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Abstract. We focus on the question of how the shape of a cost-function determines the features manifested
by its local (and hence global) minimizers. Our goal is to check the possibility that the local minimizers of an
unconstrained cost-function satisfy different subsets of affine constraints dependent on the data, hence the word
“weak”. A typical example is the estimation of images and signals which are constant on some regions. We provide
general conditions on cost-functions which ensure that their minimizers can satisfy weak constraints when noisy
data range over an open subset. These cost-functions are non-smooth at all points satisfying the weak constraints.
In contrast, the local minimizers of smooth cost-functions can almost never satisfy weak constraints. These results,
obtained in a general setting, are applied to analyze the minimizers of cost-functions, composed of a data-fidelity
term and a regularization term. We thus consider the effect produced by non-smooth regularization, in comparison
with smooth regularization. In particular, these results explain the stair-casing effect, well known in total-variation
methods. Theoretical results are illustrated using analytical examples and numerical experiments.

Keywords: estimation, inverse problems, Bayesian methods, non-smooth analysis, optimization, perturba-
tion analysis, proximal analysis, restoration, regularization, stabilization, stair-casing, total-variation, variational
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1. Introduction

We consider the estimation of an unknown x ∈ E (an
image, a signal) from data y ∈ F by minimizing with
respect to x a cost-function f : E × F → R, where
E and F are real, affine, normed, finite-dimensional
spaces. The vector spaces tangent to E and F will be
denoted E and F, respectively. Given data y ∈ F , we fo-
cus on local (and hence global) minimizers of f (., y),
i.e. points x̂ ∈ E such that

f (x̂, y) <= f (x, y), for all x ∈ O, (1)

where O ⊂ E is an open domain where f (., y) has a
local minimum. Cost-function f has to convey both the
relationship between the data and the unknown x , and
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the prior knowledge about x . The construction of cost-
functions, adapted to particular estimation problems,
is a critical topic in estimation theory. Typical ways
to construct cost-functions are based on PDEs [10, 40,
46], or on probabilistic considerations [3, 15]. Our work
suggests an alternative approach since it furnishes an
insight into the relationship between the shape of a
cost-function and some essential features exhibited by
its local minimizers. Concretely, this paper is dedicated
to the question of how, given a set of affine operators
and vectors, say gi : E �→ R

s and θi ∈ R
s , for i =

1, . . . , r , the shape of f favors, or conversely inhibits,
the possibility that for some y ∈ F , the function f (. , y)
admits local minimizers x̂ ∈ E satisfying

gi (x̂) = θi , ∀i ∈ L ,

with L ⊂ {1, . . . , r} and L �= ∅. (2)

For every i = 1, . . . , r , the linear operator correspond-
ing with gi reads Gi ∈ L(E, R

s), where L(. , .) denotes



156 Nikolova

the set of linear operators between the relevant vec-
tor spaces. When E is a vector space, E = E and
gi = Gi , for all i = 1, . . . , r . If E = R

p, and for all
i ∈ {1, . . . , p}, we have θi = 0 and [gi (x)] j = xi − x j ,
for j neighbor of i , then (2) means that f (., y) has min-
imizers x̂ which are constant on some regions. Such
minimizers can be seen in Fig. 2(a)–(c). Let us define
the function � by

�(x) := { i ∈ {1, . . . , r} : gi (x) = θi } , ∀x ∈ E .

(3)

Reciprocally, with every L ⊂ {1, . . . , r}, we associate
the affine subspace

KL := {x ∈ E : gi (x) = θi , ∀i ∈ L}. (4)

Then (2) is equivalent to say that X (y) ∈ KL with
L �= ∅. The latter is a severe restriction since KL is a
closed negligible (i.e. of zero Lebesgue measure) sub-
set of E . The possibility to satisfy (2) can be seen as
a weakly constrained minimization since for different
y ∈ F , the different local minimizers x̂ of f (., y)
satisfy different subsets �(x̂) of constraints. We are
induced to consider the way the local minimizers of
f (. , y) behave under variations of y. Thus we analyze
local minimizer functions.

Definition 1. Let f : E × F → R and N ⊆ F . We
say that X : N → E is a local minimizer function for
the family of functions f (. , N ) := { f (. , y) : y ∈ N }
if for any y ∈ N , the function f (. , y) reaches a local
minimum at X (y). Moreover, X is said to be a strict
local minimizer function if f (. , y) has a strict local
minimum at X (y), for every y ∈ N .

We consider functions f which can be convex or
non-convex, smooth or non-smooth. Our results ad-
dress both local and global minimizers. Our main re-
sults provide general conditions on cost-functions f
which ensure that either (2) is a generic property of
their local minimizers, or (2) does almost never oc-
cur. The former behavior is manifested by non-smooth
cost-functions, whereas the latter behavior character-
izes smooth cost-functions. This work is hence an at-
tempt to capture specific features exhibited by the local
minimizers of non-smooth cost-function, in compari-
son with smooth cost-functions.

All results obtained in the general setting mentioned
above are applied to regularized estimation. We con-
sider regularized cost-functions f , defined on R

p ×R
q :

f (x, y) = ψ(x, y) + β�(x),

for �(x) =
r∑

i=1

ϕi (Gi x − θi ), (5)

where β > 0 is a parameter and � is the regularization
term. For every i = 1, . . . , r , the function ϕi : R

s → R

is piecewise Cm , with m >= 2. Now E = R
p, F =

R
q and Gi ∈ L(Rp, R

s), for every i = 1, . . . , r . The
function � introduced in (3) now reads

�(x) := { i ∈ {1, . . . , r} : Gi x = θi } . (6)

In this work, the data-fidelity term ψ : R
p × R

q → R

is any explicit or implicit Cm-function, with m >= 2.
Usually, ψ comes from a statistical modelling of the
data-acquisition. The most often

ψ(x, y) = ‖H (Ax − y)‖2, (7)

where ‖.‖ is the Euclidian norm on R
q and A ∈

L(Rp, R
q ) can represent a blur operator, a Radon trans-

form in X -ray tomography, the identity in denoising
problems, and many others. The expression in (7) sup-
poses that data y are corrupted with Gaussian noise
with covariance matrix (H T H )−1. In both emission and
transmission computed tomography (ECT and TCT,
respectively), data y are the observed photon counts,
whereas x ∈ (Rp)∗+ is a map of the density of the
material which is examined. Then

ψ(x, y) =
q∑

i=1

[
�aT

i x − yi ln
(
aT

i x
)]

(ECT),

(8)

ψ(x, y) =
q∑

i=1

[
� exp

(−aT
i x

) + yi a
T
i x

]
(TCT),

where aT
i ∈ L(Rp, R), for i = 1, . . . , q, have non-

negative entries and � > 0 is a parameter [9, 22, 27].
The most typical form for the regularization term �

in (5) corresponds with

ϕi (z) = ϕ(z) = φ (‖z‖) , ∀i = 1, . . . , r, (9)

where φ : R+ → R is Cm for m >= 2. Popular
choices for φ are [2, 4–6, 8, 11, 20, 21, 22, 31, 35,
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40, 45]

(a) φ(t) = tα, 0 < α <= 1

(b) φ(t) = αt/(1 + αt)

(c) φ(t) = 1 − 1l(t=0)

(d) φ(t) = tα, 1 < α <= 2

(e) φ(t) = αt2/(1 + αt2)

(f) φ(t) = 1 − exp (−αt2)

(g) φ(t) = √
α + t2

(h) φ(t) = t21l(t<=α)+α(α+2|t−α|)1l(t>α)

(i) φ(t) = min{1, αt2}

(10)

where 1l(s) = 1 if the expression s is true and 1l(s) = 0
otherwise.

In many applications, the minimization of f (., y) is
subjected to some affine constraint. Given y ∈ R

q , the
sought solution x̂ ∈ E is defined by

f (x̂, y) <= f (x, y),

for every x ∈ O such that Cx = b, (11)

where C ∈ L(Rp, R
p0 ) and b ∈ R

p0 , are given. Unlike
the problem formulated in (2), the constraint in (11) is
strong since it enforces that x̂ ∈ E where

E := {x ∈ R
p : Cx = b}. (12)

Now E is an affine subspace of R
p of dimension

pE := p−rank C . Noticing that for any y ∈ R
q , any lo-

cal solution x̂ to (11) is a local minimizer of f |E (. , y),
the restriction of f (., y) to E , we will apply the re-
sults obtained for general affine spaces to constrained
minimization problems of the form (11).

To our knowledge, the critical question of the way
the shape of a cost-function f determines the features
exhibited by its local minimizers has never been con-
sidered in a general setting. The question of implic-
itly, weakly constrained minimization, as presented in
(2), has never been formalized previously. Several re-
stricted questions, entirely falling into the scope of our
problem, have been considered in the field of image
and signal estimation. In [17], the ability of f (x, y) =
‖x − y‖2 +β

∑
i |xi | to recover “nearly black images,”

i.e. that x̂i = 0 for many pixels i , is interpreted using
mini-max decision theory. In an example in [20], it is
discussed that if y is a one-dimensional ramp-shaped
signal and if f (x, y) = ‖x − y‖2+β

∑
i φ(|xi − xi+1|)

with φ the function in (10)-(b), then x̂ is step-shaped—
i.e. x̂i = x̂i+1 for almost all indexes except one.

Total-variation methods, pioneered in [40], amount to
f (x, y) = ‖Ax − y‖2 + β

∑
i ‖Gi x‖, where {Gi } are

first-order difference operators. This cost-function, in
the case of one-dimensional signals, is considered in
a Bayesian framework in [1]. Total-variation regular-
ization has been observed to produce a “stair-casing
effect” [13, 16] consisting in the presence of constant
zones in x̂ , that is Gi x̂ = 0 for many indexes i . A first
explanation to this phenomenon was given in [32, 34].
In [37], stair-casing for total-variation is studied in a
continuous setting. Our work may also be related to
stability problems which has been widely studied for
the purposes of optimization [7], and especially in the
framework of Moreau–Yosida regularization [24, 28].

Organization of the Paper

The notions of one-sided differentiability, used in
what follows, are presented in Section 2. Conditions
on cost-functions ensuring that (2) is a property of
their local minimizers, are established in Section 3.
In Section 4, we show that (2) can almost never oc-
cur for a smooth cost-function. Numerical illustrations
are given in Section 5, with concluding remarks in
Section 6. The proofs of all statements are outlined
in the Appendix.

