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Abstract We consider the problem of exact histogram spec-
ification for digital (quantized) images. The goal is to trans-
form the input digital image into an output (also digital)
image that follows a prescribed histogram. Classical his-
togram modification methods are designed for real-valued
images where all pixels have different values, so exact his-
togram specification is straightforward. Digital images typ-
ically have numerous pixels which share the same value.
If one imposes the prescribed histogram to a digital image,
usually there are numerous ways of assigning the prescribed
values to the quantized values of the image. Therefore, ex-
act histogram specification for digital images is an ill-posed
problem. In order to guarantee that any prescribed histogram
will be satisfied exactly, all pixels of the input digital image
must be rearranged in a strictly ordered way. Further, the
obtained strict ordering must faithfully account for the spe-
cific features of the input digital image. Such a task can be
realized if we are able to extract additional representative
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information (called auxiliary attributes) from the input dig-
ital image. This is a real challenge in exact histogram spec-
ification for digital images. We propose a new method that
efficiently provides a strict and faithful ordering for all pixel
values. It is based on a well designed variational approach.
Noticing that the input digital image contains quantization
noise, we minimize a specialized objective function whose
solution is a real-valued image with slightly reduced quan-
tization noise, which remains very close to the input digital
image. We show that all the pixels of this real-valued image
can be ordered in a strict way with a very high probabil-
ity. Then transforming the latter image into another digital
image satisfying a specified histogram is an easy task. Nu-
merical results show that our method outperforms by far the
existing competing methods.

Keywords Exact histogram specification · Strict-ordering ·
Variational methods · Restoration from quantization noise ·
Smooth nonlinear optimization · Convex minimization ·
Perturbation analysis · Image processing · Minimizer
analysis

1 Introduction

The histogram of an image counts the number of pixels at
each different intensity value. Image histogram processing
alters the value of each individual pixel in order to mod-
ify the appearance of the whole image. It is one of the
most important image processing tools with various appli-
cations, such as contrast enhancement [12, 30, 34, 53, 54,
57], segmentation [13, 40], watermarking [15], texture syn-
thesis [48], texture processing [21, 37] and pattern recogni-
tion [35], among many others.
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One of the basic histogram processing tasks is histogram
equalization [24, 45, 50]. It aims to find a transformation so
that the output image has a uniform histogram. More gen-
erally, given an input image, histogram specification or his-
togram matching is the problem to transform it into a sim-
ilar image that has a pre-specified histogram shape. A de-
sired histogram can be specified according to various needs.
Numerous methods have been proposed to improve the his-
togram of an input image. The simplest one is histogram
linear stretching [39]. Histogram clipping [47] limits the
maximum number of pixels for each intensity level to a
given constant and the clipped pixels are then uniformly dis-
tributed among the other intensity levels where the numbers
of pixels are less than the clip limit. Several other methods
were proposed to preserve the mean brightness of the input
image [12, 30, 57]. The prescription of a histogram by com-
bining two histograms was considered in [17, 18]. Sapiro
and Caselles [51] proposed histogram modification via im-
age evolution equations. Arici et al. exhibited a general
framework for histogram modification [1]. Based on percep-
tual consideration, Sen and Sankar [52] established a rule
enabling an optimal histogram to be prescribed based on the
histogram of the input image.

The principle behind histogram specification is straight-
forward for real-valued (analog) images [50]: the histogram
of the input image and the prescribed histogram should be
equalized to uniform distribution first, say by Ti and Tt re-
spectively. Then the output image can be obtained from the
composite transformation T −1

t ◦ Ti . Since the images are
real-valued, Ti and Tt are one-to-one functions, and hence
T −1

t ◦ Ti is well-defined. The principle fails, however, for
quantized (digital) images, which is the case of all digital
imaging systems. The reason is that for quantized images,
the intensity levels of all pixels take a limited number of
discrete values (e.g. 256) which is much smaller than the
number of the pixels in the image (e.g. 10242). Therefore
exact histogram equalization is hopeless, see Fig. 1. It is
only when one can order the pixels of a quantized image

in a strict way that the histogram specification problem can
be solved exactly for any prescribed histogram.

Several approaches to obtain strict ordering for digital
(quantized) images were considered in the literature. This
problem is the main goal of our paper. Random ordering of
the pixels sharing the same intensity level is the simplest
way to do the job [46]. One way of avoiding randomness is
to separate pixels having the same intensity using the local
mean of the four nearest neighbors as was proposed in [26].
The most successful contemporary methods are the Local
Mean (LM) approach proposed by Coltuc et al. [16] and the
wavelet-based approach (WA) elaborated by Wan and Shi
in [56]. More details on these methods are given in Sect. 2.
Nonetheless, a major drawback of both the LM and the WA
methods is that in practice, they can order strictly only a lim-
ited portion of the pixels, and this set of pixels is smaller for
images whose histogram is not that uniform to begin with.

In this paper, we propose a specialized variational method
that enables us to order in a strict way the pixel values of
a digital image by slightly reducing the quantization noise
that they contain. A sketch of our approach was given in a
conference paper [11]. Here we provide a theoretical anal-
ysis of our variational method and show that the pixels of
the images that it yields can be ordered in a strict way with
a high probability. What is more, we ensure that these im-
ages are really very close to the input digital image since the
�∞-norm of the residual is fixed to a suitably small number.
We present a lot of experimental results demonstrating that
our method outperforms by far its main competitors—the
local mean [16] and the wavelet-based [56] methods—both
in terms of strict ordering of the pixels and of the quality of
the output images.

The outline of the paper is as follows. In Sect. 2, we give
comments on sorting algorithm for exact histogram speci-
fication. Section 3 is devoted to the minimizers of the pro-
posed variational functional. In Sect. 4, we summarize the
algorithm for exact histogram specification. In Sect. 5 nu-
merical tests are provided where our algorithm is compared

Fig. 1 The original image (a) has gray values in {0, . . . ,255} and
11.62% of its pixels equal to 177 (the maximum of the histogram in
(b)). The built-in Matlab function for histogram equalization (histeq.m)

yields the image shown in (c) whose histogram, plotted in (d), is far
from being uniform
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with the local mean and wavelet-based approach methods.
Concluding remarks are given in Sect. 6.

2 Sorting Algorithms

Let u be an M-by-N image obtained by digitizing an analog
image uo (on a discrete grid) with range in some interval
[0, a). We assume the possible quantized values that u can
take are from

P def= {p1, . . . , pL} (1)

and that pk are in increasing order. For 8-bit images,
P = {0, . . . ,255}. In the following we will express u as
an n-vector by concatenating the columns in u, hence

n = M × N . Denote Iq
def= {1, . . . , q} for any positive in-

teger q and Ωk
def= {i ∈ In | u[i] = pk}, k = 1,2, . . . ,L. The

histogram of u is the L-tuple hu = (|Ω1|, |Ω2|, . . . , |ΩL|),
where | · | stands for cardinality. The image u with histogram
hu is a result of quantization of the original real-valued im-
age uo. This amounts to set to the same intensity level pk

all the values of uo on the interval [tk−1, tk), k = 1, . . . ,L.
Then |Ωk| = n

∫ tk
tk−1

p(uo)dt , where p(uo) is the probability
density function of the intensity levels of the pixels of uo,
and t0 = 0 and tL = a.

