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Abstract

In this paper we address the problem of reconstructing a high resolution volumic image from several low resolution data
sets. A solution to this problem is proposed in the particular framework of magnetic resonance angiography (MRA), where
the resolution is limited by a trade-o5 between the spatial resolution and the acquisition time, both being proportional to
the number of samples acquired in k-space. For this purpose only the meaningful spatial frequencies of the 3D k-space
of the vessel are acquired, which is achieved using successive acquisitions with decreased spatial resolution, leading to
highly anisotropic data sets in one or two speci8c directions. The reconstruction of the MRA volume from these data sets
relies on an edge-preserving regularization method and leads to two di5erent implementations: the 8rst one is based on a
conjugate gradient algorithm, and the second one on half-quadratic developments. The hyper parameters of the method were
experimentally determined using a set of simulated data, and promising results were obtained on aorta and carotid artery
acquisitions, where on the one hand a good 8delity to the acquired data is maintained, and on the other hand homogeneous
areas are smooth and edges are well preserved. Half-quadratic regularization proved to be particularly well adapted to the
MRA problem and leads to a fast iterative algorithm requiring only scalar and FFT computations.
? 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Due to its numerous advantages for the patient
(non-allergenic, non-ionizing), magnetic resonance
angiography (MRA) already challenges X-ray An-
giography as the reference modality for the imaging
of the large arteries and peripheral vascular network
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[26]. Magnetic resonance imaging (MRI) relies on the
so-called “frequency (respectively phase) encoding”
principle: the frequencies (respectively the phases)
of the received signals are proportional to the spatial
positions of the voxels which emitted those signals,
provided that convenient magnetic gradient 8elds
have been applied during the acquisition. As a con-
sequence, the data acquired in MRI are the Fourier
transform of the image and are called “k-space”.
When acquiring a 3D MR volume, spatial discrim-

ination is achieved using frequency encoding in one
direction and phase encoding in the two other direc-
tions. The acquisition time of a 3D MRA data set is

Tacq = TRN�N�; (1)

where the repetition time TR includes the time needed
to measure a “line” of the k-space along the frequency
encoding direction, and N� and N� are the numbers
of encoding steps in both phase encoding directions.
The voxel size can be expressed as

V = k
1
N�

1
N�

; (2)

where k is a constant depending on the acquisition
setup.
Eqs. (1) and (2) show that 3D MRI is drastically

limited by a trade-o5 between the acquisition time and
the spatial resolution.
In order to reduce the acquisition time, technical

improvements have been implemented such as the de-
velopment of very fast and intense space encoding
gradients.
Acquiring larger and larger regions of the k-space

with a single RF pulse has also been proposed. This
approach leads to multishot or EPI sequences, most
often designed for Cartesian k-space, but also leads
to the development of non-Cartesian k-space 8llings.
Time-sparing k-space trajectories are, for example,
spiral trajectories [11], circular sampling [3,30],
rosette trajectories [21], or PROPELLER line tra-
jectories [23]. These data have to be converted to a
Cartesian grid before to be transformed into the MR
image; this resampling is achieved using interpolation
methods [22] or, most often, gridding methods [29].

Acquiring an incomplete k-space was proposed as
an alternative to the previously mentioned techniques
and was mainly implemented using Cartesian grid ac-
quisitions. The simplest way to spare time during the

acquisition is to omit a number of lines. Half-k-space
techniques omit almost all “positive” frequencies in
a given phase encoding direction except in the cen-
ter of the k-space, and use the symmetry properties
of the Fourier transform of real data to estimate the
missing “half-k-space”. Cao et al. [7] as well as
Plevritis et al. [24] use anatomical prior knowledge
to optimally choose the samples to omit. Dologlou
et al. [12] present an SVD-based estimation of these
missing samples.
We propose a di5erent approach to improve acquisi-

tion time without degrading the resolution, consisting
in acquiring only the k-space regions containing the
useful spatial frequencies of the gadolinium enhanced
vessel [18]. It was shown that using two or three dou-
ble oblique acquisitions orthogonal to each other made
it possible to collect the k-space data adapted to recon-
struct a stenosed artery segment in routine examina-
tions. The method, unlike previous ones, does not try
to cover the whole k-space. The previously mentioned
methods achieve a time gain using a sparse sampling
of the k-space, but they keep trying to cover both the
low and high frequencies of the k-space. Here a dense
sampling is proposed, but for each acquisition a selec-
tion is made to only acquire the meaningful frequen-
cies, which is also a way to decrease the acquisition
time.
In practice, the method can be formulated in the im-

age domain as the acquisition of few volumic data sets
with complementary resolutions, each of them con-
taining the high frequencies missing in the other ones.
Then the reconstruction of a unique high-resolution
isotropic volume is performed.
This paper investigates the possibility to signi8-

cantly improve the quality of the MRA reconstruction
by introducing edge-preserving regularization tech-
niques.
Because the center of k-space is favored by the ac-

quisition process, the frequency content of the white
homogenous gadolinium enhanced vessels may be
correctly accounted for. In addition we introduced
a L2 norm regularization term to further improve
homogeneity and SNR of the vascular image. Con-
cerning the edges of the vessel, it is expected that
the high frequencies missing in one acquisition will
be substituted by the high frequencies contained
in the other acquisitions. However, sharp and pre-
cisely located edges being a major requirement for
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segmentation and quantization of vessels in MRA,
we also introduce some a priori knowledge into the
reconstruction method in order to further outline
edges. This is achieved by using edge-preserving reg-
ularization techniques. Finally we expect that edge
restoration will also contribute to improve the quality
of the reconstruction when the vessel is incorrectly
aligned in the geometry of the k-space acquisition.
In this case, some additional high frequencies can be
missed because the frequency support of the image is
no more totally included in the acquired k-space.
Section 2.1 presents the original acquisition se-

quence on which our work is based, whereas Section
2.2 describes the reconstruction method. In order to
solve the combination problem, an accurate modeling
of the anisotropic undersampling of M.R. images is
required, which is presented in Section 3.1. The crite-
ria for combining the acquisitions are expressed as an
energy function to be minimized, detailed in Section
3.2. In Section 4 we show how to take advantage
of both the properties of the model in the spectral
domain, and those of half-quadratic regularization
algorithms, leading to the development of a simple
and eMcient reconstruction algorithm. Results were
validated on simulated data (Section 5) and results
on real data are shown in Section 6.