Notations

We systematically denote S := {x ∈ K : ‖x‖ = 1}
and B(x̃, ρ) := { x ∈ K : ‖x − x̃‖ < ρ }, where K and
K are a vector space and an affine space, respectively,
which are appropriate to the context. Given a set M ,

M denotes its closure and
◦

M its interior. The cardi-
nality of a discrete set L is denoted #L . If L1 ⊂ L ,
the complement of L1 in L is denoted by Lc

1. For a
function f : E → R and a subset N ⊂ E , we write
down f (N ) := { f (x) : x ∈ N }. If f : E × F → R

is smooth, Dk
i f , for i = 1, 2, denotes its kth-order

differential with respect to the i th variable. If K ⊂ E
is a subset, by a slight abuse of notation, f |K will de-
note the restriction of f : E × F → R to K × F .
The orthogonal complement in a vector space E of a
vector subspace K ⊂ E is denoted by K⊥. If A is a real-
valued matrix, AT is its transpose. The components of
a vector, say x ∈ R

p, are denoted either xi , or [x]i ,
for i = 1, . . . , p. When it is clear from the context,
we write {θi } to address a previously introduced family
{θi , for i = 1, . . . , r}.
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2. One-Sided Semi-Derivatives and Derivatives

The notions introduced below are adapted to analyze
non-smooth functions f leading to (2).

Definition 2. For ỹ ∈ F given, the one-sided semi-
derivative of a function f (. , ỹ) : E → R at a point
x̂ ∈ E in a direction u ∈ E is defined by

δ1 f (x̂, ỹ)(u) := lim inf
t↘0

f (x̂ + tu, ỹ) − f (x̂, ỹ)

t
,

(13)

where the index 1 in δ1 specifies that we address deriva-
tives with respect to the first variable of f .

The expression (13) gives rise to a one-sided semi-
derivative application:

E × F × E → R,

(x, y, u) → δ1 f (x, y)(u).
(14)

The scalar in (13) and the application in (14) are always
well-defined.

Definition 3. The function f (. , ỹ) : E → R admits
at x̂ ∈ E a one-sided derivative in a direction u ∈
E, denoted δ′

1 f (x̂, ỹ)(u), if the following limit exists:
δ′

1 f (x̂, ỹ)(u) = limt↘0 ( f (x̂ + tu, ỹ) − f (x̂, ỹ)) /t .

The one-sided derivative of f (. , ỹ) at x̂ ∈ E for
u ∈ E exists if, and only if, the inferior limit in
(13) can be reduced to a simple limit, in which case
δ1 f (x̂, ỹ)(u) = δ′

1 f (x̂, ỹ)(u). In order to simplify the
notations, we will systematically write δ in place of δ′

and specify the kind of the one-sided derivative. Ob-
serve that δ1 f (x̂, ỹ)(u) is a right-side derivative and that
the relevant left-side derivative is −δ1 f (x̂, ỹ)(−u). If
f (. , ỹ) is differentiable at x̂ for u, then δ1 f (x̂, ỹ)(u) =
−δ1 f (x̂, ỹ)(−u) = d

dt f (x̂ + tu, ỹ)|t=0.
Below we give a necessary condition for a lo-

cal minimum of a possibly non-smooth function
[14, 24, 38].

Lemma 1. If for ỹ ∈ F , the function f (., ỹ) has a
local minimum at x̂ ∈ E , then δ1 f (x̂, ỹ)(u) >= 0, for
every u ∈ E, where δ1 denotes a one-sided (semi-)
derivative.

One-sided (semi-)derivatives may in particular be
infinite. In this paper we restrict our attention only to

functions f for which δ1 f is finite. The results pre-
sented in the following can be extended to functions
with infinite one-sided (semi-)derivatives but this needs
separate considerations. The case of infinite one-sided
derivatives for a class of regularized cost-functions
was considered in [34]. In that case, infinite one-sided
derivatives facilitate the obtention of local minimizers
which satisfy (2). This is illustrated by Example 6 given
in Appendix, as well as by Fig. 2(c). In the following,
we will need to know how one-sided (semi-)derivatives
behave in the vicinity of a point (x̂, ỹ) under variations
of the direction u.

Definition 4. Given an affine subspace K ⊆ E and a
vector subspace K⊥ ⊆ E, along with a point (x̂, ỹ) ∈
K×F and a direction u ∈ K⊥, we say that the one-sided
semi-derivative application δ1 f is defined uniformly on
a neighborhood of (x̂, ỹ, u), included in K ×F × K⊥,
say (Nx̂ × Nỹ × Nu) ⊂ (K ×F × K⊥), if the function

σ → inf
t∈(0,σ )

f (x + tu′, y) − f (x, y)

t
, (15)

defined for σ > 0, converges towards δ1 f (x, y)(u′) as
σ ↘ 0 uniformly for all (x, y, u′) ∈ (Nx̂ × Nỹ × Nu).

Notice that one-sided differentiability does not imply
uniform definiteness.

Definition 5. The one-sided derivative application
(x, y, u) → δ1 f (x, y)(u) is defined uniformly on a
neighborhood (Nx̂ × Nỹ × Nu) ⊂ (K × F × K⊥) of
(x̂, ỹ, u), if the function

t → f (x + tu′, y) − f (x, y)

t
, (16)

defined for t > 0, converges towards δ1 f (x, y)(u′) as
t ↘ 0 uniformly for all (x, y, u′) ∈ (Nx̂ × Nỹ × Nu).

Our theory does not address functions for which
the one-sided (semi-)derivative application is not uni-
formly defined on any neighborhood of (x̂, ỹ, u). Ob-
serve that Definitions 4 and 5 address only func-
tions f for which δ1 f is finite on (Nx̂ × Nỹ ×
Nu) ⊂ (K × F × K⊥). A function admitting
uniformly defined one-sided semi-derivatives, but
not admitting one-sided derivatives, is considered
below.
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Example 1. Let f : R
2 × R

2 → R be given by

f (x, y) = ψ(x, y) + ϕ(x1 − x2),

ψ(x, y) = 1

2
(x1 + x2 − y1)2 + 1

2
(x1 − x2 − y2)2,

ϕ(t) =




t

(
2 + sin

1

t

)
if t > 0,

−3t − (t − 1)2 + 1 if − 1/2 <= t <= 0,

1/4 if t < −1/2.

Notice that ϕ is C∞ on (−1/2, 0) ∪ (0, +∞) and that
it is continuous at zero where ϕ(0) = 0. In this case,
G1 = [1, −1]. We focus on L = {1}. By (4), we have
K{1} = K{1} = {u ∈ R

2 : u1 = u2} and K⊥
{1} = {u ∈

R
2 : u1 = −u2}. Consider some x ∈ K{1}. The function

f does not admit at x a one-sided derivative for any
u ∈ K⊥

{1} [Definition 3]. Its one-sided semi-derivative
δ1 f [Definition 3] reads (the details are given in the
Appendix)

δ1 f (x, y)(u) = −y2(u1 − u2) + |u1 − u2|. (17)

The application δ1 f is continuous. Moreover, for every
u ∈ K⊥

{1},

∣∣∣∣δ1 f (x, y)(u) − inf
t∈(0,σ )

f (x + tu, y) − f (x, y)

t

∣∣∣∣
=

{
0 if u1 > u2,

σ |u1u2| if u1
<= u2.

The above residual goes to zero when σ ↘ 0 uniformly
onK{1}×R

2×(K⊥
{1}∩S), hence δ1 f is defined uniformly

on this set.

Related notions of one-sided differentiability have
been considered by many authors [14, 24, 28, 39, 42].
For instance, the semi-differential used in [39] amounts
to lim inft↘0,u′→u( f (x̂ + tu′, ỹ) − f (x̂, ỹ))/t , so the
behavior of the difference quotient is tested for all half-
lines x̂ + tu′ converging to x̂ + tu. In comparison, for
one-sided (semi-)derivatives, it is tested only for the
half-line x̂ + tu. The definitions we adopt reflect the
ambition to use quite weak assumptions still allowing
us to exhibit the possibility to have property (2).

3. Minimizers Involving Weak Constraints

3.1. General Cost-Functions

We start by considering cost-functions which do not
necessarily admit one-sided derivatives. The theo-
rem below contains the main contribution of this
paper.

Theorem 1. Consider an f : E × F → R, along
with a set of affine functions gi : E → R

s and vectors
θi ∈ R

s , for i = 1, . . . , r . Let (x̂, ỹ) ∈ E × F and
put L := �(x̂), where � is given in (3). Let KL be
defined by (4) and KL be its tangent. Suppose that the
semi-derivative application [Definition 4]

KL × F × (K⊥
L ∩ S) → R,

(x, y, u) → δ1 f (x, y)(u),

1. is lower semi-continuous on {x̂} × {ỹ} × (K⊥
L ∩ S);

2. is defined uniformly on Nx̂ × N × (K⊥
L ∩ S) where

(Nx̂ × N ) ⊂ KL × F is a neighborhood of (x̂, ỹ).

Suppose also that

(a) δ1 f (x̂, ỹ)(u) > 0 for every u ∈ K⊥
L ∩ S;

(b) ỹ is contained in a neighborhood N ⊂ F such
that f | KL (. , N ) admits a local minimizer function
XL : N → KL [Definition 1] which is continuous
at ỹ and satisfies x̂ = XL (ỹ).

Then there is a neighborhood VL of ỹ such that f (. , VL )
admits a local minimizer function X : VL → E which
satisfies X (ỹ) = x̂ and

y ∈ VL ⇒ gi (X (y)) = θi , for all i ∈ L . (18)

More precisely, X (y) = XL (y) ∈ KL , for every
y ∈ VL. In addition, if XL is a strict local mini-
mizer function for f | KL (. , N ), then X is a strict local
minimizer function for f (. , VL ).

Notice that the tangent of KL reads KL = {u ∈ E :
Gi u = 0, ∀i ∈ L} where {Gi } are the linear operators
associated with {gi }. Assumptions 1 and 2 concern the
regularity of f on a neighborhood of (x̂, ỹ) while (a)
and (b) state a proper sufficient condition for local min-
imum. We see that once a data point ỹ yields a local
minimizer x̂ of f (., ỹ) with L := �(x̂) non-empty (such
a ỹ can usually be determined), there is a neighborhood
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VL of ỹ such that if y ∈ VL , then gi (X (y)) = θi , for
all i ∈ L . It is striking to observe that in spite of the
fact that y ranges over an open subset of F , the mini-
mizer function X evolves in an affine subspace strictly
included in E .

