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ANALYSIS OF HALF-QUADRATIC MINIMIZATION METHODS
FOR SIGNAL AND IMAGE RECOVERY∗

MILA NIKOLOVA† AND MICHAEL K. NG‡

Abstract. We address the minimization of regularized convex cost functions which are cus-
tomarily used for edge-preserving restoration and reconstruction of signals and images. In order to
accelerate computation, the multiplicative and the additive half-quadratic reformulation of the origi-
nal cost-function have been pioneered in Geman and Reynolds [IEEE Trans. Pattern Anal. Machine
Intelligence, 14 (1992), pp. 367–383] and Geman and Yang [IEEE Trans. Image Process., 4 (1995),
pp. 932–946]. The alternate minimization of the resultant (augmented) cost-functions has a simple
explicit form. The goal of this paper is to provide a systematic analysis of the convergence rate
achieved by these methods. For the multiplicative and additive half-quadratic regularizations, we
determine their upper bounds for their root-convergence factors. The bound for the multiplicative
form is seen to be always smaller than the bound for the additive form. Experiments show that the
number of iterations required for convergence for the multiplicative form is always less than that
for the additive form. However, the computational cost of each iteration is much higher for the
multiplicative form than for the additive form. The global assessment is that minimization using
the additive form of half-quadratic regularization is faster than using the multiplicative form. When
the additive form is applicable, it is hence recommended. Extensive experiments demonstrate that
in our MATLAB implementation, both methods are substantially faster (in terms of computational
times) than the standard MATLAB Optimization Toolbox routines used in our comparison study.
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1. Introduction. This work addresses a wide class of problems where a sought
vector x̂ ∈ Rp (e.g., an image or a signal) is estimated based on degraded data y ∈ R

q

by minimizing a cost function J : R
p → R which combines a quadratic data-fidelity

term and a regularization term Φ, weighted by a parameter β > 0:

x̂ = min
x∈Rp

J(x),(1.1)

J(x) = ‖Ax− y‖2 + βΦ(x).(1.2)

In a statistical framework, this data-fidelity term assumes that data y are obtained
from the original x by a linear transform, modeled by A ∈ R

q×p, and that they
are contaminated by white Gaussian noise. Such data-fidelity terms are popular in
denoising, in deblurring, and in numerous inverse problems such as seismic imaging,
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nondestructive evaluation, and X-ray tomography [1, 12, 28, 29, 31]. We focus on
regularization terms Φ of the form

Φ(x) =

r∑
i=1

φ(gTi x),(1.3)

where gTi : R
p → R, for i = 1, . . . , r, are linear operators. Typically, {gTi x} are first-

or second-order differences between neighboring samples in x. For example, if x is a
one-dimensional signal, usually gTi x = xi − xi+1, for i = 1, . . . , p − 1. Let G denote
the r × p matrix whose ith row is gTi , for i = 1, . . . , r. Some basic requirements are

φ �≡ 0 and ker(ATA) ∩ ker(GTG) = {0}.(1.4)

We focus on convex, edge-preserving potential functions φ : R → R in (1.3), because
they give rise to image and signal estimates of high quality, involving edges and
homogeneous regions. Examples of such functions are [4, 5, 8, 17, 22]

φ(t) = |t|α, 1 < α ≤ 2,(1.5)

φ(t) =
√
α + t2,(1.6)

φ(t) = log(cosh(αt)),(1.7)

φ(t) = |t|/α− log (1 + |t|/α) ,(1.8)

φ(t) =

{
t2/2 if |t| ≤ α,
α|t| − α2/2 if |t| > α,

(1.9)

where α > 0 is a parameter. We will systematically consider that φ is convex, even,
and C2 and that

ATA is invertible and/or φ′′(t) > 0 ∀t ∈ R.(1.10)

Remark 1. It is easy to see that the assumptions in (1.10) and (1.4) guarantee
that for every y ∈ R

p, the function J has a unique minimum and that the latter is
strict.