2. Acquisition and combination strategy

2.1. Description of the acquisition process

In this section, we present the acquisition scheme,
which consists in acquiring three anisotropically un-
dersampled 3D MR volumes.
Since the acquisition time is proportional to the im-

age dimensions in both phase encoding directions for
an unchanged 8eld of view (i.e. an unchanged value
of the product voxel dimension × number of voxels)
in each direction of the space, the acquisition time can
thus be reduced by decreasing the number of voxels
in both phase encoding directions.
Accordingly, we propose to acquire three volumes,

each having decreased resolutions along both phase
encoding directions. This is achieved by permutation
of the frequency encoding direction, so that for each
direction, at least one of the three volumes presents
a “good” resolution (Fig. 1b). The so-called “refer-
ence volume” of Fig. 1a is the volume that would be

N f

Nφ
NΦ

N

N

Nφ3

f3

Φ3

Nf2

Nφ2

NΦ2

f1N

NΦ1

Nφ1

(a)

(b)

Fig. 1. (a) The reference volume, obtained with a conventional
acquisition scheme. (b) The acquisition strategy in the general
case, which consists in decreasing the resolution in both phase
encoding directions for each acquisition, and in permutating the
encoding directions between the di5erent acquisitions.

acquired in a conventional acquisition scheme provid-
ing in each direction the best of the resolutions of the
three volumes in the considered direction. An isotropic
reference volume is dealt with in the following for the
sake of readability.
According to the properties of the Fourier trans-

form, acquiring an undersampled volume corresponds
to acquiring a truncated k-space, i.e. a k-space with-
out the highest frequencies along the undersampling
direction.
It would also be possible to acquire two volumes

instead of three, and thus to decrease the resolution
in only one of the two phase encoding directions, in
order to always keep two “good” resolutions in any
of the volumes for each direction. In the following,
for the sake of generality we will always consider the
three-acquisition case in our theoretical developments.
Having de8ned the acquisition sequence, we can

now compute the resulting acquisition time according
to Eq. (1). Let Nfi be the numbers of voxels in the
frequency encoding direction in the ith volume, and
N�i and N�i the numbers of voxels in both phase en-
coding directions, according to Fig. 1. The repetition
time TR is supposed to be the same for all the acqui-
sitions. Let us recall that a variable number of vox-
els in the frequency direction would not lead to any
improvement, since it does not a5ect signi8cantly the
acquisition time.
According to Eq. (1), the time needed to acquire

the ith volume Vi (i varying from 1 to 3) is

Ti = TRN�iN�i (3)
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leading to a total acquisition time of

T1+2+3 = TR(N�1N�1 + N�2N�2 + N�3N�3); (4)

whereas the acquisition time for a unique volume V
with dimensions N�N�Nf would be

T0 = TRN�N�: (5)

The time gain can thus be expressed as

GT = 1 − T1+2+3

T0

= 1 − (N�1N�1 + N�2N�2 + N�3N�3)
N�N�

: (6)

This gain only depends on the ratios between the
resolutions in the multiple acquisition case and the ref-
erence acquisition case. For instance, if N�i = N�=3,
and N�i = N�=3 the whole acquisition time is three
times shorter; if N�i =N�=

√
3, and N�i =N�=

√
3, the

acquisition time remains unchanged but the SNR and
resolution of the reconstructed volume will be im-
proved. Finally if N�i = N�, and N�i = N�, the best
resolution can be achieved by increasing the acquisi-
tion time to three breath-holdings of the patient: this
triples the overall acquisition time and therefore also
the resolution.
Studying the behavior of the acquisition process in

terms of noise is not as easy as in terms of acquisition
time: as a matter of fact, the noise variance in the 8nal
high resolution volume does not only depend on the
acquisition process, but also on the combination strat-
egy. However, acquiring an undersampled volume
allows to reduce the noise variance when compared to
the reference high-resolution volume, since the noise
standard deviation � is related to the volume dimen-
sions as �=Nf

√
N�N�. According to the acquisition

process, the low frequency coeMcients of the k-space
are acquired two or three times, leading to data
redundancy and thus to an improvement of the SNR.
Moreover, since the reconstruction method we pro-
pose includes a L2 regularization, noise will be further
attenuated in the reconstruction process.

2.2. Combining the undersampled volumes

Having de8ned the acquisition scheme as in
Section 2.1, our goal is now to reconstruct a unique
high-resolution volume from three undersampled

versions. This is a reconstruction or restoration prob-
lem and belongs to the family of inverse problems
[4,10,19]. Since the data are discrete and the imag-
ing system is band-limited, it can be proven that
the solution is not unique and thus that the problem
is ill-posed. For such problems, so-called general-
ized solutions are used such as the Wiener 8lter
[1]. Moreover, most discrete inverse problems are
ill-conditioned, i.e. noise in the data is ampli8ed dur-
ing the inversion process, which leads to unaccept-
able solutions. Therefore, approximate solutions are
proposed and a priori information is introduced: the
matter is to de8ne a set of acceptable solutions (i.e.
with limited error) and to choose among these solu-
tions the best one according to an a priori criterion.
This regularization generally consists in minimizing
an objective function (also called energy function) of
the form Q + ��, where Q measures the 8delity to
the data, � measures the regularity of the solution,
and � is a weighting factor of the regularization.
The a priori criterion � has to be chosen according

to the foreseen use of the reconstructed signal or im-
age; the numerous applications that impose a precise
edge localization, for example, call for the framework
of edge-preserving regularization. In this framework,
the term � to be minimized is generally expressed
as a sum over all sites (i.e. voxels in 3D images) of
a regularization function (also called ’-function) ap-
plied to the neighbor di5erences. The choice of the
’-function determines the quality of the solution and
the optimization method to be used; it has been ad-
dressed by many authors [6,9,15].
Here, the forseen application includes vessel seg-

mentation and stenosis quanti8cation. According to
these considerations, it appears that the framework of
edge-preserving regularization methods is well suited
to the present problem.
The choice of the a priori criteria and the expression

of the energy function are detailed in Section 3.

3. Edge-preserving reconstruction

The energy function to be minimized has the
following form:

E = Q + ��; (7)
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where � leads to a trade-o5 between �, the regular-
ization term, and Q, the 8delity to the data.
The expression of the energy function requires an

accurate modeling of the anisotropic undersampling;
this is developed below in Section 3.1. Section 3.2
presents the energy function in more details, and its
convexity is discussed in Section 3.3. The choice of
the optimization algorithm is justi8ed in Section 3.4.