To illustrate Theorem 1, we calculate a minimizer of
the function considered in Example 1.

Example 2. By (17), Assumptions 1 and 2 of
Theorem 1 are valid. By (17), condition (a) reads
y2(u1 −u2) < |u1 −u2|, ∀u ∈ K⊥

{1}, which is equiva-
lent to |y2| < 1. The restriction of f (. , y) to K{1} reads
f |K{1} (x, y) = 1

2 (x1 + x2 − y1)2, where x1 = x2. This
function is strictly convex and yields

X{1}(y) =
(

y1

2
,

y1

2

)
, ∀y ∈ R

2.

Hence, condition (b) is satisfied for every y ∈ R
2.

According to Theorem 1,

y ∈ V{1} := {y ∈ R
2 : |y2| < 1} ⇒

(19)
X (y) =

(
y1

2
,

y1

2

)
∈ K{1}.

Notice that X is a strict global minimizer function and
that f (. , y) has an infinity of local minimizers.

Next we focus on functions which admit one-sided
derivatives in the sense of Definition 3.

Proposition 1. Consider an f : E × F → R and
(x̂, ỹ) ∈ E × F . Let {gi }, {θi }, L , KL and KL be as in
Theorem 1. Let (x̂, ỹ) be contained in a neighborhood
(Nx̂ × N ) ⊂ (KL × F) such that f is continuous and
has a uniformly defined one-sided derivative applica-
tion δ1 f on Nx̂ × N × (K⊥

L ∩ S) [Definition 3]. Then
δ1 f is continuous on {x̂} × {ỹ} × (K⊥

L ∩ S).

If there is a neighborhood of (x̂, ỹ) where f is contin-
uous and admits a uniformly defined one-sided deriva-
tive application δ1 f , and if conditions (a) and (b) of
Theorem 1 are satisfied, then (18) holds.

3.2. Application to Non-Smooth Regularization

We will apply the results obtained in Section 3.1 to pos-
sibly constrained minimization problems of the form
(11) for cost-functions f : R

p × R
q → R as given in

(5). For any i = 1, . . . , r , we suppose that

H1 the function ϕi : R
s → R is Cm on R

s \ {0}, for
m >= 2;

H2 at zero, ϕi admits a one-sided derivative appli-
cation u → δϕi (0)(u) [Definition 3] which is defined
uniformly on S.

In some cases, ψ may assume the form ψ(x, y) =
ψ̃(x, y) + ∑r0

i=r+1 ϕ̃(Gi x − θi ), where ψ̃ is a data-
fidelity term and ϕ̃i , for i = r + 1, . . . , r0, are Cm-
functions, for m >= 2. Thus the formulation in (5) allows
us to address cost-functions combining both smooth
and non-smooth regularization terms.

We will consider the subspace E defined in (12).
Similarly to (4), for any L ⊂ {1, . . . , r} we define

KL = {x ∈ E : Gi x = θi , ∀i ∈ L}. (20)

It makes sense to consider only subsets L such that KL

is of dimension >= 1 and is strictly included in E . The
tangents ofE andKL now read E = {x ∈ R

p : Cx = 0}
and KL = {x ∈ E : Gi x = 0, ∀i ∈ L}. The next
proposition concerns the regularity of f .

Proposition 2. Let f be as given in (5), where all
ϕi , for i = 1, . . . , r , satisfy H1 and H2. Let E be as
defined in (12). Suppose that there is an open subset
(Nx × Ny) ⊂ (E × R

q ) where ψ is Cm with m >= 2.
Then for every x̂ ∈ KL ∩ Nx , such that Gi x̂ �= θi for
all i ∈ Lc, and for every ỹ ∈ Ny , there is a neigh-
borhood (Nx̂ × N ) ⊂ (KL × R

q ) containing (x̂, ỹ), so
that f has a uniformly defined one-sided derivative ap-
plication δ1 f on Nx̂ × N × (K⊥

L ∩ S) [Definition 5].

Given L ⊂ {1, . . . , r}, we decompose f into
f (x, y) = f0(x, y) + fL (x), where

f0(x, y) = ψ(x, y) + β
∑
i∈Lc

ϕi (Gi x − θi ),

fL (x) = β
∑
i∈L

ϕi (Gi x − θi ).
(21)

If L = �(x̂), for � as defined in (6), then f0(., y) is
Cm on a neighborhood of x̂ included in E , whereas fL

is non-smooth at x̂ for all directions in K⊥
L . Clearly,

δ1 f (x̂, y)(u) = D1 f0(x̂, y)u +δ fL (x̂)(u) for all u ∈ E.

Theorem 2. Consider problem (11) with f of the
form (5), where every ϕi , for i = 1, . . . , r , satisfies
H1 and H2. For ỹ ∈ R

q given, let x̂ ∈ E be a solu-
tion to (11) where E reads as in (12). Put L := �(x̂)
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for � as given in (6). Let KL be as in (20) and KL be
its tangent. Assume that (x̂, ỹ) is contained in an open
neighborhood (Nx × N ) ⊂ (E × R

q ) where ψ is Cm

with m >= 2. Suppose also that

(a) D1 f0(x̂, ỹ)u > −β
∑

i∈L δϕi (0)(Gi u), for every
u ∈ K⊥

L ∩ S;
(b) f0 | KL (. ,N ) has a local minimizer function XL :

N → KL which is continuous at ỹ and x̂ = XL (ỹ),

where f0 is as given in (21). Then there is a neighbor-
hood VL of ỹ such that f (. , VL ) admits a local mini-
mizer function X : VL → E which satisfies X (ỹ) = x̂
and

y ∈ VL ⇒ GiX (y) = θi , for all i ∈ L .

More precisely,X (y) = XL (y) ∈ KL for every y ∈ VL.
In addition, ifXL is a strict local minimizer function for
f | KL (. , N ), then X is a strict local minimizer function
for f (. , VL ).

Next we check H1 and H2 for {ϕi } of the form (9).

Proposition 3. Let ϕ : R
s → R read

ϕ(u) = φ(‖u‖), (22)

where φ : R+ → R is continuous, Cm for m >= 2 on
(0, +∞) with φ′(0+) > 0 finite. Then the function u →
ϕ(u) satisfies H1 and H2, and we have δϕ(0)(v) > 0,
for all v ∈ R

s .

The fact that φ′(0+) > 0 implies that ϕ is non-
smooth at the origin. Among the functions given in
(10), we have φ′(0+) = 1 for (a) with α = 1 and
φ′(0+) = α for (b).

3.3. Commentary

Assumptions 1 and 2 of Theorem 1 are general enough.
By Proposition 2, they are are satisfied by general reg-
ularized cost-functions. They hold also for the function
in Example 1.

3.3.1. On Condition (a). In Theorems 1 and 2, f (. , ỹ)
has a local minimum at x̂ , hence δ1 f (x̂, ỹ)(u) >= 0, for
all u ∈ E , according to Lemma 1. In comparison, (a)
requires only that this inequality be strict for every
u ∈ K⊥

L ⊂ E. So, (a) is not a strong requirement. If

f is a regularized cost-function of the form (5)–(7)
and satisfies some technical assumptions, the analysis
in [18] shows that for almost every y (except those
contained in a negligible subset of R

q ), every local
minimizer x̂ of f (., y) satisfies (a).

Let us come back to Example 1. If for some y, f (., y)
has a minimizer x̂ ∈ K{1}, then (17) shows that |y2| <= 1.
For all y ∈ R

2 with |y2| > 1, if f (., y) has a local
minimizer x̂ , then x̂ ∈ R

2 \ K{1}. Joining this with
(20) shows that the only points ỹ for which f (. , ỹ)
may have a minimizer x̂ ∈ K{1}, without satisfying (a),
correspond to ỹ ∈ {y ∈ R

2 : |y2| = 1}: the latter is a
closed, negligible subset of R

2.
The remark below gives indications how to construct

cost-functions whose minimizers satisfy some weak
constraints of the form (2).

Remark 1 (f is non-smooth on all K{i }). By (a),
f (. , ỹ) is non-smooth at x̂ for every non-zero direction
u ∈ K⊥

L , since −δ1 f (x̂, ỹ)(−u) < 0 < δ1 f (x̂, ỹ)(u).
Moreover, there is a neighborhood Nx̂ of x̂ , included
in KL , and a neighborhood N of ỹ, so that for every
y ∈ N , the function f (., y) is non-smooth at each x ∈
Nx̂ ⊂ KL , for every u ∈ K⊥

L . More generally, if we wish
that for different y the minimizers x̂ of f (., y) satisfy
(2) for different subsets L , we will ensure that for every
y ∈ F , the function f (., y) is non-smooth on ∪r

i=1K{i}
in such a way that its one-sided (semi-)derivatives are
>= 0. If f is a regularized cost-functions of the form (5),
the latter condition is satisfied if for every i = 1, . . . , r ,
the function ϕi is such that −δϕi (0)(−v) < δϕi (0)(v),
for all v ∈ R

s , i.e. if its left-side derivatives are smaller
than its right-side derivatives. In particular, this holds
if δϕi (0)(v) > 0, for all v ∈ R

s .

3.3.2. On Condition (b). Notice that the requirement
that XL is Cm−1, for m >= 1, does not need f | KL to be
smooth. The next lemma, which can be found in [19],
is important to check (b).

Lemma 2. Let f : E×F → R beCm , with m >= 2, on
a neighborhood of (x̂, ỹ) ∈ E×F . Suppose that f (., ỹ)
reaches at x̂ a local minimum such that D2

1 f (x̂, ỹ) is
positive definite (i.e. its eigenvalues are > 0). Then
there are a neighborhood N ⊂ F containing ỹ and a
unique Cm−1 strict local minimizer function X : N →
E , such that D2

1 f (X (y), y) is positive definite for every
y ∈ N and X (ỹ) = x̂ .
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Thus, condition (b) holds if f |KL is Cm on a neigh-
borhood of (x̂, ỹ) belonging to KL × F , and if

D1( f | KL )(x̂, ỹ) = 0, and

D2
1( f | KL )(x̂, ỹ) is positive definite. (23)

In many applications f is convex and D2
1

(
f | KL

)
(x, y)

is positive definite for all x ∈ E with L = �(x), and
for all y ∈ R

q . Analyzing the possibility to have (b)
when f is non-convex is more intricate. In [18] it is
shown that if f is of the form (5) with HA one-to-
one, and {ϕi } possibly non-convex and satisfying some
non-restrictive assumptions, then for almost every ỹ ∈
R

q (except those contained in a negligible subset of
R

q ), for every local minimizer x̂ of f (., ỹ), there is a
neighborhood N ⊂ R

q and a Cm−1 local minimizer
function X : N → KL , with x̂ = X (ỹ) and L = �(x̂).
Then XL = X is as required in (b).

