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Fast Nonconvex Nonsmooth Minimization Methods
for Image Restoration and Reconstruction

Mila Nikolova, Senior Member, IEEE, Michael K. Ng, and Chi-Pan Tam

Abstract—Nonconvex nonsmooth regularization has advantages
over convex regularization for restoring images with neat edges.
However, its practical interest used to be limited by the difficulty
of the computational stage which requires a nonconvex nonsmooth
minimization. In this paper, we deal with nonconvex nonsmooth
minimization methods for image restoration and reconstruction.
Our theoretical results show that the solution of the nonconvex
nonsmooth minimization problem is composed of constant regions
surrounded by closed contours and neat edges. The main goal of
this paper is to develop fast minimization algorithms to solve the
nonconvex nonsmooth minimization problem. Our experimental
results show that the effectiveness and efficiency of the proposed
algorithms.

Index Terms—Continuation methods, fast Fourier transform,
image reconstruction, image restoration, nonconvex nonsmooth
global minimization, nonconvex nonsmooth regularization, total
variation.

I. INTRODUCTION

D IGITAL image restoration and reconstruction plays an
important part in various applied areas such as med-

ical and astronomical imaging, film restoration, image and
video coding and many others [20], [16]. We focus on the
most common data production model where the observed data

are related to the underlying image, rearranged
into a vector according to

(1)

where accounts for the perturbations and is a
matrix representing for instance optical blurring, distortion

wavelets in seismic imaging and nondestructive evaluation, a
Radon transform in X-ray tomography, a Fourier transform in
diffraction tomography. In most of the applications, the infor-
mation provided by the forward model (1) alone is not sufficient
to find an acceptable solution . Prior information on the under-
lying image is needed to restore a convenient —which is close
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to data production model (1) and satisfies some prior require-
ments. A flexible means to define such a solution is regulariza-
tion, e.g., [1], [5], [10], and [15], where is a minimizer of a
cost function (commonly called an energy) of the form

(2)

In this expression, forces closeness to data according to (1),
embodies the priors and is a parameter that controls

the tradeoff between these two terms. The most usual choice for
is

(3)

Our computational method is designed for as given in (3),
or for any smooth convex function . Since [29], data terms

were shown to be useful if some data entries
have to be preserved, which is appreciable for instance if is
impulse noise [30], [3] or in image decomposition [2], or in
hybrid restoration methods [11]. Our method is easy to extend
to the latter case using some ideas of [18].

A. Choice of Energy: Nonconvex Nonsmooth Regularization

In many image processing applications, the regularization
term reads

(4)

where denotes the set of all pixels of the image
, for is a linear operator yielding

a vector containing the differences between pixel and its
neighbors, and is called a potential function (PF).
Each can be seen as an matrix. If cor-
responds to the forward discretization of the gradient operator,
we have and in particular, for every , shown
in the equation at the bottom of the next page. For any
and for any , we define the matrix as given in the
following:

Remark 1: When and corresponds to the
discrete analog of the gradient operator, (4) is the well-known
Total Variation (TV) regularization function [37]. In a contin-
uous setting, regularization involving , is
rotation invariant. In order to lighten the numerical intricacies
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Fig. 1. Potential functions from Table I (remind that � is symmetric on ).

relevant to the discrete variant , a common approach is
to replace it by functions of the form

(5)

where the superscript stands for transpose, and ,
for , yield e.g., the first-order differences between each
pixel and its four or eight adjacent neighbors. Note that this kind
of regularizer are customary in Markov random field modeling,
e.g., the classical survey paper [5]. Even though rotation invari-
ance is not well defined in the discrete setting, it is usually ob-
served that the norm of the discrete gradient, i.e., ,
yields image restorations of better quality than .

