 1(b).

Steps 1 and 2 are the same as in Algorithm 1. Step 3 is replaced by
3. Set p̂1 ¼ N þ 1 and /2 ¼ ½hN; c1; hN�;

(a) for any k ¼ 1; . . . ;2N þ 1
i. hk

1 ¼ hk�1; c2; h2N�kþ1½ �;
ii. for any ‘ ¼ 1; . . . ;2N þ 1, calculate

A. h‘ ¼ h‘�1; c3; h2N�‘þ1½ �;
B. m ¼ max k; ‘;N þ 1f g and n ¼min k; ‘;N þ 1f gþ

c � 1;
C. Jðk; ‘Þ ¼ 1

n�mþ1

Pn
j¼mjh

‘ðjÞ � 2hk
1ðjÞ þ /2ðjÞj

a;

iii. find JðkÞ ¼min16‘62Nþ1Jðk; ‘Þ;

(b) find p̂2 ¼ arg min16k62Nþ1JðkÞ;
(c) Set /1 ¼ hp̂2�1; c2; h2N�p̂2þ1

� �
.

Then continue with steps 4 and 5 of Algorithm 1.

The computational cost of Algorithm 1(b) is slightly higher than
Algorithms 1 and 1(a). Even though the experimental results are
very encouraging, more research is needed to find in a fast and effi-
cient initialization.

4.2.2. Compound models for images involving a noticeable vertical
trend

In case when an image exhibits a dominant vertical structure
(e.g. Figs. 14 and 15), better results can be obtained by using a
compound criterion that mixes first and second-order differences
via an additional parameter b > 0.

Algorithm 1(c)

Do Algorithm 1 (or 1(a) or 1(b)) by replacing step 4(a)iii by the
following expression:

JðkÞ ¼ 1
n�mþ1

Xn

j¼m

ðjhkðjÞ�2/1ðjÞþ/2ðjÞjþbjhkðjÞ�/1ðjÞjÞ
a
: ð15Þ

Experimentally, the algorithm is quite stable with respect to b.

4.3. Illustrations

In Figs. 6, 7, 10 and 21, we compare our method with the Bayes-
ian TV (B-TV) method of Shen [14] and with the Bake and Shake (B
& S) method of Kang and Shen [5]. All these restorations were real-
ized by Dr. Sung Ha Kang using the codes of Dr. Jackie Shen for the
B-TV method, and using her own codes for the B & S method. Thus
the parameters for these competitors are tweaked to reach their
best level of performance.

Fig. 5. The original image is contaminated with independent jitter uniformly distributed on f�6; . . . ;6g.
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For all images, our dejittering algorithms are systematically ap-
plied with N ¼ M þ 1, in accordance with Remark 4.

In Fig. 6, the picture of Lena (256� 256), is degraded with
independent uniform jitter on f�6; . . . ;6g. The width of the im-
age being small, the jittering effect is very strong. This jittered
image is first restored using the B-TV method in [14] and by
the B & S method [5]. The second one clearly outperform the
B-TV method both visually and in terms of the error measures,
thus yielding MAE ¼ 7:37 and PSNR ¼ 23:06. Then we applied suc-
cessively Algorithms 1 and 1(a) for a ¼ 1 and a ¼ 0:5. In all
cases, we obtained perfect reconstructions where all errors are
zero except PSNR = þ1. It was our first trial and we kept the re-
sult since it is perfect.

Peppers in Fig. 7 is degraded with independent uniform jitter on
f�10; . . . ;10g (i.e. M ¼ 10). The restoration obtained by B-TV [14]
is poor. The result of B & S [5] is much better. For a ¼ 1, Algorithms
1, 1(a) and 1(b) yields the same result with error measures MAE

¼ 1:38, PSNR = 31.27, e1 ¼ 0:43; e0 ¼ 23:63%; e1 ¼ 5:1% and
eD

0 ¼ 2:35%. It is not displayed since visually it is very close to re-
sult for a ¼ 0:5. For a ¼ 0:5, Algorithms 1 and 1(a) give the same
result—displayed in the figure—whose errors read MAE ¼ 1:35,
PSNR = 31.51, e1 ¼ 0:4; e0 ¼ 23:63%; e1 ¼ 4:49% and eD

0 ¼ 1:96%.
The image of the error—where the central c � 2N part of the re-
stored and the original images are matched as explained in Section
3—shows a slight displacement of several pixels. However, our

dejittered image is hard to distinguish from the original image to
the naked eye.

The picture of Barbara (512� 512) is challenging for many
image processing tasks since it contains a lot of small details
with a strong local geometry. In Fig. 8, the picture is contami-
nated with independent jitter obtained from Nð0;r2Þ for
r ¼ 3, quantized on Z and constrained to f�6; . . . ;6g. Here we
compare the role of a. For a ¼ 1, there are wrongly estimated
displacements visible on the leg of the table. For a ¼ 0:5, the re-
sult is nearly perfect since e1 ¼ 0:39% and eD

0 ¼ 0:59% (see Re-
mark 6).

The next Fig. 9 considers the same image contaminated
with independent uniform jitter on f�6; . . . ;6g. The dejittered
image is impossible to distinguish visually from the original;
indeed, e1 ¼ 0:39% and eD

0 ¼ 0:59%, even though the other er-
rors—MAE, PSNR and e1—are less favorable. The error image
f̂ s � f s shows that the dejittering is perfect in the central rows
of the image but that it is slightly wrong somewhere in the
middle of the face of Barbara, as well as in the bottom part,
at the level of row 430. On the zoom of the face of Barbara,
it is hard to find where is the wrong displacement since it
is only one pixel.

The first image in Fig. 10 is degraded with strong uniform jitter
on f�10; . . . ;10g (i.e. M ¼ 10). The restoration obtained using B-TV
[14] contains a lot of jitter. The restoration using B & S [5] is better.