3.3.3. Significance of the Results. The conclusion of
Theorems 1 and 2 can be reformulated as

y ∈ VL ⇒ � (X (y)) ⊇ L , (24)

where L := �(X (ỹ)). In particular, VL can contain
points y yielding gi (X (y)) = θi for some i ∈ Lc.
However, by the continuity of X at ỹ, there is a neigh-
borhood ṼL ⊂ VL containing ỹ such that

y ∈ ṼL ⇒
{

gi (X (y)) = θi if i ∈ L ,

gi (X (y)) �= θi if i ∈ Lc.
(25)

In other words, � (X (y)) = L for all y ∈ ṼL .
Focus on a minimizer function X : N → E for

f (., N ) and put L = �(X (ỹ)) for some ỹ ∈ N . By
Theorems 1 and 2, and by (25), the sets VL and ṼL ,

VL := {y ∈ N : � (X (y)) ⊇ L}
= {y ∈ N : X (y) ∈ KL} , (26)

ṼL := {y ∈ N : � (X (y)) = L} , (27)

contain open subsets of N , hence VL and ṼL are of
positive measure in F . The chance that random points
y (e.g. noisy data) come across VL , or ṼL , is posi-
tive. When data y range over N , the set-valued func-
tion (� ◦X ) generally takes several distinct values, say
{L j }. Thus, with a minimizer function X , defined on
an open set N , there is associated a family of subsets
{ṼL j } which form a covering of N . When y ∈ ṼL j ,

we find a minimum x̂ = X (y) satisfying �(x̂) = L j .
This is the reason why non-smooth cost-functions, as
those considered here, exhibit local minimizers which
generically satisfy weak constraints of the form (2). For
a regularized cost-function of the form (5), with {ϕi } as
in (9), {Gi } first-order difference operators and θi = 0,
for all i , minimizers x̂ are typically constant on many
regions. This explains in particular the stair-casing ef-
fect observed in total-variation methods [13, 16, 40].
In the example below we derive the sets ṼL , for every
L ⊂ {1, . . . , r}, in the context of a particular f .

Example 3 (Total variation). Let f : R
p ×R

p → R

be given by

f (x, y) = ‖Ax − y‖2 + β

p−1∑
i=1

|xi − xi+1|, (28)

where A ∈ L(Rp, R
p) is invertible and β > 0. It is

easy to see that there is a unique minimizer function
X for f (., R

p). We exhibit two striking phenomena
characterizing non-smooth regularization:

1. for every point x̂ ∈ R
p, there is a polyhedron Wx̂ ⊂

R
p of dimension #�(x̂), such that for every y ∈ Wx̂ ,

the same point X (y) = x̂ is the unique minimizer of
f (., y);

2. for every L ⊂ {1, . . . , p−1}, there is a subset ṼL ⊂
R

p, composed of 2p−#L−1 unbounded polyhedra of
R

p, such that for every y ∈ ṼL , the minimizer x̂
of f (., y) satisfies x̂i = x̂i+1 for all i ∈ L and
x̂i �= x̂i+1 for all i ∈ Lc.

Remark 2 (Classification rule). The function �

naturally provides a classification rule if for any
x ∈ E we consider the two classes L = �(x) and
Lc, its complement. By (24) and (25), the function
y → �(X (y)) is constantly equal to L = �(X (ỹ))
on ṼL and �(X (y)) ⊇ �(X (ỹ)) for all y ∈ VL . The
resultant classification is hence stable with respect
to small variations of the data (e.g. due to noise
perturbations).

Remark 3. By Theorems 1 and 2, we have X (VL ) ⊂
KL , and hence rank DX (y) <= dimKL , for all y ∈ VL .

4. Locally Smooth Cost-Function

4.1. General Case

In this section we consider the possibility that a smooth
cost-function yields local minimizers which satisfy
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weak constraints of the form (2). In what follows, E
and F are of dimensions p and q , respectively.

Theorem 3. Consider an f : E ×F → R and let X :
N → E be a differentiable local minimizer function
for f (. , N ), where N ⊂ F is open. Suppose f is twice
differentiable on Nx × N where Nx ⊂ E is open and
X (N ) ⊂ Nx . Let θ ∈ R

s and let g : E → R
s be an

affine function such that

rank Dg(x) > p − rank D12 f (x, y),

∀(x, y) ∈ Nx × N . (29)

For any N ′ ⊆ N with
◦

N ′ �= ∅, define the subset VN ′

by

VN ′ := {y ∈ N ′ : g(X (y)) = θ}. (30)

Then

(i) the interior of VN is empty;
(ii) if X is C1 on N , for any compact N ′ ⊂ N , the rel-

evant VN ′ is included in a closed, negligible subset
of F .

The proof of this theorem uses the following lemma
which relates the ranks of DX and D12 f on N .

Lemma 3. Let f , N and X be as in Theorem 3. Then
rank DX (y) >= rank D12 f (X (y), y), for all y ∈ N.

We next focus on functions f which at some points
(x, y) ∈ E × F are non-smooth with respect to x in
such a way that −δ1 f (x, y)(−u) > δ1 f (x, y)(u) for
some direction u ∈ E . A popular function of this kind
is considered in Example 4. Let M denote the set of all
such points:

M := {(x, y) ∈ E × F : ∃u ∈ E with

− δ1 f (x, y)(−u) > δ1 f (x, y)(u)}, (31)

where δ1 denotes a one-sided (semi-)derivative
[Definition 2 or 3]. Notice that from Rademacher’s the-
orem [24, 36], when f is Lipschitz, M is included in a
negligible subset of E × F .

Proposition 4. Let f be twice differentiable on E ×
F \M where M is the set defined in (31). Then for every

ỹ ∈ F for which f (. , ỹ) admits some local minimizers,
and for every local minimizer x̂ of f (. , ỹ),

(x̂, ỹ) �∈ M.

Suppose there is an open set N ⊂ F such that f (. , N )
admits a differentiable local minimizer function X :
N → E . Suppose M is closed and negligible in E ×F .
For g : E → R

s and θ ∈ R
s as in Theorem 3, let (29)

hold for all (x, y) ∈ (E×F)\ M. Then the conclusions
of Theorem 3 are valid.

4.2. Application to Smooth Regularization

We focus on problem (11) and (12) where f is of the
form (5), and is smooth in the vicinity of its local min-
imizers. We suppose that for every i = 1, . . . , r , there
is a closed subset Ti ⊂ R

s , so that

H3 the function ϕi : R
s → R is Cm-smooth on R

s \
{Ti }, for m >= 2;

H4 if Ti �= ∅, then Ti is a C1-manifold with dim Ti =
s − 1, and for every z ∈ Ti there is ṽ ∈ R

s such that
−δϕi (z)(−ṽ) > δϕi (z)(ṽ), whereas −δϕi (z)(−v) >=
δϕi (z)(v) for every v ∈ R

s .

Ti is nonempty for ϕi is of the form (9) with φ as in
(10)-(f). It is empty for (10)-(d), (e), (g), (h).

Example 4 (Truncated quadratic function). Con-
sider ϕi : R

s → R of the form (9) where

φ(t) = min{1, αt2} with α > 0.

This function was initially introduced in [21] for the
restoration of images involving sharp edges, and in the
sequel this φ was considered by many authors [6, 12,
31]. It is non-smooth at 1/

√
α and C∞ elsewhere. The

set Ti , evoked in H4, reads

Ti =
{

z ∈ R
s : ‖z‖ = 1√

α

}
.

Indeed, Ti is a C∞-manifold of dimension s − 1. By
Definition 3, for any z ∈ Ti ,

δϕi (z)(u) =
{

0 if zT u >= 0,

−2α |zT u| if zT u < 0.
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Hence H4 is satisfied in its full form. If s = 1, ϕi (z) =
φ(|z|) for z ∈ R, then Ti = {−1/

√
α, 1/

√
α} is a

manifold of dimension 0, and δϕi (1/
√

α)(1) = 0 and
−δϕi (1/

√
α)(−1) = 2

√
α. Focus next on ϕi (Gi x −

θi ) = φ(‖Gi x‖), with Gi �= 0, for every i = 1, . . . , r .
The set M introduced in (31) now reads

M =
r⋃

i=1

Mi × R
q , where Mi = {x ∈ R

p : Gi x ∈ Ti }

=
{

x ∈ R
p : ‖Gi x‖ = 1√

α

}
.

Every Mi , for i = 1, . . . , r , is a C∞-manifold of di-
mension p − 1, hence M is a closed, negligible subset
of R

p × R
q .

Theorem 4. Consider problem (11) where f : R
p ×

R
q → R is of the form (5), and H3 and H4 are satisfied.

For E as defined in (12), let X : N → E be a differ-
entiable local minimizer function for f | E (., N ) where
N ⊂ R

q is an open set. Suppose thatψ is twice differen-
tiable on (Nx × N ) where Nx is open and X (N ) ⊂ Nx .
For some L = { j1, j2, . . . , jl} ⊂ {1, . . . , r}, put

G :=




G j1

G j2

. . .

G jl


 and θ :=




θ j1

θ j2

. . .

θ jl


 . (32)

Let 
E : R
p → E denote the orthogonal projection

and pE := dim E . Suppose that

rank (G
E) > pE − rank D12ψ | E (x, y),

∀(x, y) ∈ Nx × N . (33)

For every i ∈ {1, . . . , r} such that Ti �= ∅, assume that
rank (Gi
E ) = s. For any N ′ ⊆ N , define

VL ,N ′ := {y ∈ N ′ : GX (y) = θ}. (34)
Then

(i) the interior of VL ,N is empty;
(ii) if X is C1 on N , then for any compact N ′ ⊂ N , the

relevant VL ,N ′ is included in a closed, negligible
subset of R

q .

This theorem is illustrated below using a very clas-
sical cost-function.