Various potential functions (PFs) have been used in the lit-
erature, a review can be found for instance in [6]. An important
requirement is that allows the recovery of large differences

at the locations of edges and smooth the other differ-
ences. It is well known that this requirement cannot be met by

which was originally used in [39]. Since the pio-
neering work of Geman & Geman [15], different nonconvex
functions have been considered either in a statistical or in a
variational framework, e.g., [5], [13], [14], [23], and [25]. In
order to avoid the numerical intricacies arising with nonconvex
regularization, since [17], [22], [38] in 1990, an important ef-
fort was done to derive convex edge-preserving PFs, see [1] for
an excellent account. Nevertheless, nonconvex nonsmooth regu-
larization offers much richer possibilities to restore high quality
images with neat edges: for regularizer functions of the form
(5) a theoretical explanation was provided in [31] while numer-
ical examples can be found in numerous articles, e.g., [13], [14],
[27], [33], and [36].

This paper provides two main contributions. The theoretical
one is to prove that the minimizers of energies of the form
(3)–(4), where is nonconvex and nonsmooth at zero

and is the discrete gradient, are composed of constant re-
gions surrounded by closed contours and neat edges (a more
general result is stated in Section II). This result is not a trivial
extension of [31] which considers (5) and the case for

cannot be handled in a similar way. The
practical contribution is quite challenging: we derive fast algo-
rithms to approximate faithfully the global minimizer of these
nonconvex and nonsmooth energies (Section III). Our experi-
mental results (Section IV) show clearly the effectiveness and
efficiency of the proposed numerical schemes. Concluding re-
marks and perspectives are sketched in Section V.

II. ESSENTIAL PROPERTIES OF MINIMIZERS OF

In this section, we study the properties of minimizers of
defined according to (2), (3) and (4) under customary, weak as-
sumptions. We will assume the following:

H1: , where where
;

H2: is continuous and symmetric on , increasing on
, with and ;

H3: is on where is
a finite set of points (possibly empty) such
that if then and

;

H4: is increasing with

and .

Here we use the common notations

and

Examples of PFs satisfying these assumptions are given in
Table I and plotted in Fig. 1. The restriction of on
for all these functions in plotted in Fig. 2. Note that by H2, all
terms of such that are nondifferentiable.

otherwise

otherwise
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Fig. 2. Restriction of � on �� � for all the potential functions in Table I.

TABLE I
RESTRICTION ON OF SEVERAL PFS YIELDING NONSMOOTH AND NONCONVEX REGULARIZATION AND SATISFYING H2, H3 AND H4. THE CONSTANT � , THE

SET � AND THE NOTATION �� ARE DEFINED IN (7) AND IN H3. NOTE THAT FOR (F4) AND (F5) WE HAVE � �� � � �� �� � AND ���� � � ���� �

The first theorem addresses PFs as those given in (f4) and
(f5), Table I. Its proof can be found in Appendix A.

Theorem 1: Let be of the form (2) along with (3) and (4)
for and all assumptions H1, H2, H3 and H4 hold. Given

, let be any (local) minimizer of . Then we have

(6)

where is the set described in H3.
Given a PF satisfying H2, H3 and H4, we define

by

(7)

The next lemma is of great use to prove our main result, namely
Theorem 2.

Lemma 1: Let satisfy the assumptions H2, H3, and H4.
Consider the multifunction in the following:

if

if
(8)

where is the finite set in H3, is defined in H3 and is given
in (7). Then

i) for all and is strictly increasing on
;

ii) , there is a unique such that
.

iii) The function increases when decreases
on .

The multifunction in (8) is illustrated on Fig. 3. The proof of
the lemma can be found in Appendix B. Using these prelimi-
nary results, we can state a spectacular property of the (local
or global) minimizers of the energy , namely that if are
discrete gradients, the minimizers are composed of constant
regions surrounded by closed contours and neat edges higher
than a bound . The solution is then a segmented image,
for any operator in (2)–(3). Note that different bounds can
be derived under slightly different conditions. The proof of The-
orem 2 is outlined in Appendix C.

Theorem 2: Let be of the form (2) along with (3) and (4)
for , and all assumptions H1, H2, H3, and H4 hold. Given

, let be any (local) minimizer of . Then we have

either or (9)

where (see (7) for the definition of ) and the
previously shown inequality is strict if . Put
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Fig. 3. Multifunction � in (8) for each PF in Table I. Remind that for (f5) we have � � �.

Fig. 4. Histograms. (a) Samples of � . (b) Observed samples of � where noise is added to � . (c) Restored samples �� . (d) Zoom of (c) near the origin.

