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Abstract. We present a theoretical study of the recovery of an unknown vector x ∈ R
p (such

as a signal or an image) from noisy data y ∈ R
q by minimizing with respect to x a regularized cost-

function F(x, y) = Ψ(x, y) + αΦ(x), where Ψ is a data-fidelity term, Φ is a smooth regularization
term, and α > 0 is a parameter. Typically, Ψ(x, y) = ‖Ax− y‖2, where A is a linear operator. The
data-fidelity terms Ψ involved in regularized cost-functions are generally smooth functions; only a few
papers make an exception to this and they consider restricted situations. Nonsmooth data-fidelity
terms are avoided in image processing. In spite of this, we consider both smooth and nonsmooth
data-fidelity terms. Our goal is to capture essential features exhibited by the local minimizers of
regularized cost-functions in relation to the smoothness of the data-fidelity term.

In order to fix the context of our study, we consider Ψ(x, y) =
∑

i
ψ(aTi x − yi), where aTi are

the rows of A and ψ is Cm on R \ {0}. We show that if ψ′(0−) < ψ′(0+), then typical data y
give rise to local minimizers x̂ of F(., y) which fit exactly a certain number of the data entries:

there is a possibly large set ĥ of indexes such that aTi x̂ = yi for every i ∈ ĥ. In contrast, if ψ is
smooth on R, for almost every y, the local minimizers of F(., y) do not fit any entry of y. Thus,
the possibility that a local minimizer fits some data entries is due to the nonsmoothness of the
data-fidelity term. This is a strong mathematical property which is useful in practice. By way of
application, we construct a cost-function allowing aberrant data (outliers) to be detected and to be
selectively smoothed. Our numerical experiments advocate the use of nonsmooth data-fidelity terms
in regularized cost-functions for special purposes in image and signal processing.
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1. Introduction. We consider the general problem where a sought vector (e.g.,
an image or a signal) x̂ ∈ R

p is obtained from noisy data y ∈ R
q by minimizing a

regularized cost-function F : Rp × R
q → R of the form

F(x, y) = Ψ(x, y) + αΦ(x),(1)

where typically Ψ : R
p × R

q → R is a data-fidelity term and Φ : R
p → R is a

regularization term, with α > 0 a parameter. In many applications, the relation
between x and y is modeled by yi = a

T
i x + ni for i = 1, . . . , q, where a

T
i : R

p → R

are linear operators and ni accounts for perturbations. We focus on such situations
and assume that aTi , i = 1, . . . , q, are known and non-null. The relevant data-fidelity
term assumes the form

Ψ(x, y) =

q∑
i=1

ψi(a
T
i x− yi),(2)
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where ψi : R → R, i = 1, . . . , q, are continuous functions which decrease on (−∞, 0]
and increase on [0,+∞). Usually, ψi = ψ for all i. One usual choice is ψ(t) = |t|ρ, for
ρ > 0, which yields [31, 4]

Ψ(x, y) =

q∑
i=1

|aTi x− yi|ρ.(3)

Let A ∈ R
q×p be the matrix whose rows are aTi for i = 1, . . . , q. This matrix can

be ill-posed, or singular, or invertible. Most often, Ψ(x, y) = ‖Ax − y‖2, that is,
ψ(t) = t2. Such data-fidelity terms are currently used in denoising, in deblurring, and
in numerous inverse problems [37, 35, 13, 33, 1, 14, 38]. In a statistical framework, Ψ
accounts for both the distortion and the noise intervening between the original x and
the device recording the data y. The above quadratic form of Ψ corresponds to white
Gaussian noise {ni}. Recall that many papers are dedicated to the minimization
of Ψ(., y) alone and of the form (3), i.e., F = Ψ, mainly for ψ(t) = t2 [22], in
some cases for ψ(t) = |t| [8], but functions ψ(t) = |t|ρ for different values for ρ
in the range (0,∞] also have been considered [31, 30]. Specific data-fidelity terms
arise in applications such as emission and transmission computed tomography, X-ray
radiography, eddy-currents evaluation, and many others [23, 20, 34, 10]. In general, for
every y, the data-fidelity term Ψ(., y) is a function which is smooth and usually convex.
The introduction of nonsmooth data-fidelity terms in regularized cost-functions (1)
remains very unusual. Only a few papers make an exception to this; we cite [2, 3],
where Ψ corresponds to ψ(t) = |t| and aTi x = xi for all i. Nonsmooth data-fidelity
terms Ψ are avoided in image processing, for instance. In spite of this, we analyze the
effects produced by both smooth and nonsmooth data-fidelity terms Ψ. In the latter
case we suppose that {ψi} are any functions which are Cm-smooth on R\{0}, m ≥ 2,
whereas at zero they admit finite side derivatives which satisfy ψ′

i(0
−) < ψ′

i(0
+).

The regularization term Φ usually takes the form

Φ(x) =

r∑
i=1

ϕ(‖GT
i x‖),(4)

where GT
i : R

p → R
s for s ∈ N

∗ are linear operators, e.g., operators yielding the
differences between neighboring samples; ‖.‖ stands for a norm on R

s; and ϕ : R → R

is a potential function. In a Bayesian estimation framework, Φ is the prior energy of
the unknown x modeled using a Markov random field [6, 17, 24]. Several customarily
used potential functions ϕ are [20, 29, 21, 33, 9, 7, 39, 36]

Lν ϕ(t) = |t|ν , 1 ≤ ν ≤ 2,
Lorentzian ϕ(t) = νt2/(1 + νt2),
Concave ϕ(t) = ν|t|/(1 + ν|t|),
Gaussian ϕ(t) = 1− exp (−νt2),
Huber ϕ(t) = t2 if |t| ≤ ν, ϕ(t) = ν(ν + 2|t− ν|) if |t| > ν,
Mean-field ϕ(t) = − log (exp(−νt2) + 1),

(5)

where ν > 0 is a parameter. Being convex and differentiable, the function Lν for
1 < ν ≤ 2 is preferred in many applications requiring intensive computation [9, 10].
In our paper, Φ in (1) is any Cm-smooth function, with m ≥ 2.

The visual aspect of a minimizer of a cost-function is determined on the one hand
by the data and on the other hand by the shape of the cost-function. Our goal is to
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capture essential features expressed by the local minimizers of cost-functions of the
form (1)–(2) in relation to the smoothness of the data-fidelity term Ψ. Note that
all our results hold for local minimizers, and hence for global minimizers as well,
so we systematically speak of local minimizers. There is a striking distinction in
the behavior of the local minimizers relevant to smooth and nonsmooth data-fidelity
terms. It concerns the possibility of fitting exactly a certain number of the data
entries, i.e., that for y given, a local minimizer x̂ of F(., y) satisfies aTi x̂ = yi for
some, or even for many, indexes i (see section 2). Intuitively, one is unlikely to obtain
such minimizers, especially when data are noisy. Our main result states that for F
of the form (1)–(2), with Ψ nonsmooth as specified, typical data y give rise to local
minimizers x̂ which fit a certain number of the data entries; i.e., there is a nonempty
set ĥ of indexes such that aTi x̂ = yi for every i ∈ ĥ (see sections 3 and 4). This effect
is due to the nondifferentiability of Ψ since it cannot occur when F is differentiable
(see section 5). The obtained result is a strong mathematical property which can be
used in different ways. Based on it, we construct a cost-function allowing aberrant
data (outliers) to be detected and to be selectively smoothed from signals, or from
images, or from noisy data, while preserving efficiently all the nonaberrant entries
(see section 7). This is illustrated using numerical experiments.

Readers may associate cost-functions where Ψ is nonsmooth (e.g., ψ(t) = |t|) with
cost-functions where Ψ is smooth and Φ is nonsmooth, e.g., Ψ(x, y) = ‖Ax− y‖2 and
ϕ(t) = |t| in (4), as in total-variation methods [33, 1, 14, 12]. Since the latter methods
arouse an increasing interest in the area of image and signal restoration, we compare
in section 6 nonsmooth regularization to the cost-functions considered in this paper.
To this end, we use some previous results [26, 27] and illustrate the strikingly different
visual effects they produce (see section 7).

2. The problem of an exact fit for some data entries. We shall use the
symbol ‖.‖ to denote the �2-norm of vectors. Next, we denote by N

∗ the positive
integers and R+ = {t ∈ R : t ≥ 0}. The letter S will systematically denote the
centered, unit sphere in R

n, say S := {x ∈ R
n : ‖x‖ = 1}, for whatever dimension

n is appropriate in the context. For x ∈ R
n and ρ > 0, we put B(x, ρ) := {x′ ∈

R
n : ‖x′ − x‖ < ρ}. For any i = 1, . . . , n the letter ei represents the ith vector of the
canonical basis of R

n (i.e., ei = ei[i] = 1 and ei[j] = 0 for all j �= i). The closure of
a set N will be denoted N . For a subspace T ; its orthogonal complement is denoted
T⊥. If a function f : Rp ×R

q → R depends on two variables, its kth differential with
respect to the jth variable is denoted Dk

j f . The notation f ∈ Cm(N) means that the
function f is Cm-smooth on the set N . For a discrete, finite set h ⊂ {1, . . . , n}, with
n ∈ N

∗, the symbol #h is the cardinality of h and hc is the complementary of h. Next
we introduce a set-valued function which is constantly evoked in what follows.