Example 5 (Regularized least-squares). Consider
the function f : R

p × R
q → R,

f (x, y) = ‖Ax − y‖2 + β‖Gx − θ‖2, (35)

where β > 0 and G ∈ L(Rp, R
s). Since [44], cost-

functions of this form are among the most widely used
tools in signal and image estimation [15, 26, 29, 43].
Under the assumption ker(AT A)∩ker(GT G) = {0}, for
every y ∈ R

q , the function f (. , y) is strictly convex
and its unique minimizer x̂ satisfies D1 f (x̂, y) = 0,
where D1 f (x̂, y) = 2(Ax̂ − y)T A + 2β(Gx̂ − θ )T G.
The relevant minimizer function X : R

q → R
p reads

X (y) = (AT A + βGT G)−1(AT y + βGT θ ). (36)

Let the rows of G be denoted Gi ∈ L(Rp, R) for i =
1, . . . , r . For a given index i ∈ {1, . . . , r}, we will
determine the set V{i} of all data points y ∈ R

q for
which satisfy exactly the equation Gi X (y) = θi ,

V{i} := {y ∈ R
q : GiX (y) = θi }.

Using (36), V{i} equivalently reads

V{i} = {y ∈ R
q : yT pi (β) = ci (β)},

where
pi (β) = A(AT A + βGT G)−1GT

i ,

ci (β) = θi − βθT G(AT A + βGT G)−1GT
i .

We can have pi (β) = 0 only if rank A < p and β is
such that GT

i ∈ ker A(AT A +βGT G)−1: the latter is a
system of r polynomials of degree p. If there are β > 0
satisfying this system, they form a finite, discrete set of
values. However, β in (35) will almost never belong to
such a set, so in general, pi (β) �= 0. Then V{i} ⊂ R

q is
an affine subspace of dimension q −1. More generally,
we have the implication

∃i ∈ {1, . . . , r} such that Gi Xi (y) = θi

⇒ y ∈
r⋃

i=1

V{i}.

The union on the right side is composed of r subspaces
of R

q of dimension q − 1. The chance that noisy data
come across this union is null. Hence, the chance that
noisy data y yield a minimizer X (y) which satisfies
GiX (y) = θi , even for one index i , is null.
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4.3. Commentary

4.3.1. On Conditions (a) and (b). For the data-fidelity
term given in (7),

D12ψ(x, y) = −2H T HA, ∀(x, y) ∈ R
p × R

q ,

where rank H T H = q . For the ECT and TCT applica-
tions, given in (8), we have

D12ψ(x, y) = (
diag

(
aT

1 x, . . . , aT
q x

))−1
A (ECT),

D12ψ(x, y) = A (TCT),

where aT
i , for i = 1, . . . , q , are the rows of A. The

diagonal matrix in the expression for ECT is always
positive definite, since x ∈ (R∗

+)p and the entries of A
are non-negative. In all these cases,

rank D12 f (x, y) = rank D12ψ(x, y) = rank A.

If the constraint in (11) is absent, E = R
p, 
E = I ,

f | E = f and ψ | E = ψ , and pE = p. The condi-
tion in (33) reads rank G > p − rank A and it van-
ishes if rank A = p. If the constraint in (11) is applied,
rank D12ψ | E (x, y) = rank (A
E ). If ker A ∩ E = ∅,
we find rank D12ψ | E (x, y) = pE . For a good choice
of the operators {Gi } in (5), we have rank (Gi
E ) =
rank Gi , for all i , and then rank (G
E ) = rank G.

Observe that the conclusion of Example 5 is indepen-
dent of rank A, provided that ker(AT A)∩ker(GT G) =
{0}. This fact suggests that (29) and (33) are quite
strong sufficient conditions, and that the conclusions of
Theorems 3 and 4 hold even if they fail. The latter is
corroborated by the numerical experiments: the images
in Fig. 3, restored using smooth regularization, satisfy
Gi x̂ �≈ 0, for all i .

4.3.2. On the Minimizer Function X . By Lemma 2
it is seen that if for every y ∈ F , f (., y) is convex
and D2

1(., y) is positive definite on E , there is a unique
Cm−1 minimizer function X : F → E for f (.,F).
The latter conditions are satisfied if f is of the form
(5)–(7) where HA is one-to-one, and {ϕi } are Cm and
convex. Non-convex functions f of the form (5)–(7),
where HA is one-to-one and � is Cm and satisfies some
loose requirements, are considered in [18]. The analysis
there shows that for almost every y ∈ R

q (except those
contained in a closed, negligible subset of R

q ), every
local minimizer x̂ of f (., y) results from a Cm−1 local
minimizer function X .

4.3.3. Significance of the Results. Theorems 3 and 4
and Proposition 4 reveal that the minimizers of smooth
cost-functions, corresponding to noisy data, can almost
never satisfy weak constraints as those given in (2). The
reason is that all data points ỹ, which may give rise to
g(X (ỹ)) = θ for some local minimizer function X ,
are contained in closed negligible subsets of F . The
chance that noisy data come across such sets is null.
In particular, no smooth cost-function dependant on
noisy data yields minimizers which are constant on
some regions—this is nicely demonstrated by Fig. 3
(a), (b) and (c).

In some applications it is important to know whether
the minimizers x̂ of a cost-function f can avoid a given
constraint g(x̂) = θ , where g is a general function. E.g.,
in some signal processing applications, one is seek-
ing a non-singular covariance matrix x̂ ∈ R

p×p. Al-
though the set {x ∈ R

p×p : det(x) = 0} is closed and
negligible in R

p×p [41], the question whether the set
{y ∈ F : det(X (y)) = 0} is negligible in F when f
is smooth, remains. Generalization to non-affine weak
constraints is a problem to consider.

Incidentally, Remark 3 and Lemma 3 provide an in-
structive comparison of the ranks of DX correspond-
ing to a non-smooth, and to a smooth cost-function,
respectively.

5. Restoration of an Image

By way of illustration, we present the restoration of a
blurred, noisy 128 × 128 synthetic image using both
non-smooth and smooth regularized cost-functions.
The original image in Fig. 1(a) presents smoothly vary-
ing regions, constant regions and sharp edges. Data in
Fig. 1(b) correspond to y = a ∗ x +n, where a is a blur
operator with entries ai, j = exp (−(i2 + j2)/12.5) for
−4 <= i, j <= 4, and n is white Gaussian noise yielding
20 dB of SNR. The amplitudes of the original image
are in the range of [0, 1.32] and those of the data in
[−5, 50]. All restorations are calculated by minimiz-
ing

f (x, y) = ‖a ∗ x − y‖2 + β
∑
(i, j)

∑
(k,l)∈Ui, j

φ(|xi, j − xk,l |),

where Ui, j = {(i − 1, j), (i, j − 1)},

for 1 <= i, j <= 128, and boundary condition xi,0 = xi,1

and x1, j = x1, j , as well as x129, j = x128, j and
x j,129 = x j,128. Thus, with every pixel (i, j), we
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Figure 1. The original image contains weakly varying and constant
regions, separated by edges. Data are a blurred and noisy version of
the original image.

associated g1
i, j (x) = xi, j − xi−1, j and g2

i, j (x) = xi, j −
xi, j−1, along with θ1

i, j = θ2
i, j = 0. All restored images

below correspond with different functions φ among
those given in (10), and α and β are set experimentally.
(Notice that the properties we illustrate are indepen-
dent of the exact value of α and β.) In all figures, the
obtained minimizers are displayed on the top, while
below we give three sections of the restored images,
corresponding to rows 35, 54 and 90.

Figure 2. Restoration using non-smooth regularization.

In the experiments in Fig. 2, ϕ is non-smooth at
zero. Figure 2(a) illustrates a minimizer of the total-
variation cost-function, where φ(t) = t and β = 80.
This image is constant on many regions. The minimizer
in Fig. 2(b) is obtained using φ(t) = αt/(1 + αt), and
(α = 20, β = 100). It is composed of mainly constant
regions. A “0-1” function, φ(t) = 1−1l(t=0), along with
β = 25, is applied in Fig. 2(c). The corresponding ϕ has
infinite one-sided derivatives at zero. Although such
functions are not considered in this paper, the relevant
minimizers behave similarly. In all these images, con-
stant regions are naturally encircled by closed contours
which justifies the use of non-smooth regularization for
the segmentation images.

The minimizers in Fig. 3 correspond to functions
ϕ which are smooth at zero. The image in Fig. 3(a)
corresponds to φ(t) = tα and (α = 1.4, β = 7). It
presents a smoothly varying surface. The minimizer in
Fig. 3(b) is defined using φ(t) = αt2/(1 + αt2), and
(α = 25, β = 35). It exhibits both smoothly varying
regions and sharp edges, but contours are not closed.
The restoration in Fig. 3(c) is obtained using φ(t) =
min{1, αt2}, for (α = 60, β = 10). The resultant image
corroborates Theorem 4, since it exhibits weakly vary-
ing zones.
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Figure 3. Restoration using smooth regularization.

All minimizers presented here are calculated us-
ing a generalized graduated non-convexity method
presented in [33]. The images for which φ is non-
convex may correspond to local minimizers which are
not global. Recall that our theory holds for any local
minimizers.

6. Conclusion

We introduced the notion of weakly constrained mini-
mization as the possibility that the local minimizers of
a cost-function satisfy a varying subset of constraints.
We focused on affine constraints. We provided suffi-
cient conditions ensuring that the local minimizers of
cost-functions satisfy a set of weak constraints when
data ranges over open subsets. We saw that the rele-
vant cost-functions are non-smooth at all points satis-
fying these constraints. We proved that in contrast, the
minimizers of smooth cost-functions can almost never
satisfy weak constraints. All these results were applied
to possibly constrained regularized cost-functions. As-
sumptions were justified and analytical examples were

presented. A numerical experiment illustrates our
theoretical results.

Appendix

Proof of Lemma 1: Since f (., ỹ) has a minimum at
x̂ , there is σ > 0 such that for every t ∈ (0, σ ) and
u ∈ E ∩ S, we have f (x̂ + tu, ỹ) − f (x̂, ỹ) >= 0, and
hence ( f (x̂ + tu, ỹ) − f (x̂, ỹ)) /t >= 0. Then

inf
t∈(0,σ )

f (x̂ + tu, ỹ) − f (x̂, ỹ)

t
>= 0, ∀u ∈ E ∩ S.

At the limit when σ ↘ 0, we get the result. �

Example 6 (Infinite one-sided derivative). Consider
the function f : R × R → R defined by

f (x, y) = (x − y)2 + βϕ(x),

where ϕ(0) = 0 and ϕ(x) = 1, ∀x �= 0.