If , the alternative (9) holds true for the unique that
solves

(10)

where is the multifunction in (8) and
.

i) If in addition we have: strictly in-
creasing on , then (9) holds true for the unique that
solves

(11)

The proof of the theorem reveals that the bound is underes-
timated. This fact is observed in the following example.

Example 1: In order to illustrate Theorem 2, we consider a
simple example where the underlying is a point in and

are the identity matrices and . We realized 10
000 independent trials where an original is sampled
from for and then
for with . The histogram of all

and are shown in Fig. 4(a) and (b). After this, the solution is
calculated by minimizing for

. For every the function has two local minimizers,
and satisfying for ; the global

minimizer is found by exhaustive search over the - grid with
the step size 0.01 in the and range between and 10.
The empirical histogram of all solutions is shown in Fig. 4(c)
and zoom of in Fig. 4(d). These results illustrate the statement
of the theorem: we have in 27% of the trials while the
smallest nonzero is .

III. MINIMIZATION METHODS

The minimization of nonconvex nonsmooth energy given
by (2), (3), and (4) involves three major difficulties that dras-
tically restrict the methods that can be envisaged. Because
of the nonconvexity of may exhibit a large number of
local minima which are not global. In addition, is usually
nonsmooth at the minimizers and, thus, usual gradient-based
methods are inappropriate even for local minimization. Finally,
the matrix can have numerous nonzero elements beyond the
diagonal and is often ill-conditioned. Given that our problem is
high dimensional ( is typically more than ), global
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minimization of can be considered using either stochastic
algorithms or continuation-based deterministic methods.

A. Comments on Preexisting Methods

Since [21], asymptotically convergent global minimization
of nonconvex functions has been conducted using stochastic
schemes, such as simulated annealing or Metropolis annealing.
However, the computational cost of such algorithms is pro-
hibitive when is not a diagonal matrix, whereas in general
image restoration and reconstruction problems has a large
number of non zero coefficients outside the diagonal and can
also be a dense matrix. Robini et al. in [35] studied inexpensive
acceleration techniques that do not alter the theoretical con-
vergence properties of annealing algorithms. They employed
restriction of the state space to a locally bounded image space
and increasing concave transform of the energy to speed up the
convergence. However, the numerous new parameters required
for acceleration are very tricky to handle. Recently, Robini
et al. [36] introduced a new class of hybrid algorithms that
combine simulated annealing with deterministic continuation.
Numerical experiments have shown that this approach out-
performs standard simulated annealing. Nevertheless, it still
requires quite a high computational effort. Moreover, stochastic
algorithms cannot yield solutions that incorporate one of the
main properties of nonsmooth regularization, namely (9) stated
in Theorem 2 (e.g., recovering of truly constant regions).

According to [41], the idea of continuation is a good deter-
ministic alternative to deal with nonconvex energies . Even
though there is no guarantee for global convergence, extensive
experiments have shown that for a finite number of iterations
the graduated nonconvexity (GNC) approach [7] leads to min-
imizers having a lower (hence, better) energy than simulated
annealing, see for instance [8]. Extensions of the GNC approach
were done, e.g., in [4] and [28]. Some conditions to improve
the convergence of GNC for a broad class of nonconvex ener-
gies where can also be a dense or ill-conditioned matrix have
been investigated in [27]. However, in these GNC methods the
energy is tracked using a sequence of smooth approximates
of , so they cannot properly address the nonsmoothness of
in our problem.

In [33], a nonsmooth GNC continuation method is inaugu-
rated to solve a nonconvex nonsmooth minimization problem
where is of the form (2), (3) and (5).

B. Our Approach

Here our goal is to conceive nonsmooth GNC schemes for
of the form given by (2), (3) and (4). The main difficulty with
respect to [33] is that now the PF is applied to .

Consider a sequence

(12)

We approach by a sequence of such that
is convex and monotonously reaches when goes from
0 to 1 in (12), with and is nonsmooth at 0 for any

. (To simplify the notations, we write for whenever

this is clear from the context.) Correspondingly, our energy is
approximated by a sequence as given in the following:

(13)

Thus, is convex (and nonsmooth), monotonously goes to
when increases and we have .
For computational reasons, we assume two additional hy-

potheses.
H5: and are finite.