Fig. 6. Lena (256� 256), corrupted with a jittering vector d uniform on f�6; . . . ;6g. Different dejittering methods. We do not display the original image since it is perfectly
recovered by our Algorithm 1.
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Algorithms 1 and 1(a) for both a ¼ 1 and a ¼ 0:5 lead to the same
dejittering shown on the right. The latter is nearly-perfect since
e1 ¼ 0:39% and eD

0 ¼ 0:25%. The original Boat image can be seen
on the right side of Fig. 11 where the restorations are exact (i.e.
f̂ s ¼ f s, as defined in Section 3).

Fig. 11 illustrates the cases of structured jitter as mentioned in
the Introduction—in particular low-frequency and high-frequency
sinusoidal jitter. Restoration from both the low-frequency and

the high-frequency sinusoidal jitter using Algorithm 1 for a ¼ 1
yields the original image.

5. Large-scale experiment

Even if our method relies on a good rationale, we cannot justify it
in a fully theoretical way. Instead, we check its stability and its

Fig. 7. Peppers (512� 512). The jitter is uniform on f�10; . . . ;10g. Dejittering using different methods.
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performance using a very large number of experiments. These help
us to make relevant choices for the boundary conditions as well as
for a.

For each one of the following popular and ‘‘difficult” gray-value
images—Lena, Peppers, Barbara and Boat—we realized 1000 inde-
pendent experiments as described below. These four images pres-
ent completely different features: Lena involves a lot of smooth
textures along with regular homogeneous parts; Peppers is com-
posed out of nicely homogeneous regions separated by regular
contours; Barbara involves textures with a strong local geometry
with lots of small edges as well as nicely homogeneous regions;
Boats is very geometrical without important texture.

� UNIFORM JITTER.

The components of the jittering vector d 2 Rr are independent
and uniformly distributed on the set of integers f�M; . . . ;Mg
for M ¼ 6. All results relevant to uniform jitter are indicated in
Tables 1–3 given in Appendix A with the letter ‘‘U”.Each original
image was degraded using such a jittering vector d, according to
1. The same jittered image was then restored successively using
Algorithm 1 for a ¼ 1 and a ¼ 0:5, then Algorithm 1(a) for a ¼ 1
and a ¼ 0:5 and last Algorithm 1(b) for a ¼ 1 and a ¼ 0:5.

� TRUNCATED GAUSSIAN JITTER.

The components of the jittering vector d 2 Rr are integers
belonging to the set f�M; . . . ;Mg for M ¼ 6. They are obtained
as described next. We generate 2r or 3r independent reals

~di �Nð0;r2Þ for r ¼ 3. Then we select r elements that belong
to ½�M � 0:5þ e;M þ 0:5� e� with e ¼ 2� 10�16 and approxi-
mate them to the nearest integer. Thus we get a sequence of
independent samples following a quantized and truncated cen-
tered Gaussian distribution. The results corresponding to this
kind of jitter are indicated in Tables 1–3 with the letter ‘‘G”.The
original image f was jittered with the so obtained vector d, fol-
lowing 1. The same jittered image was then restored as in the
previous case: Algorithm 1 for a ¼ 1 and a ¼ 0:5, then Algorithm
1(a) for a ¼ 1 and a ¼ 0:5 and last Algorithm 1(b) for a ¼ 1 and
a ¼ 0:5.

For each restoration, we calculated the errors MAE, e1; e0%; e1%

and eD
0 %, as defined in Eqs. (8), (10)–(12) and (13) respectively. (We

cannot find any mean value for the PSNR error measure (9): we al-
ready observed that in some cases dejittering is exact (f̂ s ¼ f s)
which leads to PSNR ¼ 1. For each image, each case of jitter, each
algorithm and each parameter, we thus obtained 1000 measures
of these errors. Table 1 given in Appendix A summarizes their
means, Table 2 gives the percentage of the cases when e1 6 0:4%

and e1 6 0:6, jointly with eD
0 6 0:8% while Table 3 gives the vari-

ances of MAE and e1. These results should be considered with some
distance—in the body of the paper we present several cases where
visually better restorations do not match the minimum of these er-
rors, except when e1 2 ½0;0:4�% and eD

0 2 ½0;0:8�%. Nevertheless,
the mean of these error measures should be relevant. The results

Fig. 8. Barbara 512� 512. The jitter corresponds to Nð0;r21Þ; r ¼ 3, truncated and quantized on f�6; . . . ;6g. The error measures for a ¼ 1 are: MAE ¼ 10:57, PSNR = 21.41,
e1 ¼ 1:92 and e1 ¼ 5. The restoration for a ¼ 0:5 is nearly perfect: e1 ¼ 0:39% and eD

0 ¼ 0:59%; note also that MAE = 4.16, PSNR = 25.53 and e1 ¼ 0:52.
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shown in Tables 1–3 help to sketch a (partial) assessment on the
following points: (i) if our algorithms are good enough, (ii) which
one to choose among 1, 1(a) and 1(b), (iii) which value for a is
better.

1. Algorithm 1 gives smaller mean errors in Table 1 for almost all
cases, and in all cases it is satisfactory enough. Moreover, it is
faster than Algorithms 1(a) and 1(b).

2. The values for eD
0 are always small which justifies the prior

model we adopted on the second-order vertical differences on
natural images. It also shows that d̂� d is at least piecewise
constant which is a good point.

3. All tables show that a ¼ 0:5 gives better results for textured
images (Lena, Barbara), or images involving lots of regular cur-
vatures (Peppers), while a ¼ 1 is better for Boat which has a
simpler geometrical structure. In all cases, a ¼ 1 leads to
acceptable results, a ¼ 0:5 leads to a higher quality in most of
the cases.

