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sparsest
approximation in a
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Abstract—Given data d ∈ R
N , we consider its represen-

tation u∗ involving the least number of non-zero elements
(denoted byℓ0(u∗)) using a dictionary A (represented by a
matrix) under the constraint ‖Au − d‖ ≤ τ , for τ > 0 and
a norm ‖.‖. This (nonconvex) optimization problem leads to
the sparsest approximation ofd.

We assume that datad are uniformly distributed in
θBfd

(1) where θ>0 and Bfd
(1) is the unit ball for a norm

fd. Our main result is to estimate the probability that the
data d give rise to aK−sparse solutionu∗: we prove that

P (ℓ0(u∗) ≤ K) = CK(
τ

θ
)(N−K) + o((

τ

θ
)(N−K)),

where u∗ is the sparsest approximation of the datad and
CK > 0. The constantsCK are an explicit function of
‖.‖, A, fd and K which allows us to analyze the role of
these parameters for the obtention of a sparsestK−sparse
approximation. Consequently, givenfd and θ, we have a
tool to build A and ‖.‖ in such a way that CK (and hence
P (ℓ0(u∗) ≤ K)) are as large as possible forK small.

In order to obtain the above estimate, we give a pre-
cise characterization of the setΣτ

K of all data leading to a
K−sparse result. The main difficulty is to estimate accu-
rately the Lebesgue measure of the sets

˘

Στ
K ∩ Bfd

(θ)
¯

.

We sketch a comparative analysis between our Average
Performance in Approximation (APA) methodology and the
well known Nonlinear Approximation (NA) which also as-
sess the performance in approximation.

Index Terms—sparsest approximation,ℓ0 minimization,
average performance in approximation, nonlinear approxi-
mation.
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I. THE AVERAGE PERFORMANCE IN

APPROXIMATION (APA) METHODOLOGY

We consider thesparsestapproximation of ob-
served datad ∈ R

N using a dictionaryA =
{a1, . . . , aM} ∈ R

N×M with rank(A)=N under a

tolerance constraint given by a norm‖.‖ andτ
>
≈ 0.

This approximation is a solution of the non-convex
constrained optimization problem(Pd) given be-
low:

(Pd) :

{

minimizeu∈RM ℓ0(u),
under the constraint :‖Au− d‖ ≤ τ,

with

ℓ0(u)
def
= #

{

1 ≤ i ≤M : ui 6= 0
}

,

where# denotes cardinality.
Forθ > 0 and a normfd, we assume that datad

are uniformly distributed on theθ−level set offd:

Bfd
(θ)

def
= {v ∈ R

N , fd(v) ≤ θ} = θBfd
(1).

For sparse data,fd is typically theℓ1 norm.
We inaugurate an Average Performance in Ap-

proximation (APA) methodology to evaluate the
performance of(Pd). Denoting the minimum
ℓ0(u

∗) in (Pd) by val(Pd), APA consists in esti-
mating for everyK = 0, . . . , N the value of

P (val(Pd) ≤ K) as a function ofτ, A and‖.‖.

The largerP (val(Pd) ≤ K) for K small, the bet-
ter the model involved(Pd). The set of all datad
leading toval(Pd) ≤ K reads:

Στ
K

def
= {d ∈ R

N , val(Pd) ≤ K}. (1)

Following our APA methodology—see the Re-
ports [7], [6]—we accurately describe the geometry
of Στ

K . Combining this with the model for the data
distribution, we derive a lower and an upper bound
on P (val(Pd) ≤ K). We show that these bounds
share the same asymptotical behavior asτ/θ → 0.
The formulae describing this behavior clarify the
role of the ingredients of the model (i.e.A, ‖.‖, τ )
whit respect to the ingredients of the data distribu-
tion (i.e.fd andθ).
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II. M AIN RESULTS ALREADY OBTAINED

ForJ ⊂ {1, . . . ,M}, let us denote

AJ = span
{

aj : j ∈ J
}

,

whereaj is the jth column of the matrixA. We
systematically denote byA⊥

J the orthogonal com-
plement ofAJ in R

N and byPA⊥
J

the orthogonal

projector ontoA⊥
J . We set

Aτ
J

def
= AJ +B‖.‖(τ)

and show that

Aτ
J = AJ + PA⊥

J

(

B‖.‖(τ)
)

. (2)

Geometrically,Aτ
J is an infinite cylinder inR

N :
like a τ -thick coat wrapping the subspaceAJ .