Given the result (6) in Theorem 1, we consider that
H6: the set in H3 is empty.

Using H1–H4 together with H5–H6, we can choose
such that

(14)

We can further rewrite as follows:

where (15)

The next lemma is needed to derive the numerical methods.
Its proof is given in Appendix D.

Lemma 2: Let satisfy all conditions in (14). Consider the
function

(16)

Then we have the following:
a) , we have and ;
b) is on with ;
c) is on and

.
If satisfies H1–H4 (p. 4) and H5–H6, an easy way to con-

struct is

(17)

One can check that satisfies all conditions in (14) and, hence,
Lemma 2 holds true. By Lemma 2, we see that in (15) is com-
posed of two terms: the first one is -smooth and concave
whereas the second one is convex and nonsmooth at zero.

Decomposing in (13) according to (15) yields

where (18)
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Remark 2: By using the results in Lemma 2, the function:
is twice differentiable1 and non-

convex whereas the function: is convex and
nondifferentiable.

In the usual case when are discrete gradients, the term
amounts to the TV regularization: by a slight re-

striction of language, in what follows we call it the TV term and
write

(19)

Note that in [33] that are approximated by
where , for , are linear operators (e.g., the
first-order differences between each pixel and its four or eight
adjacent neighbors). Then the energy minimization can be re-
formulated as a nonconvex smooth optimization problem under
linear constraints and solved using linear programming tech-
niques.2 Actually, the energy in (18) cannot be reformulated
in a similar way because of the norm in TV term (19).

Our approach to tackle the difficulties for minimizing the
function in (18) is to apply variable-splitting and penalty
techniques to separate the nonconvex term and the nonsmooth
term using additional variables. In the following, we propose
and compare two different numerical schemes to minimize
in (18) for every . The minimizer of provides the
sought-after approximation of the global minimizer of .

C. Numerical Scheme Based Upon Fitting to

Following the idea of [19], an auxiliary variable is
used to transfer the nonsmooth TV term from . More precisely,
a quadratic fitting term, weighted by , is added to in
(18) in order to ensure the closeness of and . The resultant
augmented energy reads

(20)

In the algorithm, can be gradually increasing in the itera-
tions in order to force that is close . By fixing the variable

is a twice differentiable function with respect to
so that it can be minimized by gradient-based methods. For
fixed, minimizing with respect to amounts to a TV
denoising problem which can be solved efficiently by already
existing method such as the Chambolle’s algorithm [9].

Let us state the proposed method in detail. For each
[cf. (12)], we initialize with where

results from the minimization of . Then
the proposed method computes a sequence of iterates

, for each
, according to

1Note that by Lemma 2(ii) we have �� ��� �� � � � if �� �� � �.
2 The experimental results in [33] showed that the resultant method provides

better performance with significantly smaller computational cost, compared to
a simulated annealing method.

(21)

(22)

By Lemma 2(i), for , we have for all , so
minimizing in the previously mentioned two steps is exactly
the same as the TV deblurring problem in [19].

1) Computation of According to (21): For (i.e.,
), the finding of amounts to minimize the convex

quadratic function

(23)

It is equivalent to solving a linear system

(24)

For (i.e., ), the Quasi-Newton method [34, Ch.8]
can be used to solve (21). Since all the terms in
are twice differentiable (see Remark 2), we can find out the cor-
responding gradient vector and

the Hessian of
to tackle the minimization problem

(25)

and

(26)

where of .
Since is negative definite [see Lemma 2(iii)], the
Hessian may be not positive definite. This may prevent
the Quasi-Newton method from convergence as as the resultant
search direction may not be a descent direction. In order to en-
sure the descent direction, we simply use the positive definite
part of the Hessian matrix in the optimization procedure. Such
procedure can guarantee that the proposed algorithm is a descent
method for the minimization problem. Thanks to the term ,
the coefficient matrix is always positive definite
even if is singular. The solution can be updated by

where is the step-size and is found by solving

(27)

We remark in image restoration that is usually a blurring ma-
trix generated by a symmetric point spread function. The com-
putational cost of the method is dominated by three fast dis-
crete transforms in solving the linear system in (24) or (27),
see [26]. The computational cost for each fast transform is only

for a blurring matrix [26].
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Three different strategies to determine the step-size were
tested: Armijo rule, Goldstein rule and a fixed ([34], Ch. 3).
By observing experimental results, we found out that the nu-
merical schemes based upon these three rules converged to the
same solutions, while using the first two rules required heavy
additional computation cost. Therefore, we fixed for all
of our experiments.