Let the pre-specified histogram be h = (h1, h2, . . . , hL).
The classical way of defining exact histogram specification
is designed for real-value images on a discrete grid like uo.
Such images are almost nowhere constant [25] and exact his-
togram specification is straightforward. However, in prac-
tice, we only have the quantized image u, obtained from an
original real-valued image uo. The digital u can seldom be
totally-ordered—its pixels have only L possible magnitudes
while the number of its pixels n is generally much larger, i.e.
n � L. A typical example is shown in Fig. 1. It is therefore
very likely that some Ωk , k = 1, . . . ,L, will meet |Ωk| > hk .
In order to satisfy the prescribed histogram, some pixels in
Ωk will have values mapped to other intensity levels. The
number of ways of selecting the pixels to assign to other
intensity levels is very large. Consequently, this problem is
ill-posed.

The key to a stable solution is to create a strict total
ordering of the pixels in the same Ωk by learning some
auxiliary information from the digital image u. Suppose
that for any pixel i ∈ In, (K − 1) auxiliary information
κ1[i], . . . , κK−1[i] are created. Then an ascending order
“≺ ” for all pixels in In may be obtained using the K-tuples

(u[i], κ1[i], . . . , κK−1[i]) , ∀i ∈ In.

To facilitate the discussions, we set κ0[i] def= u[i]. For any
two pixels i and j in In, we say that i ≺ j if for some −1 ≤

� < (K − 1) we have

κs[i] = κs[j ] for all 0 ≤ s ≤ � and κ�+1[i] < κ�+1[j ].
If the auxiliary information K is well chosen, one should
be able to sort all pixels i ∈ In in a real-world digital im-
age. That is, we can order all the pixels i in In in such
a way that i1 ≺ i2 ≺ · · · ≺ in. Once such a strict-ordering
is obtained, matching the input histogram to the prescribed
one is straightforward. This can be done by dividing the or-
dered list {i�}n�=1 from left to right into L groups. Thus the
first h1 pixels i1, i2, . . . , ih1 belong to the first group, and
are assigned with the intensity of p1. The next h2 pixels
ih1+1, . . . , ih1+h2 belong to the second group and are as-
signed the intensity of p2, and so on until all pixels are as-
signed to their new intensities.

The Local Mean (LM) and the Wavelet Approach (WA),
mentioned in the Introduction, extract such auxiliary infor-
mation from the input quantized image. The LM approach
of Coltuc et al. [16] uses the average intensities of neighbor-
ing pixels: given two pixels with the same intensity value,
the means over the neighborhoods centered at each pixel
are compared to order these pixels. If the mean values are
still the same, then larger neighborhoods are chosen to com-
pute the average intensity. This procedure is repeated until
all pixels are ordered. The authors claim that K = 6 is “ap-
propriate for any application” [16]. Wan and Shi argue that
the LM approach fails to keep sharp the edges in the output
image [56]. They proposed to order the pixels according to
the absolute values of its wavelet coefficients. This approach
tends to amplify any noise since noise in a smooth region
may be mistaken as an edge and hence is sharpened. Post-
processing approach or iterative methods can be applied to
suppress the amplified noises [3].

3 A Specialized Variational Approach

We use a different paradigm to obtain auxiliary informa-
tion. The available image u contains quantization noise. Our
strategy is to built a real-valued image where this noise is
slightly reduced. Even though the original real-valued uo is
unknown, some general priors such as the presence of edges
and fine structures in uo can be employed to produce such a
restored version of u. A subtle task like this can be handled
by means of a well conceived variational method.

Given u, its real-valued version f̂ is defined as the min-
imizer arg minf∈Rn J (f,u) of a smooth, convex regularized
cost function J (·,u) : R

n → R,

J (f,u) = Ψ (f,u) + βΦ(f), (2)

where both the data fitting term Ψ and the regularization
term Φ are asymptotically nearly affine. Here β > 0 is a
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Fig. 2 Ni is the set of the 4 (left)/8 (right) adjacent pixels of i

weighting parameter. These terms read

Ψ (f,u) =
∑

i∈In

ψ(f[i] − u[i]),

Φ(f) =
∑

i∈In

∑

j∈Ni

φ(f[i] − f[j ]),
(3)

where the functions ψ(·) def= ψ(·, α1) : R → R and φ(·) def=
φ(·, α1) : R → R depend on two parameters α1 > 0 and
α2 > 0, respectively, and Ni is the set of the four or the eight
adjacent neighbors of pixel i in the image, for every i ∈ In

(see Fig. 2). The parameters α1 and α2 shall be omitted when
they are not explicitly involved in our derivations.

The functions ψ and φ in (3) belong to the family of func-
tions θ(·, α) : R → R, α > 0, satisfying the conditions Hy-
potheses 1 and 2 described below.

Hypothesis 1 The function θ(·, α) is Cs -continuous for s ≥
2, even—i.e. θ(−t, α) = θ(t, α)—and for any α > 0 its sec-
ond derivative with respect to t satisfies

t ∈ R ⇒ θ ′′(t, α) > 0.

Note that by Hypothesis 1, t → θ ′(t, α) is strictly in-
creasing in t . Further, θ(·, α) is nearly affine beyond a small
neighborhood of the origin. More precisely,

Hypothesis 2 The first derivative of θ(·, α) with respect to
t is upper bounded for α > 0 fixed and is strictly decreasing
in α > 0 for any given t > 0:

α > 0 ⇒ lim
t→∞ θ ′(t, α) = 1,

t ∈ R ⇒ lim
α→0

θ ′(t, α) = 1 and lim
α→∞ θ ′(t, α) = 0.

Table 1 Relevant choices for θ(·, α) obeying Hypotheses 1 and 2. The
size of the neighborhood of zero where these functions are not “nearly
affine” is controlled by the parameter α > 0

θ θ ′ θ ′′

f1
√

t2 + α t√
t2+α

α

(
√

t2+α)3

f2 α log
(

cosh
(

t
α

))
tanh

(
t
α

) 1
α

(
1 − (

tanh
(

t
α

))2)

f3 |t | − α log
(
1 + |t |

α

)
t

α+|t |
α

(α+|t |)2

Good choices for θ meeting Hypotheses 1 and 2 are given
in Table 1. Customarily, such functions are involved only
in the regularization term, combined with a quadratic data-
fidelity term, see e.g. [2, 8]. In order to achieve our objec-
tives, they are pertinent to define the data fitting term as well.

The graphs of θ and θ ′ for two functions in Table 1 for
two different values of α are shown in Fig. 3.