Definition 1. Let H be the function which for every x ∈ R
p and y ∈ R

q yields
the following set:

(x, y) → H(x, y) = {
i ∈ {1, . . . , q} : aTi x = yi

}
.(6)

Given y and a local minimizer x̂ of F(., y), the set of all data entries which are
fitted exactly by x̂ reads ĥ := H(x̂, y). Furthermore, with every h ⊆ {1, . . . , q} we
associate the following sets:

(h, y)→ Θh(y):= {x ∈ R
p : aTi x = yi ∀i ∈ h and aTi x �= yi ∀i ∈ hc},(7)

h → Th := {u ∈ R
p : aTi u = 0 ∀ i ∈ h},(8)

h → Mh:= {(x, y) ∈ R
p × R

q : aTi x = yi ∀i ∈ h and aTi x �= yi ∀i ∈ hc}.(9)
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Note that for every y and h �= ∅, the sets Θh(y) and Mh are composed of a finite
number of connected components, whereas their closures Θh(y) andMh, respectively,
are affine subspaces. The family of all Θh, when h ranges over all the subsets of
{1, . . . , q}, forms a partition of R

p. Observe that for y ∈ R
q fixed, {x ∈ R

p : (x, y) ∈
Mh} = Θh(y). Notice also the equivalences

H(x′, y′) = h ⇔ x′ ∈ Θh(y
′) ⇔ (x′, y′) ∈Mh.(10)

The theory in this paper is developed by analyzing how the local minimizers of
every F(., y) behave under small variations of the data y. We thus consider local
minimizer functions.

Definition 2. Let f : Rp×R
q → R and N ⊆ R

q. The family f(., N) := {f(., y) :
y ∈ N} is said to admit a local minimizer function X : N → R

p if for any y ∈ N the
function f(., y) has a strict local minimum at X (y).

The next lemma addresses local minimizer functions relevant to smooth cost-
functions.

Lemma 1. Let F : R
p × R

q be a Cm-function with m ≥ 2. For y ∈ R
q, assume

that x̂ ∈ R
p is such that D1F(x̂, y) = 0, and D2

1F(x̂, y) is positive definite.
Then there exists a neighborhood N ⊂ R

q containing y and a Cm−1-function X :
N → R

p such that for every y′ ∈ N we have D1F(X (y′), y′) = 0, and D2
1F(X (y′), y′)

is positive definite. In particular, x̂ = X (y).
Equivalently, X : N → R

p is a local minimizer function relevant to F(., N) such
that D2

1F(X (y′), y′) is positive definite for every y′ ∈ N .
Proof. Being a local minimizer of F(., y), x̂ satisfies D1F(x̂, y) = 0. We focus on

the equation D1F(x′, y′) = 0 in the vicinity of (x̂, y) and notice that D2
1F(x̂, y)

determines an isomorphism from R
p to itself. From the implicit functions theo-

rem [5], there exist ρ1 > 0 and a unique Cm−1-function X : B(y, ρ1) → R
p such that

D1F (X (y′), y′) = 0 for all y′ ∈ B(y, ρ1). Furthermore, since y′→det D2
1F(X (y′), y′)

is continuous and det D2
1F(x̂, y) > 0, there is ρ2 ∈ (0, ρ1] such that det D2

1F(X (y′), y′)
> 0 for all y′ ∈ B(y, ρ2).

Remark 1 (on the conditions required in Lemma 1). The minimizers of Cm-
functions of the form

F(x, y) = ‖Ax− y‖2 + αΦ(x)

are extensively studied in [16]. It is shown there that if rankA = p, and under some
assumptions ensuring that F(., y) admits local minimizers for every y ∈ R

q, the data
domain R

q contains a subsetN whose interior is dense in R
q such that for every y ∈ N ,

then every local minimizer x̂ of the corresponding F(., y) is strict and D2
1F(x̂, y) is

positive definite. Reciprocally, all data leading to minimizers at which the conditions
of Lemma 1 fail belong to a closed negligible subset of R

q: the chance of acquiring
data placed in such subsets is null.

The central question of this paper is how the shape of a cost-function F favors,
or inhibits, the possibility that a local minimizer x̂ of F(., y), for y ∈ R

q, fits a certain

number of the entries of this same y, i.e., that the set ĥ := H(x̂, y) is nonempty. It
will appear that this possibility is closely related to the smoothness of Ψ. We recall
some facts about nonsmooth functions [32].

Definition 3. Let E0 ⊆ R
p be an affine subspace and E be the relevant vector

space. Consider a function f : E0 → R, and let x ∈ E0 and u ∈ E. The function f
admits a one-sided derivative at x in the direction of u �= 0, denoted by δg(x)(u), if
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the following (possibly infinite) limit exists:

δf(x)(u) := lim
t↓0
f(x+ tu)− f(x)

t
.

If u = 0, put δf(x)(0) = 0.
The downward pointing arrow above means that t ∈ R+ converges to zero by

positive values. If f is differentiable at x, then δf(x)(u) = Df(x).u. If f : R → R,
we have δf(x)(1) = f ′(x+). The left derivative of f at x for u is −δf(x)(−u). In
the following, δ1F will address one-sided derivatives of F with respect to its first
argument.

3. Cost-functions with nonsmooth data-fidelity terms. Here and in sec-
tion 4 we focus on cost-functions which read

F(x, y) = Ψ(x, y) + αΦ(x, y),(11)

Ψ(x, y) =

q∑
i=1

ψ(aTi x− yi),(12)

where ψ : R → R is Cm on R \ {0}, with m ≥ 2, whereas at zero it admits finite
side derivatives satisfying ψ′(0−) < ψ′(0+). The term Φ : R

p × R
q → R is any

Cm-function. This formulation allows us to address data-fidelity terms composed of
a nonsmooth function Ψ and of a smooth function Ψ̃, since we can write Φ(x, y) =
Ψ̃(x, y) + Φ̃(x) with Φ̃ a regularization term. For example, we can have Φ(x, y) =∑

i

(
φi(B

T
i x− yqi) + ϕi(G

T
i x)

)
, where φi : R

qi → R and ϕi : R
pi → R are Cm-

functions, yqi ∈ R
qi are data, and BT

i ∈ R
qi×p and GT

i ∈ R
pi×p, with pi ∈ N

∗ and
qi ∈ N

∗.
Remark 2. The results presented in sections 3 and 4 are developed for Ψ of

the form (12), that is, ψi = ψ for all i, but we should emphasize that they remain
true for Ψ of the form (2) provided that all ψi, for i = 1, . . . , q, have finite side
derivatives at zero satisfying ψ′

i(0
−) < ψ′

i(0
+). The proofs are straightforward to

extend to this situation but at the expense of complicated notation which may cloud
the presentation.

We start by providing a sufficient condition for a strict local minimum.
Proposition 1. For y ∈ R

q, let F(., y) : R
p → R be of the form (11)–(12),

where Φ ∈ Cm(Rp × R
q) for m ≥ 1 and ψ ∈ Cm(R \ {0}) satisfies −∞ < ψ′(0−) <

ψ′(0+) < +∞. Let x̂ ∈ R
p be such that

1. the restricted function F|
Θĥ(y)

(., y) : Θĥ(y) → R reaches a strict local mini-

mum at x̂,
2. δ1F(x̂, y)(u) > 0 for all u ∈ T⊥

ĥ
∩ S,

where ĥ := H(x̂, y), Θĥ(y), and Tĥ are determined according to (6), (7), and (8),
respectively.

Then F(., y) reaches a strict local minimum at x̂.

Proof. The result is a tautology if ĥ = ∅ since then Θĥ(y) = R
p. So consider that

ĥ is nonempty. First of all, we put F into a more convenient form. Define

ψ̃(t) := ψ(t)− t

2

(
ψ′(0−) + ψ′(0+)

)− ψ(0).(13)

Now we have

ψ̃′(0+) = −ψ̃′(0−) > 0 and ψ̃(0) = 0,(14)
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which will allow important simplifications. By means of ψ̃, the cost-function F as-
sumes the form

F(x, y) = Ψ̃(x, y) + Φ̃(x, y),(15)

where Ψ̃(x, y) =

q∑
i=1

ψ̃(aTi x− yi)

and Φ̃(x, y) =

q∑
i=1

ψ′(0−) + ψ′(0+)
2

(aTi x− yi) + qψ(0) + αΦ(x, y).

Both Ψ̃ and Φ̃ satisfy the assumptions about Ψ and Φ, respectively. Henceforth,
we deal with the formulation of F given in (15). For notational convenience, we
systematically write ψ for ψ̃, Ψ for Ψ̃, and Φ for Φ̃.

Let us consider the altitude increment of F(., y) at x̂ in the direction of an arbi-
trary u ∈ S,

F(x̂+ tu, y)−F(x̂, y) for t ∈ R+.

In order to avoid misunderstandings, u0 will denote a vector of Tĥ and u⊥ a vector of
T⊥
ĥ
. Using the fact that every u ∈ S has a unique decomposition into

u = u0 + u⊥ with u0 ∈ Tĥ ∩B(0, 1) and u⊥ ∈ T⊥
ĥ

∩B(0, 1),(16)

we decompose the altitude increment of F(., y) accordingly:
F(x̂+ tu, y)−F(x̂, y) = F(x̂+ tu0 + tu⊥, y)−F(x̂+ tu0, y)(17)

+ F(x̂+ tu0, y)−F(x̂, y).(18)

The term on the right-hand side of (17) is analyzed with the aid of assumption 2. In
order to calculate the side derivative δ1F(x̂, y), we decompose F into

F(x′, y′) = Ψĥ(x
′, y′) + Fĥ(x

′, y′),(19)

where Ψĥ(x
′, y′) :=

∑
i∈ĥ

ψ(aTi x
′ − y′i)

and Fĥ(x
′, y′) =

∑
i∈ĥc

ψ(aTi x− y′i) + αΦ(x′, y′).