For any given dimension1 ≤ K ≤ N , we define
(see [7] for the details):

J (K) is a maximal non-redundant listing of

all subspacesAJ ⊂ R
Nof dimensionK.

We always have#J (N) = 1 and setJ (0) =
{∅}. Theorem 1 is thekey for the obtention of the
sought-after results. It provides an easy geometri-
cal vision of the problem.

Theorem 1: For anyN × M matrix A with
rank(A) = N , any norm‖.‖, anyτ > 0 and any
K ∈ {0, . . . , N}, the setΣτ

K in (1) reads

Στ
K =

⋃

J∈J (K)

Aτ
J .

A 2D example in Fig. 1 illustrates setsΣτ
K for

several values ofK.

For anyn ∈ N, the Lebesgue measure of a set
E ⊂ R

n is denoted byL
n
(

E
)

. Let us now define
the following constants:

CJ = L
N−K

(

PA⊥
J

(

B‖.‖(1)
) )

×

L
K

(

AJ ∩Bfd
(1)

)

(3)

whereK = dim(AJ ) and for anyK = 0, . . . , N ,

CK =

∑

J∈J (K)CJ

L
N

(

Bfd
(1)

) . (4)

Using these notations, we state next the main re-
sult of [7].

Theorem 2: Letfd and ‖.‖ be any two norms
andA anN ×M matrix with rank(A) = N . For
θ > 0, consider a random variabled with uni-
form distribution inBfd

(θ). Then, for anyK =
0, . . . , N , we have

P (val(Pd) ≤ K) = CK

(τ

θ

)N−K

+ o

(

(τ

θ

)N−K
)

as
τ

θ
→ 0. (5)

The proof of the Theorem involves four main
steps. These steps are illustrated on Figure 1.

(i) For J ∈ J (K), estimate

L
N

(

Aτ
J ∩Bfd

(θ)
)

.

It reads θNCJ ( τ
θ
)N−K + θNo

(

( τ
θ
)N−K

)

whenτ/θ → 0.

(ii) An important intermediate result says that if
(J, J ′) ⊂ {1, . . . , N}2 with AJ 6= AJ′ and
dim(AJ ) = dim(AJ′) = K, then

L
N

(

Aτ
J ∩ Aτ

J′ ∩Bfd
(θ)

)

= θNo
(

(
τ

θ
)N−K

)

whenτ/θ → 0.

(iii) Using (i)-(ii), estimate the volume of

⋃

J∈J (K)

Aτ
J ∩Bfd

(θ).

It reads

θN





∑

J∈J (K)

CJ





(τ

θ

)N−K

+ θNo

(

(τ

θ

)N−K
)

whenτ/θ → 0.

(iv) Divide the result of (iii) byθN
L

N
(

Bfd
(1)

)

to obtain the probabilities given in (5).