Remark (a) (Motivation to choose a J satisfying Hypothe-
ses 1 and 2) Before going into the details, we explain the
intuition behind the demands Hypotheses 1 and 2 addressed
to J in (2). Our main concern is to obtain a restoration f̂ of
u whose pixels are all different from each other while being
close to u but “better” than u. Since φ satisfies Hypothesis 1,
we will get minimizers f̂ that are generically nowhere con-
stant [43]. Rather, they present large variations, edges and
fine structures. The trend of the large variations is available
in the input image u. Hypothesis 2 on φ enables the recov-
ery of edges and details and in this way some removal of the
quantization noise. For instance, α2 > 0 should be just small
enough. Selecting a small β > 0 (compared to the range of
u) enhances fitting to data u. If the neighborhood near the
origin where ψ is not quasi-affine goes to zero (e.g. α1 is al-
most zero), ψ tends to the absolute value function. The latter
is known to generate minimizers f̂ containing a certain num-
ber of entries equal to the relevant entries of u [42]. These
minimizers may still contain numerous equally valued pix-
els, hence such a scenario must be avoided. If ψ obeys Hy-
potheses 1 and 2 (in words, we should take α1 > 0 small
enough), the components of f̂ will certainly be close but dif-
ferent from the relevant entries of u. So the level sets of the

Fig. 3 The first two functions in Table 1 where the plots for α = 0.05 are in blue solid curves and the plots for α = 0.5 are in red dashed curves
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Fig. 4 The restored f̂ in (c) is obtained by minimizing J (·,u) where ψ(t) =
√

α1 + t2 and φ(t) =
√

α2 + t2

digital image u are not destroyed, but only refined. This is
the reason why we can say that details are preserved in f̂.
Undoubtedly, pixels in f̂ must change from those in u no
more than a given value (for example |0.1|). The soundness
of these arguments is illustrated in Fig. 4. We can thus claim
that the objective J defined using (2) and (3), where ψ and
φ satisfy Hypotheses 1 and 2 is detail preserving. Rigorous
facts on this point are presented in Sect. 3.3.

Below we exhibit other salient properties of the mini-
mizer f̂ of J under Hypotheses 1 and 2 that enable a rea-
sonable strict ordering of the pixels of real-world digital im-
ages. It is worth noticing that they are independent of the
particular shapes of ψ and φ, provided that they meet Hy-
potheses 1 and 2. The latter remark presents a challenging
topic for future research.

3.1 Preliminary Results

The differences {f[i] − f[j ] | j ∈ Ni} for all i ∈ In in (3)
can be rewritten using finite difference operators gi ∈ R

n,
1 ≤ i ≤ r , where r is the total number of these operators.
Then Φ reads

Φ(f) =
∑

i∈Ir

φ(gT
i f). (4)

Let us denote

G =
⎡

⎢
⎣

gT
1
...

gT
r

⎤

⎥
⎦ ∈ R

r×n.

According to (3) and the adopted boundary conditions (Neu-
mann or periodic), we have kerG = {c1 | c ∈ R}, where 1 is
a vector composed of ones.

We shall study how the minimizer f̂ of J behaves as a
function of data u. This goal motivates the definition below
which is originally introduced in [41]. For clarity, it is re-
stated in a way adapted to this work.

Definition 1 A function F : O → R
n, where O is an open

domain in R
n, is said to be a minimizer function relevant to

the family of functions J (·, O) if for every u ∈ O, the point
f̂ = F (u) is a strict local minimizer of J (·,u).

The next lemma is a straightforward extension of the Im-
plicit Functions Theorem [4]. Its proof can be found e.g. in
[22, Theorem 6, p. 34] or in [29, Lemma 6.1.1, p. 268]. In

what follows, D
j
i stands for the j th order differential of a

function with respect to the ith variable.1

Lamma 1 Suppose that J : R
n × R

n → R is any function
which is Cs , with s ≥ 2. Fix u ∈ R

n. Let f̂ ∈ R
n be such

that D1 J (̂f,u) = 0 and D2
1 J (̂f,u) is positive definite. Then

there exists an open neighborhood of u, say O, and a unique
Cs−1 minimizer function F : O → R

n such that F (u) = f̂.

We will see that in our case, the minimizer function is
uniquely defined on R

n.

Proposition 1 Let J : R
n ×R

n → R in (2) satisfy Hypothe-
sis 1. Then for any β > 0, J has a unique minimizer function
F : R

n → R
n which is Cs−1 continuous.

The proof of the proposition is given in Appendix A.1.
The components of the minimizer function F read Fi ,
i ∈ In. A diagonal matrix A with diagonal entries a[i],
i ∈ In, is denoted by A = diag({a[i]}ni=1).

Lamma 2 Let β > 0 be arbitrary and J : R
n × R

n → R in

(2) satisfy Hypothesis 1. Then its Hessian matrix H(u)
def=

D2
1 J (F (u),u), given by

H(u) = diag({ψ ′′(Fi (u) − u[i])}ni=1)

+ βGT diag({φ′′(gT
i F (u))}ri=1)G (5)

1E.g., D
j

1 J is the j th differential of J in (2) with respect f and D
j

2 J
is with respect to u.
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is invertible. Consequently, the differential DF : R
n → R

n

of the minimizer function F of J reads

DF (u) =
⎡

⎢
⎣

DF1(u)
...

DFp(u)

⎤

⎥
⎦

= (
H(u)

)−1diag
({

ψ ′′(Fi (u) − u[i])}n

i=1

)

and satisfies

rank (DF (u)) = n, ∀u ∈ R
n. (6)

This simple lemma, proven in Appendix A.2, underlies the
main theoretical results in this work.

3.2 Crucial Features of the Minimizers of J (·,u) and
Discussion

First, we show that the minimizer function F is non-
expansive.

Proposition 2 Let for an arbitrary β > 0, the cost function
J : R

n × R
n → R in (2) satisfy Hypothesis 1. Then its min-

imizer function F : R
n → R

n is nonexpansive:

(u, ζ ) ∈ R
n × R

n ⇒ ‖F (u + ζ )− F (u)‖2 ≤ ‖ζ‖2. (7)

One can note that F is Lipschitz with constant 1. The
proof is given in Appendix A.5.

Our main questions are whether or not some entries of a
minimizer f̂ of J (·,u) can: (i) take equal values and (ii) be
equal to some components of the input image u. For (i), we
consider the set G which is composed of all operators that
yield the difference between any two pixels in an image:

G def=
⋃

(i,j)∈In×In

{
g ∈ R

n | g[i] = −g[j ] = 1, i �= j,

(i, j) ∈ In, g[k] = 0, k ∈ In \ (i ∪ j)
}
. (8)

Observe that all difference operators in (4) satisfy gi ∈
G,∀i ∈ Ir .

Our main result is stated below. Its proof is presented in
Appendix A.3. As usual, the Lebesgue measure on R

n is
denoted by L

n(·).

Theorem 1 Let J : R
n × R

n → R in (2) satisfy Hypothe-
sis 1. For its minimizer function F : R

n → R
n, define the

sets KG and KI as follows:

KG =
⋃

g∈G

{
u ∈ R

n | gT F (u) = 0
}
, (9)

KI =
⋃

i∈In

⋃

j∈In

{
u ∈ R

n | Fi (u) = u[j ]}. (10)

Then KG and KI are closed in R
n and obey

L
n(KG ) = 0 and L

n(KI ) = 0.