This decomposition is used recurrently in the following.
Remark 3. The function Fĥ is Cm on a neighborhood of (x̂, y) which contains

B(x̂, σ)×B(y, σ) for

σ :=
1

2(‖a‖∞ + 1)
min
i∈ĥc

|aTi x̂− yi|,(20)

‖a‖∞:= q
max
i=1

‖ai‖.(21)

Indeed, for every (x′, y′) ∈ B(x̂, σ)×B(y, σ) we have
i ∈ ĥc ⇒ |aTi x′ − y′i| =

∣∣(aTi x̂− yi) + aTi (x′ − x̂) + (yi − y′i)∣∣(22)

≥ ∣∣aTi x̂− yi∣∣− ∣∣aTi (x′ − x̂)∣∣− |yi − y′i|
≥ min

i∈ĥc

|aTi x̂− yi| − ‖a‖∞σ − σ = (‖a‖∞ + 1)σ > 0,
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since clearly ‖a‖∞ > 0 and σ > 0.
In contrast, Ψĥ is nonsmooth at (x̂, y). Using Definition 3 we calculate that for

every u ∈ R
p,

δ1F(x, y)(u) = δ1Ψĥ(x̂, y)(u) +DFĥ(x̂, y).u,(23)

where δ1Ψĥ(x̂, y)(u) = ψ
′(0+)

∑
i∈ĥ

|aTi u|,(24)

since δψ(aTi x̂ − yi)(u) = limt↓0 ψ(taTi u)/t = ψ′(0+)|aTi u|, for every i ∈ ĥ, which
accounts for (14). Notice that δ1Ψĥ(x̂, y)(u) = δ1Ψĥ(x̂, y)(−u) ≥ 0 for every u ∈ R

p.
Applying assumption 2 to both u⊥ ∈ T⊥

ĥ
and −u⊥ yields

|DFĥ(x̂, y).u⊥| < ψ′(0+)
∑
i∈ĥ

|aTi u⊥| ∀u⊥ ∈ T⊥
ĥ
.(25)

Now consider the function

f : T⊥
ĥ

∩ S → R,

u⊥ → f(u⊥) :=
|DFĥ(x̂, y).u⊥|

ψ′(0+)
∑

i∈ĥ
|aTi u⊥|

.

Since for every u⊥ ∈ T⊥
ĥ

∩ S there is at least one index i ∈ ĥ such that aTi u⊥ �= 0, this
function is well defined and continuous. If u⊥ → DFĥ(x̂, y).u⊥ is not identically null
on T⊥

ĥ
, put

c0 := sup
u⊥∈T⊥

ĥ
∩S

f(u⊥).(26)

Since T⊥
ĥ

∩ S is compact, f reaches the maximum value c0. By (25) we see that

0 < c0 < 1. If DFĥ(x̂, y).u⊥ = 0 for all u⊥ ∈ T⊥
ĥ
, we put c0 := 1/2. In both cases,

|DFĥ(x̂, y).u⊥| ≤ c0 ψ′(0+)
∑
i∈ĥ

|aTi u⊥| ∀u⊥ ∈ T⊥
ĥ
.(27)

Using (19), the right-hand side of (17) takes the form

F(x̂+ tu0 + tu⊥, y)−F(x̂+ tu0, y) = Ψĥ(x̂+ tu0 + tu⊥, y)−Ψĥ(x̂+ tu0, y)(28)

+ Fĥ(x̂+ tu0 + tu⊥, y)−Fĥ(x̂+ tu0, y).(29)

First, we focus on the right-hand side of (28). From the definition of ĥ and (16),

Ψĥ(x̂+ tu0, y) = 0,

Ψĥ(x̂+ tu0 + tu⊥, y) =
∑
i∈ĥ

ψ
(
aTi (x̂+ tu⊥ + tu0)− yi

)
=

∑
i∈ĥ

ψ(taTi u⊥).

Applying Definition 3 to ψ′(0+) shows that there is η0 ∈ (0, σ] such that
ψ(t)

t
≥ ψ′(0+)− 1− c0

2
ψ′(0+) ∀t ∈ (0, ‖a‖∞η0) ,
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since (1 − c0)/2 ∈ (0, 1). On the other hand, |aTi u| ≤ ‖ai‖‖u‖ ≤ ‖a‖∞ for all

u ∈ B(0, 1) and for all i ∈ {1, . . . , q}. Then

t ∈ (0, η0) ⇒ ψ(taTi u⊥) ≥
c0 + 1

2
ψ′(0+) t |aTi u⊥| ∀u⊥ ∈ T⊥

ĥ
∩B(0, 1).

Hence, taking t ∈ (0, η0) ensures that for all u ∈ S, decomposed into u = u0 + u⊥ as
in (16), we have

Ψĥ(x̂+ tu0 + tu⊥, y) ≥
c0 + 1

2
t ψ′(0+)

∑
i∈ĥ

|aTi u⊥|.(30)

Second, we consider (29). Define the constants

c1 := min
u⊥∈T⊥

ĥ
∩S

∑
i∈ĥ

|aTi u⊥|,(31)

c2 := c1ψ
′(0+)

1− c0
4

,(32)

and notice that c1 > 0 and c2 > 0, and that (31) implies∑
i∈ĥ

|aTi u⊥| ≥ c1‖u⊥‖ ∀u⊥ ∈ T⊥
ĥ
.(33)

Since Fĥ(., y) ∈ C1 (B(x̂, σ)) (see Remark 3), the mean-value theorem [5] shows that
for every u ∈ S and for every t ∈ [0, σ) there exists θ ∈ (0, 1) such that

Fĥ(x̂+ tu0 + tu⊥, y)−Fĥ(x̂+ tu0, y) = tD1Fĥ(x̂+ tu0 + θtu⊥, y).u⊥,(34)

where u = u0 + u⊥ is decomposed as in (16). Moreover, there is η1 ∈ (0, η0) such that
for every t ∈ (0, η1),∣∣D1Fĥ(x̂+ tu0 + θtu⊥, y).u⊥ −D1Fĥ(x̂, y).u⊥

∣∣ ≤ c2‖u⊥‖ ∀u ∈ S, ∀θ ∈ (0, 1),
and hence∣∣D1Fĥ(x̂+ tu0 + θtu⊥, y).u⊥

∣∣ ≤ ∣∣D1Fĥ(x̂, y).u⊥
∣∣+ c2‖u⊥‖ ∀u ∈ S, ∀θ ∈ (0, 1).(35)

Starting with (28)–(29), we derive

F(x̂+ tu0 + tu⊥, y)−F(x̂+ tu0, y)(36)

≥ c0 + 1

2
t ψ′(0+)

∑
i∈ĥ

|aTi u⊥| − t
∣∣D1Fĥ(x̂+ tu0 + θtu⊥, y).u⊥

∣∣ [by (30) and (34)]
≥ c0 + 1

2
t ψ′(0+)

∑
i∈ĥ

|aTi u⊥| − t
∣∣D1Fĥ(x̂, y).u⊥

∣∣− tc2‖u⊥‖ [by (35)]

≥ 1− c0
2

t ψ′(0+)
∑
i∈ĥ

|aTi u⊥| − tc2‖u⊥‖ [by (27)]

≥ 1− c0
2

ψ′(0+)tc1‖u⊥‖ − tc2‖u⊥‖ [by (33)]

=
1− c0
4

ψ′(0+)tc1‖u⊥‖. [by (32)](37)
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Consequently,

t ∈ (0, η1) ⇒ F(x̂+ tu0 + tu⊥, y)−F(x̂+ tu0, y) > 0 ∀u ∈ S with u⊥ �= 0.(38)

From assumption 1, there exists η2 ∈ (0, η1] such that
t ∈ (0, η2) ⇒ F(x̂+ tu0, y)−F(x̂, y) > 0 ∀u0 ∈ Tĥ ∩B(0, 1) \ {0}.(39)

If u0 = 0, then (38) holds since ‖u⊥‖ = 1, whereas if u⊥ = 0, then (39) is true
since ‖u0‖ = 1. Introducing (38) and (39) into (17)–(18) shows that if t ∈ (0, η2), then
F(x̂+ tu, y)−F(x̂, y) > 0 for every u ∈ S.

Remark 4. The conditions required in Proposition 1 are pretty weak. Indeed, if
an arbitrary function F(., y) : Rp → R has a strict minimum at x̂, then assumption 1
is trivially true and necessarily δ1F(x̂, y)(u) ≥ 0 for all u ∈ T⊥

ĥ
∩S [32]. In comparison,

assumption 2 requires only that the latter inequality be strict.
Observe that the above sufficient condition for strict minimum concerns the be-

havior of F(., y) on two orthogonal subspaces separately. This occurs because of the
nonsmoothness of ψ.

4. Minimizers that fit exactly some data entries. The theorem below states
the main contribution of this work.

Theorem 1. Consider F as given in (11)–(12), where Φ ∈ Cm(Rp × R
q) for

m ≥ 2, and ψ ∈ Cm(R \ {0}) has finite side derivatives at zero such that ψ′(0−) <
ψ′(0+). Given y ∈ R

q and x̂ ∈ R
p, let ĥ := H(x̂, y), Θĥ(y), and Tĥ be obtained by

(6), (7), and (8), respectively. Suppose the following:

1. The set {ai : i ∈ ĥ} is linearly independent;
2. for every u ∈ Tĥ ∩ S we have D1(F|

Θĥ(y)
)(x̂, y).u = 0 and

D2
1(F|

Θĥ(y)
)(x̂, y)(u, u) > 0;

3. for every u ∈ T⊥
ĥ

∩ S we have δ1F(x̂, y)(u) > 0.
Then there is a neighborhood N ⊂ R

q containing y and a Cm−1 local minimizer
function X : N → R

p relevant to F(., N) (see Definition 2) yielding, in particular,
x̂ = X (y), whereas for every y′ ∈ N ,

aTi X (y′) = y′i if i ∈ ĥ,

aTi X (y′) �= y′i if i ∈ ĥc.
(40)

The latter means that H(X (y′), y′) = ĥ is constant on N .
Proof. If ĥ = ∅, then Θĥ(y

′) = R
p for all y′. Applying Lemma 1 shows the

existence of Ñ ⊂ R
q and of a Cm−1 local minimizer function X relevant to F(., Ñ).

