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Abstract Another family of methods is shrinkage estimators. Con-

sider a frame of.2(f2), say{w;}, for i belonging to an in-
We consider the denoising of a function (an image or a sigex set/. The corresponding frame operafdf is defined

nal) containing smooth regions and edges. Classical W@X,S(WU)[Z'] = (v,W;), Vi € I. The frame coefficients of our
to solve this problem are variational methods and shrinfgisy functionv are

age of a representation of the data in a basis or in a frame. —W

: : y v. (2)
We propose a method which combines the advantages of ) — )
both approaches. Following the wavelets shrinkage mettidd} 'V be a leftinverse ofv” and let{w, } denote the associ-
of Donoho and Johnstone, we set to zero all frame coefifed dual frame. Therefore,
cients which are smaller than a thresho[d: Then the frame v=WWo = Zym wi.
representation involves both large coefficients correspond-
ing to noise (outliers) and some coefficients, erroneously set
to zero, leading to Gibbs oscillations in the estimate. We délven a symmetric functior : R — R, such that) <
sign a specialized (non-smooth) objective function allowirigt) < ¢ if £ > 0, the denoised function is defined as
all these coefficients to be selectively restored, without mod- .
ifying the other coefficients. We also propose an approxima- Ur = Z 7(ylel) wi. )
tion of this method which is accurate enough and very fast. el
We present numerical experiments with signals and imagéee hard-thresholding method, introduced by Donoho and
corrupted with white Gaussian noise, which are decomposkthnstone in [10] whefl is an orthogonal wavelet trans-
into an orthogonal basis of Daubechies wavelets. The ébrm, corresponds to
tained results demonstrate the advantages of our approach

over many alternative methods. ) = { ? iftr\]tl < T,
otherwise,

icl

(4)

. whereT > 0 is a threshold. Soft-thresholding, introduced
1 Introduction also in [10], corresponds to(t) = 0 if |t| < T and(t) =
t — T'sign(t) otherwise. Both soft and hard thresholding are
We consider the restoration of an original (unknown) funesymptotically optimal in the minimax senseifis of finite
tionu, (s) defined on a (possibly finite) domaiii—an image cardinality,n is white Gaussian noise of standard deviation
or a signal containing smooth zones and edges—from noisgnd
data v = u, + n, wheren represents a perturbation. In vari- T = 0+/2log, #52. (5)

ational methods, the restored function is defined as the %ﬁnements of these methods have been proposed in order
imizer of an objective function which balances trade-off bgs adapt thresholding to the scale of the coefficients [11].

tween closeness to data and a priori smoothness constraigiSine other hand many other shrinkage functiorisave

seee.g. [14,8, 2] been derived by considering the denoising of the frame co-

efficients as a maximum a posteriori estimation [20, 3, 1].

Folu) = )\/ lu(s) — v(s)|*ds + / #(|Vu(s)])ds, (1) Then the restored coefficients minimize a cost-function sim-
Q Q ilar to (1), namely

whereV stands for gradientp : R, — R, is called a Fz) — 2
i ' i =y - + Aid(|wi]),
potential function and > 0 is a parameter. @) = lly | 2; ¢(lzil)



where ¢ corresponds to the priors ofw;} and {\;} are wherez minimizes an objective functiof), of the form
weights related to the scale. Notice thét= 7 at everyt
where¢ is differentiable. An useful class of priors is given Fy(z) = Y(z)+ ®(z), 9)
by ¢(t) = |t|* for 0 < o < 2. The relationship between _ _ PR ol
shrinkage methods for wavelets and variational methods of V) = Z Vi (lfi] = ylill) + Z Vi (lfill),
the form (1) has also been investigated in [7].