The result holds true for any β > 0.

The sets KG in (9) contains all possible u ∈ R
n such that a

minimizer f̂ = F (u) of J (·,u) might have two equal entries,
f̂[i] = f̂[j ] for some i �= j where (i, j) ∈ In × In. The set KI
in (10) contains all possible u ∈ R

n such that the minimizer
f̂ = F (u) might contain some entries equal to data entries,
Fi (u) = u[j ] for some (i, j) ∈ In × In.

According to Theorem 1,

• The elements of KG are highly exceptional in R
n. In-

deed, the subset R
n \ KG contains an open and dense

subset of R
n. The chance that a truly random u ∈ R

n—
i.e. a u following a non-singular probability distribution
on R

n—happens to be in KG can be ignored in practice.
Conversely, Fi (u) �= Fj (u), for i �= j , is a generic prop-
erty2 of the minimizer F (u) of J (·,u), as given in (2)
and satisfying Hypothesis 1.

• The event Fi (u) = u[i] is highly exceptional, as antici-
pated in Remark (a) “Motivation”. The minimizer func-
tions F : R

n → R
n relevant to J generically satisfy

Fi (u) �= u[j ], for all (i, j) ∈ In × In.

These are general results that hold for any real data u ∈ R
n.

Remark (b) (Discussion) Let us denote by S n
P the set of all

M × N images whose n = MN pixels values belong to the
quantization set P in (1):

S n
P = {

u ∈ R
n | u[i] ∈ P , ∀i ∈ In

}
. (11)

Recall that |P | = L, the cardinality of S n
P is |S n

P | = Ln.
Even though |S n

P | is a huge number,3 the set S n
P is finite,

hence

L
n(S n

P ) = 0.

Hence the question: what can we say about the possible in-
tersections KG ∩ S n

P and KI ∩ S n
P ?

Assume that P is composed of L integers. Let NP be
the set of the functions that map P n onto P . We would not
like that the minimizer function F has some components
belonging to NP . Number theory gives limited answers to
the question of the kind of functions being able to be in NP .

2Here we use the terminology in [19].
3For 512×512, 8-bits images, this value is 2555122

—the amount of all
512 × 512, 8-bits pictures that people can ever take with their digital
cameras.
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For n = 1, every function applied to an integer u ∈ P and
yielding an integer f̂ = f (u) is of the form

f (u) =
∑

k∈Iu

bk

(
u

k

)

where

(
u

k

)

= u(u − 1) · · · (u − k + 1)

k ! ,

where all bk are integers. The question was initially posed in
[44]. This result along with some refinements can be found
in [9]. However, f (u) ∈ NP requires also that f (u) ∈ P ,
which drastically limits4 the functions of this form that fall
into NP . In the case of several variables, some polynomial
functions may belong to NP , see [10]. More generally, Dio-
phantine equations [27] can also be cast in the class of poly-
nomial functions. Under the (severe) restriction f (u) ∈ P ,
some of them also live in NP . To the best of our knowledge,
no other families of functions were shown to be able to be-
long to NP .

However, given the expression for DF in Lemma 2, it is
not difficult to see that no component Fi of our minimizer
function F can have a polynomial expression.

Let u = c1 for some c ∈ P . Then for any β > 0, the min-
imizer f̂ of J (·,u) reads f̂ = u. Indeed, since c1 ∈ kerG,
we have Ψ (u,u) = 0 and Φ(u) = βrφ(0), so J reaches its
lower bound for f̂ = u. Hence all constant digital images
meet

{c1 | c ∈ P } ∈ KG ∩ S n
P and {c1 | c ∈ P } ∈ KI ∩ S n

P .

Consequently,

KG ∩ S n
P �= ∅ and KI ∩ S n

P �= ∅.

One can ask what histogram modification would be needed
for a constant image. However, there are other simple im-
ages that belong to (KG ∪ KI ) ∩ S n

P . We can reasonably
conjecture the following:

• KG ∩ S n
P is essentially composed of simple (synthetic,

in practice) images. For most of them, if some histogram
modification was needed, it should be defined in a proper
way.

• The ratios

|(KG ∩ S n
P )|

|S n
P | and

|(KI ∩ S n
P )|

|S n
P |

should be numbers close to zero.

Being impossible to prove such a conjecture, we cannot
guarantee that for any digital image u ∈ P n, the entries of

4These polynomial functions yield also arbitrarily large values that ex-
ceed the bounded set P .

the minimizer f̂ = F (u) can be ordered in a strictly increas-
ing way. However, the numerical results on 8-bit images in
Table 5 (in Sect. 5) shows that our method enables strict or-
dering for all tested images.

3.3 Selection of the Parameters

Objectives J of the form given by (2)–(3) belong to a wider
family of objectives satisfying Hypotheses 1 and 2 that were
studied in [5]. Below we sketch some of the main results
of [5] as far as they are important to tune our applications.
Using Hypothesis 1, for any α1 fixed, ψ ′(·, α1) is odd and
strictly increasing on R, hence t �→ ψ ′(t, α1) is invertible on
(−1,1). So the function

b(y,α1)
def= (

ψ ′)−1
(y,α1) ∈ R, ∀y ∈ (−1,+1), ∀α1 > 0,

(12)

is well defined. Combining our assumptions with [5, Re-
mark 1] shows that for any α1 fixed, y �→ b(y,α1) is contin-
uous, odd and strictly increasing. Under Neumann or peri-
odic boundary conditions, |Ni | is constant for any i ∈ In. Let

us denote η
def= |Ni |. If we consider the four nearest neigh-

bors then η = Ni = 4 and for the eight nearest neighbors,
η = 8. Given u, let f̂ be the minimizer of J (·,u). According
to [5, Theorems 1 and 2]

β <
1

η
⇒ b(c βη,α1) ≤ ‖̂f − u‖∞ < b(βη,α1), (13)

where

c = φ′(νu − 2b(βη,α1), α2) < 1 (14)

and νu is a constant computed from the input image. It is
worth emphasizing that the upper bound in (13) is inde-
pendent of the input image u and of the particular shape
of φ provided that the latter obeys Hypotheses 1–2. Using
our (stronger) assumptions and [5, Lemma 2], for βη < 1
fixed, α1 �→ b(βη,α1) is strictly increasing from (0,+∞)

to (0,+∞). Hence we can choose β ∈ (0,1/η) and α1 > 0
such that the upper bound in (13) equals any fixed num-
ber. In our application, we will require that this bound
is quite small, around 0.1, in order to guarantee that f̂ is
close enough to u. According to [5, Theorem 3] and [5,
Fig. 7], the number νu − 2b(βη,α1) � 0 is quite large
when b(βη,α1) < 0.5. From (14) and Hypothesis 2, de-
creasing α2 > 0 towards zero increases c close to one, hence
‖̂f − u‖∞ can be arbitrarily close to b(βη,α1).