By the continuity of X , there is N ⊂ Ñ where (40) holds, in which case (40) is reduced
to aTi X (y′) �= y′i for all i ∈ {1, . . . , q}.

In the following we consider that ĥ is nonempty. As in the proof of Proposition 1,
we use the formulation of F given in (13)–(15) and write ψ for ψ̃ and Φ for Φ̃. This
proof is based on two lemmas given next.

Lemma 2. Let assumptions 1 and 2 of Theorem 1 be satisfied. Then there exist
ν > 0 and a Cm−1-function X : B(y, ν)→ R

p so that for every y′ ∈ B(y, ν) the point
x̂′ := X (y′) belongs to Θĥ(y

′) and satisfies

D1

(
F|

Θĥ(y′)

)
(x̂′, y′).u = 0 and D2

1

(
F|

Θĥ(y′)

)
(x̂′, y′)(u, u) > 0 ∀u ∈ Tĥ\{0}.

(41)
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In particular, x̂ = X (y).
Proof of Lemma 2. We start by commenting on the restricted functions in (41).
Remark 5. For σ as in (20), the inequality reached in (22) shows that for all

(x′, y′) ∈ B(x̂, σ)×B(y, σ) we have H(x′, y′) ⊆ ĥ. On the other hand, if x′ ∈ Θĥ(y
′),

then H(x′, y′) ⊇ ĥ. If we put
Bĥ ((x̂, y), σ) := (B(x̂, σ)×B(y, σ)) ∩Mĥ,(42)

where Mĥ is given in (9), we have

(x′, y′) ∈ Bĥ ((x̂, y), σ) ⇒ H(x′, y′) = ĥ,
and Bĥ ((x̂, y), σ) ⊂Mĥ. By (7) and (10), for every (x

′, y′) ∈Mĥ we find Ψĥ(x
′, y′) =

0 and hence F|
Θĥ(y′)(x

′, y′) = Fĥ|Θĥ(y′)(x
′, y′). Since Fĥ ∈ Cm (B(x̂, σ)×B(y, σ))

(see Remark 3), we get

F|
Θĥ(y′) ∈ Cm

(
Bĥ ((x̂, y), σ)

)
and F|

Θĥ(y′)(x
′, y′) = Fĥ(x

′, y′) ∀ (x′, y′) ∈ Bĥ ((x̂, y), σ).

We now pursue the proof of the lemma. Let the indexes contained in ĥ read ĥ =
{j1, . . . , j#ĥ}. Let Iĥ be the #ĥ× q matrix with entries Iĥ[i, ji] = 1 for i = 1, . . . ,#ĥ,
the remaining entries being null. Thus yĥ := Iĥy ∈ R

#ĥ is composed of only those

entries of y whose indexes are in ĥ. Similarly, put Aĥ := IĥA; then Aĥ ∈ R
#ĥ×p

and Aĥx̂ = yĥ. With this notation, Mĥ =
{
(x′, y′) ∈ R

p × R
q : Aĥx

′ − Iĥy′ = 0
}
. By

assumption 1, rankAĥ = #ĥ. Then for every y′ we have the following dimensions:
dim Θĥ(y

′) = dim Tĥ = p−#ĥ while dim Mĥ = p−#ĥ+ q. Recalling that AĥA
T
ĥ
is

invertible, put

Pĥ := A
T
ĥ

(
AĥA

T
ĥ

)−1

Iĥ.(43)

Let Cĥ : Tĥ → R
p−#ĥ be an isomorphism. The affine mapping

Γ : Mĥ → R
p−#ĥ,

(x′, y′)→ Γ(x′, y′) = Cĥ

(
x′ − x̂− Pĥ(y′ − y)

)
(44)

is well defined for every y′ ∈ R
q since on the one hand x̂+Pĥ (y

′ − y) is the orthogonal
projection1 of x̂ onto Θĥ(y

′), whereas on the other hand x′ ∈ Θĥ(y
′) by (10). Consider

also the conjugate mapping

Γ† : R
p−#ĥ × R

q → Θĥ(y
′),

(z, y′)→ Γ†(z, y′) = C−1

ĥ
z + x̂+ Pĥ(y

′ − y),(45)

1The orthogonal projection of x̂ onto Θĥ(y
′), denoted by x̂y′ , is unique and is determined by

solving the problem

minimize ‖x̂y′ − x̂‖ subject to x̂y′ ∈ Θĥ(y
′).

The latter constraint also reads Aĥx̂y′ = y′
ĥ

if we denote y′
ĥ

= Iĥy
′. It is easily calculated that the

solution to this problem reads

x̂y′ = x̂−AT
ĥ

(
AĥA

T
ĥ

)−1 (
Aĥx̂− y′

ĥ

)
.

Recalling that Aĥx̂ = Iĥy from the definition of ĥ, we obtain that x̂y′ = x̂+ Pĥ (y′ − y).
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which is also well defined. Let

ν0 :=
σ

2
min

{
1,

(
sup
z∈S

‖C−1

ĥ
z‖+ sup

y′∈S
‖Pĥy′‖

)−1
}
.(46)

Clearly, 0 < ν0 < σ. It is worth noticing that

Γ†(z, y′) ∈ Θĥ(y
′) ∩B(x̂, σ) ⊂ Θĥ(y

′) ∀(z, y′) ∈ B(0, ν0)×B(y, ν0),(47)

since on the one hand (45) shows that Γ†(z, y′) ∈ Θĥ(y
′) whereas, on the other hand,

‖Γ†(z, y′)− x̂‖ ≤ ‖C−1

ĥ
‖ ‖z‖+ ‖Pĥ‖ ‖y′ − y‖ ≤ (‖C−1

ĥ
‖+ ‖Pĥ‖) ν0 < σ.

Now we introduce the function

G : Rp−#ĥ × R
q → R,

(z, y′)→ G(z, y′) := Fĥ

(
Γ†(z, y′), y′

)
.(48)

Since for every y′ ∈ R
q we have

z = Γ(x′, y′) ⇔ x′ = Γ†(z, y′),

then

G (Γ(x′, y′), y′) = Fĥ(x
′, y′) = F|

Θĥ(y′)(x
′, y′) ∀(x′, y′) ∈ Bĥ ((x̂, y), σ) ,

where the last equality comes from Remark 5. Now for every (x′, y′) ∈ Bĥ ((x̂, y), σ),
the derivatives of F|

Θĥ(y′), mentioned in (41), can be calculated in terms of G and Γ
as follows:

D1

(
F|

Θĥ(y′)

)
(x′, y′).u0 = D1G (Γ(x′, y′), y′) .Cĥu0 ∀u0 ∈ Tĥ,(49)

D2
1

(
F|

Θĥ(y)

)
(x′, y′)(u0, u0) = D2

1G (Γ(x′, y′), y′) .
(
Cĥu0, Cĥu0

) ∀u0 ∈ Tĥ.(50)

Since Cĥ is an isomorphism, D1Γ(x
′, y′).u0 = Cĥ.u0 �= 0 for every u0 ∈ Tĥ \ {0},

whereas Cĥ.Tĥ = R
p−#ĥ. Then assumption 2, combined with the fact that Γ(x̂, y) = 0

by construction, yields

D1G(0, y) = 0,
D2

1G(0, y)(u, u) > 0 ∀u ∈ R
p−#ĥ \ {0}.

By Lemma 1, there exist ν ∈ (0, ν0] and a unique Cm−1-function Z : B(y, ν) →
B(0, ν0) such that

D1G (Z(y′), y′) = 0 and D2
1G (Z(y′), y′) is positive definite ∀y′ ∈ B(y, ν),(51)

with, in particular, Z(y) = 0. Next we express the derivatives in (51) in terms of
Fĥ and Γ

†. From (47) and Remark 5 it follows that Fĥ is Cm at every
(
Γ†(z, y′), y′

)
relevant to (z, y′) ∈ B(0, ν0)×B(y, ν), in which case (48) gives rise to

D1G(z, y′).u = D1Fĥ(Γ
†(z, y′), y′).C−1

ĥ
u,(52)

D2
1G(z, y′)(u, u) = D2

1Fĥ(Γ
†(z, y′), y′)

(
C−1

ĥ
u,C−1

ĥ
u
)
.(53)
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Put

X (y′) := Γ† (Z(y′), y′) ∀y′ ∈ B(y, ν),(54)

and notice that X (y′) ∈ Θĥ(y
′). Then (51) implies that for every y′ ∈ B(y, ν),

D1Fĥ(X (y′), y′).C−1

ĥ
u = 0 ∀u ∈ R

p−#ĥ,

D2
1Fĥ(X (y′), y′)

(
C−1

ĥ
u,C−1

ĥ
u
)
> 0 ∀u ∈ R

p−#ĥ \ {0}.