4. From Table 2 we see that dejittering of Lenna and Boat gives rise
to high percentages for (e1 6 0:4%; eD

0 6 0:8%) —between half
and 3/4—which corresponds to guaranteed high-quality resto-
rations. These percentages are smaller for Barbara (10-20%)
and Peppers (10% or less) but according to Remark 6, in such
a case it is better to check the other error measures which are
quite encouraging.

5. The variances of MAE and e1 in Table 3 are small, especially for
a ¼ 0:5.

6. Except for Barbara under uniform jitter in Table 1, Algorithm
1(b) seems to perform less well than the others. The
simplest form—Algorithm 1—seems being the most ‘‘universal”.

Remark 7. Whenever we fix a, our algorithms are parameter-free.
For noise-free jittered images, it is safer to fix a ¼ 0:5. If a slight
compromise in terms of quality can be tolerated, algorithms are
faster for a ¼ 1 while the results range between very good and
quite acceptable (especially when compared with the state of the
art).

6. Color images

In this section we extend Algorithm 1 in order to deal with RGB
color images where all color channels incur the same jitter. Let us re-
mind that RGB discrete images are represented by vector-valued
matrices f where each pixel fiðjÞ has three components, say fiðj;jÞ
for 1 6 j 6 3. More precisely, the jittering model (1) reads

8j 2 f1; . . . ; cg;8i 2 f1; . . . ; rg;

giðj;jÞ ¼
fiðjþ di;jÞ; if 1 6 jþ di 6 c;

any; e:g: ¼ 0; otherwize;

�
1 6 j 6 3;

where di is as in (1).

6.1. Algorithms

The central part of the algorithm proposed below is based again
on J2;� as given in (5). Since the jitter is the same for all color chan-
nels, we obtain from g a gray-value image c and estimate the row
displacements d̂i ¼ p̂i � C on c using the ideas of Algorithm 1.

The equivalent counterpart of the n-length zero-valued row
vector defined in (14) is denoted by hn�3: each one of its compo-
nents is a 3D zero-valued vector, that is

Fig. 9. Barbara 512� 512. The jitter is uniform on f�6; . . . ;6g. The errors for the restoration read MAE = 4.16, PSNR = 25.53, e1 ¼ 0:52; note that e1 ¼ 0:39% and eD
0 ¼ 0:59%.
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Fig. 10. Boat 400� 512. The jitter is uniform on f�10; . . . ;10g. Different dejittering methods. Our Algorithm 1, for a 2 f0:5;1g, yields a nearly perfect result since e1 ¼ 0:39%

and eD
0 ¼ 0:25%.

Fig. 11. The sinusoidal jitter is quantized on f�6; . . . ;6g. The dejittered image is perfect—all errors are null.
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hn�3ð:;jÞ ¼ hn; for 1 6 j 6 3: ð16Þ

Before to start, we fix the following values:

� N > M, e.g., N ¼ M þ 1.
� a 2 ð0;1�, e.g. a ¼ 1 or a ¼ 0:5—if the image involves regions

with complex structure.

Algorithm 2. (Color images)

1. Put ~f 1 ¼ ½hN�3
..
.
g1;

..

.
hN�3�.

2. Split g into 3 vector-valued sub-matrices g ¼ gL..
.
g..

.
gR

� 	
where

gL; gR 2 Rr�N and g 2 Rr�ðc�2NÞ.1

3. Calculate
c1ðjÞ ¼ jgiðj; 1Þj þ jgiðj; 2Þj þ jgiðj; 3Þj; 1 6 j 6 c � 2N.

4. Put p̂0 ¼ p̂1 ¼ N þ 1 and /1 ¼ /2 ¼ ½hN;
..
.
c1

..

.
hN�.

5. For any i ¼ 2; . . . ; r, do the following:

(a) for any k ¼ 1; . . . ;2N þ 1
i. Calculate the scalar-valued row vector ci by

ciðjÞ ¼
P3

j¼1jgiðj;jÞj 1 6 j 6 c � 2N;

ii. Set hk ¼ ½hk�1; ci; h2N�kþ1�;
iii. Find m ¼maxfk; p̂i�1; p̂i�2g and n ¼minfk; p̂i�1; p̂i�2gþ

c � 1;
iv. Calculate JðkÞ ¼ 1

n�mþ1

Pn
j¼mjh

kðjÞ � 2/1ðjÞ þ /2ðjÞj
a;

(b) Find p̂i ¼ arg min16k62Nþ1JðkÞ;

(c) Set /2  /1 and /1  hp̂i ¼ hp̂i�1
..
.
ci

..

.
h2N�p̂iþ1

� 	
;

(d) ~f i ¼ ½hðp̂i�1Þ�3
..
.
gi

..

.
hð2N�p̂iþ1Þ�3�;

6. Extract f̂ 2 Rr�c from ~f 2 Rr�ðcþ2NÞ by eliminating 2N columns
at the extreme left and right ends that contain the largest
number of zeros (jitter).

Notice that step 5(a)i can be replaced by any operation that
transforms a color image into a gray-value image. A popular way
to do this transform is

ciðjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
giðj; 1Þ2 þ giðj; 2Þ2 þ giðj; 3Þ2

q
; 1 6 j 6 c � 2N:

However, the computational cost of the latter is much higher
than the one used in step 5(a)i. Let us mention that it is important
that the obtained gray-value image has a good contrast. In all
experiments we realized, the calculation proposed in step 5(a)i
gave rise to satisfying results. Some refinements by the weighting
the different color channels in this step could improve the results
in some cases; we did not explore such issues.

Computation times. The computational time for a color image
is naturally higher than for a gray-value image. However, in our
Algorithm 3, most of the calculation is done using a gray-value ver-
sion of the color image. We did some comparisons under the same
conditions described at the end of Section 4. For a 512� 512� 3

image and N ¼ 7 we got the solution in 1 second for p ¼ 1 and in
1.4 second for p ¼ 0:5.