For

ψ(t) =
√

t2 + α1, φ(t) =
√

t2 + α2 and |Ni | = 4 = η,
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we have

β <
1

4
⇒ b(βη,α1) = 4β

√
α1

1 − (4β)2
and

c = νu − 2b(βη,α1)√
(νu − 2b(βη,α1))2 + α2

. (15)

In our experimental setting, β = 0.1 and α1 = 0.05, which
yields b(βη,α1) = 0.0976. For the images in Fig. 5 we com-
puted that νu ∈ [52,205] in which case choosing α2 = 0.05
entails c ≈ 1.

4 Numerical Scheme

4.1 Algorithm

Given an input image u, the minimizer f̂ of J (·,u) provides
auxiliary information to sort the pixels of u. More precisely,
2-tuples (u[i],̂ f[i]) are used as described next

∀i �= j,

{ [u[i] < u[j ]] or [u[i] = u[j ] and f̂[i] < f̂[j ]] ⇒ i ≺ j ;
[u[i] > u[j ]] or [u[i] = u[j ] and f̂[i] > f̂[j ]] ⇒ i � j.

(16)

The resulting algorithm for exact histogram specification
using the variational approach presented in Sect. 3 is sum-
marized in Algorithm 1.

Step 2 in the algorithm is aimed to reach a solution f̂ such
that (16) can be applied to all pairs (i, j), i �= j . This algo-
rithm is quite general and can be applied using any functions
(ψ,φ) obeying Hypotheses 1 and 2—for some examples see
Table 1.

A clear advantage of our method compared with the LM
and the WA methods is that in our case ordering is obtained

Algorithm 1 Exact Histogram Specification Using Varia-
tional Approach
Input: the input image u, the specified histogram h and the

intensity value set p.
Output: the specified image v.

1: Initialize α1, α2 and β according to (13) for b small
enough;

2: f̂ = arg minf J (f,u);
3: Set the tuple κ[i] ← (u[i],̂ f[i]), ∀i ∈ In;
4: Start from the first pixels on the ordering list, assign the

first h[1] pixels with intensity value p[1], the next h[2]
pixels with intensity value p[2], and so on until all pixels
are assigned to their new intensities; the resulting image
is the specified image v.

5: return v.

by comparing only two images—the input u and the mini-
mizer f̂. The LM method [16] needs to compare (and keep in
memory) at least 6 images. For WA method, this number is
9 because the Haar wavelet basis with 2 × 2 filters and 4 × 4
filters is used.

4.2 Implementation of Algorithm 1

There are many algorithms in literature to compute the min-
imizer f̂ of J (·,u) in step 2 of the Algorithm. These in-
clude partial differential equation based methods such as
explicit method [49], semi-implicit method [32], operator
splitting [38], lagged diffusivity fixed point iterations [55],
Polak-Ribière CG method [6], majorization-minimization
algorithms [7, 23, 28], Nesterov algorithms [36] and so on.
We used a pseudo-conjugated Polak-Ribière minimization
method [6].

For our pixel sorting method, we minimize J as defined
by (3) where Ni is the set of the four adjacent neighbors and

ψ(t) =
√

t2 + α1 and φ(t) =
√

t2 + α2. (17)

We have η = |Ni | = 4 hence we must use β < 0.25. Follow-
ing also the discussion in Remark (a) in Sect. 3, we select

β = 0.1 and α1 = α2 = 0.05. (18)

According to (15) and (17) we are guaranteed that
‖̂f − u‖∞ < 0.0976, which is a reasonable bound to ob-
tain a real-valued image close enough to u. For the images
shown in Fig. 5, the constant νu in (14) ranges between 52
and 205. For our choice of α2, the constant c in (13) sat-
isfies c ∈ (1 − 10−5,1). Therefore, for all these images the
minimizer of J obeys

‖̂f − u‖∞ � 0.0976.

This is a good property ensuring that the minimizer is close
enough to the input digital image while the interval is large
enough to enable pixels of the minimizer corresponding to
each intensity level in u, say u[i] = pk , to take different val-
ues in the interval (pk − 0.0976,pk + 0.0976).

4.3 Some Practical Limitations

In spite of the theory presented in Sect. 3, it can occur that
the minimizer f̂ of J (·,u) contains some equally valued pix-
els. Several important reasons are mentioned next.

• The real numbers that a computer treats are in fact just a
large but finite set of numbers. E.g. Matlab cannot distin-
guish numbers smaller than 2.2 × 10−16.

• The theory supposes that we deal with exact minimiz-
ers of J , yet in practice we cannot get such minimiz-
ers. Note that a J satisfying Hypotheses 1 and 2 con-
tains large nearly flat regions, so its minimization is not
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Fig. 5 All 15 digital images used in the tests in this section and their histograms. The gray values of these images belong to {0, . . . ,255}

easy. The algorithm being initialized with the digital in-
put image u, an inexact minimizer f̂ of J might contain
pixels with equal values. Indeed, we have observed that
in such cases, increasing the precision of the minimiza-
tion method usually enables to strictly sort all pixels of f̂.
However, in some cases this could require long computa-
tions and for practical reasons, a compromise is done by
fixing the maximum number of iterations.

• If the digital image contains large constant regions or if
it involves several equal patterns having the same back-
ground (this typically can arise for images having a low
compression rate), one should expect that the resultant f̂
can have pixels sharing the same value.

There might be some strategies to improve sorting in
case of failure. It is easy to see that the minimizer function
F : R

n → R
n is differentiable with respect to all parame-

ters α1, α2, β . These parameters can slightly be changed

so that f̂ remains close enough to u—rigorous tools for
such modifications are provided in Sect. 3.3. Also, in-
stead of the four adjacent neighbors, on may consider the
8 nearest neighbors. Any such change modifies the pos-
sible intersections of KG and KI in Theorem 1 with the
set Sn

P in (11). These questions are not considered here as
they would lead to a trickier algorithm.

• Last, we remind that the set KG ∩ S n
P is not empty.

5 Experimental Results

Two practical problems are considered next: contrast com-
pression restoration and equalization inversion using ex-
act histogram specification. Our method to order the pix-
els was applied as described in (17) and (18). We ran the
Polak-Ribière CG minimization with stopping rule given by
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Fig. 6 Contrast compression

Table 2 Data are 3-bits images. The PSNR (dB) between the true im-
age w and the output image v