A major problem with these methods is that shrinked co- ®(z) = /¢(|V(W$)(S)|)d3-
efficients entail oversmoothing of edges, coefficients set to @
zero yield Gibbs oscillations in the vicinity of edges, whilgiere is a data-fidelity term an is a regularization term.
coefficients which remain Corrupted (Ca”edtlierS) gener- some genera| requirements are t{]ﬁl} and(b areCd, con-
ate artifacts with the shape of the functiansof the frame. yex, increasing functions from., to R.,. Below we discuss

Even |f¢ accounts fa|thfu”y for the distribution of the Coef'how the information ||’yT must be considered. Recall that
ficientsz;, the local features of the restored function, such g original unknown function is denotegl.

the presence of edges and smooth regions, are not properly
addressed. Hence the idea to combine the useful informatiog 7, addresses two types of coefficienfs:
contained in the large coefficientg:] with pertinent prior

i€l i€ly

smoothness constraints [12, 15, 6, 9]. — Large coefficients which bear the main features
We focus on post-processing noisy coefficiepis ob- of the sought-after function. They verifyfi] ~
tained by hard thresholding, (Wu,)[i] and must be kept intact.
) , — Outliers are characterized byli]| > |(Ww,)[i]|-
yrlil = (v, G) et

They must be removed and replaced by values ac-

. , . , cording to the priors conveyed .
wherer is the function given in (4) for a loosely choséh

smaller than (5) in order to have a richer information CON- ¢ The Coefﬁcientsy[i] for i € I, are usua”y h|gh-

tent. In such a case, the main prOblemS to deal W|tr(@)'e frequency Components which can be

to selectively shrink the outliers argtl) to restore the thresh-

olded coefficients yielding Gibbs oscillations. Notice that, — Noise coefficients, i(W%)[i] ~ 0. These coeffi-
although these two phenomena are different by nature, they cients must remain zero.

share the property to be local in the sense that they concern
isolated zones of coefficients. In [17], a new family of objec-
tive functions is considered which allows outliers to be selec-
tively removed, without modifying the other samples. Fol-
lowing this idea, we design a (non-smooth) objective func-
tion F,, specially adapted to deal with problerfig-(b). We ) ) ) _ o
restrict our attention toonvex objective functioris order to Ve W'"ASpeC'fy {1} and in (9) in such a way that mini-
guarantee the uniqueness of the minimum. The effectiven@¥gersi of £, achieve these goals. All requirementson
of our method is demonstrated by comparing our results witfe formulated in terms of the minimizetsof £,.

existing image de-noising schemes.

— Coefficients which correspond to edges and which
are erroneously set to zero. They generate Gibbs
oscillations and need to be restored, based on the
priors conveyed byp.

2.1 The regularization term @

2 ialized obi . f . This term brings the priors about the local features of the
A sSpecialized o JeCtIVG unction restored function. Its role is critical on the regions corre-

sponding to wavelet coefficients which are either outliers

Our input data set igr, defined as in (6): or are erroneously set to zero. The images and signals we
wish to restore are supposed to involve smooth regions and
) yli] if i€ I, edges. To this end, we focus edge-preservingonvex po-
yrli] = { 0 if iely, ™ tential functionsp which have been studied by many authors
[18, 5, 14, 4, 8]. An essential distinction between these po-
where tential functions is the differentiability of — ¢(|¢|) at the
origin. Since [16], it is known that it — ¢(|¢|) is non-
Io={iel: |yli]| <T} smooth at zero, restored images and sigri&ls involve

) ) _ constant regions. Such a property does not correspond to
and/y = I'\ Ip. The restored function, denotedis defined reg|-world images and signals. In contrastdifis smooth,
as they contain smoothly varying regions and possibly edges.
0 = Z 2[i] w; = W, 8) We hence focus on potential functionsof the latter kind,

Py which means that’(0") = 0. Examples of such functions



are [13, 5, 4, 8, 21]

o(t) Vi + 2, (10)
o(t) = tHHY 0<a<i,
¢(t) = log(cosh (at)),
B t2/2 if |t| <a,
o) = { ot —a2/2 i [ >a,

wherea > 0 in order to havey’ (07) = 0.

2.2 Conditions for a minimum

Given a vectorz, its transposed will be denoted”. Con-
siderF,, as given in (9) where, ¢y and¢ areC!, convex,
increasing functions fronR,, to R, and¢’(0%) =0. Then
F, reaches its minimum &t if and only if

Vi € Iy,

31 = ol = 9:9(3)| < {(0°), an
31 £ 31i = 0:2(6) = ~4{(1 - 1) =00 a2
vi € Io,

2li] = 0 = |9;®(2)] < ¥;(0), (13)

B0 £0 = 0:8() = ~vi(ali) . ()
whered; ®(z) = 0®/0x[i] (x) reads

’ T VW
0,0(z) = /Q¢ (VW) (V) s s

Notice that¥ is smooth only ify);(07) = 0, Vi.