6.2. Refinements

The refinements relevant to the first row, namely Algorithms
1(a) and 1(b), are straightforward to extend to Algorithm 2, by
using the gray-value transform c. The modification for images
involving important vertical features, formalized in Algorithm
1(c), is easily extended to color images:

Algorithm 2(c)

Do Algorithm 2 (or 2(a), or 2(b)); the only change is to replace step
5(a) iv by Eq. (15):

5ðaÞi JðkÞ ¼ 1
n�mþ 1

�
Xn

j¼m

jhkðjÞ � 2/1ðjÞ þ /2ðjÞj þ bjhkðjÞ � /1ðjÞj
� �a

:

6.3. Illustrations

In all cases, we apply Algorithm 2 or its modifications (e.g. Algo-
rithm 2(c)) with N ¼ M þ 1.

The Man image in Fig. 12 incurs a uniform (quantized) jitter on
f�8; . . . ;8g (shown in the left upper image). Dejittering is realized
using Algorithm 2 for a ¼ 1. The displacement error d̂� d, shown
on the left lower image, ranges on ½�17;3� and has quite a lot of
constant pieces: we have e1 ¼ 3:76% and eD

0 ¼ 4:19% which seem
too large. A more careful analysis shows that its most important
part is corresponds to the sky area which is very homogeneous.
Part of it reaches the level of the boat. For this reason, we present
a zoom of the boat in the original and the dejittered image bit it is
difficult to see the wrong displacement. There are errors also in the
bottom part of the image; it corresponds to the ground area which
is quite homogeneous as well. Overall, the displacement error re-
mains invisible to the naked eye and PSNR = 33.82.

The image of a cheetah (707� 579) in Fig. 13 has a very tex-
tured appearance. It is degraded with independent uniform jitter
on f�20; . . . ;20g. The restoration is the same for a ¼ 1 and
a ¼ 0:5. It is nearly-perfect since e1 ¼ 0:35% and eD

0 ¼ 0:28%.
Baboon (512� 512) in Fig. 14 is degraded with strong jitter cor-

responding to Nð0;r21rÞ for r ¼ 6, truncated and quantized on
f�12; . . . ;12g. The restoration using Algorithm 2 for a ¼ 1 is
acceptable. The restoration for a ¼ 0:5 is visually better. We apply
also Algorithm 2(c) for a ¼ 0:5 and b ¼ 2 or b ¼ 3. Now the visual
result is really satisfying even though the error measures are worse
than for Algorithm 2, a ¼ 1.

In Fig. 15 we consider the same image contaminated with low-
frequency and high-frequency sinusoidal jitter, quantized on the
set f�6; . . . ;6g. The results obtained using Algorithm 2 are accept-
able (not displayed). Better results are obtained using Algorithm
2(c) for a ¼ 0:5 and b ¼ 3. Let us mention that these are not sensi-
tive to the exact value of b.

Fig. 16, size 542� 410, shows a store window composed of
numerous golden jewelries which are very finely engraved. It
was corrupted with independent jitter which is uniform on
f�8; . . . ;8g. Both restorations using Algorithm 2 for a ¼ 1 and
a ¼ 0:5 are visually very satisfying and the PSNR is high. The resto-
ration for a ¼ 0:5 is nearly perfect since e1 ¼ 0:24% and
eD

0 ¼ 0:37% (one pixel maximal horizontal error on two rows).

1 More precisely, 8i 2 f1; . . . ; rg we have

gL
i ðj; jÞ ¼ giðj; jÞ; 8j 2 f1; . . . ;Ng; 1 6 j 6 3;

giðj; jÞ ¼ giðj; jÞ; 8j 2 fN þ 1; c � Ng; 1 6 j 6 3;

gR
i ðj; jÞ ¼ giðj; jÞ; 8j 2 fr � N þ 1; rg; 1 6 j 6 3:
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Fig. 12. Man image, 478� 532. The jitter is quantized uniform on f�8; . . . ;8g. The dejittered image is obtained using Algorithm 2 for a ¼ 1. The errors read MAE = 1.45,
PSNR = 33.82, e1 ¼ 0:76; e1 ¼ 3:76% and eD

0 ¼ 4:19%.

Fig. 13. Cheetah, 707� 579. The jitter is independent and uniform on f�20; . . . ;20g. The dejittered image is obtained using Algorithm 2 for a ¼ 0:5 or a ¼ 0:5. The errors read
MAE = 0.52, PSNR = 37:27; e1 ¼ 0:06, e1 ¼ 0:35% and eD

0 ¼ 0:28%.
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7. Noisy jittered images: dejitter then denoise

Our approach is to first dejitter images using the ideas of Algo-
rithms 1 or 2, and then—at a second stage—to apply a fast, standard
denoising method such as shrinkage estimation—see e.g. [2,10]. A
variety of fast denoising methods could be envisaged at the second
stage.

7.1. Moderate noise

In the presence moderate of noise (SNR equal to 15–20 dB or
more), taking a < 1 may be harmful since it favors too strongly lo-
cally polynomial constraint along the columns of the image; the
latter is less characteristic in the presence of noise or other impair-

ments. Whenever Algorithms 1 and 2 can be applied, we should
choose

a ¼ 1:

In particular Algorithm 1(c) (resp. 2(c)) has provided better re-
sults in several cases.

The Boat image (256� 256) in Fig. 17 is corrupted with zero-
mean white Gaussian noise with 20 dB SNR and with independent
uniform jitter on f�6; . . . ;6g. The dejittering step is realized using
Algorithm 1 for a ¼ 1. The results are close to the noisy non-jit-
tered images, shown on the third row. Denoising of the latter
images is performed using hard-thresholding of the coefficients
of the 2D Daubechies wavelet transform with 2 vanishing mo-
ments with threshold T ¼ 15. The whole restoration is fast and

Fig. 15. The sinusoidal jitter is quantized on f�6; . . . ;6g. Dejittering uses Algorithm 2(c) for a ¼ 0:5; b ¼ 3.