2) Computation of According to (22): The second
step of this method is to apply an exact TV denoising problem
scheme to . Since the function is iden-
tically the same as that in [19], we employ the Chambolle’s pro-
jection algorithm [9] to solve this problem.

3) Algorithm I: For each , we simply choose a linear in-
crease [cf. (12)] in our experiments as suggested in [33]. The
full algorithm is given in the following.

Set and , and initialize .

For

Set , initial value of , and relative-change

While relative-change do

If

Solve ;

Otherwise

Solve ;

Update ;

End If;

Minimize to obtain using
the Chambolle’s method [9];

Compute relative-change

Increase and set ;

End While

Set (for the initial guess of the next
outer loop);

Set ;

End For

D. Numerical Scheme Based on Fitting to

Here we derive a different approach to minimize (18). It is
based on variable-splitting and penalty technique to transfer the
nonsmooth term out of in such a way that the TV denoising
step is avoided with an aditional s-dimensional shrinkage oper-
ation, as proposed in [40]. To this end, we consider an another
augmented energy which involves a fitting
of the auxiliary variable to

(28)

where and . For fixed,
is convex and nondifferentiable. Given , the function

is twice differentiable (see Remark 2) and nonconvex
so that it can be minimized by gradient-based methods similar
to Algorithm I, see Section III-C. The computational steps anal-
ogous to (22) and (21) are given as follows:

(29)

(30)

In this case, we initialize with where re-
sults from the minimization of .

1) Computation of According to (29): Solving (29)
amounts to solve independent problems

(31)

As shown in ([40], pp. 251–252), each one of the problems in
(31) can be solved efficiently using -dimensional shrinkage

(32)

2) Computation of According to (30): The task is sim-
ilar to the computation of in Algorithm I.

For , the finding of amounts to minimize
the convex quadratic function in (23). For , the Quasi-
Newton method can be used to solve (30). Since all the terms in

are twice differentiable (see Remark 2), we can
find out the corresponding gradient vector [cf. (25)] and the Hes-
sian matrix [cf. (26)] to tackle the minimization problem. Again,
in order to ensure the descent direction, we simply use the posi-
tive definite part of the Hessian matrix
in the optimization procedure. Such matrix is nonsingular by
H1 and it can be diagonalized by the discrete transform matrix
proposed in [26]. Now the solution can be updated by

where is solved by

(33)

efficiently in for an image with pixels. By ob-
serving experimental results for different rules of step size, we
also fixed for all of our experiments

3) Algorithm II:
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Fig. 5. (a) Original Cameraman image. (b) Observed image. (c) Image restored by the method in [33] with � � ����. (d)–(e) Images restored by Algorithms I
and II, respectively, with � � ����.

• Set and , and initialize .

For

Set , initial value of , and relative-change

While relative-change do

Obtain by computing the formula in (32);

If

Solve
;

Otherwise

Solve
;

Update ;

End If;

Compute relative-change
;

Increase and set ;

End While

Set (for the initial guess of the next
outer loop);

Update ;

End For

IV. EXPERIMENTAL RESULTS

In this section, we present the experimental results to
demonstrate the efficiency of the algorithms proposed in
Sections III-C-3 and III-D-3 and compare their performance.
The codes are available at http://www.math.hkbu.hk/~mng/
imaging-software.html. Signal to noise ratio (SNR) is used
to measure the quality of the restored images while CPU
time is also used to compare the efficiency of the restoration
method. The parameter tol is set to be in the two proposed
methods. The step size used in the Chambolle’s method is 0.25.
The initial value of is set to be 1.1, and its value is updated
by at each iteration. The PF used in all the illustrations
was also tested in [33]