Remark 1:The main difficulty at this stage of
our research to obtain more precise, non asymptotic
bounds for the measures evoked in (i), (ii) and (iii)
comes up against fundamental mathematical prob-
lems in Geometry of Banach Spaces, see [8].
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∂Aτ
{1} = ∂Aτ

{4}

∂Aτ
{2}

∂Aτ
{3}

ψ1

ψ2

ψ3

ψ4

PA⊥
{2}

(B‖.‖(τ))

PA⊥
{4}

(B‖.‖(τ))

PA⊥
{3}

(B‖.‖(τ))

B‖.‖(τ) = Aτ
∅ = Στ

0

∂Bfd
(θ)

controlled byτ

Fig. 1. Example in dimension2. Let the dictionary read{ψ1, ψ2, ψ3, ψ4}. On the drawing, the setsAτ
{i}

are obtained as the direct sum ofPA⊥
{i}

(B‖.‖(τ)) andA{i}, for i = 2, 3, 4. The dotted ellipses represent

translations ofB‖.‖(τ). The set-valued functionΣτ
• , as presented in (1) and Theorem 1, gives rise to the

following situations:Στ
0 = B‖.‖(τ) = Aτ

∅ , Στ
1 = Aτ

{1} ∪ Aτ
{2} ∪ Aτ

{3} andΣτ
2 = R

2 = Aτ
{1,2} =

Aτ
{2,3} = . . . The symbol∂ is used to denote the boundary of a set.

III. APA AND NONLINEAR APPROXIMATION

A. Reminder on Nonlinear Approximation

Problem(Pd) is simply a different way to pa-
rameterize the so calledbestK−term approxima-
tion (BK-TA), defined as a solution to

{

minimizeu∈RM ‖Au− d‖ ,
under the constraint :ℓ0(u) ≤ K,

(6)

where0 ≤ K ≤ N .

The evaluation of the performances of the latter
is a well developed field, see [2]. It is namedNon-
linear Approximation(NA) if M = N andHighly
Nonlinear Approximation(HNA) if M > N . Un-
der some hypotheses on the supportS of the data
distribution, for a givenα > 0 it provides bounds
of the form

‖Au∗K − d‖ ≤ cK−α, ∀d ∈ S, (7)

whereu∗K is the BK-TA of d andc > 0. Doing so,
it gives the asymptotical behavior of‖Au∗K − d‖
whenK → ∞. Note that NA considers approxi-
mation in general Hilbert spaces, Besov spaces and
so on.

In spite of the different level of achievement, we
resume in the following sections the main similar-
ity and differences between NA and APA.

B. APA and NA are complementary

The goals of APA and NA are completely differ-
ent, which is a mean to say that they are comple-
mentary:

• APA looks for the average performance of an
approximation;

• NA exhibits the worst case in this approxima-
tion.
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If we assume that data live inBfd
(θ) (with no as-

sumption on their distribution), the inequality (7),
transposed in our context, amounts to

Bfd
(θ) ⊂ ΣcθK−α

K , ∀K.

In words, for
τ

θ
= cK−α we get

P (val(Pd) ≤ K) =
L

N
(

ΣcθK−α

K ∩Bfd
(θ)

)

L
N

(

Bfd
(θ)

)

= 1, ∀K,

whatever the data distribution as long as it is sup-
ported insideBfd

(θ). Notice that APA consid-
ers cases whereBfd

(θ) 6⊂ Στ
K which means that

τ

θ
< cK−α, see e.g. Fig. 1.

We display on Figure 2 the typical curve ob-
tained when plotting, for a fixedK, the function
τ → P (val(Pd) ≤ K), in a “loglog” plot (bothx
andy-axes use a logarithmic scale). We also dis-
play the typical information obtained by both NA
and APA. These curves emphasize that NA and
APA do not provide information in the same range
of values forτ/θ.

The current results in APA are relevant for small
values of τ/θ. For instance,P (val(Pd) ≤ K)
according to (7) is correctly approximated by

CK

(τ

θ

)(N−K)

only for
τ

θ
< cK−α. This suggest

that APA is better suited when the valuecK−α is
larger than the set of valuesτ

θ
which are relevant to

the applicative context for the interestingK.
The other situations where APA is interesting is

(obviously) when NA is not sufficiently accurate.