However, the minimizers x̂ of cost-functions J involving edge-preserving regular-
ization are nonlinear with respect to y and their computation is costly, especially when
A has many nonzero entries and/or A is ill-conditioned. In order to cope with the
computation, half-quadratic reformulation of J was pioneered, in two different ways,
in [13, 14]. The idea is to construct an augmented cost function J : R

p × R
r → R

which involves an auxiliary variable b ∈ R
r,

J (x, b) = ‖Ax− y‖2 + β

r∑
i=1

(
Q(gTi x, bi) + ψ(bi)

)
,(1.11)

where Q(., s) : R → R is quadratic for any s ∈ R and ψ : R → R satisfies

φ(t) = min
s∈R

{Q(t, s) + ψ(s)} ∀t ∈ R.(1.12)

Such a dual potential function ψ is determined using the theory of convex conjugacy
[18, 27]. Condition (1.12) ensures that

J(x) = min
b∈Rr

J (x, b) ∀x ∈ R
p.(1.13)
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The regularization term involved in J is half-quadratic, and hence the name of the
method. The minimizer (x̂, b̂) of J is calculated using alternate minimization. Let
the solution at iteration (k − 1) read (x(k−1), b(k−1)). At iteration k we calculate

b(k) such that J (x(k−1), b(k)) ≤ J (x(k−1), b) ∀b ∈ R
r,(1.14)

x(k) such that J (x(k), b(k)) ≤ J (x, b(k)) ∀x ∈ R
p.(1.15)

This amounts to finding b(k) and x(k) according to

b(k) =
[
σ(gTi x

(k−1))
]r
i=1

,

x(k) = χ(b(k)),
(1.16)

where σ : R → R and χ : R
r → R

p are minimizer functions which are defined in
sections 2 and 3. For every t ∈ R, the scalar σ(t) is such that

Q(t, σ(t)) + ψ(σ(t)) ≤ Q(t, s) + ψ(s) ∀s ∈ R.(1.17)

For every b ∈ R
r, the vector χ(b) ∈ R

p is such that

‖Aχ(b) − y‖2 + β

r∑
i=1

Q(gTi χ(b), bi) ≤ ‖Ax− y‖2 + β

r∑
i=1

Q(gTi x, bi) ∀x ∈ R
p.

(1.18)

The key points are that each component b
(k)
i is calculated using a scalar function σ

and that x(k) is calculated using an affine function of y, namely χ. Moreover, both
functions σ and χ have an explicit form. Thus b(k) and x(k) are easy to compute and
allow J to be decreased.

Remark 2. From (1.14)–(1.15), for all k ∈ N, we have

J (x(k+1), b(k+1)) ≤ J (x(k), b(k+1)) ≤ J (x(k), b(k)).(1.19)

Since J is bounded below, the sequence

{. . . ,J (x(k), b(k)),J (x(k), b(k+1)),J (x(k+1), b(k+1)), . . .}

converges as k → ∞. In particular, J(x(k+1)) ≤ J(x(k)), for all k, and the sequence
{J(x(k))} is convergent.

By extending the notion of line-variable [15], Geman and Reynolds [13] first con-
sidered quadratic terms of the multiplicative form,

Q(t, s) =
1

2
t2s for t ∈ R, s ∈ R+.(1.20)

Later, Geman and Yang proposed in [14] the additive form for Q,

Q(t, s) = (t− s)2 for t ∈ R, s ∈ R.(1.21)

In [13, 14], half-quadratic regularization was used to simplify simulated annealing
minimization in cases when φ is nonconvex and A has many nonzero entries. These
fruitful ideas have been pursued and deepened by many authors. The multiplicative
form (1.20) was considered in [7, 8, 11, 19, 21, 30]. The additive form (1.21) seems
to have suggested a narrower interest. It was considered in [3, 7, 10, 19]. In [10],
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the auxiliary variable is introduced in a nonconvex data-fidelity term. Extensions
of the multiplicative form to interacting line variables b were proposed in [30, 19].
The convergence of the alternate minimization (1.14)–(1.15) of J towards the sought
minimizer x̂ of the original J for the multiplicative form is considered in [8, 11, 19]
and for the additive form in [3] in a continuous setting.