Image PSNR Fail % CPU

LM WA Ours LM WA Ours LM WA Ours

moon 31.15 30.70 31.68 52.29 75.75 0.04 0.44 0.96 1.08

clock 31.32 30.68 32.60 67.93 76.58 30.12 0.37 0.74 0.74

chemical 30.20 29.24 30.47 34.28 55.97 0.04 0.40 0.77 1.08

tree 29.86 29.20 30.38 46.45 59.63 6.15 0.43 0.82 1.02

couple 29.30 28.77 29.74 75.90 82.72 12.83 0.34 0.77 1.03

aerial 29.39 28.62 29.74 57.83 67.72 3.19 1.68 4.49 4.19

stream 29.22 28.60 29.46 34.68 57.85 0.06 1.78 4.32 3.68

truck 32.03 31.34 32.36 69.49 89.60 2.33 1.70 4.55 3.90

airplane 31.16 30.76 32.86 88.27 94.37 41.20 1.36 4.37 3.88

tank 31.27 30.74 31.67 75.13 89.74 0.60 1.79 4.71 3.97

boat 30.59 29.75 31.18 63.46 78.81 7.76 1.67 4.33 3.65

mandrill 28.65 28.21 28.95 27.13 46.73 0.10 1.75 4.60 3.97

sailboat 30.72 29.74 31.34 56.14 71.63 6.40 1.63 4.10 3.48

man 31.27 30.42 31.62 75.60 87.92 6.89 8.27 20.81 12.70

Pentagon 30.33 29.84 30.66 68.82 87.35 0.58 9.56 23.52 13.66

Means 30.43 29.77 30.98 59.56 74.83 7.89 2.21 5.59 4.14

‖D1 J (̂fk,u)‖∞ ≤ n × 10−6 and limiting the iteration num-
ber to 35. Our method was compared with the local mean
(LM) algorithm [16] for K = 6 and with the wavelet-based
algorithm (WA) [56] for Haar wavelet for K = 9, as recom-
mended by the authors. The experiments were performed
using a Mac OS X 10.7.2 and MATLAB v7.12 on a Mac-
Book Air Laptop with an Intel Core i5 1.7 GHZ processor
and 4 GB of RAM.

Here we present numerical results on 15 digital images
of different sizes with gray values in {0, . . . ,255}. They are
available at http://sipi.usc.edu/database/. We selected im-
ages with various sizes, quality and content (presence or
quasi-absence of edges, textures, nearly flat regions). The
images and their histograms are shown in Fig. 5. We observe
that most of these images have quite singular histograms.

In order to measure the results quantitatively, we start out
with a given true quantized image w with histogram hw, we
degrade it to obtain an input quantized image u. By apply-
ing the three methods on u with prescribed histogram hw,
we obtain an output image v which is in fact a restored ver-
sion of w. We use peak-signal-to-noise-ratio to measure the

Table 3 Data are 4-bits images. The PSNR (dB) between the true im-
age w and the output image v

Image PSNR Fail % CPU

LM WA Ours LM WA Ours LM WA Ours

moon 35.25 34.74 35.51 16.75 40.14 0.00 0.47 1.20 0.95

clock 36.14 35.66 37.52 52.54 62.66 18.17 0.32 0.77 1.15

chemical 34.71 33.83 35.05 8.70 20.01 0.01 0.41 0.81 1.00

tree 34.76 34.34 34.95 22.15 36.02 4.05 0.34 0.72 1.13

couple 35.11 34.43 35.63 49.56 60.04 6.96 0.44 0.73 0.89

aerial 34.46 33.76 34.95 28.56 42.21 0.36 1.79 4.38 3.87

stream 34.18 33.73 34.49 9.61 20.25 0.00 1.76 5.62 4.12

truck 35.93 35.23 36.19 39.81 60.85 0.50 1.92 5.92 3.50

airplane 37.72 37.28 38.70 75.92 88.18 7.88 1.99 4.64 3.99

tank 35.49 34.90 35.69 44.58 64.84 0.01 2.04 5.63 4.03

boat 35.67 34.77 36.13 32.86 52.41 0.29 2.06 5.18 4.22

mandrill 33.40 33.12 33.75 8.15 17.16 0.03 1.88 4.80 4.17

sailboat 35.29 34.65 35.52 27.94 46.96 0.51 1.76 4.70 4.33

man 35.78 34.94 36.13 46.59 64.64 3.43 8.84 24.76 11.91

Pentagon 34.71 34.32 35.16 37.84 61.45 0.05 10.04 26.14 12.33

Means 34.73 34.07 35.20 32.80 48.80 2.53 2.33 6.53 4.07

quality of the output image v with respect to w, defined as
PSNR = 20 log10(255NM/‖v − w‖2).

One should keep in mind that

• the performance of LM and WA decrease when the num-
ber of gray-values in the input image decreases;

• LM is less efficient for larger image sizes.

5.1 Restoration of Contrast Compression

The input image u is obtained from w by the degradation:
u = fix(w/28−k), where k = 1,2, . . . ,7. We show the pro-
cess of contrast compression in Fig. 6. This situation arises
when a picture is taken with insufficient exposure time, or
when we want to compress the image by reducing the num-
ber of intensity levels. For example, a 7-bit image can be
obtained from an 8-bit image by using k = 7. In the tests,
we used LM, WA and our method to obtain the output im-
ages v having a prescribed histogram hw.

We compare LM, WA and our algorithm. The compari-
son results are shown in Tables 2, 3 and 4 for 3, 4, 5 bits
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Fig. 7 Histogram Equalization
Inversion. A true quantized
image w with histogram hw is
equalized to the input image u
using exact histogram
specification method. The task
is to restore w from the input
image u and the prescribed
histogram hw using the same
exact histogram specification
method. The specified image v
is a restored version of w

Table 4 Data are 5-bits images. The PSNR (dB) between the true im-
age w and the output image v

Image PSNR Fail % CPU

LM WA Ours LM WA Ours LM WA Ours

moon 39.69 39.37 39.81 0.62 3.44 0.00 0.47 0.98 1.16

clock 41.24 40.79 42.29 39.10 48.76 8.25 0.40 0.75 0.83

chemical 39.52 38.95 39.78 0.72 2.21 0.00 0.49 0.76 1.14

tree 39.78 39.51 40.17 13.40 18.34 1.16 0.33 0.77 0.93

couple 40.56 39.85 41.17 24.82 33.59 0.80 0.41 1.22 1.00

aerial 39.70 39.19 40.20 12.38 19.05 0.08 1.85 4.35 4.67

stream 39.99 39.72 40.14 1.82 4.16 0.00 1.71 4.30 4.05

truck 40.31 39.77 40.52 8.03 22.80 0.00 2.20 4.75 3.87

airplane 41.97 41.75 42.16 60.54 77.30 0.26 1.83 4.41 3.75

tank 39.89 39.45 40.03 8.41 16.95 0.00 1.96 4.55 3.94

boat 39.86 39.34 40.11 7.11 19.02 0.05 1.62 4.32 3.96

mandrill 38.71 38.52 38.93 0.36 1.91 0.00 1.60 3.75 8.69

sailboat 39.74 39.45 39.88 9.94 19.91 0.03 1.64 4.30 8.76

man 40.24 39.68 40.44 15.38 26.30 0.18 8.25 20.98 12.60

Pentagon 39.30 39.07 39.56 5.47 20.11 0.01 8.51 21.64 11.84

Means 39.40 39.07 39.93 13.40 21.80 0.60 2.20 5.47 4.87

per pixel, respectively, where the best results are printed in
boldface. We see from the PSNR values that our method out-
performs LM and WA in quality in all cases; this can be ex-
plained by the constraint that ‖̂f − u‖∞ < 0.1 and that our
algorithm enables a strongly better strict ordering.