3.1. Modeling of the undersampling

Let Ixy be the image acquired with a decreased res-
olution along x and y; let Ixz and Iyz be the two other
acquisitions de8ned in the same way. Ixy for instance
is related to the wished high resolution image IHR by

Ixy(x; y; z) =
Nx∑
k=0

Ny∑
l=0

Dxy(k; l)IHR(x − k; y − l; z);

(8)

where Dxy is the undersampling operator along x and
y. Dxy is separable:

Dxy(k; l) = Dx(k)Dy(l); (9)

where Dx and Dy are the undersampling operators
along x and y respectively.
Note that Ixy, Iyz, Ixz, and IHR are the discrete

Fourier transforms (DFTs) of k-spaces with di5erent
spectral supports: it seems reasonable to extend these
supports to the smallest common cartesian support.
This is achieved by interpolation and presented in
Appendix A.
Let us now express the operators Dx, Dy and Dz.

Let JHR be the DFT of IHR, and Jxy that of Ixy. The
relation between JHR and IHR is

J (fx; fy; fz)

=

Nx
2 −1∑

x′=−Nx
2

Ny

2 −1∑
y′=−Ny

2

Nz
2 −1∑

z′=−Nz
2

FNx(fx; x′)FNy(fy; y′)

×FNz (fz; z′)IHR(x′; y′; z′); (10)

where FN denotes the discrete Fourier transform
matrix operator of size N :

FN (n; k) =
1
N

e−j2�nk=N with

n; k = −N
2

· · · N
2

− 1: (11)

The inverse DFT matrix operator is de8ned as

F−1
N (n; k) = e j2�nk=N with

n; k = −N
2

· · · N
2

− 1: (12)

As mentioned above, the acquisition process consists
in acquiring a truncated k-space, i.e. Ixy is related to
JHR by

Ix(x; y; z)

=

N ′
x
2 −1∑

fx=−N ′
x
2

N ′
y

2 −1∑
fy=−

N ′
y

2

Nz
2 −1∑

fz=−Nz
2

F−1
Nx

(x; fx)F−1
Ny

(y; fy)

×F−1
Nz

(z; fz)J (fx; fy; fz): (13)

Note the truncated summation limits in x and y direc-
tions. Eqs. (10) and (13) give the following relation
between IHR and Ixy:

Ix(x; y; z)

=

N ′
x
2 −1∑

fx=−N ′
x
2

N ′
y

2 −1∑
fy=−

N ′
y

2

Nz
2 −1∑

fz=−Nz
2

[F−1
Nx

(x; fx)

×F−1
Ny

(y; fy)F−1
Nz

(z; fz)

×
Nx
2 −1∑

x′=−Nx
2

Ny

2 −1∑
y′=−Ny

2

Nz
2 −1∑

z′=−Nz
2

FNx(fx; x′)FNy(fy; y′)

×FNz (fz; z′)I(x′; y′; z′)] (14)

from which it can be easily derived that the degrada-
tion operator is linear and separable.
Let us then consider the degradation operator along

one direction at a time, for instance Dx along x,
working on a one-dimensional vector (i.e. a row from
the 3D image taken along direction x). We can then
express the operator as a matrix within the frame-
work of linear algebra. Under these conditions, the
one-dimensional DFT of Ix(•; y; z) is
DFT(Ix) =MxFxIHR ; (15)
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where Mx is a Nx × Nx diagonal matrix:

Mx(i; i) = 1 if − N ′
x
2 + 16 i6 N ′

x
2 − 1;

Mx(i; i) = 0:5 if i = −N ′
x
2 or i = N ′

x
2 ;

Mx(i; i) = 0 otherwise:

(16)

This expression with the 0.5 coeMcient guarantees the
consistency with Appendix A regarding the constraint
of keeping real-valued images. Therefore

Ix = F−1
x MxFxIHR : (17)

Thus

Ix = DxIHR ; (18)

where the degradation operator Dx is expressed as

Dx = F−1
x MxFx: (19)

The analytic expression of Dx is provided in
Appendix B and it can be easily seen that it is a
circulant operator. The operators Dy and Dz can be
expressed in a similar way. The whole 3D problem
can also be expressed with matrix operators, but it
requires to work on vector data (i.e. to put the 3D
image matrix into a large vector) and to transform the
operators Dx, Dy and Dz into large matrix operators,
according to [25,27]. In the following we will deal
with such vectors and matrices and use bold font to
distinguish them from the operators working in one
dimension. For example, Dx denotes the “big” matrix
working on the “big” vector IHR obtained by concate-
nation of all the images values into a “big” column
vector; the way to compute Dx from Dx is detailed
in [25,27]. Such linear algebra notations allow to
express for example Eq. (8) with matrix operators:

Ixy = DxDyIHR : (20)

3.2. The energy function

3.2.1. Fidelity to the data
The matter is to minimize the sum of the quadratic

errors between the reconstructed image and the data:

Q= ‖DxyIrec − Ixy‖2 + ‖DyzIrec − Iyz‖2

+‖DzxIrec − Izx‖2; (21)

where Dxy, Dyz and Dzx are the “big” undersampling
operators obtained from those of Section 3.1, ‖:‖ rep-
resents the quadratic norm, Irec is the high-resolution
image at current iteration (the optimization of E is
based on an iterative method), Ixy, Iyz and Ixz are the
low-resolution input images put in vector form.

3.2.2. Regularization term
Asmentioned in Section 2.2, the regularization term

� is de8ned as a ’-function of the neighbor di5er-
ences; here the chosen ’-function is called  (to avoid
confusion with the phase encoding directions) and is
applied to the 8rst order neighbor di5erences. Let  N

be the N × N matrix operator of the neighbor di5er-
ences. Since data are acquired in the spectral domain,
and the DFT implicitly assumes the periodicity of both
signal and spectrum, the border conditions are chosen
here to be periodic ones, leading to

 N =




1 0 · · · 0 −1

−1 1 0

0
. . .

. . .
...

...
. . .