Fig. 14. Baboon image restored using different dejittering schemes.
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easy since the shrinkage restoration we apply is almost instanta-
neous. The thresholds are chosen in order to obtain a good deno-
ised image. The restored image is pretty clean. The obtained PSNR

with respect to the original image is 25.90.
The picture of Lena in Fig. 18 (512� 512) is corrupted with

white zero-mean Gaussian noise (15 dB SNR) and independent uni-
form jitter on f�6; . . . ;6g. This image is more sophisticated than
Boat and involves an important vertical column in the background.
Algorithm 1 was not efficient enough for dejittering and the result
is not displayed. Instead, Algorithm 1(c) yields better results for a
large set of values for b; the dejittered image in Fig. 18 corresponds
to a ¼ 1 and b ¼ 3. The denoising step is performed by hard thres-
holding of the 2D Daubechies wavelet transform with 4 vanishing
moments for T ¼ 30. Compared with the original (see Fig. 6), for
the restored image we have PSNR = 28.79.

The peppers in Fig. 19 are corrupted in the same way as the pre-
vious two images. Taking into account the presence of important
nearly-vertical features, we dejitter the noisy image using Algo-
rithm 1(c) for b ¼ 3. Here again, the robustness with respect to
the choice of b is good. The denoising step is realized in the same
way, for T ¼ 30 again. The result can be compared with the original
image in Fig. 7.

7.2. Strong noise

When the noise is strong (e.g. with a SNR less than 15 dB), we
suggest a sightly different scheme which keeps a comparable com-
putational coast. The idea is to slightly denoise each rows using a
fast shrinkage estimator and to replace in the dejittering function
j:ja by a better adapted edge-preserving function u.

For q 2 Nþ, let W : R1�q ! R1�q denote a 1D wavelet transform
and W� its inverse. Let us also introduce the hard thresholding
operator s : R1�q ! R1�q by

sTðcÞðjÞ ¼
0 ifjcðjÞj 6 T

cðjÞ otherwise

�
1 6 j 6 q; ð17Þ

where T is a threshold. It is well known that hard thresholding is
asymptotically optimal in the minimax sense if c is contaminated
with white Gaussian noise of standard deviation r and
T ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffi
2 ln n
p

. In practice, we are far from these asymptotical condi-
tions and this optimal thresholding is known to oversmooth edges.
The latter can be harmful for the dejittering goal. For this reason we
prefer an under-optimal threshold T.

Before to run the algorithm, several details must be fixed in
advance.

� Fix N > M, e.g., N ¼ M þ 1.
� Choose a 1D wavelet transform W (e.g. Daubechies wavelets).
� Fix an under-optimal threshold T and the coarsest level of the

decomposition L (e.g. 1 or 2).
� Choose an edge-preserving potential function u : Rþ ! Rþ and

a > 0, e.g.

uðtÞ ¼ jtja or uðtÞ ¼ t2=2 if jtj 6 a
ajtj � a2=2 if jtj > a:

(
ð18Þ

� According to the nature of the image (see Section 4.2.2), choose
b P 0.

Fig. 16. Jewelry image, 542� 410, with independent uniform jitter on f�8; . . . ;8g. The restoration using Algorithm 2 for a ¼ 1 yields errors MAE ¼ 0:2, PSNR = 40.34, e1 ¼ 0:06
and e1 ¼ 7. The restoration for a ¼ 0:5 is nearly perfect, MAE ¼ 0:14, PSNR = 45.15, e1 ¼ 0:03; e1 ¼ 0:24% and eD

0 ¼ 0:37%.
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Algorithm 3. (Quite noisy images)

1. Put RGB : ~f 1 ¼ hN�3; g1; hN�3½ �:
Gray : ~f 1 ¼ hN; g1; hN½ �:

:

(
2. Split g into 3 sub-matrices g¼ gL..

.
g..

.
gR

� 	
where gL2Rr�N ,

g2Rr�ðc�2NÞ and
gR 2 Rr�N .

3. RGB : c1ðjÞ¼ jg1ðj;1Þjþjg1ðj;2Þjþjg1ðj;3Þj; 16 j6c�2N:
Gray : c1¼g1:

:

�
4. Compute ~c1 ¼W� sT Wc1ð Þð Þ.
5. Set p̂0 ¼ p̂1 ¼ N þ 1 and /1 ¼ /2 ¼ hN;~c1; hN½ �.
6. For any i ¼ 2; . . . ; r do the following:

(a) for any k ¼ 1; . . . ;2N þ 1

0. RGB : ciðjÞ¼ jgiðj;1Þjþjgiðj;2Þjþjgiðj;3Þj; 16 j6 c�2N;
Gray : ci¼gi;

:

�
i. ~ci ¼W� sT Wcið Þð Þ;

ii. hk ¼ hk�1;~ci; h2N�kþ1½ �;
iii. m ¼max k; p̂i�1; p̂i�2f g and n ¼min k; p̂i�1; p̂i�2f g þ c � 1;

iv. JðkÞ ¼ 1
n�mþ1

Pn
j¼mu jhkðjÞ � 2/1ðjÞ þ /2ðjÞj þ bjhkðjÞ � /1ðjÞj

� �
;

(b) find p̂i ¼ arg min16k62Nþ1JðkÞ;
(c) Set /2  /1 and /1  hp̂i ¼ hp̂i�1;~ci; h2Nþ1�p̂i

� �
;

(d)
RGB : ~f i ¼ hðp̂i�1Þ�3; gi; hð2N�p̂iþ1Þ�3

� �
;

Gray : ~f i ¼ ½hp̂i�1; gi; h2N�p̂iþ1�:

(

7. Find f̂ 2 Rr�c from ~f 2 Rr�ðcþ2NÞ by eliminating 2N columns at
the extreme left and right ends that contain the largest number
of zeros.