In [3, 7, 10, 13, 14], the numerical results have shown that minimization using half-
quadratic (HQ) regularization can speed up computation compared with the steepest
descent method. However, the convergence rate of HQ minimization methods has
never been analyzed in a systematic way. The effectiveness of the two HQ formulations
(1.20) and (1.21) has never been compared theoretically. The main objective of this
paper is to characterize the speed of convergence and estimate the bound on the
convergence rate relevant to each form of HQ regularization and to compare it with
standard minimization methods. We show that minimization using HQ regularization
amounts to finding the fixed point x̂ of a mapping F : R

p → R
p of the form

F (x) = x− (H(x))
−1

DJ(x),

where H(x) ∈ R
p×p performs a pertinent correction of the steepest descent direction

−DJ(x). We analyze the contraction properties of the mapping F corresponding to
the multiplicative and the additive forms of HQ regularization. In order to compare
the iterations corresponding to these two forms, we focus on the root-convergence
factor [9, 26], namely

C(F, x̂) = sup

{
lim sup
k→∞

∥∥∥x(k) − x̂
∥∥∥ 1

k

: x(0) ∈ R
p

}
.(1.22)

Let us emphasize that C(F, x̂) characterizes the convergence speed for any norm used
to measure the residual ‖x(k)−x̂‖; see, e.g., [26]. Using the linear convergence theorem
[26, p. 301], there are conditions ensuring that

C(F, x̂) = Spectral Radius(DF (x̂)).

For each form we determine an upper bound of the spectral radius of DF at x̂ which
is shown to be strictly smaller than 1. The bound for the multiplicative form is
revealed to be smaller than the bound for the additive form. This result suggests that
the multiplicative form (1.20) needs fewer iterations to find the minimum than the
additive form (1.21). However, the cost per iteration is much smaller for the additive
form than for the multiplicative form. By combining these two factors, we demonstrate
that minimization using the additive form is faster than using the multiplicative form.
When the additive form is applicable, it is more attractive. We also propose a fast
method to effectively recover signals and images using regularization with the Huber
function φ—cf. (1.9)—and a nonsmooth augmented cost-function J . Furthermore,
we discuss different ways to improve the computational cost of HQ minimization.
Extensive experiments based on the MATLAB computing environment demonstrate
that the additive form achieves minimization faster than the multiplicative form, and
that both forms in our MATLAB implementation substantially outperform in terms of
computational times the routines in the MATLAB Optimization Toolbox. (These
results must be qualified by the observation that MATLAB run times for the same
operations can vary by orders of magnitude depending on the particular coding used.)

Organization of the paper. Section 2 is dedicated to the speed of convergence
of the multiplicative form. In section 3, we study the speed of convergence relevant
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to the additive form. The convergence properties of the two forms, multiplicative and
additive, are compared in section 4. Section 5 summarizes the experimental results.
Concluding remarks are presented in section 6.

Notations. When necessary, a vector x ∈ R
p is also written as [xi]

p
i=1. Given

x ∈ R
p, diag(x) ≡ diag ([xi]

p
i=1) is the diagonal p× p matrix whose diagonal elements

are the entries of x. For a function f : R → R, f ′(t−) and f ′(t+) are its left-side
and right-side derivatives at t, respectively. By limt↘0 f(t) we mean the limit of f
when t converges to 0 by positive values. The symbol R+ addresses the nonnegative
reals and R

∗
+ the positive reals. If f : R

p ×R
q → R depends on two variables, Dk

j f is
its kth differential with respect to the jth variable. The Euclidean norm of a vector
u ∈ R

p is denoted ‖u‖. If H is a p×p real matrix, its largest-in-magnitude eigenvalue
is denoted by ρ(H). Furthermore, |||H||| =

√
ρ(HTH), which is in fact the largest

singular value of H. We write H � 0 if H is symmetric and positive definite. The
symbol I stands for identity matrix and 1l for a vector whose entries are equal to 1.
Given x ∈ R

p and δ > 0, we denote B(x, δ) = {u ∈ R
p : ‖x− u‖ ≤ δ}. Furthermore,

S = {x ∈ R
p : ‖x‖ = 1}. We also systematically denote

ν2 = min
{
μ ∈ R+ : μ is an eigenvalue of ATA

}
,

where A is the matrix involved in (1.2).

2. Multiplicative form of half-quadratic regularization.

2.1. Preliminary facts. Based on previous papers, we suppose that

(a) t → φ(t) is convex on R,

(b) t → φ(
√
t) is concave on R+,

(c) φ(t) = φ(−t) ∀t ∈ R,
(d) φ is C1 on R,
(e) φ′′(0+) > 0,
(f) lim

t→∞
φ(t)/t2 = 0.