. . . 0

0 · · · 0 −1 1




: (22)

The regularization term � takes the following form:

�= ‖ (�yIrec)‖1 + ‖ (�xIrec)‖1
+‖ (�zIrec)‖1; (23)

where �x, �y and �z are the “big” matrices obtained
from  N according to Section 3.1 and to [25,27], and
‖‖1 denotes the L1 norm.
The choice of the potential function  results

from a trade-o5: the ideal edge-preserving potential
functions are those which have an asymptotic Nat
behavior towards in8nity, such as that of Blake and
Zisserman [6], Geman and McClure [16], or Hebert
and Leahy [17]; unfortunately, all these functions
are not convex and therefore compel to use time-
consuming optimization algorithms.
On the contrary, the function that is best suited to

fast algorithms such as the conjugate gradient algo-
rithm is that of Tikhonov (quadratic function), but un-
fortunately it smoothes discontinuities.
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Fig. 2. Left: the Huber potential function. Right: its derivative.

Therefore we chose the Huber potential function
[5], which is convex and has an asymptotic linear be-
havior towards in8nity which allows us to preserve the
discontinuities in a satisfactory way. When applied to
the 8rst order neighbor di5erences, the Huber poten-
tial function makes areas with small local di5erences
more homogeneous, while preserving discontinuities
i.e. strong di5erences between neighbor voxels.
The Huber function (Fig. 2) can be expressed as [5]{
 (x) = x2 if |x|6 !;

 (x) = 2!|x| − !2 if |x|¿!
(24)

and its derivative:{
 ′(x) = 2x if |x|6 !;

 ′(x) = 2! sign(x) if |x|¿!:
(25)

The parameter ! allows us to tune the function be-
havior as follows: the smaller !, the more the function
resembles the |x| function, thus the better the image
contours are preserved; on the contrary, the larger !,
the more the function resembles the x2 function, thus
the more the contours are smoothed [20] and the bet-
ter the noise is 8ltered.

3.3. Study of the convexity

The convergence problem arises as soon as the en-
ergy function is not convex. Indeed, in this case, the
conventional optimization algorithms can only pro-
vide a local minimizer of the energy function. That is
why the convexity of the energy function is of primary
importance. We show in [27] that the energy function
is convex, but that the strict convexity of the energy
function depends on the image considered, because of
the non-linearity of the regularization function.

3.4. Choice of the minimization algorithm

The convexity of the energy function allows us
to use a simple deterministic algorithm. Among the
existing algorithms, we choose to use the conjugate
gradient algorithm for its simplicity and eMciency.
Particularly, if the energy function can be expressed as
a quadratic form, the conjugate gradient algorithm has
interesting convergence properties; our energy func-
tion is not strictly quadratic but is composed of sev-
eral quadratic or nearly quadratic terms, which lets
us think that the convergence may be acceptable. The
conjugate gradient algorithm requires to evaluate at
each iteration not only the energy E(Irec) as a function
of the current image Irec, but also its partial derivatives
�E(Irec)i; j with respect to the image intensity Irec(i; j)
of each pixel of the current image. This is provided in
Appendix C.

4. Half-quadratic regularization

In this section, we propose an alternative method
to solve the reconstruction problem. It is based on
the notion of half-quadratic regularization and on the
ARTUR and LEGEND algorithms, developed in [8].

4.1. Principle

The main idea of these approaches consists in intro-
ducing an auxiliary variable b and to modify the non
quadratic objective function E into a half-quadratic
function E∗ such that [8,14]

E(Irec) = min
b

E∗(Irec; b); (26)

where b represents the discontinuities, also called line
process. Hereafter, we assume that E(Irec) can be writ-
ten as

E(Irec) = ‖DIrec − Idata‖2 + �

[∑
k

 (( xIrec)k)

+
∑
k

 (( yIrec)k) +
∑
k

 (( zIrec)k)

]
;

(27)

where  is a regularization function,  xIrec,  yIrec
and  zIrec are the neighbor di5erences in each spa-
tial direction, Idata is the observed image and D is
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the degradation operator. The auxiliary variable can
be de8ned in two ways. In the 8rst one [8], it is as-
sumed that  (

√
(u)) is strictly convex and b∈ [0; 1]

is de8ned such that  (u) = inf b bu2 + &(b). In the
second approach [2], it is assumed that u2 −  (u) is
strictly convex, and b∈ [0;+∞] is de8ned such that
 (u)= inf b (b−u)2 +&(b). The ARTUR algorithm is
based on the 8rst approach, while LEGEND is based
on the second one.
For regularization functions which are convex,

non-bounded and with bounded 8rst derivative, it can
be proved that E∗(Irec; b) is quadratic in Irec for 8xed
b, and E∗(Irec; b) is convex in b for 8xed Irec; the
value of b which minimizes E∗(Irec; b) for 8xed Irec
is known analytically.
The algorithms rely on these properties and alter-

natively minimize E∗ in b for 8xed Irec and in Irec for
8xed b.
Both problems can be expressed with linear alge-

bra and amount to solve a linear system of the form
AIrec = c (see [27]). In ARTUR, A depends on the it-
eration, while it is constant in LEGEND. Moreover, in
the case of LEGENDA is invertible, while this is ques-
tionable in the case of ARTUR. For these reasons, we
chose to express the problem using LEGEND, 8rstly
in the spatial domain, and then alternatively in the
spectral domain, for reasons that will be explained in
Section 4.2.

4.2. LEGEND algorithm in the spatial domain

According to the principle explained above, the al-
gorithm has to compute Inrec by solving ∇E = 0 for
8xed bn

x , b
n
y and bn

z , and to compute the auxiliary vari-
ables bn+1

x , bn+1
y and bn+1

z as functions of Inrec (in these
expressions, n denotes the iteration number).
It has been shown in [8] that bn+1

x can be expressed
as

(bn+1
x )k =

[
1 −  ′[(�xInrec)k ]

2(�xInrec)k

]
(�xInrec)k : (28)

For the 8rst computation, we have to derive an ex-
pression of ∇E = 0. The regularization term can be
written as

�(Irec) = inf
bx;by;bz

[�∗(Irec; bx; by; bz)] (29)

with

�∗ =
∑

i

∑
j

∑
k

(by(i; j; k) − (Irec(i; j; k)

−Irec(i − 1; j; k)))2 + &(by(i; j; k))

+
∑

i

∑
j

∑
k

(bx(i; j; k) − (Irec(i; j; k)

−Irec(i; j − 1; k)))2 + &(bx(i; j; k))

+
∑

i

∑
j

∑
k

(bz(i; j; k) − (Irec(i; j; k)