Hard-thresholding is better than other shrinkage functions
since it keeps unchanged the important coefficients bearing the
most important information. We do not recommend a preliminary
denoising of the entire image before the dejittering step since this
can destroy important information in the vertical direction. In
our implementation, we used Daubechies 1D wavelets. This stage
is of critical importance and additional research is needed to exhi-
bit more accurate and fast row denoising methods.

Remark 8. Step 2 of Algorithm 3 supposes that the length of
ci; 1 6 i 6 r is a power of 2, in order to apply a wavelet transform.
Whenever this is not the case, some arrangements are necessary. If the
image width is a power of 2 we apply the row under-denoising on the
entire row and split each row into three pieces of length N; c � 2N and
N, so that vertical matching using J is done only on rows that are not

affected by the jitter (Remark 2). Otherwise, we split g ¼ gL..
.
g..

.
gR

� 	
so

that the number of columns of g is a power of 2, no larger than c � 2N.

The function u involved in J (step 6(a)iv) must be edge-pre-
serving. If the row-denoising in steps 4 and 6(a) is efficient enough,
u can be non-smooth at zero (e.g. uðtÞ ¼ jtja for a ¼ 1 or a ¼ 0:5).
Otherwise, it is safer to use a smooth-at-zero function u in order to
relax the polynomial constraint in the vertical direction. In the lat-
ter case, several choices can be done, giving quite similar results,
e.g. uðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ t2

p
, a > 0, or uðtÞ ¼ logðcoshðatÞÞ;a > 0, or

Huber’s function as given in the right side of (18) which is fast to
compute and quadratic near the origin.

7.3. Experiments

The peppers image in Fig. 20 is degraded with white, zero-mean
Gaussian noise with 10 dB SNR and uniform jitter on the set
f�6; . . . ;6g. Dejittering is realized using Algorithm 3 for
N ¼ M þ 1, b ¼ 5, Daubechies 1D wavelet thresholding for T ¼ 50
and uðtÞ ¼ jtj. The obtained dejittered image is denoised using

2D Daubechies wavelets with 4 vanishing moments, whose coeffi-
cients are hard-thresholded using T ¼ 60.

Boat in Fig. 21 is corrupted with 10 dB white zero-mean Gauss-
ian noise and strong jitter, uniform on f�8; . . . ;8g (i.e. M ¼ 8). Its
restoration using B-TV [14] is unsatisfactory. The result obtained
using B & S [5] is better. The underlying image contains a lot of
sloping (non-vertical) fine lines. This suggests to run our Algorithm
3 for b ¼ 0 and uðtÞ ¼ jtja for a ¼ 0:5 in step 6(a)iv; furthermore, in
step 6(a)i we use hard-thresholding of the Daubechies wavelet
coefficients with 2 vanishing moments for T ¼ 30. The obtained
dejittered image is very satisfying. Denoising is performed by hard
thresholding of the curvelet transform of the dejittered image
using the enhanced-denoising program in the CurveLab 2.1.2 toolbox.

In Fig. 22 we focus on restoring the same noisy version of the boat
image (zero-mean Gaussian noise with 10 dB SNR), deformed by sinu-
soidal jitter. We consider both low-frequency and high-frequency jit-
ter whose details are given in the caption. Dejittering is realized using
Daubechies wavelets with 2 vanishing moments and threshold
T ¼ 30. In both cases we observe that the dejittering step yields a very
correct usual noisy image. Let us mention that the choice of the num-
ber of vanishing moments in the Daubechies wavelet basis plays an
important role. The ultimate denoising step is performed again using
the enhanced-denoising program in the CurveLab 2.1.2 toolbox. The
whole restoration has quite a natural appearance and is close to the
original—visible on the right side of Fig. 11.

The experiments in Figs. 23 and 24 illustrate closely the B-TV
method of Shen described in [14]. Data are contaminated with
white zero-mean Gaussian noise with 40 dB SNR. The jittering
vector is a realization of a binomial distribution, which in practice
led us to random displacements within the range f�8; � � � ;þ9g. We
used the codes of Dr. J. Shen to generate the noisy data and the
B-TV restorations, according to [14]; they are roughly the same
as in [14]. Then we processed the same data sets using our
algorithms. In Fig. 23 we present our full method, first dejitter then
denoise, while in Fig. 24 we present just the dejittered noisy image.

7.4. Comments on dejittering of noisy images

We would like to notice several points concerning the restora-
tion of noisy jittered images.

� The 1D row under-denoising in step 6(a)i of Algorithm 3 is of crit-
ical importance; further improvements need to optimize the choice
of a frame for shrinkage estimation or choose a different approach.

� Denoising of the dejittered image can be done by various meth-
ods. The approach of [5] suggests that PDE-based denoising
might remove some remaining artifacts. Much better quality
can be obtained using hybrid methods, such as [4,3] etc., but this
kind of methods need a considerable computation time.

� Overall, the proposed methods work well but they involve a
numerous parameters whose role need to be clarified in order to
fix them in a more pragmatic way. Nevertheless, it is much easier
to fix them compared to methods such as those proposed in
[14,5,6].

� The presence of additional impairments (especially when they
involve sets of pixels) are harmful for the proposed methods.
Adapted ways to deal with such situations have to be envisaged.

� Considerable improvement and simplifications can be expected if
we use the correlation between consecutive images in a video
sequence.

8. Conclusion and perspectives

The proposed dejittering approach is very simple, the obtained
results have a remarkable quality while the algorithms are very
fast, nearly real-time. The crux of the approach is (1) to minimize
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the p-power, for p 2 ½0:51� of the magnitude of the second-order
differences in the vertical direction and (2) to exclude from the dis-
placement estimation all pixels at the left-end and the right-end of
the image that can be due to the jitter, and (3) to dejitter the rows
successively. In the presence of additive noise, we proceed in two
steps: we slightly denoise each row so that dejittering is done in
the same way; then we use standard denoising tools.