Using Definition 3 we find δϕ(0)(1) = ϕ′(0+) = ∞.
We have g(x) = x , θ = 0, and �(0) = {1} and �(x) = ∅
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if x �= 0. There are two local minimizer functions on
R, namely X1(y) = 0 and X2(y) = y, which merge at
y = 0. There is a global minimum atX1(y) if |y| <=

√
β

and at X2(y) if |y| >=
√

β.

Example 1 (Detail). For any x ∈ K{1} and u ∈ K⊥
{1},

we calculate δ1 f using Definition 2. We have

f (x + tu, y) − f (x, y)

t
= D1ψ(x, y) u + t

(
u2

1 + u2
2

)

+

 (u1 − u2)

(
2 + sin

1

t(u1 − u2)

)
if u1 > u2,

−(u1 − u2) − t(u1 − u2)2 if u1
<= u2,

where D1ψ(x, y) = (2x1 − y1 − y2, 2x2 − y1 + y2).
If σ > 0 and u ∈ K⊥

{1} with u �= 0, then

inf
t∈(0,σ )

f (x + tu, y) − f (x, y)

t
= D1ψ(x, y)u

+
{ |u1 − u2| if u1 > u2,

−(u1 − u2) + σu1u2 if u1
<= u2,

where we use the facts that u1u2
<= 0 for u ∈

K⊥
{1}, and that for every σ > 0, and for every κ >= 0,
inf

t∈(0,σ )
(κt + 2 + sin(1/t)) = 1. Taking the limit when

σ ↘ 0 shows that for any x ∈ K{1},

δ1 f (x, y)(u) = D1ψ(x, y)u + |u1 − u2|, ∀u ∈ K⊥
{1}.

Since x ∈ K{1} and u ∈ K⊥
{1} entail that x1u1 + x2u2 =

0 and y1(u1 + u2) = 0, we get (17).

Proof of Theorem 1: The result is trivial if L = ∅,
since K∅ = E and K⊥

∅ = {0}. So consider that
L is nonempty. From Assumption 1, the application
u → δ1 f (x̂, ỹ)(u) is lower semi-continuous on K⊥

L ∩S.
Combining this with (a), and with the compactness of
K⊥

L ∩ S, shows that there exists κ > 0 such that

δ1 f (x̂, ỹ)(u) >= κ, ∀u ∈ K⊥
L ∩ S. (37)

By Assumption 1 yet again, with every u ∈ K⊥
L ∩ S

there is associated ρu > 0, with (B(x̂, ρu) ∩ KL ) ⊂
Nx̂ and B(ỹ, ρu) ⊂ N , such that for every (x, y) ∈
(B(x̂, ρu) ∩ KL ) × B(ỹ, ρu),

δ1 f (x, y)(u′) >= δ1 f (x̂, ỹ)(u) − κ

2
>=

κ

2
,

∀u′ ∈ B(u, ρu) ∩ K⊥
L ∩ S, (38)

where the last inequality comes from (37). The set
{B(u, ρu) ∩ K⊥

L ∩ S : u ∈ K⊥
L ∩ S} is an open cov-

ering of K⊥
L ∩ S. Since K⊥

L ∩ S is compact, we can
extract a finite sub-covering, say

{B(ui , ρui ) ∩ K⊥
L ∩ S : ui ∈ K⊥

L ∩ S

for i = 1, . . . , m}. (39)

Put ρ1 := min{ρui : i = 1 . . . , m}. By (38), for every
(x, y) ∈ (B(x̂, ρ1) ∩ KL ) × B(ỹ, ρ1) we have

δ1 f (x, y)(u′) >=
κ

2
,

∀u′ ∈ B(ui , ρui ) ∩ K⊥
L ∩ S, ∀i = 1, . . . , m.

Combining this result with (39) shows that

(x, y) ∈ (B(x̂, ρ1) ∩ KL ) × B(ỹ, ρ1)

⇒ δ1 f (x, y)(u) >=
κ

2
, ∀u ∈ K⊥

L ∩ S. (40)

By Assumption 2, there exists ρ2 ∈ (0, ρ1] such that if
(x, y) ∈ (B(x̂, ρ2) ∩ KL ) × B(ỹ, ρ2), then

σ ∈ (0, ρ2) ⇒
∣∣∣∣ inf

t∈(0,σ )

f (x + tu, y) − f (x, y)

t

−δ1 f (x, y)(u)

∣∣∣∣ <
κ

4
, ∀u ∈ K⊥

L ∩ S.

It follows that for every (x, y) ∈ (B(x̂, ρ2) ∩ KL ) ×
B(ỹ, ρ2),

t ∈ (0, ρ2) ⇒ f (x + tu, y) − f (x, y)

t
>= δ1 f (x, y)(u) − κ

4
>=

κ

4
, ∀u ∈ K⊥

L ∩ S,

where the last lower bound is due to (40). Consequently,

(x, y) ∈ (B(x̂, ρ2) ∩ KL ) × B(ỹ, ρ2) ⇒ f (x + u, y)

− f (x, y) >=
κ

4
‖u‖, ∀u ∈ K⊥

L ∩ B(0, ρ2). (41)

Now, condition (b) shows that there exists ρ3 ∈
(0, ρ2] such that

y ∈ B(ỹ, ρ3) ⇒ XL (y) ∈ B

(
x̂,

ρ2

2

)
. (42)

Put

X (y) := XL (y), ∀y ∈ B(ỹ, ρ3). (43)



Weakly Constrained Minimization 169

For an arbitrary y ∈ B(ỹ, ρ3), we consider

f (X (y) + u, y) − f (X (y), y)

= f (X (y) + u0 + u⊥, y) − f (X (y) + u0, y)

+ f (X (y) + u0, y) − f (X (y), y), (44)

where u ∈ E is an arbitrary direction which is decom-
posed into

u = u0 + u⊥ with u0 ∈ KL and u⊥ ∈ K⊥
L .

Let u ∈ B(0, ρ2/2), then X (y)+u0 ∈ B(x̂, ρ2) ∩ KL

by (42) and (43). The latter, jointly with the facts that
y ∈ B(ỹ, ρ2) and u⊥ ∈ K⊥

L∩B(0, ρ2), allows us to apply
(41) by identifying X (y) + u0 with x and u⊥ with u:

f (X (y) + u0 + u⊥, y) − f (X (y) + u0, y)

>=
κ

4
‖u⊥‖ > 0, ∀u ∈ B

(
0,

ρ2

2

)
with u⊥ �= 0.

(45)

Condition (b) shows also that there exists σ4 ∈
(0, ρ2/2], such that

f (X (y) + u0, y) − f (X (y), y) >= 0,

∀u ∈ B(0, σ4) with u0 �= 0, (46)

where the inequality is strict if XL is a strict local
minimizer function. Introducing (45) and (46) into
(44) shows that f (X (y) + u, y) − f (X (y), y) > 0,
for every u ∈ B(0, σ4) \ KL , and f (X (y) + u, y) −
f (X (y), y) >= 0, for every u ∈ B(0, σ4) ∩ KL . Hence,
f (., y) reaches a local minimum at X (y), and the lat-
ter is strict whenever XL is a strict local minimizer
function. The same conclusion will be obtained for all
X (y) corresponding to y ∈ B(ỹ, ρ3), hence X is a lo-
cal minimizer function. Since for every y ∈ B(ỹ, ρ3)
we have X (y) ∈ KL , (18) is satisfied and VL ⊃
B(ỹ, ρ3). �

Proof of Proposition 1: If L is empty, the do-
main of δ1 f is empty. Consider in the following that
L is nonempty. Define the function (x, y, t, u′) →
�1 f (x, y)(t, u′) by

�1 f (x, y)(t, u′) = f (x + tu′, y) − f (x, y)

t
.

Consider an arbitrary u ∈ K⊥
L ∩S. Let us fix an arbitrary

ε > 0. By Definition 5, there exists ρ1 > 0, such that
(B(x̂, ρ1) ∩ KL ) ⊂ Nx̂ and B(ỹ, ρ1) ⊂ N , and

t ∈ (0, ρ1) ⇒ |δ1 f (x, y)(u′) − �1 f (x, y)(t, u′)|
<=

ε

3
, ∀x ∈ Nx̂ , ∀y ∈ N , ∀u′ ∈ K⊥

L ∩ S.

(47)

Choose t0 ∈ (0, ρ1/2). Being continuous, f is uni-
formly continuous on the compact (B(x̂, ρ1) ∩ KL ) ×
B(ỹ, ρ1). Then there exists ρ2 ∈ (0, ρ1/2) such that if
(x, y) ∈ (B(x̂, ρ2) ∩KL ) × B(ỹ, ρ2) and u′ ∈ K⊥

L ∩ S,
then x + t0u′ ∈ B(x̂, ρ1) ∩ KL and we have

| f (x̂ + t0u, ỹ) − f (x + t0u′, y)| <=
t0ε

6
and

| f (x̂, ỹ) − f (x, y)| <=
t0ε

6
.

It follows that for every (x, y) ∈ (B(x̂, ρ2) ∩ KL ) ×
B(ỹ, ρ2) and u′ ∈ K⊥

L ∩ S we have

|�1 f (x̂, ỹ)(t0, u) − �1 f (x, y)(t0, u′)|
= 1

t0
| f (x̂ + t0u, ỹ) − f (x̂, ỹ) − f (x + t0u′, y)

+ f (x, y)| <=
ε

3
,

and then, using (47),

|δ1 f (x̂, ỹ)(u) − δ1 f (x, y)(u′)|
<= |δ1 f (x̂, ỹ)(u) − �1 f (x̂, ỹ)(t0, u)|

+ |�1 f (x̂, ỹ)(t0, u) − �1 f (x, y)(t0, u′)|
+ |δ1 f (x, y)(u′) − �1 f (x, y)(t0, u′)|

<=
ε

3
+ ε

3
+ ε

3
.

Then (x, y, u′) → δ1 f (x, y)(u′) is continuous at
(x̂, ỹ, u). The same holds for every u ∈ K⊥

L ∩
S. �

Proof of Proposition 2: If L = ∅, then KL = E and
f = f0 is Cm . We will consider that L is nonempty.
Let x̂ ∈ KL ∩ Nx be such that Gi x̂ �= θi for all i ∈ Lc.
Let ỹ ∈ Ny . Choose an arbitrary ε > 0. Consider the
decomposition of f given in (21). First we focus on f0.
If Lc is nonempty, put

ρ1 :=
(

min
i∈Lc

‖Gi x̂ − θi‖
)(

max
i∈Lc

sup
u∈S

‖Gi u‖
)−1

.