−Irec(i; j; k − 1)))2 + &(bz(i; j; k)) (30)

i.e., using matricial notations:

�∗ = (bx − �xIrec)T(bx − �xIrec)

+(by − �yIrec)T(by − �yIrec)

+(bz − �zIrec)T(bz − �zIrec)

+
∑
k

[&(bx(k)) + &(by(k)) + &(bz(k))]: (31)

The partial derivatives of �∗ with respect to Irec are

��∗ = 2[�T
x �xIrec − �T

x bx + �T
y�yIrec

−�T
yby + �T

z �zIrec − �T
z bz] (32)

from which we derive the following expression of
�E∗:

�E∗ = 2[DT
xyDxy + DT

yzDyz + DT
xzDxz

+�(�T
x �x + �T

y�y + �T
z �z)]Irec

−2[DT
xyIxy + DT

yzIyz + DT
xzIxz

+�(�T
x bx + �T

yby + �T
z bz)] (33)

and �E∗ = 0 is equivalent to

[DT
xyDxy + DT

yzDyz + DT
xzDxz

+�(�T
x �x + �T

y�y + �T
z �z)]Irec

=[DT
xyIxy + DT

yzIyz + DT
xzIxz

+�(�T
x bx + �T

yby + �T
z bz)] (34)

which is an expression of the form AIn+1
rec = c with A

constant and where c depends on Inrec.
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As mentioned in Section 3.1, Dx and  x are circu-
lant operators; it is well known that if a matrix C is
circulant, then so is CTC, and that the sum of circu-
lant matrices is also circulant. Thus, A is also circu-
lant. Because of the interesting properties of circulant
matrices in the Fourier domain (they become diago-
nal matrices), we propose to express the problem in
the spectral domain in Section 4.3.

4.3. LEGEND algorithm in the spectral domain

Equation AIn+1
rec = c can be rewritten as

FxFyFzAF−1
x F−1

y F−1
z Jn+1

rec = FxFyFzc; (35)

where Jn+1
rec is the discrete Fourier transform of In+1

rec .
Let Hxyz be de8ned as

Hxyz = FxFyFzAF−1
x F−1

y F−1
z : (36)

It can be written as

Hxyz = Hxy + Hyz + Hxz + Hx + Hy + Hz ; (37)

where for example Hxy only operates along directions
x et y, and so on. Since matrices operating along dif-
ferent directions commute [27], we have

Hxy = FxDT
x DxF−1

x FyDT
yDyF−1

y (38)

as well as

Hx = �Fx�
T
x �xF−1

x (39)

and similar expressions can be derived for Hyz, Hxz,
Hy and Hz. From these expressions it can be easily
shown that all elements of Hxyz are diagonal, and thus
so is Hxyz. It has been proven in [27] that Hxyz is also
invertible. Eq. (35) can therefore be solved by scalar
divisions in the Fourier domain:

Jn+1
rec (k) =

(FxFyFzc)(k)
Hxyz(k; k)

: (40)

Let us now consider the term FxFyFzc:

FxFyFzc = FxDT
x F

−1
x FyDT

yF
−1
y Jxy

+FyDT
yF

−1
y FzDT

z F
−1
z Jyz

+FxDT
x F

−1
x FzDT

z F
−1
z Jxz

+�[Fx�
T
x F

−1
x (x + Fy�

T
yF

−1
y (y

+Fz�
T
z F

−1
z (z]; (41)

where (x, (y and (z are the DFT of bx, by and bz

respectively. Since  x is a circulant matrix, it follows
that Fx T

x F
−1
x is diagonal, and its diagonal elements

are expressed as the DFT of the series  x(m − n) for
m − n varying from −Nx=2 to Nx=2 − 1 (up to Nx):

(Fx T
x F

−1
x )(m;m) = 1 − e j2�m=Nx : (42)

Let us denote this matrix by Px; similar expressions
are obtained for Py and Pz. Let us also note Jxyz the
constant term:

Jxyz = FxDT
x F

−1
x FyDT

yF
−1
y Jxy

+FyDT
yF

−1
y FzDT

z F
−1
z Jyz

+FxDT
x F

−1
x FzDT

z F
−1
z Jxz: (43)

Finally we get

Jn+1
rec (k) =

Jxyz(k) + �[Px(k; k)(n+1
x (k) + Py(k; k)(n+1

y (k) + Pz(k; k)(n+1
z (k)]

Hxyz(k; k)
(44)

The adaptation of LEGEND to our problem consists
in iterating the following steps:

• Compute bn+1
x , bn+1

y , bn+1
z using Eq. (28).

• Compute the DFT (n+1
x , (n+1

y , (n+1
z of bn+1

x , bn+1
y ,

bn+1
z .

• Compute Jn+1
rec according to

(Jn+1
rec )k = (K1)k + (K2)k((n+1

x )k + (K3)k((n+1
y )k

+(K4)k((n+1
z )k (45)
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Fig. 3. Left: the high-resolution phantom, Middle: simulation of the
noisy acquisition with undersampling along x, Right: simulation of
the noisy acquisition with undersampling along y. Undersampling
ratio is here 64/20.

with

(K1)k =
(Jxyz)k
(Hxyz)k;k

;

(K2)k = �
(Px)k;k
(Hxyz)k;k

;

(K3)k = �
(Py)k;k
(Hxyz)k;k

;

(K4)k = �
(Pz)k;k
(Hxyz)k;k

: (46)

• Compute the inverse DFT In+1
rec of Jn+1

rec .

Note that in Cartesian coordinates, the DFT bene8ts
of FFT algorithms.

5. Validation and discussion

In this section we evaluate the reconstruction on a
phantom in terms of edge preservation and 8delity to
the data. This evaluation is performed on a set of two
anisotropic 2D images coded on 8 bits, each with a
decreased resolution along one direction.
Fig. 3 presents the high-resolution phantom, com-

posed of areas with constant intensities, as well as
both anisotropic simulated acquisitions (after addition
of Gaussian white noise with standard deviation 10%
of the maximum grey level, and zero-padding inter-
polation with an undersampling ratio of 3.2).

5.1. Comparison of both reconstruction algorithms:
conjugate gradient and LEGEND

We 8rst compare the two proposed algorithms in
terms of computation time, convergence speed and
sensitivity to the initialization.

Fig. 4. Evolution of the solution using the conjugate gradient
method (left) and LEGEND (right). The last iteration corresponds
to the convergence.