The natural evolution of this work is to involve it in a full video
sequence restoration and to take advantage of the correlation be-
tween consecutive frames. Much better results can be expected
then.

The dejittering of images corrupted with a strong noise clearly
needs further improvements. Alternative ways to deal with jitter
in presence of various impairments should be envisaged.

Fig. 17. Boat (256� 256), corrupted with white centered Gaussian noise and independent uniform jitter on f�6; . . . ;6g. Dejittering is realized using Algorithm 1 for a ¼ 1.
The errors for the dejittered images (with respect to the noisy jitter-free images) read: MAE ¼ 4:73, PSNR = 25.63 and e1 ¼ 1:03. Denoising is realized by hard-thresholding of the
coefficients of the 2D Daubechies wavelet transform.

Fig. 18. Lena image, 512� 512, corrupted with 15 dB SNR white centered Gaussian noise and with independent, uniform jitter on f�6; . . . ;6g. Dejittering is done using
Algorithm 1(c) for a ¼ 1 and b ¼ 3. The errors with respect to the noisy non-jittered image read: MAE = 3.19, PSNR = 29.43 and e1 ¼ 0:59. Denoising: hard thresholding of the
coefficients of the 2D Daubechies wavelet transform, T ¼ 30.
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Fig. 21. (a)Boat image, 512� 512 contaminated with 10 dB white, zero-mean Gaussian noise and independent jitter, uniform on f�M; . . . ;Mg for M ¼ 8. The restoration in (b)
is obtained by the method proposed in [14]. The result of the Bake and Shake method [5] is shown in (c). Dejittering in (d) is obtained using Algorithm 3 for
T ¼ 50; uðtÞ ¼ jtj0:5; b ¼ 0 and N ¼ M þ 1. Denoising in (e) is obtained by hard thresholding of the curvelet transform of the dejittered image in (b) using the enhanced-
denoising program in the CurveLab 2.1.2 toolbox.

Fig. 19. Peppers (512� 512) corrupted with 15 dB SNR white centered Gaussian noise and with independent, uniform jitter on f�6; . . . ;6g. Dejittering is done using Algorithm
1(c) for b ¼ 3. The errors with respect to the noisy non-jittered image read: MAE = 5.8, PSNR = 27.59 and e1 ¼ 0:73. Denoising is done by hard thresholding of the coefficients of
the 2D Daubechies wavelet transform for T ¼ 30, PSNR = 29.34.

Fig. 20. Peppers (512� 512) contaminated with 10 dB white Gaussian noise and independent uniform jitter on f�6; . . . ;6g. Dejittering is done using Algorithm 3 for
T ¼ 50; uðtÞ ¼ jtj and N ¼ M þ 1 ¼ 7. Denoising uses hard-thresholding of the coefficients of the 2D Daubechies wavelet transform for T ¼ 50.
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Fig. 22. Boat image, 512� 512 contaminated with 10 dB white, zero-mean Gaussian noise and sinusoidal jitter—upper row: 6 sinð n
18Þ; 1 6 n 6 512, quantized on f�6; . . . ;6g;

lower row 6 sinðn5Þ; 1 6 n 6 512, quantized on f�6; . . . ;6g. In both cases dejittering is realized using Algorithm 3 for T ¼ 30; uðtÞ ¼ jtj0:5, b ¼ 0 and N ¼ M þ 1. Denoising is
obtained using the enhanced-denoising program in the CurveLab 2.1.2 toolbox.

Fig. 23. (a) Peppers image, 256� 256 contaminated with 40 dB white Gaussian noise and binomial jitter in f�8; � � � ;þ9g. The result in (b) is obtained using the method of
Shen [14]. (c) involves 2 steps: dejittering is done using Algorithm 3 using 1D Daubechies wavelets with 2 vanishing moments, T ¼ 20; L ¼ 1 uðtÞ ¼ jtj; b ¼ 1 and N ¼ 9.
Denoising is done by hard-thresholding of the coefficients of the curvelet transform of the dejittered image along with cycle-spinning [1].

Fig. 24. Lena ð256� 256Þ. Jittering follows a binomial distribution in f�8; � � � ;þ9g.
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Appendix A

Tables 1–3.

Table 1
Means of the errors (MAE, e1 ; e1%; e0%; eD

0 %) based on 1000 experiments (see Section 5). The letter ‘‘U” reminds that the jitter is uniform on f�6; . . . ;6g while ‘‘G”—that it is
truncated Gaussian, quantized on the same set. The best performance in terms of mean(MAE), mean(e1), mean(e1%) and mean(eD

0 %) for each image and each case of jitter is in
bold.

Alg. a Mean LENA PEPPERS BARBARA BOAT

U G U G U G U G

1 1 MAE 0.0910 0.3326 0.571 1.0667 3.5171 5.5625 0.0920 0.4299
e1 0.0412 0.1115 0.1942 0.3430 0.3989 0.6948 0.0319 0.0783
e1 % 0.4814 0.3416 1.9566 1.9914 1.1125 0.9953 0.5412 0.3023
e0 % 2.0596 6.4406 8.8574 14.712 28.730 44.334 1.5512 5.6631
eD

0 % 0.3069 0.2971 1.9984 2.0714 2.0245 1.9348 0.2293 0.199

1 1
2 MAE 0.0851 0.3253 0.5594 1.0035 3.5034 4.4382 0.1353 0.461

e1 0.0388 0.1068 0.1804 0.3027 0.4301 0.5650 0.0454 0.0897
e1 % 0.4732 0.3285 1.6725 1.5715 1.1109 0.9141 0.6734 0.401
e0 % 1.9656 6.4055 8.833 14.355 27.992 36.492 2.2102 6.0908
eD