2.3 The data-fidelity term

The shape o will be determined in order to deal with two

simple but revealing situations.

Wavelet-shaped artifacts. Let ei[k] = 1 andeg[i] = 0

if i # k, and1 be a constant vector. Suppose that on a

neighborhood of the indek, our input datayr, obtained by
(7), are of the form

yr = W1+ dey, (15)

wherey[k] = § > 0 is an outlier. The function denoised by

hard-thresholding is
Wyr = WW1+ §Wey, = 1+ dwy,.

Clearly, it contains an artifact with the shapef. Smooth-

ing the outliery[k], without destroying the other coefficients,

means thaf’, is minimized by ant such that

&= W1+ 2[k] wy) with £[k] ~ 0, (16)

4. It follows that (17) readg0,®(z)|

1. Since|z[k]| # 0, theni[k] satisfies (12), hence
Or®(2) = Vi (|2[k] — dl),

where we notice that[k] — 6 < 0 and

(17

B 0(2) = /Q o (|2[K] Vix|) [Vug| ds. (18

The outlier cannot be penalized unlegg(t) >} (01)
for ¢ € R4. The right side of (17) is hence positive.
The fact thaty’(t) = 0 only if ¢ = 0 in (18) shows that

z[k] # 0.
2. Sincez[j] =0, forall j € I \ {k}, by (11) we have

7 Vwg

ds < ) (0T).
V] s < (07)

¢ (|2[k] Vwg]) (Vw;)
Q

Sincez[k] # 0, the left-side in the expression above
is strictly positive. This inequality cannot be satisfied
unlessyy, is such that

1, (07) > 0. (19)

Hencet — v (|t]) is non-smooth ab.

3. Having Z[k] in (17) independendf the value of§ re-

quires thatyy (t) is constant for allt > 0. Since
Yr.(t) > ¥, (07) by the convexity ofyy, (19) leads
to

Ve(t) = Ait, VEER,, k€I, Ay > 0. (20)

= A;x. We have
Z[k] =~ 0 provided that¢’ has steep increase near
to zero. E.g., wherp is of the form (10), we have
z[k] = v/a/C, whereC is the unique solution of the
equation

|Vwk\2
Qv |Vwg|? +C

Clearly,z[k] decreases to zero when\, 0.

dS:)\k.

5. Similarly, for all j € Iy, ; = 0 means that

. Vwy,

'(|12]k ) ds < ¢ (01).

| ¢ alk] T (V)T s < v507)
(21)

Using the same arguments as in item 2 above, we de-

duce that); must satisfy

P5(0%) > 0.

Gibbs effect. Consider now a coefficientr[j] = 0 corre-
sponding to a largéWw,)[j]. Sinceyr contains no infor-

even if o is arbitrarily large. Suppose henceforth thatis mation on the true value of this coefficient, the best choice is
as given in (16).Clearly, k € I;. By (8), our estimate is thati[j] fits the prior, i.e. that it minimize&. Consequently,

=W =1+ 2[k] wy, ~ 1.

we require thad); ®(z) is as close as possible to zero. On the



other hand[j] must satisfy (4), since we wish thatj] # On the other hand, (21) is guaranteed if
0 = yr[j]. Combining these two requirements entails that

the right-hand side of (4) must be as close as possible to\; > ‘/ (Vw;(s))
zero. Noticing that)’(t) > ¢(0%) > Oforallt € Ry Q

and using (15), we will choosg(t) = ¢/(0%) = \; > 0,
forallt € Ry, i.e.

7 Vwyg
|Vwg|

ds s VJ S I(), Vk € 1.

(25)
If either j and k correspond to different scales, orjifand
k are quite distant, the integral above is close to zero. So,
Wi(t) = \t, Vte Ry, j € L. for everyj ¢ Iy, the_mequahty above is tested only for a
restricted number of indexésc I;.