(2.1)

The dual function ψ is convex and reads

ψ(s) = sup
t∈R

{
−1

2
st2 + φ(t)

}
.(2.2)

As required in (1.12), we have reciprocally (cf. section 7.1 in the appendix)

φ(t) = inf
s∈R

{
1

2
st2 + ψ(s)

}
.(2.3)

The relation between φ and ψ under different assumptions on φ were analyzed in
[8, 13, 19]. Using (1.11) and (1.20), the augmented cost-function J reads

J (x, b) = ‖Ax− y‖2 + β

r∑
i=1

(
bi
2

(gTi x)2 + ψ(bi)

)

= ‖Ax− y‖2 +
β

2
(Gx)Tdiag(b) Gx + β

r∑
i=1

ψ(bi).

(2.4)
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The minimizer function σ, defined by (1.17), admits an explicit form which was first
determined in [8]:

σ(t) =

{
φ′′(0+) if t = 0,
φ′(t)

t
if t �= 0.

(2.5)

For its proof under (2.1), see section 7.1 in the appendix. The expression of σ for
several functions φ is given in Table 4.1. It is useful to notice its main properties.

Remark 3. Suppose that φ satisfies all conditions given in (2.1).
1. Then the function t → σ(t) is decreasing on R+. Indeed, (b) shows that

t → d
dtφ(

√
t) = φ′(

√
t)/(2

√
t) = σ(

√
t)/2 is decreasing on R+.

2. Using (a), (c), and (e), we see that if t > 0, then φ′(t) > 0, and hence σ(t) > 0
for all t ∈ R. Then

σ(t) ∈
(

0, φ′′(0+)
]

∀t ∈ R.(2.6)

Hence, we can consider b in (2.4) only on (0, φ′′(0+) ]
r
. For any b fixed, the

minimizer function χ, introduced in (1.18), is determined by solving with respect to
x the equation D1J (x, b) = 0, that is, H(b)x = 2AT y, where

H(b) = 2ATA + βGTdiag(b)G.(2.7)

Lemma 2.1. Consider the matrix-valued function H : R
r → R

p×p given in (2.7).
If assumption (1.4) holds, then for every ζ > 0 there is a constant λζ > 0 such that
for any b ∈ [ζ,∞)

r
, all eigenvalues of H(b) are greater than or equal to λζ .

Proof. Given ζ > 0, let λζ be the smallest eigenvalue of H(ζ1l) and u0 ∈ S be the
corresponding eigenvector. Clearly, λζ ≥ 0. We have

uT
0 H(ζ1l)u0 = λζ = 2‖Au0‖2 + βζ‖Gu0‖2.

If u0 ∈ ker(ATA), then (1.4) guarantees that ‖Gu0‖2 > 0. By (1.4) again, if u0 ∈
ker(GTG), we have ‖Au0‖2 > 0. In all cases, λζ > 0. Furthermore, for any b ∈ [ζ,∞)

r

and u ∈ S,

uTH(b)u = 2‖Au‖2 + β

r∑
i=1

bi(g
T
i u)2 ≥ 2‖Au‖2 + βζ‖Gu‖2 = uTH(ζ1l)u ≥ λζ .

Hence we have the conclusion.
If (1.4) and (1.10) hold, for every b ∈ (0,∞)

r
fixed, H(b) is invertible and χ reads

χ(b) = (H(b))
−1

2AT y.(2.8)

Although J (x, .) and J (., b) are convex functions, (x, b) → J (x, b) is gener-
ally nonconvex.1 The convergence of {x(k)} in the alternate minimization sequence

1For x ∈ R, y ∈ R, A = 1, and g1 = 1, we have J(x) = (x − y)2 + βφ(x), and hence J (x, b) =

(x − y)2 + β
2
bx2 + βψ(b). Consider that ψ is twice differentiable on R∗

+. The second differential of
J at an arbitrary (x, b) reads

D2J (x, b) =

[
2 + βb βx
βx βψ′′(b)

]
.

D2J (x, b) is not positive definite for all (x, b) ∈ R×R∗
+ since for any b > 0 and |x| > (2/β + b)ψ′′(b)

we have detD2J (x, b) < 0.
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{(x(k), b(k))} towards the minimizer x̂ of J was initially proven in [8] under strong
assumptions on φ and later in [19] under conditions similar to (2.1). Convergence
towards local minimizers of a nonconvex J was addressed in [11]. It is easy to see
that under our assumptions, the sequence {(x(k)} is convergent.