(34)

Note that satisfies H2–H6 and that satisfies (14). We com-
pare the two proposed methods with the method in [33] where
the outer interior point method and the inner conjugate gradient
method are employed. Now we adopt an augmented approach to
minimize the nonsmooth nonconvex problem in (18) and con-
sider two schemes described in Sections III-C and III-D. The
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Fig. 6. (a) Original F16 image. (b) Observed image. (c) Image restored by the method in [33] with � � ����. (d)–(e) Images restored by Algorithms I and II,
respectively, with � � ����.

linear systems in (27) and (33) are solved by fast discrete trans-
forms in the two proposed methods. All the computational tasks
are performed using MATLAB on a computer with Corel(TM)2
CPU with 2.66 GHz and 1.98 GB of RAM.

Five gray-value images are tested with intensity ranging from
0 to 1. The first image is Cameraman of size 256 256. The
second and third images are F16 and Tank of size 512 512. To
generate the observed images, we added Gaussian noise with the
standard deviation of 0.05 with blurring. The blurring function
is chosen to be a 2-D truncated Gaussian function

for

with . The fourth image is the modified Shepp–Logan
image of size 50 50. The fifth image is the modified
Shepp–Logan image of size 1000 1000. We use this large
image to demonstrate the efficiency of the proposed method. To
generate the observed images for these two images, we added
Gaussian noise with the standard deviation of 0.05. Radon
transform is used to construct the degradation matrix . These
images are further transformed by back-projection so that
can be reformulated as a convolution operator.

Different initial guesses have been considered, including the
observed image, the least squares solution and a flat image (all
the pixel values are 0.5). From our experimental results, both
of the proposed methods were insensitive to all of the initial

guesses. Therefore, we only demonstrate the results which the
initial guesses are the observed images. For in (34) we have

In the experiments we used . We tested dif-
ferent values of in order to find out the restored image with the
highest SNR among the tested values. Similarly, we also tested
different values of the regularization parameter in the modified
interior point method [33] to find out the restored image with
the highest SNR.

A. Test of Blurred and Noisy Images

Figs. 5–7(a) show the original images. Figs. 5–7(b) show their
corresponding images with blur and noise as described in the
previously mentioned settings, respectively. Figs. 5–7(c) and
5–7(d)–(e) show the images restored by the method proposed in
[33], and Algorithms I and II, respectively. For simplicity, we
use the same set of parameters in Figs. 5–7(c) for restoring im-
ages in Figs. 5–7(d)–(e) by the proposed methods. We see from
the figures that the images restored by the method proposed in
[33] and the two proposed methods are visually about the same.
In Table II, we show their SNR results, and find that they are
about the same. However, the computational time (in seconds)
required by Algorithms I and II is significantly lower than the
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Fig. 7. (a) Original Tank image. (b) Observed image. (c) Image restored by the method in [33] with � � ����. (d)–(e) Images restored by Algorithms I and II,
respectively, with � � ����.

TABLE II
RESTORED SNRS AND CPU TIMES FOR DIFFERENT IMAGES

interior point method. These results demonstrate the proposed
methods are quite efficient for restoring images.

Next, we test the performance of the two proposed methods
under different levels of noise and blur. The tested Gaussian
noises are with the standard deviation of 0.01, 0.05, 0.10, and
0.20. The tested blurring functions are chosen to be truncated
2-D Gaussian function with
(i) and the support being equal to 5 5; (ii)
and the support being equal to 7 7; (iii) and the sup-
port being equal to 9 9 and (iv) and the support being
equal to 11 11. In the experiments, we first find good regu-
larization parameters for each noise case when the 7 7 blur
is tested. For instance, the regularization parameters are 0.005,
0.03, 0.10, and 0.30 for the noise levels 0.01, 0.05, 0.10, and
0.20, respectively. Then we apply the same regularization pa-
rameter for other blurs with the same noise level. In Table III,

we show their SNR results, and find that the SNRs of the two
proposed methods are about the same. However, the computa-
tional time required by Algorithm II is less than the half of the
computational time required by Algorithm I. We remark that
Algorithm II employs the shrinkage computation in one step
[see (32)] whereas Algorithm I requires to solve TV denoising
problem by the Chambolle’s algorithm in an iterative manner.
Therefore, Algorithm I takes more computational time than that
by Algorithm II.