2.4 The objective function Parameters when{wy} is a wavelet basis. We consider

Taking together all these elemenisin (9) reads henceforth a wavelet basis generated 2fy— 1 mother
waveletsw™ for m € {1,...,2¢ — 1}, defined orf2 ¢ R®.
U(z) = Z i (@ = y)[i]] + Z \i|zli]]. (22) Letjandx denote the scale and the space (or time) param-

eters, respectively. In such a cagés an arrangement of all
indexes(j, k, m) andwy, in (24) is of the form

Let us sumarize: given the coefficients obtained by hard o ,

thresholding as given in (7), the restored functiomeads wi (s) =27 2w (277 s — k).

1 = W& wherez minimizes

i€l i€lp

Using a change of variables, the upper bound in (24) is

F, = Ail(z =yl Ai | 23 §-1)i
V@) = 3 A=)l + X Al (23) [ Stwglds =2 [ wamias
i€l i€ly O Ik o
+ /¢(|VWx|)ds. This suggests we take
Q

A =208 DINm (i k,m) € T,

This functionF, is non-smooth for every such thatc[i| =

yr[i] for somei. Using the results of [17], we can expect thathere\]* < Jo IVw™(s)| ds.

minimizersz of F, involve many indexes € I; for which Similarly, (25) leads to

z[i] = y[i] exactly, and that likewisei[i] = 0 for many N

i € Ip. It can be deduced that the smoothing of aberrant A = 2(71)3/\31, V(j,k,m) € Iy,

coefficients, as well as the restoration of erroneously thresh- , J .

olded coefficients, is stable with respect to small perturpdnere foralim’ € {1,...,2%—1} andforall(j, k) # (0, 0),

tions of the input data. . oy V™

We have observed that the minimizérsf F, are very sta- Ao = /Q(V(wk,j)) [Vwm| ds|.

ble with respect to the choice of the parametgxs}. This

can be explained by the fact that sinf€gis nonsmooth, min- .

imizersz are located at “kinks” which are stable with respe§ Experlments

to parameters and data. Some orientations for the choice of ..

X\ can be derived from the conditions for minimum (11)3-1 Minimization scheme

(14). Let us come back to the data considered in (15) agfhce the kernel of the gradient operaiis the set of all

focus on an index S I releyant toan outlier. Notice thatyonstant functionsy — Ji, #(|Vu|) ds is constant in the

many edge-preserving functiopssatisfy||¢/||oc < 1. Itro-  girection of the mean value of It is strictly convex in every

ducing this in (18) shows that other direction provided that is strictly convex as welllV/

being a wavelet transform, the mean value of any estimate
|0k ® ()] < / |Vwg| ds, Vo, Vy. @ = Wi is supported by a single wavelet coefficient. It is

@ therefore determined by and equals the mean valuewf.

In4in § 2.3 we saw tha|tak(b(ia)| — )\k- If )\k is |arger than We conclude thathe minimizez = W4 of Fy is Unique.

the right-side of the expression given above, for gajk] e computet using a subgradient descent scheme. Put

we can write thatd, ®(2 + (yr[k] — 2[k])ex)| < Ax which %o = yr and, for allk € N, compute

means that[k] = yr[k], i.e. that the outlier ak cannot be et = T — tdn

removed. In this way, we find that it is necessary that fbt = Tk T TGk

whereg;, is a subgradient of’, at z; andt, > 0. Using

Ap < / \Vwy| ds, Yk € I,. (24) classical results on minimization methods (see [19]), we can
Q prove that, if2 is finite, limj oo t, = 0 @and_ -t = oo,
then

Whenk addresses frames of the same sclgVwy| ds is lim z, = 4.
constant. Thus (24) provides an upper bound for each scale. k—o0