Fig. 4 illustrates a few iterations of the two algo-
rithms applied on the images of Fig. 3. The energy
variation is shown in Fig. 5. These results were ob-
tained for a null initialization and with parameters
�= 10 and != 2 (for images with 256 grey levels).
For the conjugate gradient method, the 8rst iteration

corresponds to a non-regularized solution, which is il-
lustrated in Fig. 4. At this step, the data 8delity term
is therefore minimal while the regularization term can
be anything. During the iterations, the regularization
has an increased inNuence, leading to a smoother so-
lution, as can be seen in Fig. 5.
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Fig. 5. From top to bottom: variation of the total energy, of the data 8delity term and of the regularization term. Plain line: conjugate
gradient; dotted line: LEGEND.

For LEGEND, the discontinuities are progressively
introduced [8]. The 8rst iteration corresponds to a
quadratic regularization, generally quite far from the
data. During the iterations, the data 8delity term de-
creases while the regularization energy increases. This
behavior can be observed in Figs. 4 and 5.
Although on this example LEGEND needs more it-

erations, this is not always the case and nothing can
be concluded on this point. For instance on the ex-
ample of the aorta shown below in Section 6, a faster
convergence is achieved using LEGEND.
However, when comparing the computation times

instead of the number of iterations, it appears that
LEGEND is faster (see Fig. 6). Both methods have
been programmed in MATLAB.
Concerning the initialization, if it is chosen as the

non-regularized solution, we avoid one iteration with
the conjugate gradient. On the contrary LEGEND
does not converge as easily as when starting from a
null initialization. If the initialization is chosen as the
Tikhonov regularization, then LEGEND has a lower
initial energy than with a null initialization, and the

conjugate gradient has a similar convergence as in
the other cases. If the initialization is the average of
both acquisitions, then both algorithms behave well.
Finally, we also tested the methods with a random
initialization, which results in a slower convergence
for LEGEND. From all these tests, it seems that the
conjugate gradient is slightly less sensitive to the ini-
tialization than LEGEND. However, the computation
time is always lower for LEGEND (except in the
case of a random initialization). We conclude that it
is reasonable to choose either a null initialization, or
the average of both acquisitions.

5.2. In>uence of the parameters � and !

Fig. 7-left shows the reconstruction result for � =
0, which corresponds to a least-square reconstruction.
This least-square reconstruction can be improved by
considering prior regularization constraints.
Fig. 7-right shows the regularized reconstruction

result for ! much larger than the maximum grey level
value: the function is then equivalent in the domain
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Fig. 6. Evolution of the computation time as a function of the number of iterations,for the conjugate gradient (∗) and LEGEND (◦).

Fig. 7. Left: reconstruction result for �= 0. Right: reconstruction
result for ! → ∞.

of interest to the Tikhonov function (i.e. the purely
quadratic function). The smoothing is thus a global
smoothing, independently of the neighbor di5erence
values with respect to the image intensity range.
Therefore, edges are of worse quality than in a high
resolution acquisition.
In Fig. 8 we present some results obtained for di5er-

ent values of � with constant !. These results con8rm
the expected behavior of the regularization: when �
increases, the reconstruction result becomes smoother,
but contours remain equally sharp.

Fig. 8. Results obtained for various values of �, with != 2 : left,
� = 0:5; middle, � = 2; right, � = 10.

The parameter ! can be seen intuitively as a thresh-
old under which the neighbor di5erences are consid-
ered as noise and have to be smoothed, and above
which they are considered as contour information and
have to be preserved.
A convenient way to study the inNuence of the pa-

rameter ! can be to compare results obtained with a
constant product ! · �; indeed the slope of the lin-
ear part of the  (x) function de8ned in Section 3.2
(Eq. (24)) is 2! and varies with !, and thus the slope
of � (x) is 2�!. This is illustrated in Fig. 9: when the
product ! · � is not constant, the study of the inNu-
ence of ! is disturbed by the variation of the weighting



E. Roullot et al. / Signal Processing 84 (2004) 743–762 755

Fig. 9. Illustration of the constraint ! · � = constant for the study of the inNuence of !.

Fig. 10. Reconstruction result for various values of !, with
! · � = constant = 50: left, ! = 2, middle, ! = 10, right, ! = 20.

between the terms Q and �. This is only valid for
small values of !, since for large values of ! the o5sets
of both straight lines greatly di5er from each other.
Taking this remark into account, we present in

Fig. 10 the results obtained for various values of !,
the product ! · � being constant.
Whereas the contours delineating well contrasted

areas are well preserved, the edges between less con-
trasted areas are characterized by neighbor di5erences
smaller than ! and are thus smoothed as noise, when
! is too large.

5.3. Estimation of the optimal hyperparameters

Taking into account the speci8city of our applica-
tion, we de8ne quality measures for the reconstruction.

These measures include, among others, the noise vari-
ance in homogeneous areas (both in the background
and in bright objects), as a smoothness measure, and
the power at sites known as edges, as an edge sharp-
ness measure. Two of them are represented in Fig. 11
together with a more global measure: the power of the
di5erence between the reference image and the recon-
struction. The confrontation of these curves allows to
de8ne an optimal area for the couple of parameters,
shown in Fig. 11 (bottom right).
In a second step, the same kind of evaluation was

performed on a simulated vessel with stenosis, ori-
ented along di5erent orientations. The same measures
as above cannot be used, since the object intensity is
not strictly constant and the edges are not as sharp as
in the simple model used above. However the com-
monly used measure of the root-mean-square di5er-
ence between the reference and the reconstruction can
still be used: in Fig. 12 we show slices of a vessel that
is approximatively “aligned along k-space axes” and
of an “oblique” vessel, together with the correspond-
ing error with respect to the reference as a function of
! and �.
These measures con8rm the results obtained with

the 8rst set of evaluation images; moreover, they show
that the optimal parameters are not strongly dependent
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Fig. 11. Quality measures as a function of ! and �. Top left: the inverse edges power (logarithmical scale). Top right: the power of
the di5erence image. Bottom left: the noise variance in the background. Bottom right: the optimal area for the set of parameters (!; �)
obtained from the confrontation of all quality measures.

on the orientation of the edges. However, we showed
that the reconstruction results can be improved by per-
forming so-called “double oblique” acquisitions, in or-
der to align roughly the vessel axis along one of the
k-space axes [27].