B. Test of Radon Transform Images

Radon transform is a 2-D integral transform that integrate the
function along straight lines. Images can be reconstructed by
the inverse of the transform. Those resulting images are widely
used for guiding medical treatment decisions [42].



NIKOLOVA et al.: FAST NONCONVEX NONSMOOTH MINIMIZATION METHODS FOR IMAGE RESTORATION AND RECONSTRUCTION 3083

TABLE III
RESTORED SNRS AND CPU TIMES FOR DIFFERENT NOISE AND BLUR LEVELS

In this subsection, the reconstruction of the images trans-
formed by the Radon transform using our proposed method is
presented. The modified Shepp–Logan image is applied to illus-
trate the efficiency of our algorithm. Following the example in
[33], we set the image to be of size 50 50. Fig. 8(a) is the orig-
inal modified Shepp–Logan image. The image is transformed
along the angles from 0 to 180 of the increasing of six degrees to
create the size of 75 31 Radon transform of the original image.
The noise from normal distribution with mean zero and standard
deviation 0.05 is added to this transformed image to generate
the observed image in Fig. 8(b). The degradation matrix in
this example is the discrete Radon transform matrix and cannot
be reformulated as a convolution operator. In order to restore
the image and maintain the efficiency of the proposed method,
we make use of the back-projection operator [20]. It can be
shown that the back-projected Radon transform is an image of
blurred by the point spread function of the form
which can be used to construct the convolution matrix . Now
we solve

and

in Algorithms I and II, respectively [cf. (18)]. The back-pro-
jected Radon transform is shown in Fig. 8(c). Fig. 8(d)
shows the resulting image that is reconstructed from Fig. 8(b)

by the method [33]. Fig. 8(e) shows the resulting image recon-
structed from Fig. 8(c) by Algorithm I. Both of the methods pro-
vide high quality restored images. However, as conjugate gra-
dient method is required to solve the linear system, the method
[33] took more time (1860 s) to reconstruct the image. The
proposed method only takes 2.2 s to restore about the same
quality of the reconstructed image. The SNRs of the recon-
structed image by the method [33] and the proposed method are
41.96 dB and 43.68 dB, respectively.

In the next experiment, we test a larger image. Fig. 9(a) shows
the original modified Shepp–Logan image of size 1000 1000.
The corresponding back-projected Radon transform image is
shown in Fig. 9(b). Fig. 9(c) shows the reconstructed image of
the proposed method. The computational time required is about
480 s, and the SNR is 49.50 dB. When Algorithm II is used,
we find that the same quality of reconstructed image is obtained
within 250 s. However, the result of the method [33] is not ob-
tained to this case as the required computational time takes more
than 2 h.

V. CONCLUDING REMARKS

In this paper, we considered image reconstruction and image
restoration using nonconvex and nonsmooth regularization on
the norm of the discrete gradient of the image. Our theoret-
ical results show that the solutions of the corresponding mini-
mization problem are images composed of constant regions sur-
rounded by closed contours and neat edges. From a practical
side, the main goal was to conceive fast numerical schemes to
solve this difficult minimization problem. We developed two
very fast minimization algorithms. Extended experiments have
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Fig. 8. (a) Original modified Shepp–Logan image with size 50� 50. (b) Obtained image after Radon transform along the angles from 0 to 180 with the increasing
of six degrees. (c) Back-projected Radon transform image. (d) Image restored from Fig. 8(b) by the method [33] with � � ���. (e) Image restored from Fig. 8(c)
by Algorithm I with � � ����.

Fig. 9. (a) Original modified Shepp–Logan image with size 1000� 1000. (b) Back-projected Radon transform image. (c) Image restored by Method I with � �

����.

shown the effectiveness and efficiency of the proposed numer-
ical schemes.