3.2 Denoising of a signal

We consider the restoration of the 512-length original sigr
in Fig. 1 from the data shown there, contaminated with whi
Guassian noise with standard deviatioe= 10. The restora-
tion in Fig. 2 is obtained using the sure-shrink method [1
and the toolbox WavelLab. The result displayed in Fig. 3
the minimizer of a functior, of the form (1) wherep is as
given in (10), fora = 0.1 andX = 0.01. Smooth zones are
rough, edges are slightly smoothed and spikes are eroc}l
while some diffused noise is still visible on the signal.
The restorations presented next are based on thresho
wavelet coefficientst is an orthogonal basis of Daubechie
wavelets with 8 vanishing moments apg is obtained ac-
cording to (7). The optimal’, as given in (5), reads = 35.
The wavelet-thresholding estimai&y is shown in Fig.
4. It involves important Gibbs artifacts, as well as Wavelqtjgure 1: Origina| 5igna| (dotted |ine) and noisy data (50||d
shaped oscillations due to aberrant coefficients. Using ).
same coefficientgr, we calculated the minimizet of F,
as given in (23) where is as given in (10)« = 0.05,
N = 0.5 x 20/20f (j,k) € Ip and ), = 1.5 x 29/2
if (j,x) € I;. The resultant restoratiofh = W, shown
in Fig. 5, involves sharp edges and well denoised smo
pieces. 100
Next we consideyr, obtained by (7) fofl' = 23. These
coefficients have a richer information content, but the rel
vant estimatd?yr, seen in Fig. 6, manifests Gibbs arti
facts and many wavelet-shaped artifacts. Below we comp
restorations wheré), is of the form (9) for different choices o
of ¢;. In spite of the considerations developedsir2.3,
it seems intuitive to takeb; . (t) = A;.t% in (9). Such a
restoration is displayed in Fig. 7 whesie= 0.05 ;. = 0.1
if (j,x) € Iy, and); ,, = 0.2if (j,k) € I;. The Gibbs oscil-
lations are well removed but, because of the quadratic fo 250 500
of ¥, . for (j, k) € I, outliers overcontribute té, and bi-
ases the estimate. Another possibility which may seem regsre 2: Denoising using the Donoho-Johnstorge-
sonable is to cancel the term indexed gy i.e. to consider gprinkmethod.
¥;..(t) = 0for (j,k) € Ip. The result can be seen in Fig. 8
wherey; . (t) = 0.2t forall (j, ) € I anda = 0.05. Once
again, the thresholded coefficients are well restored but
observe that leaving too much freedom to these coefficie
prevents the method from removing the outliers efficient|
Fig. 9 illustrates the proposed methof, is of the form 100
(23) with ¢ as given in (10), and the same parameters as
Fig. 5, namelyx = 0.05, \; . = 0.5x27/2if (j,x) € I and
N = 1.5 x 20/2if (j,k) € I;. In this restoration, edges
are neat and polynomial parts are well recovered. Fig. 10
lustrates how restored coefficieritsare placed with respect of
to yr and the coefficients of the original sigri/évm). In par-
ticular, we observe how erroneously thresholded coefficie
are restored and how outliers are smoothed.

3.3 Denoising of an image 1 250 500

In this experiment we consider the denoining of #8 x  Figure 3: Denoising by minimizing, as given in (1) where

256 picture of Lena, Fig. 11 (a), from noisy data ob¢(t) =/0.05 + £2 and) = 0.01.
tained by adding white Gaussian noise with standard de-



100F 1 100r 1

=

250 500

[y

1 250 500

Figure 4: Denoising using wavelets thresholding witRigure 7: Restoration of the wavelet coefficients relevant to
Donoho-Johnstone’s optimal thresh@ld= 35. Fig. 6 by minimizingF, in (9) with ¢(t) = v/0.05 + ¢2,
@/)z(t) =0.1¢% if 1€l andwl(t):02t2 ifiel.

100F 1
100F

=

250 500

[y

250 500

[y

Figure 5: Denoising by restoration of the wavelet coeffi-

cients relevant to Fig. 4 using), in (23) with ¢(t) = Figure 8: Restoration of Fig. 6 usirfg, in (9) wherep(t) =
v 0.05 + t2, )\j,,{ = 0.5 x 2j/2 if (j, Iﬁ:) e I, )\ij =15 +/0.05+ t2, wz(t) =0ifi e Iy andd)i(t) =02tif7 e I.
if (j,x) € I1.