C. The hypotheses on the data distribution

NA needs a weaker hypothesis on the data distri-
bution, which is obviously a good point. However,
the counterpart of this advantage is that the esti-
mated performances correspond to the worst possi-
ble data in the support. Notice that these data form
a set which is not necessarily connected and may be
very small with respect to the support. (E.g., con-
struct a simple example of data distributed in theℓ1
ball, when‖.‖ is the Euclidean norm.)

The main consequence of the above remark is
that very little can be said in HNA. In practice, the

performance when using a redundant dictionaryA
(i.e. M > N ) are identical to the performances
whenM = N (see [2]).

A quick look at (4) shows that if a new vector
aM+1, which is collinear with none of theai, i ∈
{1, · · · ,M}, is concatenated toA, the value ofCK

is increased, since the cardinality ofJ (K) goes up.
Thus the probability in (5) increases.

The difference between HNA and APA, with the
regard to the hypothesis on the data distribution can
be sketched as it follows:

HNA only makes an hypothesis on the support
of the data distribution but the results when
M > N are vague;

APA needs assumptions on the data distribution
but gives a full description of the chance of
getting aK-sparse solution whenM ≥ N .

D. The sparsest approximation and its heuristics

As a matter of fact, the sparsest approximation
(Pd), or equivalently the BK-TA, is an essentially
theoretical problem. The reason is that it is NP-
hard in general (see [1]). The determination of as-
sumptions which enable its solution by feasible nu-
merical schemes is currently a very active field of
research, see e.g. [9], [3], [10]). The typical as-
sumptions are threefold:

• There must exist a (very) sparse decomposi-
tion for representing datad;

• The matrixA must be incoherent, in some
way;

• The norm‖.‖ must be theℓ2 norm.

When using(Pd) in an approximation context,
it is therefore critically important to clarify the fol-
lowing questions:

• what is the gap in performance when enforc-
ing the constraints on the matrixA and on‖.‖,
mentioned above;

• when these hypotheses cannot be met, what is
the gap in performance between the sparsest
approximation and its heuristics.
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τ
θ
→ P (val(Pd) ≤ K))

τ
θ

τ
θ
→ CK

(

τ
θ

)(N−K)

K is fixed

1

τ
θ

= cK−α

(APA):

(NA):

(TRUTH):

“loglog” plot
CK

Fig. 2. The value ofCK is fixed by the model.
In red : the curveτ

θ
→ P (val(Pd) ≤ K)).

In dotted blue : the results of Non Linear Approximation tellus that on the right of the blue line, the red
curve equals1.
In dashed green : the results of APA tell us that the red curve and the dashed green line are asymptotically
equal whenτ

θ
goes to0. The slope of the dashed green line is alwaysN −K.

In order to answer (even approximatively) these
questions, we need a methodology to describe the
performances of the different models whenM >
N . As far asℓ1 approximation is concerned (inℓ1
approximation, theℓ0 “norm” is replaced by theℓ1
norm), it is a reasonable perspective for APA (see
[4], [5]). It is an open question for greedy algo-
rithms such as the Orthogonal Matching Pursuit as
analyzed in [9].

IV. CONCLUSION

The proposed APA methodology is morally a
reasonable approach to assess the performances in
sparse approximation. It is a very young field so
there are numerous open questions to explore. It
can provide a good complement to the well de-
veloped NA approach and can deal with situations
such as HNA.
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[7] F. Malgouyres and M. Nikolova. Average performance of
the approximation in a dictionary using anℓ0 objective.
Report HAL-00260707 and CMLA n.2008-08.

[8] G. Pisier. The volume of convex bodies and Banach space
geometry.Cambridge University Press, 1989.

[9] J.A. Tropp. Greed is good: algorithmic results for sparse
approximation. IEEE, trans. on Information Theory,
50(10):2231–2242, Oct. 2004.

[10] J.A. Tropp. Just relax: convex programming methods for
identifying sparse signals in noise.IEEE, trans. on Infor-
mation Theory, 52(3):1030–1051, March 2006.