(48)
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Then ρ1 > 0 and by H1, every ϕi , corresponding to
i ∈ Lc, is Cm on B(x̂, ρ1) ∩ E . If Lc = ∅, put ρ1 = 1.
Moreover, there is ρ2 ∈ (0, ρ1) such that (B(x̂, ρ2) ∩
E)×B(ỹ, ρ2) ⊂ Nx ×Ny . Then f0 is Cm on (B(x̂, ρ2)∩
E) × B(ỹ, ρ2). For arbitrary y ∈ B(ỹ, ρ2) and u ∈
K⊥

L ∩ S, consider the second-order Taylor expansion of
f0(., y) about an arbitrary x ∈ B(x̂, ρ2/2) ∩ KL ,

f0(x + tu, y) − f0(x, y)

t
− D1 f0(x, y)u

= t
∫ 1

0
(1 − s)D2

1 f0(x + stu, y)(u, u) ds,

where x + tu ∈ (B(x̂, ρ2) ∩ E) if t ∈ [0, ρ2/2]. The
function

(t, u, x, y) →
∣∣∣∣
∫ 1

0
(1 − s)D2

1 f0(x + stu, y)(u, u) ds

∣∣∣∣
is continuous on [0, ρ2/2] × (K⊥

L ∩ S) × B(x̂, ρ2/2) ×
B(ỹ, ρ2). The latter set being compact, the function
above is upper bounded on this set by a constant κ1 > 0.
Put

ρ3 := min

{
ρ2

2
,

ε

2κ1

}
.

Then for every (x, y) ∈ (B(x̂, ρ3) ∩ KL ) × B(ỹ, ρ3)
and for every u ∈ K⊥

L ∩ S,

t ∈ (0, ρ3) ⇒
∣∣∣∣ f0(x + tu, y) − f0(x, y)

t

−D1 f0(x, y).u

∣∣∣∣ <= κ1t <=
ε

2
. (49)

Next we focus on fL . By (20) and (21), for every
u ∈ E and x ∈ KL we have

fL (x) =
∑
i∈L

ϕi (0) and

fL (x + tu) = β
∑
i∈L

ϕi (tGi u), ∀x ∈ KL .

Using H2 and Definition 3, for every x ∈ KL , the
application δ fL is well defined and reads

δ fL (x)(u) = β
∑
i∈L

δϕi (0)(Gi u), ∀u ∈ E, (50)

where δϕi (0)(Gi u) = 0 if Gi u = 0 for some i ∈ L . By
H2, for every i ∈ L there is ρi > 0, such that

t ∈ (0, ρi ) ⇒
∣∣∣∣ϕi (tv) − ϕi (0)

t
− δϕi (0)(v)

∣∣∣∣
<

ε

2rβ
, ∀v ∈ R

s ∩ S.

Put

ρ4 := min
{
ρ3,

(
min
i∈L

ρi

)(
max
i∈L

sup
u∈S

‖Gi u‖
)−1}

.

If t ∈ (0, ρ4), then for all i ∈ L we have t‖Gi u‖ < ρi ,
for all u ∈ S. Hence

t ∈ (0, ρ4) ⇒
∣∣∣∣ϕi (tGi u) − ϕi (0)

t
− δϕi (0)(Gi u)

∣∣∣∣
<

ε

2rβ
, ∀u ∈ K⊥

L ∩ S, ∀i ∈ L .

This, combined with (50), shows that for all x ∈ KL

and for all u ∈ K⊥
L ∩ S,

t ∈ (0, ρ4) ⇒
∣∣∣∣ fL (x + tu) − fL (x)

t
− δ fL (x)(u)

∣∣∣∣
= β

∣∣∣∣∣
∑
i∈L

(
ϕi (tGi u) − ϕi (0)

t
− δϕi (0)(Gi u)

)∣∣∣∣∣
<= β

∑
i∈L

∣∣∣∣ϕi (tGi u) − ϕi (0)

t
− δϕi (0)(Gi u)

∣∣∣∣
< β#L

ε

2rβ
<

ε

2
. (51)

Combining (49) and (51) entails that for every (x, y) ∈
(B(x̂, ρ4) ∩ KL ) × B(ỹ, ρ4),

t ∈ (0, ρ4) ⇒∣∣∣∣ f (x + tu, y) − f (x, y)

t
− δ1 f (x, y)(u)

∣∣∣∣
<=

∣∣∣∣ f0(x + tu, y) − f0(x, y)

t
− D1 f (x, y).u

∣∣∣∣
+

∣∣∣∣ fL (x + tu) − fL (x)

t
− δ fL (x)(u)

∣∣∣∣
<=

ε

2
+ ε

2
, ∀u ∈ K⊥

L ∩ S.

We can take Nx̂ = KL ∩ B(x̂, ρ4) and N =
B(ỹ, ρ4). �
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Proof of Theorem 2: The proof consists in show-
ing how to apply Theorem 1. Let us fix an ar-
bitrary x0 ∈ E . For every i = 1, . . . , r , define
gi : E → R

s by

gi (x) = Gi x0 + Gi
E(x − x0), ∀x ∈ E,

where 
E is the orthogonal projection on E . Then for
every x ∈ E , and for all i = 1, . . . , r , we have the
equivalence: gi (x) = θi if, and only if, Gi x = θi . The
applications {gi } are of the form of those considered
in Theorem 1. Furthermore, (3) and (6) yield the same
set L = �(x), for all x ∈ E , and (4) and (20) define the
same affine subspace KL .

By Proposition 2, (x̂, ỹ) is contained in a neighbor-
hood (Nx̂ × N ′) ⊂ (Nx ∩KL ) × N such that f admits
a one-sided derivative application δ1 f which is uni-
formly defined on Nx̂ × N ′ × (K⊥

L ∩ S). Combining this
with Proposition 1 shows that Assumptions 1 and 2 of
Theorem 1 are satisfied. Furthermore, using (50), for
every u ∈ K⊥

L ∩ S we have

δ1 f (x̂, ỹ)(u) = D1 f0(x̂, ỹ)u + δ fL (x̂)(u)

= D1 f0(x̂, ỹ)u + β
∑
i∈L

δϕi (0)(Gi u).

Condition (a) is equivalent to δ1 f (x̂, ỹ)(u) > 0, for all
u ∈ K⊥

L ∩ S. The result follows from Theorem 1. �

Proof of Proposition 3: Clearly, ϕ satisfies H1. Fur-
thermore, for any u ∈ R

s we have

δϕ(0)(u) = lim
t↘0

φ (t‖u‖) − φ(0)

t
= φ′(0+) ‖u‖ > 0,

which shows that δϕ(0) is well defined. By the defini-
tion of φ′(0+), for ε > 0, there is ρ > 0 such that∣∣∣∣φ(t) − φ(0)

t
− φ′(0+)

∣∣∣∣ < ε, ∀t ∈ (0, ρ).

The above inequality holds if we write t‖u‖ for u ∈
R

s ∩ S in place of t :∣∣∣∣φ(t‖u‖) − φ(0)

t
− φ′(0+) ‖u‖

∣∣∣∣
=

∣∣∣∣ϕ(tu) − ϕ(0)

t
− δϕ(0)(u)

∣∣∣∣ < ε.

Hence (ϕ(tu) − ϕ(0))/t converges towards δϕ(0)(u)
when t ↘ 0 uniformly on S. �

Proof of Lemma 3: Since X is a local minimizer
function, D1 f (X (y), y) = 0, for all y ∈ N . The set
N being open, we differentiate with respect to y both
sides of the last equation:

D2
1 f (X (y), y) DX (y) = − D12 f (X (y), y), ∀y ∈ N .

Identifying the above differentials with their respective
Jacobian matrices, we have

rank D12 f (X (y), y)
<= min

{
rank D2

1 f (X (y), y), rank DX (y)
}
, ∀y ∈ N .

Consequently, rank DX (y) >= rank D12 f (X (y), y), for
all y ∈ N .

Proof of Theorem 3: Let G ∈ L(E, R
s) be the lin-

ear operator corresponding with g. Then Dg(X (y)) =
G DX (y) ∈ L(F, R

s), for all y ∈ N . Using a rank in-
equality [25] and Lemma 3, we find that for all y ∈ N ,

rank (GDX (y)) >= rank G + rank DX (y) − p
>= rank G + rank D12 f (X (y), y) − p

= rank Dg(X (y)) + rank D12 f (X (y), y) − p,

since rank G = rank Dg(x), for all x ∈ E . Then from
condition (29),

rank (GDX (y)) >= 1, ∀y ∈ N . (52)

Consider that
◦

VN is nonempty. From (30), g (X (y)) =
θ , for all y ∈

◦
VN . Differentiating with respect to y both

sides of this identity shows that for every y ∈
◦

VN , we
have G DX (y) = 0 and hence rank (G DX (y)) = 0.
But this contradicts (52) since

◦
VN ⊂ N . It follows that◦

VN = ∅. This proves (i).
Consider an arbitrary compact N ′ ⊂ N . Let the

components of g and G be denoted gi : E → R

and Gi ∈ L(E, R), respectively, for i = 1, . . . , s.
Focus on some ỹ ∈ N ′. From (52), there is an in-
dex jỹ ∈ {1, . . . , s} such that G jỹ DX (ỹ) �= 0. Since
X is C1, there is ρỹ > 0, with B(ỹ, ρỹ) ⊂ N ,
such that

y ∈ B(ỹ, ρỹ) ⇒ G jỹ DX (y) �= 0,
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and hence rank (G jỹ DX (y)) = 1. It follows that the set

Ṽỹ := {
y ∈ B(ỹ, ρỹ) : g jỹ (X (y)) = θ jỹ

}
is a C1-manifold of dimension p − 1 [23, 30, 41]. By
the continuity of X on N , the set Ṽỹ ∩ N ′ is closed
in F . Such a Ṽy can be found for every y ∈ N ′. The
resulting set {B(y, ρy) : y ∈ N ′} is an open covering of
N ′. Since N ′ is compact, there is a finite set of points,
say yi ∈ N ′, for i = 1, . . . , m, such that

N ′ ⊂
m⋃

i=1

B(yi , ρi ), where ρi := ρyi .

Put also ji := jyi and Ṽi := Ṽyi , for every i =
1, . . . , m. Using (30), for every i = 1, . . . , m,

VN ′ ∩ B(yi , ρi ) = {y ∈ N ′ ∩ B(yi , ρi ) : g(X (y)) = θ}
⊆ {y ∈ N ′ ∩ B(yi , ρi ) : g jy (X (y)) = θ ji }
= Ṽi ∩ N ′ ⊂ Ṽi .