Since C−1

ĥ
u �= 0 for all u ∈ R

p−#ĥ \ {0} and C−1

ĥ
.Rp−#ĥ = Tĥ, it follows that for

every y′ ∈ B(y, ν),
D1Fĥ (X (y′), y′) .u0 = 0 and D2

1Fĥ(X (y′), y′).(u0, u0) > 0 ∀u0 ∈ Tĥ \ {0}.
Again applying Remark 5 allows us to write that if y′ ∈ B(y, ν), then

D1

(
F|

Θĥ(y′)

)
(X (y′), y′) .u0 = 0 and D2

1

(
F|

Θĥ(y′)

)
(X (y′), y′)(u0, u0) > 0

∀u0 ∈ Tĥ \ {0}.
The proof of Lemma 2 is complete.

The next lemma addresses assumption 3 of the theorem.
Lemma 3. Given x̂ ∈ R

p and y ∈ R
q, let ĥ = H(x̂, y) �= ∅. Let assumption 3 of

Theorem 1 hold.
Then there exists µ > 0 such that

y′ ∈ B(x̂, µ) and x′ ∈ Θĥ(y
′)∩B(x̂, µ) ⇒ δ1F(x′, y′)(u⊥) > 0 ∀u⊥ ∈ T⊥

ĥ
∩S.(55)

Proof of Lemma 3. We decompose F according to (19). Let σ and Bĥ ((x̂, y), σ)
be defined according to (20) and (42), respectively. Remark 5 applies to Bĥ ((x̂, y), σ).
Similarly to (23)–(24), for every (x′, y′) ∈ Bĥ ((x̂, y), σ) we have

δ1F(x′, y′)(u) = ψ′(0+)
∑
i∈ĥ

|aTi u|+D1Fĥ(x
′, y′).u ∀u ∈ R

p.(56)

By the continuity ofD1Fĥ, there is µ ∈ (0, σ] such that for every (x′, y′) ∈ Bĥ ((x̂, y), µ),∣∣D1Fĥ(x
′, y′).u⊥ −D1Fĥ(x̂, y).u⊥

∣∣ ≤ 1− c0
2

ψ′(0+)c1‖u⊥‖ ∀u⊥ ∈ T⊥
ĥ
,(57)

where c0 ∈ (0, 1) and c1 > 0 are the constants given in (26) and (31), respectively.
We derive the following inequality chain which holds for all (x′, y′) ∈ Bĥ ((x̂, y), µ)
and for all u⊥ ∈ T⊥

ĥ
:∣∣D1Fĥ(x
′, y′).u⊥

∣∣
≤ ∣∣D1Fĥ(x̂, y).u⊥

∣∣+ 1− c0
2

ψ′(0+)c1‖u⊥‖ [by (57)]

≤ c0 ψ′(0+)
∑
i∈ĥ

|aTi u⊥|+
1− c0
2

ψ′(0+)c1‖u⊥‖ [by (27)](58)

≤ c0 ψ′(0+)
∑
i∈ĥ

|aTi u⊥|+
1− c0
2

ψ′(0+)
∑
i∈ĥ

|aTi u⊥| [by (33)]

=
c0 + 1

2
ψ′(0+)

∑
i∈ĥ

|aTi u⊥|.(59)
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On the other hand, (56) shows that for every (x′, y′) ∈ Bĥ ((x̂, y), µ) and for all
u⊥ ∈ T⊥

ĥ
∩ S, we have

δ1F(x′, y′)(u⊥) ≥ ψ′(0+)
∑
i∈ĥ

|aTi u⊥| − |D1Fĥ(x
′, y′).u⊥|

≥
(
1− c0 + 1

2

)
ψ′(0+)

∑
i∈ĥ

|aTi u⊥| > 0. [by (59)]

The last inequality is strict since for every u⊥ ∈ T⊥
ĥ

∩ S, there is at least one index
i ∈ ĥ for which aTi u⊥ �= 0.

We now complete the proof of Theorem 1. Consider ν > 0 and µ > 0 the radii
found in Lemmas 2 and 3 and X the function exhibited in Lemma 2. By the continuity
of X , there exists ξ ∈ (0,min{µ, ν}] such that X (y′) ∈ B(x̂, µ) for every y′ ∈ B(y, ξ).
For any y′ ∈ B(y, ξ), consider the point x̂′ := X (y′). From Lemma 2, x̂′ ∈ Θĥ(y

′) and
x̂′ is a strict local minimizer of F|

Θĥ(y′)(., y
′). From Lemma 3, δ1F(x̂′, y′)(u⊥) > 0 for

all u⊥ ∈ T⊥
ĥ

∩ S. All the conditions of Proposition 1 being satisfied, F(., y′) reaches a
strict local minimum at x̂′. It follows that X : B(y, ξ)→ R

p is the sought-after Cm−1

minimizer function.
We now focus on the assumptions involved in this theorem. Assumption 2 is

nothing else but the very classical sufficient condition for a strict local minimum of
a smooth function over an affine subspace. Assumption 3 was used in Proposition 1
and was discussed therein.

Remark 6 (on assumption 1). The subset {ai : i ∈ ĥ} in assumption 1 is deter-
mined by (6). With the notation introduced in the beginning of Lemma 2, yĥ := Iĥy ∈
R

#ĥ belongs to the range of Aĥ, denoted by R(Aĥ). Since dim R(Aĥ) = rankAĥ, it

follows that if rankAĥ < #ĥ, then all y
′
ĥ
belonging to R(Aĥ) belong to a subspace

of dimension strictly smaller than #ĥ. Thus, assumption 1 fails to hold only if y is
included in a subspace of dimension smaller than q. But the chance that noisy data
y belong to such a subspace is null. Hence, assumption 1 is satisfied for almost all
y ∈ R

q.
It is worth emphasizing that the independence of the whole set {ai : i ∈ {1, . . . , q}}

is not required. Thus, Theorem 1 addresses any matrix A whether it be ill conditioned,
or singular, or invertible.

Theorem 1 entails some important consequences which are discussed next.
Remark 7 (stability of minimizers). The fact that there is a Cm−1 local minimizer

function shows that, in spite of the nonsmoothness of F , for any y, all the strict local
minimizers of F(., y) which satisfy the conditions of the theorem are stable under weak
perturbations of data y. This result extends Lemma 1 to nonsmooth functions of the
form (11)–(12). Moreover, if for every y ∈ R

q the function F(., y) is strictly convex,
then the unique minimizer function X : R

q → R
p, relevant to F(.,Rq), is Cm−1 on

R
q.
Remark 8 (stability of ĥ). The result formulated in (40) means that the set-

valued function y′ → H(X (y′), y′) is constant on N , i.e., that H is constant under

small perturbations of y. Equivalently, all residuals (aTi X (y′)− y′i) for i ∈ ĥ are null
on N .

Remark 9 (data domain). Theorem 1 reveals that the data domain R
q contains

volumes of positive measure composed of data that lead to local minimizers which
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fit exactly the data entries belonging to the same set (e.g., for A invertible, α = 0

yields ĥ = {1, . . . , q} and the data volume relevant to this ĥ is R
q). For a meaningful

choice of ψ, Φ, and α, there are volumes corresponding to various ĥ, and they are large
enough so that noisy data come across them. That is why in practice, nonsmooth data-
fidelity terms yield minimizers fitting exactly a certain number of the data entries.
The resultant numerical effect is observed in section 7.

Next we present a simple example which illustrates Theorem 1.
Example 1 (nonsmooth data-fidelity term). Consider the function

F(x, y) =
q∑

i=1

|xi − yi|+ α
q∑

i=1

x2
i

2
,

where α > 0. For every y ∈ R
q, the function F(., y) is strictly convex, so it has a

unique minimizer and the latter is strict. Moreover,

min
x

F(x, y) =
q∑

i=1

min
xi

f(xi, yi),

where f(xi, yi) = |xi − yi|+ αx
2
i

2
for i = 1, . . . , q.

For y ∈ R
q, let x̂ be the minimizer of F(., y). Now ĥ = {i : x̂i = yi}. For every i, the

fact that f(., yi) has a minimum at x̂i means that δ1f(x̂i, yi)(u) ≥ 0 for every u ∈ R.
Then for every u ∈ R we have

if (i ∈ ĥc ⇔ x̂i �= yi), then δ1f(xi, yi)(u) = Df(xi, yi).u = (sign(xi − yi) + αxi) .u ≥ 0;
if (i ∈ ĥ ⇔ x̂i = yi), then δ1f(x̂i, yi)(u) = |u|+ (αyi) .u ≥ 0.
From Proposition 1, the entries of the minimizer function X are

if |yi| > 1

α
, then Xi(y) =

1

α
sign(yi);

if |yi| ≤ 1

α
, then Xi(y) = yi.

Theorem 1 applies, provided that |yi| �= 1/α for every i ∈ ĥ, which corresponds to
assumption 3. In such a case, we can take for the neighborhood exhibited in Theorem 1

N = B(y, ξ) with ξ =
q

min
i=1

∣∣∣∣ |yi| − 1

α

∣∣∣∣ .
We see that y′ → H(X (y′), y′) reads

H(X (y′), y′) =
{
i ∈ {1, . . . , q} : |y′i| ≤

1

α

}

and is constant on N . The above expression shows also that the cardinality of ĥ
increases when α decreases.