100F
100F 1

250 500

=

1 250 500
Figure 9: The proposed method: restoration of Fig. 6 using
Figure 6: Denoising using wavelets thresholding with af, in (23) with ¢(t) = v/0.05 + 2, ;. = 0.5 x 27/2 if
under-optimal threshold = 23. (j, k) € Iy andX; . = 1.5 x 29/2if (j, k) € .
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2 2 (a) Original image. (b) Noisy image.
* * ® @ . . . . .
e8tecesse s #eeececooe a5e Figure 11: Original and noisy images.

Figure 10: Magnitude of wavelet coefficients:signal re-
stored by the proposed method (Fig. ®@priginal signal,x
thresholded noisy signal (Fig. 6).

viation 20. The restoration in Fig. 12 (a) is obtained b
thresholding the wavelet coefficients, see (7), with respeq

readsT” = 100. This image is very smooth, a lot of details &S
are lost, and Gibbs oscillations are visible near the edges. : i
Fig. 12 (b) we show the result from total-variation restora{a) Wavelets thresholding with (b) Total-variation restoration:
tion which corresponds t@, of the form (1) with¢(¢t) = ¢ the optimal thereshol@ = 100. F, as in (1) withg(t) = t.
and)\ = 0.03. As expected, this restoration exhibits a stair- ) ) o

casing effect since it is constant on many regions. The im- Figure 12: Classical denoising methods.

age in Fig. 13 (a) is obtained by thresholding the wavelet

coefficients with respect t&' = 50. This]_“ is smaller than image of the erron.. — i, presented in Fig. 14 (b), exhibits
Donolh(t)-Jr? hns;one s'”thtr.esho(;d antd ths |magte preslertlts rl"t?réygscillations due to aberrant wavelet coefficients and that
V\{an ers ap”e osctiia 'gﬂbsb ue _c|J| atl' errar|1t \wave de Co&tdoes not present any structural information. This approxi-
cients, as well as some LIbDs oscillations. 1L IS used as 'nﬂjfgted method being computationally fast, it can be extended
data for .the speqah_zed objective functnﬁi; given In (23), o translation invariant wavelets [9]. In Fig. 15 (a) we show
whered is as given in (10). The restoration in Fig. 13 ( e restoration obtained by the standard translation invariant
wavelets thresholding, correspondingfio= 50 again. Al-

is obtained for\; = 0.5if ¢ € Iy, \; = 1.5if i € Iy. This

image has a quite natural appearance, and edges and te?fﬁ%rﬁgh its quality is improved with respect to the image in

are hetter preserved. Fig. 13 (a), it involves a lot of wavelet-shaped artifacts. This

The numerical cost of variational methods become a r%%ge is used as input data to our fast approximated method.

burden when images have a large size. In order 10 CirCUke"ghtained restoration, shown in Fig. 15 (b), is of high
vent this problem, we have tested an approximation of taﬁality, since edges and details are nicely recovered.
proposed method. Lejr be the wavelet transform of the

thresholded image. According to (11), the minimiZeof

F, satisfy 4 Conclusion
18:(2) < \i, Vie L.

We proposed a method to denoise images and signals by
The idea of this approximation is to test for evene I restoring the thresholded frame coefficients of the noisy data.
whether or notd; @ (yr)| > Ai. If [0;®(yr)| < A;, we take The restored coefficients minimize a specially designed ob-
simply z[i] = yr[i]. Otherwise, ifl9; ®(yr)| > A;, we con- jective function which allows the erroneously thresholded
sider thatyr[i] is an outlier. To restore such an outlier, Wgoefficients to be restored and the outliers to be removed,
can take for the relevant] either the median or the mean ofyithout substantially modifying the remaining coefficients.
the neighboring coefficients at the same scale. When outligfigr method is not sensitive to the probability distribution
arise in homogeneous regions, we can justiggt= 0. The of the noise. We present numerical experiments with or-
Gibbs oscillations are not considered in this approximatg@fbgonal bases of Daubechies wavelets. These experiments

method, so we have[i] = yrli] = 0 forall i € I. The im- demonstrate the effectiveness of our method over alternative
age obtained by this method fér = 50 and\; = 5 for all  denoising methods.

i € I, is displayed on Fig. 14 (a). Let us emphasize that the
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