Noticing that VN ′ = ⋃m
i=1(VN ′ ∩ B(yi , ρi )), we find

that

VN ′ ⊆
m⋃

i=1

Ṽi ∩ N ′ ⊂
m⋃

i=1

Ṽi .

The term in the middle is closed in F and the term on
the right is a finite union of manifolds of dimension
p − 1. Hence the result. �

Proof of Proposition 4: Suppose that there is
(x̂, ỹ) ∈ M such that f (., ỹ) has a local minimum
at x̂ . From (31), there is a direction u ∈ E for
which −δ1 f (x̂, ỹ)(−u) > δ1 f (x̂, ỹ)(u). But Lemma 1
implies that −δ1 f (x̂, ỹ)(−u) <= 0 <= δ1 f (x̂, ỹ)(u),
which contradicts the former inequality. It follows that
(x̂, ỹ) �∈ M and hence (X (N )× N ) ⊂ Mc. By assump-
tion, Mc is an open subset of E × F , hence there is
an open subset Nx ⊂ E such that X (N ) ⊂ Nx and
(Nx × N ) ⊂ Mc. Then f is twice differentiable on
Nx × N . Theorem 3 can be applied and yields the
result. �

Proof of Theorem 4: For some fixed x0 ∈ E , con-
sider the affine operator g : E → R

s given by

g(x) = Gx0 + G
E (x − x0), ∀x ∈ E .

Then rank Dg(x) = rank (G
E), for all x ∈ E . If we
identify f with f | E and p with pE, we see that the con-
dition in (29) is satisfied, since D12 f | E = D12ψ | E .
Using that X (y) ∈ E , for all y ∈ N ′, (34) reads

VL ,N ′ = {y ∈ N ′ : G
E (X (y) − x0) = θ − Gx0}
= {y ∈ N ′ : g(X (y)) = θ}.

If Ti = ∅, for all i = 1, . . . , r , the result follows from
Theorem 3.

Otherwise, the set M introduced in (31) is nonempty
and reads

M =
r⋃

i=1

Mi × R
q , (53)

where Mi = {x ∈ E : Gi x − θi ∈ Ti } .

Let us focus on some i ∈ {1, . . . , r} for which Ti �= ∅.
For an arbitrary x̃ ∈ Mi , we have z̃ := Gi x̃ − θi ∈ Ti .
Since Ti ⊂ R

s is a C1-manifold of dimension s −1 (see
H4), with this z̃ there are associated a neighborhood
Ñ ⊂ R

s , with z̃ ∈ Ñ , and a C1-function k : Ñ → R,
so that [23, 30, 41]

z ∈ Ñ ∩ Ti ⇔
{

k(z) = 0,

rank Dk(z) = 1.
(54)

Furthermore, there is ρ > 0 such that every x ∈
B(x̃, ρ) ∩ E yields Gi x − θi ∈ Ñ . Define now the
function

k̃(x) = k(Gi x − θi ), for every x ∈ B(x̃, ρ) ∩ E .

Since by (53), every x ∈ B(x̃, ρ)∩Mi yields Gi x−θi ∈
Ti ∩ Ñ , then (54) shows that

k̃(x) = 0, for every x ∈ Mi ∩ B(x̃, ρ). (55)

We have Dk̃ ∈ L(E, R) and

Dk̃(x) = Dk(Gi x − θi ) (Gi
E ),

for every x ∈ B(x̃, ρ) ∩ E .

Suppose that for some x ∈ B(x̃, ρ) ∩ E we have
Dk̃(x) = 0. Since Dk(z) ∈ L(Rs, R), for z ∈ Ñ , and
rank (Gi
E) = s, it follows that Dk(Gi x − θi ) = 0.
However, if x ∈ Mi ∩ B(x̃, ρ), then Gi x − θi ∈ Ti ∩ Ñ
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and (54) ensures that Dk(Gi x − θi ) �= 0. We deduce
that

rank Dk̃(x) = 1, ∀ x ∈ Mi ∩ B(x̃, ρ). (56)

Combining (55) and (56) shows that Mi ∩ B(x̃, ρ) is
a manifold of dimension pE − 1, included in E . Since
the same considerations can be developed for every x̃ ∈
Mi , it follows that Mi is a manifold of dimension pE−1,
included in E . Hence, M is the union of r manifolds of
dimension pE − 1 + q , included in E × R

q , hence it is
a closed, negligible subset of E × R

q . The conclusion
follows from Proposition 4. �

Example 3 (Remainder). We first simplify the expres-
sion of f using the following change of variables:

z = Gx such that




zi = xi − xi+1 for
i = 1, . . . , p − 1,

z p = x p.

Consider then the function f̃ (z, y) := f (G−1z, y),

f̃ (z, y) = ‖Bz − y‖2 + β

p−1∑
i=1

|zi |
(57)

where B = A G−1.

Although we analyze f̃ , the results about f follow from
the fact that for every y ∈ R

q ,

x̂ = arg min
x∈Rp

f (x, y) ⇔ ẑ = Gx̂ = arg min
z∈Rp

f̃ (z, y).

Correspondingly, the minimizer function Z for
f̃ (., R

q ) satisfies Z = GX . For f̃ as given in (58),
�(z) = {i ∈ {1, . . . , p − 1} : zi = 0}. Choose some
L ⊂ {1, . . . , p−1} such that 0 < #L < p−1. Choose
then ẑ ∈ R

p such that �(ẑ) = L , that is ẑi = 0 for i ∈ L
and ẑi �= 0 for i ∈ Lc. Put bi to denote the i th column
of B, for i = 1, . . . , p. Let the matrix BL be obtained
from B by equating to zero all columns of B whose
indexes belong to L . Then for any z ∈ R

p,

BL z =
∑
i∈Lc

bi zi + bpz p.

With these notations, define the sets

Ix̂ :=

y ∈ R

q :
2bT

i y = 2bT
i BL ẑ

+ βsign (ẑi ), ∀i ∈ Lc

2bT
p y = 2bT

p BL ẑ


 , (58)

Jx̂ := {
y ∈ R

q : −β + 2bT
i BL ẑ < 2bT

i y <

β + 2bT
i BL ẑ, ∀i ∈ L

}
. (59)

Since B is invertible, Ix̂ is an affine subspace of dimen-
sion p − #Lc − 1 = #L , Jx̂ is a polyhedron of R

q , and
their intersection,

Wx̂ = Ix̂ ∩ Jx̂ ,

is a polyhedron of dimension #L . Next we verify that
our initial point ẑ is the minimizer of f̃ (., y) for every
y ∈ Wx̂ . With the present notations, KL = KL = {u ∈
R

p : ui = 0, ∀i ∈ L} and K⊥
L = {u ∈ R

p : ui =
0, ∀i ∈ Lc}. The restriction of f̃ (. , y) to KL reads

f̃ |KL (z, y) = ‖BL z − y‖2 +
∑
i∈Lc

|zi | .

Since ẑi �= 0, ∀i ∈ Lc, there is ρ > 0 such that zi �= 0,
∀i ∈ Lc, for all z ∈ B(ẑ, ρ). Then f̃ | KL (., y) is C∞

on B(ẑ, ρ) and reaches its minimum at the point where
its differential is null. By (58),

y ∈ Ix̂ ⇔ D1( f̃ | KL )(ẑ, y) = 0. (60)

Noticing that ẑ ∈ KL entails that Bẑ = BL ẑ, the side-
derivative of f̃ (., y) at ẑ for any u ∈ K⊥

L reads

δ1 f̃ (ẑ, y)(u) = 2 (BL ẑ − y)T B u + β
∑
i∈L

|ui | .

Then saying that δ1 f̃ (ẑ, y)(u) > 0, for every u ∈ K⊥
L ,

is equivalent to

|2 (BL ẑ − y)T BL u| < β
∑
i∈L

|ui | , ∀u ∈ K⊥
L ,

and hence to

−β
∑
i∈L

|ui | + 2(BL ẑ)T B u < 2yT B u <

β
∑
i∈L

|ui | + 2(BL ẑ)T B u, ∀u ∈ K⊥
L .

Let {ei : i = 1, . . . , p} denote the canonical basis of
R

p. Noticing that K⊥
L = span {ei , i ∈ L}, we consider

the above inequality for u = ei , for all i ∈ L . Recalling
that B ei = bi , for every i ∈ L , (59) shows that

y ∈ Jx̂ ⇔ δ1 f̃ (ẑ, y)(u) > 0, ∀u ∈ K⊥
L . (61)
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By Theorem 2, the right sides of (60) and (61) show
that ẑ is the minimizer of f̃ (., y) for every y ∈ Wx̂ .
Equivalently, x̂ = G−1 ẑ is the minimizer of f (., y) for
every y ∈ Wx̂ . Hence Assertion 1.

For σ ∈ {−1, +1}p, put

QL ,σ := {z ∈ KL : zi �= 0, ∀i ∈ Lc}
=

{
z ∈ R

p :
zi = 0, ∀i ∈ L

σi zi > 0, ∀i ∈ Lc

}
.

Clearly, each QL ,σ is a quadrant of K⊥
L , so its dimension

is p − #L . Then define the set

VL ,σ :=

y ∈ R

q :
2bT

i y = 2bT
i BL QL ,σ + σiβ, ∀i ∈ Lc,

2bT
p y = 2bT

p BL QL ,σ ,

−β + 2bT
i BL QL ,σ < 2bT

i y < 2bT
i BL QL ,σ + β, ∀i ∈ L .




Every such VL ,σ is an unbounded polyhedron of R
q .

Based on (58) and (59), the set ṼL mentioned in
Assertion 2 can be taken of the form

ṼL =
⋃
i∈Lc

⋃
σi ∈{−1,1}

VL ,σ .

Each VL is hence the union of 2p−#L−1 unbounded poly-
hedra of R

q . Notice also that

Ṽ{1,...,p−1} = {
y ∈ R

q :
∣∣2bT

i y
∣∣ <β, ∀i = 1, . . . , p − 1

}
and Ṽ∅ = {

y ∈ R
q :

∣∣2bT
i y

∣∣ >β, ∀i = 1, . . . , p − 1
}
.

For the particular case when B is the identity, we find

ṼL =
{

y ∈ R
q :

|yi | < β/2 if i ∈ L ,

|yi | > β/2 if i ∈ Lc.

}

Notice that the set mentioned in (26) reads VL =
∪L ′⊃L ṼL ′ .
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