We now illustrate Remark 9. For h ⊂ {1, . . . , q}, put

Vh :=

{
y ∈ R

q : |yi| ≤ 1

α
∀i ∈ h and |yi| > 1

α
∀i ∈ hc

}
.
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Obviously, every y′ ∈ Vh gives rise to a minimizer x̂′ of F(., y′) satisfyingH(x̂′, y′) = h.
That is, the function y′ → H(X (y′), y′) is constant on Vh. Note that V∅ = {y ∈ R

q :
|yi| > 1/α for all i} and that V∅ = ∅ if α = 0. Moreover, for every h ⊂ {1, . . . , q}, the
set Vh has a positive volume in R

q, whereas the family of all Vh, when h ranges over
the family of all the subsets of {1, . . . , q} (including the empty set), is a partition of
R

q.

5. Smooth data-fidelity terms. In this section we focus on smooth cost-
functions with the goal of checking whether we can get minimizers which fit exactly
a certain number of data entries. We start with an illuminating example.

Example 2 (smooth cost-function). For A ∈ R
q×p and G ∈ R

r×p with r ∈ N
∗,

consider the cost-function F : Rp × R
q → R,

F(x, y) = ‖Ax− y‖2 + α‖Gx‖2.(60)

Recall that since the publication of [37], cost-functions of this form are among the
most widely used tools in signal and image estimations [25, 22, 35, 13]. Under the
classical assumption kerATA ∩ kerGTG = ∅, it is seen that for every y ∈ R

q, F(., y)
is strictly convex and its unique minimizer x̂ is determined by solving the equation

D1F(x̂, y) = 0 where D1F(x̂, y) = 2(Ax̂− y)TA+ 2αx̂TGTG.

The relevant minimizer function X : Rq → R
p reads

X (y) = (ATA+ αGTG)−1AT . y.(61)

We now determine the set of all data points y ∈ R
q for which x̂ := X (y) fits exactly

the ith data entry yi. To this end, we have to solve with respect to y the equation

aTi X (y) = yi.(62)

Using (61), this is equivalent to solving the equation

pi(α).y = 0,(63)

where pi(α) = aTi (A
TA+ αGTG)−1AT − eTi .

We can have pi(α) = 0 only if α belongs to the discrete set of several values which
satisfy a data-independent system of q polynomials of degree p. However, α will almost
never belong to such a set so, in general, pi(α) �= 0. Then (63) implies y ∈ {pi(α)}⊥.
More generally, we have the implication

∃i ∈ {1, . . . , q} such that Xi(y) = yi ⇒ y ∈
q⋃

j=1

{pj(α)}⊥.

Since every {pi(α)}⊥ is a subspace of R
q of dimension q − 1, the union on the right-

hand side above is a closed, negligible subset of R
q. The chance that noisy data come

across this union is null. Hence, the chance that noisy data y yield a minimizer X (y)
which fits even one data entry, i.e., that there is at least one index i such that (62)
holds, is null.

The theorem stated below generalizes this example.
Theorem 2. Consider a Cm-function F : Rp×R

q → R, with m ≥ 2, of the form
(1)–(2), and let h ⊂ {1 . . . , q} be nonempty. Assume the following:
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1. For all i = 1, . . . , q, the functions ψi : R → R satisfy ψ′′
i (t) > 0 for all t ∈ R;

2. A is invertible (recall that for every i = 1, . . . , q, the ith row of A is aTi );
3. there is an open domain N0 ⊂ R

q so that F(., N0) admits a Cm−1 local
minimizer function X : N0 → R

p, such that D2
1F(X (y), y) is positive definite,

for all y ∈ N0;
4. for every x ∈ X (N0) ⊂ R

p and for every i ∈ h we have D2Φ(x).[A−1]i �= 0,
where [A−1]i denotes the ith column of A

−1, for i = 1, . . . , q.
For a given set of constants {θi, i ∈ h}, and for any N ⊂ N0 a closed subset of R

q,
put

Υh :=
{
y ∈ N : aTi X (y) = yi + θi ∀i ∈ h

}
.(64)

Then Υh is a closed subset of R
q whose interior is empty.

Proof. For every h nonempty we have

Υh =
⋂
i∈h

Υ{i}.

It is hence sufficient to consider Υ{i} for some i ∈ h. For simplicity, in the following
we write Υi for Υ{i}. Since X is continuous on N , every Υi is closed in N and hence
in R

q. Our reasoning below is developed ad absurdum. So suppose that Υi contains
an open, connected subset of R

q, say Ñ ⊂ Υi ⊂ N . We can hence write

aTi X (y) = yi + θi ∀y ∈ Ñ .(65)

Differentiating both sides of this identity with respect to y yields

aTi DX (y) = eTi ∀y ∈ Ñ .(66)

We next determine the form of DX . Since for every y ∈ Ñ the point X (y) is a local
minimizer of F(., y), it satisfies D1F(X (y), y) = 0. Differentiating both sides of the
latter identity leads to

D2
1F (X (y), y)DX (y) +D1,2F (X (y), y) = 0 ∀y ∈ Ñ .(67)

The Hessian of x→ F(x, y), denoted H(x, y) := D2
1F (x, y), reads

H(x, y) = D2
1Ψ(x, y) + αD

2Φ(x)

= AT Diag
(
ψ̈(x, y)

)
A+ αD2Φ(x),(68)

where for every x and y, ψ̈(x, y) ∈ R
q is the vector whose entries read

[ψ̈(x, y)]i = ψ
′′
i (a

T
i x− yi) for i = 1, . . . , q.

By assumption 3, H (X (y), y) is an invertible matrix for every y ∈ Ñ . Furthermore,

D1,2F(x, y) = −AT Diag
(
ψ̈(x, y)

)
.

Inserting the last expression and (68) into (67) shows that

DX (y) = (H(X (y), y))−1
AT Diag

(
ψ̈(X (y), y)

)
∀y ∈ Ñ .(69)
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Now introducing (69) into (66) yields

aTi (H(X (y), y))−1
AT Diag

(
ψ̈(X (y), y)

)
= eTi ∀y ∈ Ñ .(70)

By assumption 1, Diag
(
ψ̈(X (y), y)) is invertible for every y ∈ Ñ . Its inverse is

a diagonal matrix whose diagonal terms are
(
ψ′′
i (a

T
i X (y)− yi)

)−1
for i = 1 . . . , q.

Noticing that

eTi

(
Diag

(
ψ̈(X (y), y)

))−1

=
eTi

ψ′′
i

(
aTi X (y)− yi

) ,
we find that (70) equivalently reads

ψ′′
i (a

T
i X (y)− yi) .aTi (H(X (y), y))−1

= eTi A
−T ∀y ∈ Ñ ,

where A−T :=
(
AT

)−1
. Then, taking into account (68),

ψ′′
i (a

T
i X (y)− yi) .aTi = eTi A−T

(
AT Diag

(
ψ̈(X (y), y)

)
A+ αD2Φ(X (y))

)
∀y ∈ Ñ .

By the invertibility of A (assumption 2), and noticing that eTi A = aTi , the latter
expression is simplified to

ψ′′
i

(
aTi X (y)− yi

)
.aTi = ψ

′′
i

(
aTi X (y)− yi

)
.aTi + αe

T
i A

−TD2Φ(X (y)) ∀y ∈ Ñ ,
and finally to

D2Φ(X (y)).A−1ei = 0 ∀y ∈ Ñ .
However, the obtained identity contradicts assumption 4. Hence the conclusion.

Let us comment on the assumptions taken in this theorem. Recall first that
assumption 3 was discussed in Lemma 1 and Remark 1. In the typical case when Ψ
is a data-fidelity measure, every ψi is a strictly convex function satisfying ψi(0) = 0
and ψi(t) = ψi(−t).

Remark 10 (on assumption 2). This proposition also addresses the case when

F(x, y) = ‖Ax− y‖2 + αΦ(x) with rankA = p ≤ q.
Indeed, for p < q, F can equivalently be expressed in terms of an invertible p × p
matrix Ã with ÃT Ã = ATA in place of A.

Remark 11 (on assumption 4). By the invertibility of A (assumption 2), we see
that [A−1]i = A

−1ei �= 0 for every i = 1, . . . , q. It would be a “pathological” situation
to have some of the columns of A−1 in kerD2Φ(x) for some x. For instance, focus on
the classical case given in (4) with GT

i : R
p → R. Let G denote the r×p matrix whose

rows are GT
i for i = 1, . . . , r. Then D

2Φ(x) = GTDiag (ϕ̈(Gx))G, where ϕ̈(Gx) ∈ R
r

is the vector with entries [ϕ̈(Gx)]i = ϕ
′′(GT

i x) for i = 1, . . . , r. Focus on the case when
ϕ′′(t) > 0 for all t ∈ R (e.g., ϕ is strictly convex) and G yields first-order differences
between neighboring samples. Then KerD2Φ(x) is composed of the constant vectors
κ[1, . . . , 1]T , κ ∈ R. Then assumption 4 is satisfied provided that A−1 does not involve
constant columns.

Remark 12 (meaning of the theorem). If for some y ∈ R
q a minimizer x̂ of F(., y)

satisfies an affine equation of the form aTi x̂ = yi + θi, then Theorem 2 asserts that
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y belongs to a closed subset of R
q whose interior is empty. There is no chance that

noisy data y yield local minimizers of a smooth cost-function F(., y) satisfying such
an equation.

The next proposition states the same conclusions but under different assumptions.
Proposition 2. Consider a Cm-function F : R

p × R
q → R, with m ≥ 2, of the

form (1)–(2) and let h ⊂ {1 . . . , q} be nonempty. Assume the following:
1. There is a domain N0 ⊂ R

q so that F(., N0) admits a Cm−1 local minimizer
function X : N0 → R

p such that D2
1F(X (y), y) is positive definite for all

y ∈ N0;
2. for every y ∈ N0 and for every i ∈ h there exists j ∈ {1, . . . , q} such that the
function Ki,j,

Ki,j(y
′) := ψ′′

i

(
aTj X (y′)− eTj y′

)
.aTi (H(X (y′), y′))−1

.aj ,

where H was given in (68), is nonconstant on any neighborhood of y.
For {θi ∈ R : i ∈ h} given, and for every N ⊂ N0 a closed subset of R

q, put

Υh :=
{
y ∈ N : aTi X (y) = yi + θi ∀i ∈ h

}
.(71)

Then Υh is a closed subset of R
q whose interior is empty.