One important indicator for a good exact histogram spec-
ification algorithm is to observe if it can establish a strict
ordering for all the pixels. If a sorting method yields two or
more pixels sharing the same value we call the pixels fail-
ure pixels. Table 2–4 shows the percentages of failure pixels
produced by the three methods. We find that LM and WA
have a high number of equally valued pixels.

5.2 Histogram Equalization Inversion

We consider the application of the histogram equalization
inversion, which is to recover the true quantized image w

Table 5 The PSNR (dB) between the true image w and output im-
ages v

Image PSNR Fail % CPU

LM WA Ours LM WA Ours LM WA Ours

moon 47.39 46.50 47.83 0.07 0.11 0.00 0.67 1.10 3.58

clock 51.69 51.56 51.79 0.53 2.41 0.00 0.65 1.20 2.01

chemical 49.34 48.90 49.67 0.03 0.10 0.00 0.67 1.06 3.05

tree 51.94 51.84 52.02 0.03 0.18 0.00 0.54 1.12 2.81

couple 44.23 43.71 44.66 1.38 1.97 0.00 0.60 1.13 2.35

aerial 48.36 48.06 50.06 0.00 0.02 0.00 2.86 6.08 9.35

stream 44.76 45.00 45.08 0.37 0.71 0.00 2.65 6.13 7.98

truck 49.67 49.51 49.96 0.12 0.24 0.00 2.82 5.90 12.43

airplane 46.74 46.26 47.24 1.73 8.96 0.00 3.01 7.40 8.40

tank 48.11 48.15 48.34 0.02 0.06 0.00 2.95 6.70 12.53

boat 49.51 49.58 49.89 0.06 0.09 0.00 2.88 5.97 13.08

mandrill 48.27 49.47 49.76 0.00 0.00 0.00 2.56 5.33 12.68

sailboat 50.85 50.72 51.30 0.01 0.05 0.00 2.58 5.29 17.16

man 49.23 49.18 49.44 0.17 0.40 0.00 13.03 28.01 39.96

Pentagon 50.69 50.62 51.36 0.01 0.01 0.00 13.74 29.32 39.48

Means 48.72 48.60 49.23 0.30 1.02 0.00 3.48 7.45 12.46

with histogram hw from its specified version u. This was the
main application used in [16] to demonstrate the interest of
the LM method. Let u = T (w,h) be the process to specify
the image w with histogram hw to an image u such that the
histogram of u is h. The quantized image w can be exactly
recovered by T (u,hw) under the hypothesis of order preser-
vation by the method. Since the ordering among the pixels of
w is not identical with that among pixels of u, the recovered
image v = T (u,hw) is just an approximation of w. We show
the process of histogram equalization inversion in Fig. 7.

Table 5 shows the PSNR, the failure percentage, the CPU
running time of the results by the three methods. We notice
from Table 5 that WA method yields better PSNR than LM
method in all images. In all these cases, our results are much
better. Whereas our method can sort all the pixels in all the
8-bit images tested, the only 8-bit image where the other two
methods successfully sort is the “mandrill” image. All these
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Fig. 8 Enlarged portions of “Aerial” image, “Couple” image, and “Man” image, respectively

Fig. 9 The enlarged portions of the different images between w and v by LM (Left), WA (Middle) and our method (Right) for “Aerial” image
(first row), “Couple” image (second row), and “Man” image (third row). Our method yields fewest features in the difference images
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results show that the ordering enabled by our method better
fits real-world digital images.

Figures 9 gives the enlarged portions of the difference im-
ages on “Aerial”, “Couple”, “Man” images, the correspond-
ing enlarged portions of the input image are shown in Fig. 8.
We can discern more features in the difference images by
both LM method and WA method than by our method. It
demonstrates that our algorithm yields the best restoration.

6 Conclusions and Perspectives

In this paper, we propose a variational approach for exact
histogram specification. Since the energy that we minimize
is smooth, its minimizers are real-valued images whose pix-
els are different from each other with a very high probability.
The latter enables us to strictly order the pixels of gener-
ically all 8-bit images and to obtain much better ordering
results than the competing methods in all cases. Our param-
eter choice guarantees that ‖̂f − u‖∞ � 0.1 and the choice
of J is such that this small residual contains some quanti-
zation noise. This, combined with the much better ordering
rate, explains why the obtained results outperform the exist-
ing methods. In all tested cases, our method gave not only a
much better ordering, but also yielded the best PSNR. Hence
the ordering provided by our method fits better all these var-
ious real-world digital images.

Our method is simple and obviously very efficient though
we used a standard minimization algorithm. We envisage the
conception of a specialized minimization scheme in order to
improve the computation speed. Extension to color images
will also be considered.

Appendix A

Given a square matrix A, the expression A � 0 means that A

is positive definite and A � 0 that A is positive semi-definite.

A.1 Proof of Proposition 1

By Hypothesis 1, for any u ∈ R
n, the function J (·,u) in (2)

is strictly convex and coercive, hence for any u and β > 0, it
has a unique minimizer. Each minimizer point f̂ of J (̂f,u)

is determined by D1 J (̂f,u) = 0. We have

0 = D1 J (̂f,u) = D1Ψ (̂f,u) + βD1Φ(̂f), (19)

where

D1Ψ (̂f,u) =
⎡

⎢
⎣

ψ ′(̂f[1] − u[1])
...

ψ ′(̂f[p] − u[p])

⎤

⎥
⎦

T

and

D1Φ(̂f) =
⎡

⎢
⎣

φ′(gT
1 f̂)

...

φ′(gT
r f̂)

⎤

⎥
⎦

T

G.

(20)

Differentiation with respect to f̂ yet again yields

D2
1 J (̂f,u) = D2

1Ψ (̂f,u) + βD2
1Φ(̂f) ∈ R

n×n. (21)

Here, D2
1Ψ (̂f,u) is an n × n diagonal matrix with strictly

positive entries according to Hypothesis 1:

D2
1Ψ (̂f,u)[i, i] = ψ ′′(̂f[i] − u[i]), ∀i ∈ In. (22)

Hence D2
1Ψ (F (u),u) � 0. Furthermore,

D2
1Φ(̂f) = GT diag

(
φ′′(gT

1 f̂), . . . , φ′′(gT
r f̂)

)
G, (23)

so D2
1Φ(̂f) � 0. It follows that D2

1 J (̂f,u) � 0, for any u ∈
R

n.
Consequently, Lemma 1 holds true for any u ∈ R

n and
any β > 0. The same lemma shows that the statement of
Proposition 1 holds true for O = R

n.

A.2 Proof of Lemma 2

Since F is a local minimizer function,

D1 J (F (u),u) = 0, ∀u ∈ R
n. (24)

We can thus differentiate with respect to u on both sides of
(24) which yields

D2
1 J (F (u),u)DF (u)+D2D1 J (F (u),u) = 0, ∀u ∈ R

n.

(25)

Note that DF (u) and D2D1 J (F (u),u) are n × n real ma-
trices. The Hessian matrix H(u) = D2

1 J (F (u),u) can be
expanded using (21):

H(u) = D2
1Ψ (F (u),u) + βD2

1Φ(F (u)) ∈ R
n×n.