0 0.2941 0.2810 1.672 1.6781 1.5665 1.4115 0.4143 0.3266

1(a) 1 MAE 0.0910 0.3326 0.5954 1.0947 3.5456 5.5638 0.0953 0.432
e1 0.0412 0.1115 0.2027 0.3516 0.4034 0.6949 0.0324 0.0785
e1 % 0.4814 0.3416 1.9357 1.9756 1.1068 0.9906 0.5301 0.3008
e0 % 2.0596 6.4406 9.0459 14.985 29.031 44.351 1.6012 5.692
eD

0 % 0.3069 0.2971 1.8597 1.9534 2.0049 1.9243 0.2331 0.2002

1(a) 1
2 MAE 0.0851 0.3253 0.5676 1.03 3.5157 4.4398 0.1392 0.4719

e1 0.0388 0.1068 0.1845 0.3107 0.4315 0.5654 0.0465 0.0915
e1 % 0.4732 0.3285 1.6285 1.5234 1.0908 0.9064 0.6572 0.3961
e0 % 1.9656 6.4055 8.8369 14.756 28.231 36.539 2.2693 6.2256
eD

0 % 0.2941 0.2810 1.4965 1.4849 1.5014 1.3928 0.4237 0.3301

1(b) 1 MAE 0.1206 0.4594 0.5987 1.0989 3.1244 5.6618 0.1467 0.6639
e1 0.0653 0.1742 0.2048 0.3529 0.3384 0.714 0.0662 0.1495
e1 % 1.7887 1.5762 2.1447 2.0658 1.9543 1.7873 2.1092 1.7545
e0 % 2.3828 9.0568 9.0646 15.057 24.511 43.769 2.4264 8.6869
eD

0 % 0.7812 0.9859 2.0129 2.1076 2.0746 2.3221 0.7411 0.8413

1(b) 1
2 MAE 0.1196 0.4819 0.5869 1.0987 3.3685 4.6749 0.1591 0.5879

e1 0.0644 0.1750 0.1926 0.3306 0.4223 0.6024 0.071 0.1416
e1 % 1.7752 1.5504 2.0033 1.8443 1.952 1.743 1.965 1.6744
e0 % 2.416 9.609 9.0338 15.369 25.137 36.673 2.6246 7.7424
eD

0 % 0.7575 0.9336 1.7411 1.8446 1.5933 1.7325 0.875 0.9239

Table 2
Percentage of the cases when eD

0 6 0:8% jointly with e1 6 0:4% or e1 6 0:6% based on the same set of 1000 experiments (Table 1). The values for e1 6 0:6% are in italic to
facilitate the reading. The best percentages for ðe1 6 0:4%; eD

0 6 0:8%Þ are in bold while the best ones for ðe1 6 0:6%; eD
0 6 0:8%Þ are in serif. For the interpretation of these result,

see Remark 6.

Alg. a % LENA PEPPERS BARBARA BOAT

U G U G U G U G

1 1 e1 6 0.4 % 52 71.4 1.7 0.0 8.9 11.8 48.7 74.6
e1 6 0.6 % 67.5 81.9 4.6 1.0 29.8 34.6 55.8 84

1 1
2 e1 6 0.4 % 52.8 73.5 3.5 2 11.4 22.8 37.3 60.1

e1 6 0.6 % 68.2 84.1 11.4 8.3 28.2 46.7 49.3 78

1(a) 1 e1 6 0.4 % 52 71.4 3.6 0.7 8.9 11.8 49 74.8
e1 6 0.6 % 67.5 81.9 9.3 3.2 30.4 34.9 56.7 84.3

1(a) 1
2 e1 6 0.4 % 52.8 73.5 10 6.5 11.5 22.9 38.7 60.3

e1 6 0.6 % 68.2 84.1 20.1 21.4 29.1 47.3 51.7 78.7

1(b) 1 e1 6 0.4 % 1.6 1.2 0.0 0.0 0 0 1.5 1.2
e1 6 0.6 % 4 3.8 0.3 0 1.5 0.0 4 2.8

1(b) 1
2 e1 6 0.4 % 1.6 1.4 0.0 0 0.0 0.0 1.5 0.7

e1 6 0.6 % 4 4.1 0.5 0.0 1.3 0.3 3.4 2.7
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Table 3
Variances of the errors MAE and e1, based on the same set of 1000 experiments of Table
1.

Alg. a Var LENA PEPPERS BARBARA BOAT

U G U G U G U G

1 1 MAE 0.0148 0.3542 0.0573 0.4044 0.8986 4.4853 0.0206 0.5596
e0 0.0028 0.0296 0.0059 0.0256 0.0241 0.1262 0.0011 0.012

1 1
2 MAE 0.0108 0.3527 0.067 0.4625 0.3728 1.5198 0.0277 0.5502

e0 0.0022 0.0286 0.0062 0.0291 0.0079 0.0308 0.0017 0.012

1(a) 1 MAE 0.0148 0.3542 0.0537 0.3637 0.9146 4.4685 0.0225 0.5606
e0 0.0028 0.0296 0.0053 0.0229 0.0247 0.1258 0.0012 0.012

1(a) 1
2 MAE 0.0108 0.3527 0.0614 0.4041 0.3659 1.5345 0.0293 0.5688

e0 0.0022 0.0286 0.0057 0.0242 0.0077 0.0312 0.0017 0.0124

1(b) 1 MAE 0.0105 0.2832 0.0479 0.3519 0.3393 5.481 0.0257 0.739
e0 0.0025 0.0180 0.0047 0.0217 0.0081 0.157 0.0017 0.0147

1(b) 1
2 MAE 0.0092 0.31255 0.0504 0.4045 0.3723 1.9397 0.025 0.722

e0 0.0023 0.0191 0.0045 0.0236 0.0076 0.032 0.0017 0.0135
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