Proof. As in the proof of Theorem 2, we focus on Υi for i ∈ h and develop our
reasoning by contradiction. So suppose that Υi contains an open ball Ñ . Then (65)
and (66) are true. In particular, comparing (66) for y′ �= y with the same equality for
y yields

aTi DX (y′) = aTi DX (y) ∀y′ ∈ Ñ .(72)

Notice that AT Diag
(
ψ̈(x, y′)

)
is a matrix whose jth column reads ψ′′(aTj x − y′j).aj .

Introducing (69) into (72) shows that the latter is equivalent to the system

Ki,j(y
′) = Ki,j(y) ∀j ∈ {1, . . . , q}, ∀y′ ∈ Ñ .

The obtained result contradicts assumption 2.
Remark 13 (on assumption 2). Although a general proof of the validity of this

assumption appears to be more intricate than important, we conjecture that it is
usually satisfied. The intuitive arguments are the following. Let us focus on the
classical case when Φ is as in (4). The entries of H(x′, y′) read

[H(x′, y′)]m,n =

q∑
j=1

η2j,mψ
′′(ajx′−y′j)+

r∑
j=1

κ2
j,nϕ

′′(Gjx
′) for (m,n) ∈ {1, . . . , p}2,(73)

where ηj,m, j = 1, . . . , q, and κj,n, j = 1, . . . , r, are constants that are calculated
from G and A. From Cramer’s rule for matrix inversion, for every j, the term
aTi (H(x

′, y′))−1
aj is the fraction of two polynomials. The entries of the numer-

ator read βs,m,n([H(x
′, y′)]m,n)

s for all (m,n) ∈ {1, . . . , p}2 with βs,m,n ∈ R for
s = 0, . . . , p − 1. In the denominator we have γs,m,n([H(x

′, y′)]m,n)
s for all (m,n) ∈

{1, . . . , p}2 with γs,m,n ∈ R for s = 0, . . . , p. For X a minimizer function and j and i
given, Ki,j has the form

Ki,j(y
′) = ψ′′ (aTj X (y′)− y′j) .

∑p−1
s=1

∑
(m,n) βs,m,n([H(X (y′), y′)]m,n)

s∑p
s=1

∑
(m,n) γs,m,n([H(X (y′), y′)]m,n)

s
.(74)

Assumption 2 requires that for i ∈ h, there is at least one index j ∈ {1, . . . , q} for
which the relevant function Ki,j does not remain constant on any neighborhood of y.
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6. Nonsmooth regularization versus nonsmooth data-fidelity. In this
section we compare cost-functions involving nonsmooth data-fidelity terms to cost-
functions involving nonsmooth regularization terms. The visual effects produced by
these classes of cost-functions can be seen in section 7.

Cost-functions with nonsmooth regularization typically have the form (1), where
Ψ is a Cm-function, m ≥ 2, whereas Φ is as in (4) with ϕ nonsmooth at zero. Most
often, Ψ(x, y) = ‖Ax − y‖2. Nonsmooth functions ϕ are, for instance, the L1- and
concave functions in (5). Since the publication of [33, 18], such cost-functions are
customarily used in signal and image restoration [18, 1, 14, 11, 12, 38]. Visually,
the obtained minimizers exhibit a staircasing effect since they typically involve many
constant regions—see, for instance, Figures 6 and 10 in section 8. This effect is
discussed by many authors [18, 15, 14, 12]. In particular, the ability of the L1-function
to recover noncorrelated “nearly black” images in the simplest case when Gi = ei for
all i was interpreted in [15] using mini-max decision theory. Total-variation methods,
corresponding to ϕ(t) = |t| also, were observed to yield “blocky images” [14, 12].
The concave function was shown to transform ramp-shaped data into a step-shaped
minimizer [19].

A theoretical explanation of staircasing was given in [26, 27, 28]. It was shown
there that regularization of the form (4) with ϕ nonsmooth at zero yields local min-
imizers x̂ which satisfy GT

i x̂ = 0 exactly for many indexes i. For instance, if GT
i ,

i = 1, . . . , r, yield first-order differences between neighboring samples (if x is a signal
of R

p, GT
i x = xi − xi+1 for i = 1, . . . , p − 1), the relevant minimizers x̂ are constant

over many zones. If GT
i , i = 1, . . . , r, yield second-order differences, then x̂ involves

many zones over which it is affine, etc. More generally, the sets of indexes i for which
GT

i x̂ = 0 determine zones which can be said to be strongly homogeneous [27]. Stair-
casing is due to a special form of stability property which is explained next. Let a data
point y give rise to a local minimizer x̂ which satisfies GT

i x̂ = 0 for all i ∈ ĥ, where
ĥ �= ∅. It is shown in [26, 27, 28] that y is in fact contained in a neighborhood N ∈ R

q

whose elements y′ ∈ N (noisy data) give rise to local minimizers x̂′ of F(., y′), placed
near x̂, which satisfy GT

i x̂
′ = 0 for all i ∈ ĥ. Since every such N is a volume of pos-

itive measure, noisy data come across these volumes and yield minimizers satisfying
GT

i x̂
′ = 0 for many indexes i. Notice that this behavior is due to the nonsmoothness

of ϕ at zero since it cannot occur with differentiable cost-functions [27, 28].
The behavior of the minimizers of cost-functions with nonsmooth data-fidelity, as

considered in Theorem 1, is opposite. If y leads to a minimizer x̂ which fits exactly
a set ĥ of entries of y, Theorem 1 shows that y is contained in a neighborhood N
such that the relevant minimizer function X follows closely every small variation of
all data entries y′i for i ∈ ĥ when y′ ranges over N . Thus aTi X (y′) is never constant
in the vicinity of y for i ∈ ĥ.

7. Nonsmooth data-fidelity to detect and smooth outliers. Our objec-
tive now is to process data in order to detect, and possibly to smooth, outliers and
impulsive noise. To this end, take ai = ei for every i ∈ {1, . . . , q} in (2). Focus on

F(x, y) =
q∑

i=1

ψ(xi − yi) + α
r∑

i=1

ϕ(GT
i x),(75)

where GT
i : R

p → R for i = 1, . . . , r yield differences between neighboring samples
(e.g., GT

i x = xi − xi+1 if x is a signal); ψ and ϕ are even and strictly increasing on
[0,∞), with ψ′(0+) > 0 and ϕ smooth on R. Suppose that x̂ is a strict minimizer
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of F(., y) and put ĥ = H(x̂, y). Based on the results in section 4, we naturally come
to the following method for the detection of outliers. Since every yi corresponding
to i ∈ ĥ is kept intact in the minimizer x̂, that is, x̂i = yi, every such yi can be
considered as a faithful data entry. In contrast, every yi with i ∈ ĥc corresponds to
x̂i �= yi which can indicate that this yi is aberrant. In other words, given y ∈ R

q,
we posit that ĥc, the complementary of ĥ = H(X (y), y), provides an estimate of the
locations of the outliers in y. The possibility of keeping intact all faithful data entries
is both spectacular and valuable from a practical point of view, e.g., to preprocess
data.

Remark 14 (stability of the detection of outliers). If a minimizer x̂ of F(., y) for
y ∈ R

q gives rise to ĥ = H(x̂, y), then Theorem 1 ensures that all data y′ placed near y
yield minimizers x̂′ which recover exactly the same set of outlier positions ĥc. Hence,
the suggested method for detection of outliers is stable under small data variations.

We also can envisage smoothing outliers since the value of every x̂i for i ∈ ĥc is
obtained from the values of neighboring data samples through the terms αϕ(GT

j x̂)
for all j neighbor of i. Small values of α make the weight of Ψ more important, so
the relevant minimizers x̂ fit larger sets of data entries, i.e., ĥ is larger. At the same
time, all samples x̂i for i ∈ ĥc incur an only-weak smoothing and may remain close to
yi. In contrast, large values of α improve smoothing since they increase the weight of
Φ. To resume, small values of α are better adapted for the detection of outliers while
large values of α are better suited for smoothing of outliers. We are hence faced with
a compromise between efficiency of detection and quality of smoothing. The next
example, as well as the experiments presented below, corroborate this conjecture.

Example 3. Consider the following cost-function:

F(x, y) =
q∑

i=1

|xi − yi|+ α
p−1∑
i=1

(xi − xi+1)
2.

Let x̂ be a minimizer of F(., y) for which ĥ := H(x̂, y) is nonempty. Focus on i ∈ ĥc.
Since x̂i �= yi, then

0 =
∂F(x̂, y)
∂x̂i

= sign(x̂i − yi) + 2α ((x̂i − x̂i+1)− (x̂i−1 − x̂i)) ,

which yields

x̂i =
x̂i−1 + x̂i+1

2
− sign(x̂i − yi)

4α
.(76)

Hence, x̂i takes the form (76) only if we have

either yi >
x̂i−1 + x̂i+1

2
+
1

4α
or yi <

x̂i−1 + x̂i+1

2
− 1

4α
.