5.4. Summary

This section showed experimentally the need to reg-
ularize while preserving the edges. It clearly appears
that a least-square reconstruction is not suMcient;
moreover, the conventional Tikhonov ’-function is
not well suited to the application considered in this

paper since it smoothes the edges. These are the rea-
sons why the non-linear regularizing Huber function
was chosen; optimal values for the two parame-
ters were determined and tested on synthetic vessel
images.
Robustness of the method with respect to the pa-

rameters ! and � was established experimentally from
the shape of the curves of Fig. 11: indeed within the
“optimal area” the curves are relatively Nat, thus a
small change of one parameter within this area may
not imply visible changes in the reconstruction. As a
conclusion, � may be chosen not to far from the unity
and ! much smaller than the image range. We suggest
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Fig. 12. Top: the two sample simulated vessel slices that were used for estimating the optimal parameters. Bottom: the power of the error
image as a function of � and ! (left: for the “straight” vessel, right: for the “oblique” vessel).

to use for example ! � 2 and � � 5 for an image
ranging from 0 to 255.

6. First results on real data

The method was evaluated on 8ve sets of undersam-
pled MR volumes of the aorta (two sets) and of the
carotid artery (three sets). For each of the 8ve patients,
orthogonal volumes with complementary spatial res-
olutions were acquired. Each volume was acquired
during injection of gadolinium and breath-holding of
the patient, using a 1:5 T clinical system (Signa, GE
Medical Systems, Milwaukee, WI). Results obtained
on the aorta of one patient and on the carotid artery

of one patient are presented, respectively in Sections
6.1 and 6.2.

6.1. Aorta example

The volumes were acquired with a 3D gradient-echo
sequence (parameters TR = 4:7 ms and TE = 1:8 ms).
The voxel size of the 8rst volume is, respectively in
x, y and z (x denoting the supero-inferior direction
of the human body, y the left-right one, and z the
antero-posterior direction), 0:98× 2:23× 4 mm3, and
that of the second volume, 4× 2:23× 0:98 mm3. The
voxel size of the 8nal recovered volume including the
ascending aorta is 0:98 × 2:23 × 0:98 mm3. Obtain-
ing the same spatial resolution in a single equivalent
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Fig. 13. Top: the undersampled acquisitions shown on a sample
slice from the aorta volume. Bottom left: the non-regularized
reconstruction. Bottom right: the regularized reconstruction with
� = 5 and ! = 2.

volume would have required an acquisition time of
52 s instead of a total acquisition time of 26 s for the
two complementary volumes.
Fig. 13-top presents a sample slice extracted from

the volume of the aorta (slices are chosen orthogonally
to the constant resolution direction, yielding frontal
slices). It shows the corresponding slices of the two
undersampled volumes, before interpolation; it is easy
to visually notice the strong anisotropy of the pixels.
Fig. 13-bottom left shows the non-regularized recon-
struction (� = 0): the resulting volume is corrupted
by noise due in part to the oscillations implied by
the interpolation of the low-resolution volumes (see
Appendix A). Fig. 13-bottom right shows the result
with �=5 and !=2 (chosen within the optimal area):
noise has been attenuated while edges have been pre-
served.
Since most clinicians are used to make their diagno-

sis on maximum intensity projections (MIP) images,
we computed the MIPs from the undersampled vol-
umes and from the reconstructed volume; in Fig. 14 we
present the projection that best shows the aortic arch.
The results were judged by an expert to be satisfying

since they give an accurate anatomic display of the
ascending aorta and of the supra-aortic vessels. Such
results, allowing a good visualization of vessel walls
according to the clinician analysis, have been obtained
for the other patients.

6.2. Carotid artery example

For imaging of the carotid arteries an elliptic MRA
sequence was used (parameters TR=7:3 ms and TE =
1:6 ms). The resolutions of the original volumes were
0:59 × 1:56 × 1:4 mm3, 1:56 × 1:2 × 0:59 mm3 and
1:2 × 0:59 × 1:56 mm3, allowing to recover a 8nal
volume with voxel size 0:59× 0:59× 0:59 mm3. The
duration of each acquisition was 55 s.
As for the aorta, the acquisitions are presented in

Fig. 15-top, while the non-regularized reconstruction
is shown in Fig. 15-bottom left and the regularized re-
construction is presented in Fig. 15-bottom right (with
�= 5 and != 2). Fig. 16 presents the MIPs obtained
from the same volume, before and after reconstruction
without and with regularization. Note that, unlike in
Figs. 13 and 14, the displayed acquisitions are already
interpolated (by zero-padding).
Again, the expert judged the results to be promising

since they allow a high resolution visualization of the
vessels and vessel edges.

7. Conclusion

We have presented an accurate modelling of the
undersampling in MR imaging systems, and
implemented it into an edge-preserving regularized
reconstructionmethod for recovering a high-resolution
image from two or three undersampled acquisitions.
Using three acquisitions instead of two may be more
robust due to the higher redundancy of low-frequency
information, but in order to preserve an interesting
time gain it is necessary to increase the anisotropy
ratio in comparison to the two-acquisition case. Con-
cerning the undersampling ratio, in the two-acquisition
case we suggest to use a factor between 3 and 4;
in the three-acquisition case, if the resolution is de-
graded along one direction in each acquisition, a time
gain can be achieved for ratios larger than 3, there-
fore we suggest ratios around 4. If each acquisition is
undersampled in the two phase encoding directions,
we suggest to use ratios around 2 since a time gain is
achieved for ratios starting from

√
3 [27].

Two algorithms have been proposed, based on con-
jugate gradient and on half-quadratic regularization re-
spectively. Except for a few marginal cases, we have
shown that LEGEND has a number of advantages over
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Fig. 14. Left and middle: the MIPs computed from both undersampled volumes. Right: the MIP computed after regularized reconstruction
with � = 5 and ! = 2.

Fig. 15. Top: the undersampled acquisitions shown on a sample slice from the carotids volume. Bottom left: the non-regularized
reconstruction. Bottom right: the regularized reconstruction with � = 5 and ! = 2.