Replacing f̂ by F (u) in (22) and (23) yields

H(u) = diag
({

ψ ′′(Fi (u) − u[i])}n

i=1

)

+ βGT diag
({

φ′′(gT
i F (u))

}n

i=1

)
G,

as stated in (5). Using Hypothesis 1, it is readily seen that

diag
({

ψ ′′(Fi (u) − u[i])}n

i=1

) � 0 and

GT diag
({

φ′′(gT
i F (u))

}n

i=1

)
G � 0.

Then H(u) � 0, hence H(u) is invertible.
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Using (19) and (A.1), where we consider F (u) in place
of f̂, shows that

D2D1 J (F (u),u) = D2D1Ψ (F (u),u)

= −diag
({

ψ ′′(Fi (u) − u[i])}n

i=1

)
. (26)

Then (25) is equivalent to

DF (u) = −(
H(u)

)−1
D2D1 J (F (u),u)

= (
H(u)

)−1diag
({

ψ ′′(Fi (u) − u[i])}n

i=1

)
,

∀u ∈ R
n. (27)

Obviously, rank
(
DF (u)

) = n. This result is independent of
the value of β > 0.

A.3 Proof of Theorem 1

The proof consists of two parts.

(I) Given g ∈ G , where G is given in (8), consider the func-
tion fg : R

n → R defined by

fg(u) = gT F (u), ∀u ∈ R
n.

By Lemma 2, DF (u) is invertible. Hence5 gT DF (u) �= 0
and thus

rank
(
fg(u)

) = rank
(
gT DF (u)

) = 1, ∀u ∈ R
n.

In particular, fg does not have critical points. Its inverse of
the origin Kg reads

Kg
def= f −1

g (0) = {u ∈ R
n | gT F (u) = 0}. (28)

By an extension6 of the constant rank theorem [4], the subset
Kg in (28), supposed nonempty, is a Cs−1 manifold of R

n

of dimension n − 1. Hence L
n(Kg) = 0 (see e.g. [20, 31]).

Using Proposition 1, fg is Cs−1-continuous, so Kg is closed.
The set KG in (9) also reads

KG =
⋃

g∈G
Kg.

Using that G is of finite cardinality, it follows that KG is
closed in R

n and that

L
n
(
KG

) = 0.

The conclusion is clearly independent of the value of β > 0.

5If we had gT DF (u) = 0 then gT = (DF (u))−1 0 = 0 which would
contradict the fact that g ∈ G .
6We use the following extension of the constant rank theorem, restated
in our context (for details one can check [4, p. 96]). Let f be a Cs

application from an open set O ⊂ R
n to R. Assume that Df (u) has

constant rank r for all u ∈ O. Given a c ∈ R, the inverse image f −1(c)

(supposed nonempty) is a Cs -manifold of R
n of dimension n − r .

(II) Given (i, j) ∈ In × In (including i = j ), define the sub-
set Ki,j ⊂ R

n as

Ki,j = F −1
i (uj ) = {

u ∈ R
n | Fi (u) = uj

}
. (29)

From Proposition 1, Fi : R
n → R is Cs−1 continuous, so

Ki,j is closed in R
n. By Lemma 2, all rows of DF (u) ∈

R
n×n are linearly independent, ∀u ∈ R

n. Consequently, for
any i ∈ In,

rank
(
DFi (u)

) = 1, ∀u ∈ R
n.

Using the same arguments as in (I), Ki,j is a Cs−1 submani-
fold of R

n of dimension n − 1, hence

L
n(Ki,j ) = 0.

Noticing that KI in (10) is a finite union of (n − 1)-
dimensional submanifolds in R

n like Ki,j entails the result.
The independence of these results from β > 0 is obvious.

A.4 A Lemma Needed to Prove Proposition 2

Lamma 3 Let (A, B) ∈ R
n×n × R

n×n satisfy

A = diag
({ai}ni=1

)
where ai > 0,∀i ∈ In,

B = BT , B � 0.

Consider the n × n matrix M
def= (A + B)−1A. Then all

eigenvalues of MT M belong to (0,1].

Proof Let λ be an eigenvalue of (A + B)−1A and v ∈ R
n \

{0} a right eigenvector corresponding to λ. Then

λv = Mv

⇔ λv = (A + B)−1Av (30)

⇔ λ(A + B)v = Av

⇔ λBv = (1 − λ)Av. (31)

If λ = 0 then (31) yields Av = 0 which is impossible be-
cause A � 0, AT = A and v �= 0. Hence

λ �= 0. (32)

Furthermore, (31) yields

λvT Bv = (1 − λ)vT Av.

Using that A � 0 and B � 0, the last equation shows that

1

λ
− 1 = vT Bv

vT Av
≥ 0. (33)

Combining the latter inequality with (32) entails that

0 < λ ≤ 1. (34)
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Hence all eigenvalues of M live in (0,1].
Using that A is diagonal with positive diagonal entries,

we can write down

A + B = A
1
2

(
I + A− 1

2 BA− 1
2

)
A

1
2 . (35)

Then the definition of M shows that7

MT M = A(A + B)−2A

=
(
I + A− 1

2 BA− 1
2

)−2
. (36)

Using (35), the expression in (30) is equivalent to

λv = A− 1
2 (I + A− 1

2 BA− 1
2 )−1A− 1

2 Av

⇔ λ
(
A

1
2 v

)
= (I + A− 1

2 BA− 1
2 )−1

(
A

1
2 v

)
.

Combining the last result with (36) yields

MT M
(
A

1
2 v

)

=
(
I + A− 1

2 BA− 1
2

)−1 (
I + A− 1

2 BA− 1
2

)−1 (
A

1
2 v

)

= λ
(
I + A− 1

2 BA− 1
2

)−1 (
A

1
2 v

)

= λ2
(
A

1
2 v

)
.

Consequently, λ2 is an eigenvalue of MT M corresponding

to an eigenvector given by (A
1
2 v). Thus all eigenvalues of

MT M belong to (0,1] as well. �

A.5 Proof of Proposition 2

Let us denote

A(u) = diag
({

ψ ′′(Fi (u) − u[i])}n

i=1

)
,

B(u) = GT diag
({

φ′′(gT
i F (u))

}n

i=1

)
G,

as well as

M(u) = (A(u) + βB(u))−1A(u).

Then DF (u) = M(u). We have

F (u + ζ ) − F (u)

=
∫ 1

0
DF (u + tζ )ζdt

=
∫ 1

0
M(u + tζ )ζ dt.

Using Lemma 3 and Hypothesis 1, for any v ∈ R
n, all eigen-

values of (M(v))T M(v) are in (0,1]. By the definition of the

7Remind that A = AT .

matrix 2-norm [33] one obtains

t ∈ [0,1] and ζ ∈ R
n ⇒ ‖M(u + tζ )‖2 ≤ 1.

Noticing that M(·) is a continuous mapping, the mean value
theorem (see e.g. [4, 14]) shows that

‖F (u + ζ ) − F (u)‖2 ≤ max
0≤t≤1

‖M(u + tζ )‖2‖ζ‖2 ≤ ‖ζ‖2.
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