We remark that (76) does not involve yi but only the sign of (x̂i − yi). Thus, if yi is
an outlier, the value of x̂i relies only on faithful data entries yj for j ∈ ĥ by means of
x̂i−1 and x̂i+1. Moreover, the smoothing incurred by x̂i is stronger for large values of
α, since then x̂i is closer to the mean of x̂i−1 and x̂i+1. Otherwise, if i ∈ ĥ, we have
δ1F(x̂, y)(ei) ≥ 0, which yields

x̂i = yi ⇔ x̂i−1 + x̂i+1

2
− 1

4α
≤ yi ≤ x̂i−1 + x̂i+1

2
+
1

4α
.
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This inequality is easier to satisfy if α is small, in which case numerous data samples
are fitted exactly, whereas only a few samples are detected as outliers.

Concrete results depend on the shape of ψ, ϕ, {GT
i }, and α. We leave this

crucial question for future work. In order to recover and smooth outliers, we take the
following cost-function:

F(x, y) =
q∑

i=1

|xi − yi|+ α
p∑

i=1

∑
j∈N (i)

|xi − xj |ν for ν ∈ (1, 2],(77)

where for every i = 1, . . . , p the set N (i) contains the indexes of all samples j which
are neighbors to i. In all the restorations presented below, N (i) is composed of the
eight nearest neighbors. Since the publication of [9], we can expect that ν > 1 but
close to 1 allow edges to be better preserved when outliers are smoothed. Based on
this, all the experiments with (77) in the following correspond to ν = 1.1.

The minimizer x̂ of F(., y) for y ∈ R
q is calculated by continuation. Using that

the Huber function (5),

ψν(t) =

{
t2 if |t| ≤ ν,

ν(ν + 2|t− ν|) if |t| > ν, where ν > 0,

satisfies ψν(t) → |t| when ν ↓ 0, we construct a family of functions Fν(., y) indexed
by ν > 0:

Fν(x, y) :=

q∑
i=1

ψν(a
Tx− yi) + Φ(x).

Being strictly convex and differentiable, every Fν(., y) has a unique minimizer, de-
noted by x̂ν , which is calculated by a gradient descent. Since by construction having
ν > ν′ entails Fν(x, y) ≥ Fν′(x, y) for all x ∈ R

p, we see that Fν(x̂ν , y) decreases
monotonically when ν decreases to 0. It is easy to check that, moreover, as ν ↓ 0, we
have Fν(x̂ν , y) → F(x̂, y), and hence x̂ν → x̂, since every Fν(., y) has a unique min-
imizer and the latter is strict. Total-variation methods are similar from a numerical
point of view since they involve ϕ(t) = |t|. Many authors used smooth approximations
[33, 38], e.g., ϕν =

√
t2 + ν. However, approximation using the Huber function has

the numerical advantage of involving only quadratic and affine segments. At the same
time, the fact that ψ′

ν is discontinuous at ±ν is of no practical importance since the
chance of obtaining a minimizer x̂ν involving a difference whose modulus is exactly ν
is null [27].

First experiment. The original image x in Figure 1(a) can be assumed to be a
noisy version of an ideal piecewise constant image. Data y in Figure 1(b) are obtained
by adding aberrant impulsions to x whose locations are seen in Figure 4, left. Recall
that our goal is to detect, and possibly smooth, the outliers in y, while preserving all
the remaining entries of y.
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0

1

2

(a) Original x.

0

1

2

(b) Data y = x+ outliers.

Fig. 1. Original x and data y degraded by outliers.

The image in Figure 2(a) is the minimizer x̂ of the cost-function F(., y) proposed
in (77), with ν = 1.1 and α = 0.14. The outliers are clearly visible although their
amplitudes are considerably reduced. The image of the residuals y−x̂, shown in Figure
2(b), is null everywhere except at the positions of the outliers in y. Reciprocally, the

pixels corresponding to nonzero residuals (i.e., the elements of ĥc) provide a faithful
estimate of the locations of the outliers in y, as seen in Figure 4, middle. Next, in
Figure 3(a) we show a minimizer x̂ of the same F(., y) obtained for α = 0.25. This
minimizer does not contain visible outliers and is very close to the original image x.
The image of the residuals y− x̂ in Figure 3(b) is null only on restricted areas but has
a very small magnitude everywhere beyond the positions of the outliers. However,
applying the above detection rule now leads to numerous false detections, as seen in
Figure 4, right. These experiments confirm our conjecture about the role of α.

The issue of the minimization of a smooth cost-function, namely, F in (75) with
ψ(t) = ϕ(t) = t2 and α = 0.2, is shown in Figure 5(a). As expected, edges are blurred,
whereas outliers are clearly seen. The residuals in Figure 5(b) are large everywhere,
which shows that x̂ does not fit any data entry. The minimizer in Figure 6(a) is
obtained using nonsmooth regularization, where F is of the form (75) with ψ(t) = t2,
ϕ(t) = |t|, and α = 0.2. In accordance with our discussion in section 6, x̂ exhibits
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0

1

2

(a) Restoration x̂ for α = 0.14.

0

1

2

(b) Residuals y − x̂.

Fig. 2. Restoration using the proposed cost-function F with nonsmooth data-fidelity in (77)
for ν = 1.1 and α = 0.14. The residuals provide a faithful estimator for the locations of outliers.

staircasing since it is constant on very large regions.

Second experiment. The original, clean image x is shown in Figure 7(a). The
data y, shown in Figure 7(b), are obtained by adding to x 770 impulsions with random
locations and random amplitudes in the interval (0, 1.2).

In Figure 8(a) we show a zoom of the histograms of x (up) and of y (down).
Figure 8(b) shows the result from applying to y two iterations of median filtering.
The obtained image contains only a few outliers with weak amplitude but the entire
image is degraded and, in particular, the edges are blurred. The �1-norm of the error
‖x̂− x‖1 =

∑
i |x̂i − xi| is 523. The next two restorations in Figure 9 are obtained by

minimizing the cost-function F with nonsmooth data-fidelity proposed in (77), where
ν = 1.1. The minimizer in Figure 9(a) corresponds to α = 0.2 and it fits exactly
the data everywhere except for several hundred pixels, where it detects outliers. This
detection gives rise to 50 erroneous nondetections and to 15 false alarms, the remaining
detections being correct. Figure 9(b) is obtained for α = 0.55. The minimizer x̂ does
not contain outliers any longer but it fits exactly only a restricted number of the data
entries. Nevertheless, it remains very close to all data entries which are not outliers,
since the �1-norm of the error is 126. This minimizer provides a very clean restoration,
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(a) Restoration x̂ for α = 0.25.

0

1

2

(b) Residuals y − x̂.

Fig. 3. Restoration using the proposed cost-function F in (77) for ν = 1.1 and α = 0.25. The
outliers are well smoothed in x̂, whereas the residuals remain small everywhere beyond the outlier
locations.

Fig. 4. Left: The locations of the outliers in y. Middle: The locations of the pixels i of x̂ at
which x̂i 	= yi, where x̂ is the minimizer obtained for α = 0.14 given in Figure 2. Right: The same
locations for x̂ the minimizer relevant to α = 0.25, shown in Figure 3.

where both edges and smoothly varying areas are nicely preserved. The restoration in
Figure 10(a) results from a smooth cost-function F , as in (75) with ψ(t) = ϕ(t) = t2
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(a) Restoration from yo x̂ for α = 0.2.
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(b) Residuals y − x̂.

Fig. 5. Restoration using a smooth cost-function, namely, F in (75) with ψ(t) = ϕ(t) = t2 and
α = 0.2.

and α = 0.2. This image fits no data entry while edges are smooth. Figure 10(b)
illustrates the staircasing effect induced by nonsmooth regularization. This minimizer
corresponds to F , of the form (75) with ψ(t) = t2 and ϕ(t) = |t|, for α = 0.4 and it
still contains several outliers.

8. Conclusion. We showed that taking nonsmooth data-fidelity terms in a reg-
ularized cost-function yields minimizers which fit exactly a certain number of the data
entries. In contrast, this cannot occur for a smooth cost-function. These are strong
properties which can be used in different ways. We proposed a cost-function with
a nonsmooth data-fidelity term in order to process outliers. The obtained results
advocate the use of nonsmooth data-fidelity terms in image processing.
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(a) Restoration x̂ for α = 0.2.
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(b) Residuals y − x̂.

Fig. 6. Restoration involving nonsmooth regularization: F is as in (75) with ψ(t) = t2 and
ϕ(t) = |t| for α = 0.2. The minimizer x̂ is constant over large regions.
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(a) Original image x. (b) Data y = x+ 770 outliers.

Fig. 7. Original image x and data y obtained by adding to x 770 outliers with random location
and random amplitude.
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(a) Histograms: x (up), y (down). (b) Restoration by median filtering.

Fig. 8. (a) Zoom of the histograms of the original x (up) and of the data y (down). (b)
Restoration using two iterations of median filtering.
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(a) Minimizer obtained for α = 0.2. (b) Minimizer calculated for α = 0.55.

Fig. 9. Minimizers obtained using the proposed cost-function F in (77) involving a nonsmooth
data-fidelity term. (a) For α = 0.2 there are 720 correct and 65 erroneous detections of outliers.
Outliers are only weakly smoothed. (b) For α = 0.55, outliers are well smoothed and the error is
weak.

(a) Smooth cost-function. (b) Nonsmooth regularization.

Fig. 10. Minimizers obtained by minimizing F of the form (75). (a) For ψ(t) = t2 = ϕ(t) and
α = 0.2. Outliers are clearly seen, whereas edges are degraded. (b) For ψ(t) = t2, ϕ(t) = |t|, and
α = 0.4. Only several outliers remain visible. Staircasing is clearly present.
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