Fig. 16. Top: the undersampled acquisitions shown as a MIP from the neck. Bottom left: the non-regularized reconstruction. Bottom right:
the regularized reconstruction with � = 5 and ! = 2.

the conjugate gradient method: it is easier to imple-
ment thanks to our formulation in the spectral domain;
it shows a better convergence in terms of computa-

tion time; it progressively introduces discontinuities.
Intensive use of FFTs in the optimization schemes
makes the method well designed for Cartesian k-space



760 E. Roullot et al. / Signal Processing 84 (2004) 743–762

8lling. However it can be applied to any non-Cartesian
acquisition sequence provided that a re-gridding of
the data onto a cartesian grid was made previously. It
could also be extended to processing data in the gen-
uine non-Cartesian geometry of acquisition. However
the FFT computation should then be replaced by a
DFT algorithm that would considerably increase the
reconstruction time.
We have presented reconstruction results on the

aorta, using two acquisitions undersampled in one
phase encoding direction, and on the carotid artery, us-
ing three acquisitions undersampled in the two phase
encoding directions. The reconstruction provides a de-
noised and homogeneous image of the vascular lumen
with sharp edges. Furthermore, although a misalign-
ment of the vessel with respect to the k-space axes
can lead to a loss of high frequencies in the acquired
data, the method seems to be robust enough to allow
any orientations of the vessel. However, for clinical
evaluation some further work remains: in this paper,
each sequence is acquired in a distinct apnea, which
can lead to artifacts due to the breathing of the pa-
tient between the acquisitions. A rigid registration was
performed manually, which is of course not optimal.
Work is currently being performed on the develop-
ment of dedicated sequences, allowing to acquire the
volumes during one breath-holding.

Appendix A. Expression of the zero-padding inter-
polation

In order not to modify the frequency content of the
undersampled data, interpolation is achieved using a
special version of the zero-padding method [28]. Ac-
cording to the acquisition strategy presented in Section
2.1, each undersampled image needs to be interpolated
in two directions, but this can be achieved separately
along both directions. This interpolation is presented
here in the x direction as an example.
Let IN

′
x be the undersampled image along direction

x, with dimensionN ′ along x; let INx be the correspond-
ing high-resolution image, with dimension N ¿N ′

along x. (In order to simplify the notations, we assume
that both N and N ′ are even; for odd dimensions, the
expressions can be derived by taking the appropriate
summation limits.)

Let JN ′
denote the DFT on the lines of IN

′
x , and JN

the DFT on the lines of INx . Let us express INx as a
function of IN

′
x .

The expression of INx (x; y) as a function of JN (k; y)
results from an inverse DFT:

INx (x; y; z) =

N
2 −1∑

k=−N
2

JN (k; y; z)e j2�xk=N : (A.1)

Zero-padding interpolation consists in padding the
DFT of the signal to be interpolated with zeros in
order to arti8cially increase its spatial sampling rate.
Thus, JN and JN ′

are related as follows:

JN (k; y; z)

=




JN ′
(k; y; z) for k = −N ′

2 · · · N ′
2 − 1

0 for k = −N
2 · · · − N ′

2 − 1

and k = N ′
2 · · · N

2 − 1:

(A.2)

Therefore

INx (x; y; z) =

N ′
2 −1∑

k=−N ′
2

JN ′
(k; y; z)e j2�xk=N : (A.3)

Moreover

JN ′
(k; y; z) =

1
N ′

N ′
2 −1∑

l=−N ′
2

IN
′

x (l; y; z)e−j2�kl=N ′
: (A.4)

which yields

INx (x; y; z) =
1
N ′

N ′
2 −1∑

l=−N ′
2

IN
′

x (l; y; z)

×
N ′
2 −1∑

k=−N ′
2

e−j2�kl=N ′
e j2�xk=N : (A.5)

Let us introduce h(m) such that

INx (x; y; z) =

N ′
2 −1∑

l=−N ′
2

IN
′

x (l; y; z)h
(
x
N ′

N
− l

)
: (A.6)



E. Roullot et al. / Signal Processing 84 (2004) 743–762 761

h(m) can be expressed as

h(m) =
1
N ′ e

−j�m=N ′ sin �m
sin(�m=N ′)

; (A.7)

Themain problem of this conventional zero-padding
interpolation method resides in the fact that interpo-
lation of real data provides complex data (for even
dimensions). Because of the hypothesis that we are
dealing with the magnitude of the M.R. image, i.e.
with a real-valued image, it is more convenient to
constrain the interpolated image to be real-valued.
The solution that minimizes the norm of the quadratic
error with respect to the above solution, under the
constraint that h(m) must be real-valued, can be com-
puted easily [13,27] as the real part of the above
solution, i.e.:

h(m) =
1
N ′ cos

(
�

m
N ′

) sin �m
sin(�m=N ′)

; (A.8)

This function is quite similar to the well-known sinc
function.

Appendix B. Analytic expression of the undersam-
pling operators

In Section 3.1 the degradation operator was ex-
pressed as the matrix product:

Dx = F−1
x MxFx: (B.1)

Let us express Dx analytically:

(MxFx)m;n =

Nx
2 −1∑

k=−Nx
2

(Mx)m;k(Fx)k;n

=




e−j2�mn=Nx if − N ′
x
2 + 1

6m6
N ′

x

2
− 1;

0:5 e−j2�mn=Nx if m= −N ′
x
2 or

m= N ′
x
2 ;

0 else
(B.2)

with m; n varying from −Nx=2 to Nx=2 − 1; thus

(Dx)m;n = (F−1
x MxFx)m;n

=

Nx
2 −1∑

k=−Nx
2

(F−1
x )m;k(MxFx)k;n

=

N ′
x
2 −1∑

k=−N ′
x
2 +1

e j2�k(m−n)=Nx

+0:5(ej2�((m−n)=Nx)(−N ′
x =2)

+ej2�((m−n)=Nx)(N ′
x =2))

= cos
(
�
n − m
Nx

)
sin(�(n − m)N ′

x=Nx)
sin(�(n − m)=Nx)

:

(B.3)

Dy and Dz can be expressed in a similar manner.

Appendix C. Gradient of the energy function

The gradient of the energy function can be ex-
pressed as

∇E(x; y; z) = ∇Q(x; y; z) + �∇�(x; y; z): (C.1)

Each of these terms are detailed below.
From the expression of Q in Section 3.2 it can be

derived that

�Q= 2(DT
x DxIrec − DT

x Ix + DT
yDyIrec

−DT
yIy + DT

z DzIrec − DT
z Iz): (C.2)

For the regularization term � also introduced in
Section 3.2, we get

�/ =�T
x  

′(�xIrec) + �T
y 

′(�yIrec)

+�T
z  

′(�zIrec): (C.3)
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