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ABSTRACT

Bayesian mazimum a posteriori estimation (MAP) is
a very popular way to recover unknown signals and
images by using jointly observed data and priors for-
mulated as a probability law. In a variational context,
a MAP estimate minimizes an objective function where
the priors are seen as a regularization or diffusion term.
Independently of such interpretations, MAP esti-
mates are implicit functions of the data and of the func-
tions expressing the priors. This point of view enabled
the author to exhibit analytical relations between prior
functions and the features of the relevant estimates.
These results entail important consequences and ques-
tions which are the subject of this paper. Namely, they
reveal an essential gap between prior models and the
way these are effectively involved in a MAP estimate.
Hence the question about the rationale of MAP estima-
tion. At the same time, they give precious indications
about the hyperparameters and suggest how to con-
struct estimators which indeed respect the priors.

1. BAYESIAN MAP ESTIMATION

We address the problem of the estimation of a magni-
tude £ € RP—a signal, an image—from observed data
y € RY. The observation system which transforms x
into y is typically composed of an operator (blurring,
obscurations, nonlinear transforms, ete.) and involves
random noise effects. The likelihood function p(y|z)
resumes the information about the unknown z con-
tained in teh observed y. In many situations & cannot
be determined unambigously from p(y|z) only. Nev-
ertheless, it is often possible to extract priors about
the unknown magnitude based on the context and the
expectations (such as presence of edges, spikes, ho-
mogeneous zones, efc.) Numerous works are devoted
to the construction of a prior probability density p(x)
based on such “diffuse” informations [1, 2]. Bayesian
estimation [3] relies on the posterior law p(x|y) which
contains all the information about & after having ob-
served the data y. A MAP estimate minimizes a 0-1
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loss function and reads
Z = arg max p(z|y) = arg min [~ logp(y|z) — log p(x)]

This paper is aimed at being a “counter-example” of
Bayesian MAP estimation hence there is no loss of gen-
erality to focus on particular classes of models. Thus
we consider data y obtained at the output of a lin-
ear system A and perturbed by white Gaussian noise,
and priors p(x) formalized using Markov models. Then
Z, defined above, minimizes an energy function of the
form:

E(x) = ||Az — yl* + f&(x) )

where @ is the energy of a Markov random model and
B reflects the noise variance. For definiteness, we fo-
cus on Markov chains defined over the differences dj <
between neighbouring samples [4, 5]:

B(x) = p(diz) (2)
k

where ¢ is called potential function (PF) while typi-
cally di & =z} — Tpq1 or di T = 233 — Tp—1 ~ Tht-
Recall that o is symmetric and increasing on [0, co[ and
C? almost everywhere. Notice that & as given above
does not define a proper probability measure since the
partition function Z = [exp[—®(z)]dz is finite only
for  belonging to a bounded set. But this fact is not
disturbing as far as we are mainly concerned with the
differences rather than with the values of the samples.
To avoid such complications, we put

iy = dzm
In the sequel we compare the priors expressed by

exp [—p(tr)]

Pl

p(t) = [ p(te) with p(t) =
k

and some persistant characteristics of Z originating in
the shape of ¢.



2. NONSMOOTH AT ZERO PRIORS

Let us focus on a Markov model where the differences
among neighbouring samples are realizations of a Lapla-
cian distribution, :.e.

o(t) = aft]
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Figure 1: Markov chain  (—) where the differences
d{m = g — T41 follow a Laplace distribution with
a = 10. Data y (-.-.-) obtained by adding to x white
Gaussian noise with variance o2 = 0.04.
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Figure 2: MAP estimate Z (—) obtained using the
true prior distribution and the true hyperparameters.
It can be compared with the original chain x (....)

We perform the following experiment which is il-
lustrated on Figs. 1-3. The original chain z is defined
over differences between adjacent samples (Fig. 1) and
its differences give rise to a rather flat histogram cen-
tered at zero (Fig. 3-up). Since the relevant p(t) is
continuous, the probability that x involves zero-valued
differences is null. Then we generate data y (Fig. 1,
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mixed line) by adding to  white Gaussian noise with
known variance o2. Thus we are placed in the ideal
situation where we know the true prior distribution as
well as the true values of the parameters. Equipped
with all this knowledge, we perform a MAP estima-
tion. The result Z, shown in Fig. 2 with (—), produces
a striking visual effect: the obtained estimate contains
large constant zones, i.e. it involves a large number of
zero-valued differences. The presence of such constant
zones constitutes a highly organized structurel informa-
tion. What is disturbing is that this so strong struc-
tural information was not modeled in the prior p(x)
but is entirely introduced by the estimator!
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Figure 3: Up: histogram of the differences zy — zx41
of original chain . Down: histogram of the differences
of the MAP estimate Z— it contains 96 null differences.

This phenomenon can be explained thanks to [6].
The key to understand it is the following result {6, 7):
Theorem. Consider an energy function E(.,y) as
given in (1-2) with ¢ a PF which is C? continuous
beyond zero and nonsmooth at zero. Let T be a local
minimizer of £(.,y) which (i) gives rise to a locally con-
tinuous implicit minimizer function X (so T = X(y)),
and (i) involves a (large) set of zero-valued differences,
say J = {k:d}Z = 0}.