As for the future research work, we plan to study how to select
the regularization parameter for image restoration. We remark in
[24] that we have developed a fast total variation image restora-
tion method with an automatic selection of regularization pa-
rameter scheme to restore blurred and noisy images. The method
exploits the generalized cross-validation technique to determine
inexpensively how much regularization to use in each restora-
tion step. We would like to extend this approach to work for non-

convex nonsmooth regularization methods for image restoration
and reconstruction problems.

APPENDIX

A. Proof of Theorem 1

With we associate the following subsets:

and (35)
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as well as the vector subspace given in the following:

(36)

If , then , hence, (6) is trivially true.
In what follows, we consider that . Note that if ,
then .

Given and , we denote by the
open ball centered at of radius . Put

By (35) we see that . For every we can, hence,
write down that

Since , we have

It follows that:

where (37)

Thus, is the restriction of on which entails
that has a (local) minimum at .

Let and denote the right-side and the left-side
derivatives of at in the direction of , respectively.

Let us remind that these are defined by

If is differentiable at , then
.

Then the first-order necessary condition for
to have a local minimum at , namely

(38)

must hold. Let us denote

for

where is the set in H3, p. 4. For any and
we have

(39)

and in particular .
More precisely, we have

Note that the gradient operator is considered with respect
to . Using H2 and H3, for all we have

and

where again the side derivatives are considered with respect to
.

In detail, by setting , the calculation is

Considering the necessary condition (38) for
yields

This is equivalent to
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In particular, we must have

This is clearl impossible since by H3 we have
. It follows

that:

and

The proof is complete.

B. Proof of Lemma 1

By H4 and (7), for all while
has finite left and right (negative) limits. Noticing that

in (8) is well defined and strictly negative on .
We have

On the other hand

Then

If , we have and . It
follows that in (8) is strictly increasing on . The proof
of statement (i) is complete.

Using H4 yet again shows that

and

Combining this with statement (i) leads immediately to (ii).
Statement (iii) is a straightforward consequence of (i) and (ii).

C. Proof of Theorem 2

With , we associate the subsets and , as in (35), as well
as the subspace as introduced in (36). If , then

in which case (9) is trivially satisfied. In
what follows, we consider that .

¿From Theorem 1 we know that , as
given in (37), is -continuous on a neighborhood of .
Hence, and are well defined in the usual sense.
The second-order necessary condition for a (local) minimum of

at must also hold and reads

(40)

Next we derive the expression of . Using (39),
for any we get

The necessary condition (40) in detail reads

(41)

The core of the proof is conducted by contradiction. We will
exhibit a and a direction such that
if there exists such that .

Let be such that

(42)

and set

(43)

Then by the definition of and is finite since .
Consider given by

Clearly . Using Schwarz inequality

so the numerator in the last term in (41) is null

Furthermore

Let us also define

(44)
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where is defined in (43). Using that
we get

(45)

(46)

where the element is defined in (42) and is the multi-
function in (8) considered in Lemma 1.

Define to solve

(47)

where is defined in (44). By Lemma 1, this is well defined
and unique. Suppose that

According to Lemma 1

(48)

This, jointly with (46) yields

The obtained result clearly contradicts the necessary condition
stated in (41). It follows that:

(49)

where the inequality is strict if . Hence, the result for
as in (10).

Next we focus on the conditions given in (i). Combining
([32], Th. 2.3) with Theorem 1 immediately yields that for any
(local) minimizer we have

Inserting this result into (45) yields

In this case, we consider that solves

(50)

Then we apply the same reasoning that led us to (49). This
proves statement (i).

D. Proof of Lemma 2

Note that by (a) and (16), is symmetric with
. Statement (i) follows directly from (b) and (16).

By (a), is on . Since is symmetric, we have

(51)

(52)

Since by (a) is continuous on and , we can write
down

and

By the symmetry of , we have . Using
(51)

and

hence, . Noticing that is continuous on , and
using Hôpital’s rule and the fact that , we can write
that

which shows that is continuous at 0. Hence, (ii).
Using (52), statement (ii), condition (d) and the symmetry of
, we have

Consequently, is continuous at zero and . Hence,
(iii).
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