Lemma 2.2. Consider J of the form (1.2)–(1.3), where (1.4) and (2.1) hold. Let
J read as in (2.2)–(2.4). Consider the alternate minimization sequence {(x(k), b(k))}
defined by (1.14)–(1.15). We have

‖x(k) − x(k+1)‖ → 0 as k → ∞.

Proof. Since the function J (., b) is quadratic, for any k ∈ N we can write that

J (x(k−1), b(k)) − J (x(k), b(k)) = D1J (x(k), b(k))
(
x(k−1) − x(k)

)
+

1

2

(
x(k−1) − x(k)

)T

H(b(k))
(
x(k−1) − x(k)

)
,

where the matrix H(b(k)) reads as in (2.7). Since x(k) minimizes J (., b(k)), we have
D1J (x(k), b(k)) = 0. Then

J (x(k−1), b(k)) − J (x(k), b(k)) =
1

2

(
x(k−1) − x(k)

)T

H(b(k))
(
x(k−1) − x(k)

)
.(2.9)

The rest of the proof uses the following simple observation.
Remark 4. If (1.4) holds, and if φ is convex and even, then J is 0-coercive

(i.e., lim‖x‖→∞ J(x) = ∞). Since by Remark 2 the sequence {J(x(k))} is decreasing,
there is δ ∈ (0,∞) such that

x(k) ∈ B(0, δ) ∀k ∈ N.(2.10)

For this δ > 0, put

ζ = σ(δ |||G|||);(2.11)

then ζ > 0 by Remark 3 condition 2. Then we have

x ∈ B(0, δ) ⇒ |gTi x| ≤ δ |||G||| ∀i ∈ {1, . . . , r},

⇒ σ(gTi x) ≥ ζ > 0 ∀i ∈ {1, . . . , r},
(2.12)

where the second implication comes from Remark 3 condition 1. Since b
(k)
i = σ(gTi x

(k−1))
for all i and k, combining (2.10) and (2.12) yields

b
(k)
i ≥ ζ > 0 ∀i ∈ {1, . . . , r}, ∀k ∈ N.(2.13)

Let λζ > 0 be the constant exhibited in Lemma 2.1 relevant to ζ. Then (2.9) yields

J (x(k−1), b(k)) − J (x(k), b(k)) ≥ λζ

2

∥∥∥x(k−1) − x(k)
∥∥∥2

∀k ∈ N.

By Remark 2, J (x(k−1), b(k)) − J (x(k), b(k)) → 0 as k → ∞, and hence we have the
conclusion.
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2.2. Convergence analysis. We will assume that in addition to (2.1),

φ is C2 on R and C3 near zero.(2.14)

Remark 5. If φ satisfies (2.1) and (2.14), the function σ in (2.5) is C1 on R

and σ′(0) = 0. Indeed, for any t ∈ R \ {0}, the function

σ′(t) =
φ′′(t)t− φ′(t)

t2
(2.15)

is continuous. Its limit for t → 0 is calculated using l’Hôpital’s rule,

lim
t→0

σ′(t) = lim
t→0

d
dt (φ′′(t)t− φ′(t))

d
dt (t2)

= lim
t→0

φ′′′(t)

2
= 0.

Notice that φ′′′(0) = 0 because φ is even and C3 near zero.
Theorem 2.3. For J of the form (1.2)–(1.3), suppose that (1.4) and (1.10) hold

and that φ satisfies (2.1) and (2.14). Then the sequence {(x(k), b(k))} generated by
(1.16), where σ and χ are given in (2.5) and (2.7)–(2.8), respectively, satisfies the
following:

(i) for all k ∈ N, we have

x(k) = F (x(k−1)),(2.16)

where F : R
p → R

p is C1 on B(0, δ), for any δ ∈ (0,∞), and reads

F (x) = x− (H(x))
−1

DJ(x),(2.17)

H(x) = 2ATA + βGTdiag
([

σ(gTi x)
]r
i=1

)
G � 0,(2.18)

and DJ is the differential of the original cost-function J given in (1.2)–(1.3);
(ii) as k → ∞, the sequence {x(k)} converges to the unique minimizer x̂ of J ;
(iii) the spectral radius of DF at x̂ satisfies