Then y is contained in an open neighbourhood N (y)
whose data y' € N(y) yield local minimizers T’
X(y') which involve ezactly the same zero-valued dif-
ferences as &. In other words, {k:d3 %' =0} = J for
all y' € N(y).

In [6, 7] the zones of x relevant to zero-valued dif-
ferences d;,x = 0 were said to be strongly homoge-
neous. The above Theorem says that the data do-
main R? contains sets of positive Lebesgue measure,
which are composed of data which yield minimizers
shareing the same strongly homogeneous zones. Re-



ciprocally, we get minimizers—and in particular MAP
estimates—involving large strongly homogeneous zones
(as illustrated in Figs. 1-3) independently of the fact
that such zones are, or are not, present in the origi-
nal x, and independently of the noise corrupting the
data. Moreover, the phenomenon evoked above is pro-
duced in both signals and images under prety general
conditions: (e) any C2-smooth log-likelihood function,
(o) any set of linear operators {dy,k > 1}, (e) any
potential function ¢ which is nonsmooth at zero.

Let us return back to our MAP estimation. A prior
distribution p(zx) of the form of (2-3), with ¢ continu-
ous nonsmooth at zero, provides a “diffuse” prior infor-
mation which can be expected to fit to a broad range
of signals or images. However, the MAP estimator
transforms this “diffuse” prior into a highly structured
strong prior saying that the reconstructed signals con-
tain large strongly homogeneous zones! We can state
that the latter is the effective prior conveyed by an
MAP estimator whenever p(z) is nonsmooth at the ori-
gin. So, if p(z) is a bona fide prior distribution—whose
realizations exhibit useful features of the unknown z—
then the MAP estimation will fail to use correctly this
prior. Conversely, if we have to segment a signal, or
an image, into strongly homogeneous zones, it is suffi-

“cient to introduce in (2) a PF ¢ which is nonsmooth
at zero. Following this idea, the possibility to recover
quasi-binary images using convex nonsmooth PFs is
explored in [g].

3. PIECEWISE GAUSSIAN MODELS

We now focus on priors defined using a truncated quad-
ratic potential function

A2¢2
a

if |t] <8,
if |t] >0,

Ja

A

p(t) = { where 6 = 4)
with parameters a > 0, A > 0. Such priors can be seen
as piecewise Gaussian and involve a line-process [9, 10].

The distribution p(#;) induced by ¢ is defined on
a bounded interval, say [~T,T] with T" > 6. It has
a Gaussian shape on [—#, 6] and is uniform beyond it.
The differences in & with values in [, §] belong to ho-
mogeneous zones whereas those beyond it form edges.
A t; generated according to p(tx) may thus take any
value on [T, T].

Let us envisage an experiment similar to the latter
one. We generate an original chain & (see Fig. 4) us-
ing p(t). The noisy data, plotted on the same Figure
with (-.-.-), are corrupted by additive white Gaussian
noise. Then we perform a MAP estimation where we
use the true prior distribution and the true parameters.
The obtained MAP estimate (Fig. 5) involves very neat
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edges. It was observed that piecewise Gaussian priors
always give rise to MAP estimates which always have
very neat edges. Besides, this intuitively corresponds
to the notion of line process. By [11, 12], the fact
which underlines this behaviour is that the threshold 8
is placed in the interior of an interval where the differ-
ences of the global minimizer of £ cannot be placed. In
a more formal way, we have the following result:

1 100
Figure 4: Markov chain & (—) whose differences ¢ =
Tk —Ti41 are generated according to (3,4) with (o, A) =
(6,50). Data y (-.-.-) are corrupted by additive white
Gaussian noise with variance o2 = 0.0225.
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Figure 5: The MAP estimate T (—) is calculated us-

ing the true prior and the true parameters. The original
signal is recalled with (....).

Theorem. Consider £(.,y) defined using a truncated
quadratic PF ({). Let T be a global minimizer of £(.,y).

Then with each k there is associated a constant Ty, €
[0,1] such that di & satisfies the following alternative:



either |dl Z| < T or |di Z| > /Ty, where the second
possibility exists only if Ty > 0.
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Figure 6: The thresholds +6I'; and +6/T; are plot-
ted with (—). X-axis: positions of the differences for
k=1,...,127. Y-axis: a dot at position k is the value
of the k-th difference of the relevant signal. Up: distri-
bution of the differences of the original chain = (they
can be located everywhere on [—T,T]). Down: distri-
bution of the differences of the MAP estimate & (their
magnitudes are inevitably beyond 0T, 6/T'x[).

In other words, this estimator implies a very hard
thresholding where the magnitude of the differences be-
tween neighbouring samples at a global minimizer are
either smaller than a first threshold, or larger than a
second threshold which is strictly larger than the first
threshold. Conversely, no difference corresponding to
a global minimizer can be placed among these thresh-
olds, for any data—this is seen in Fig. 6. This con-
stitutes the effective prior applied by the MAP esti-
mator. As previously, the MAP estimation introduces
additional structural information which is not present
in the prior distribution.
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4. CONCLUSIONS

Based on some recent analytical results about the min-
imizers of regularized objective functions, we perform
a critical analysis of Bayesian MAP estimation. More
precisely, we reveal an essential gap between prior mod-
els and the way these are effectively involved in a MAP
estimate. At the same time, this knowlegde can be used
to construct estimators which do respect the priors.
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