ρ (DF (x̂)) ≤ K max
1≤i≤r

R(|gTi x̂|) ≤ K sup
0≤t≤μ

R(t) < 1,(2.19)

where μ = max1≤i≤r |gTi x̂|, K ∈ [0, 1], and R : R+ → [0, 1] are continuous
and read

K =
βφ′′(0) |||G|||2

2ν2 + βφ′′(0) |||G|||2
,(2.20)

R(t) = 1 − φ′′(t)

σ(t)
.(2.21)

The shape of R for different functions φ can be seen in Table 4.2 and Figures 4.1
and 4.2. Notice that R is monotone increasing provided that φ′′ is monotone decreas-
ing on R+ and that the latter is true for all potential functions cited in (1.6)–(1.9).

Proof. Let δ > 0 be the radius exhibited in Remark 4 and let ζ be defined as in
(2.11). The first step of iteration k is to calculate

b
(k)
i = σ(gTi x

(k−1)) ∀i ∈ {1, . . . , r}.(2.22)
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Noticing that b(k) satisfies (2.13), the matrix H(b(k)) defined by (2.7) is invertible
(cf. Lemma 2.1). The second step of iteration k is to calculate x(k) using (2.8):

x(k) =
(
H(b(k))

)−1

2AT y =
(
2ATA + βGTdiag(b(k))G

)−1

2AT y.(2.23)

Introducing (2.22) into (2.23) yields

x(k) = F (x(k−1)),

where F : R
p → R

p reads

F (x) = (H(x))
−1

2AT y,(2.24)

and H is as given in (2.18). From (1.2)–(1.3),

DJ(x) = 2ATAx + βGT
[
φ′(gTi x)

]r
i=1

− 2AT y.(2.25)

By (2.5), for every i ∈ {1, . . . , r} we can write

φ′(gTi x) = σ(gTi x) gTi x.

Then (2.25) yields

2AT y = 2ATAx + βGTdiag
([

σ(gTi x)
]r
i=1

)
Gx−DJ(x)

= H(x) x−DJ(x).

Inserting this expression into (2.24) yields (2.17).
Let us fix δ > 0 arbitrarily. Then define ζ according to (2.11). Based on

Lemma 2.1, b → (H(b))
−1

is C1 on [ζ, φ′′(0) ]r since b → H(b) is C∞ and

D(H(b))
−1

= −(H(b))
−1

DH(b)(H(b))
−1

is continuous. Using (2.12) we have [σ(gTi x)]ri=1 ∈ [ζ, φ′′(0) ]r for all x ∈ B(0, δ) and,
since σ is C1 on R (see Remark 5), it follows that

x → (H(x))
−1

=
(
H

(
[σ(gTi x)]

r

i=1

))−1

is C1 on B(0, δ). Combining the latter with the fact that J is C2 shows that F is C1

on B(0, δ). The proof of (i) is complete.
By Lemma 2.2, the sequence {x(k)} converges; let x̂ denote its limit as k → ∞.

Since F is continuous, considering (2.16) for k → ∞ yields

x̂ = F (x̂).(2.26)

Introducing this into (2.17) shows that (H(x̂))
−1

DJ(x̂) = 0 and consequently that
DJ(x̂) = 0. Since J has a unique minimizer (cf. Remark 1), it follows that J reaches
its minimum at x̂. Hence we prove (ii).

Next, we determine DF at an arbitrary x. Using (2.24),

H(x)F (x) = 2AT y ∀x ∈ B(0, δ).
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Differentiating both sides of this equation with respect to x yields

DH(x)F (x) + H(x)DF (x) = 0 ∀x ∈ B(0, δ).(2.27)

Then DF (x) = −(H(x))−1DH(x)F (x), where

DH(x)F (x) = lim
ε→0

H(x + εF (x)) −H(x)

ε
= βGTdiag

([
σ′(gTi x) gTi F (x)

]r
i=1

)
G

= −βGTdiag
([ ∣∣σ′(gTi x) gTi x

∣∣ ]r
i=1

)
G

−βGTdiag
([

σ′(gTi x) gTi (x− F (x))
]r
i=1

)
G,

where we use the fact that σ′(t)t ≤ 0 for all t ∈ R. It follows that

DF (x) = M(x) + E(x),(2.28)

where

M(x) = (H(x))
−1

βGTdiag
([ ∣∣ σ′(gTi x) gTi x

∣∣ ]r
i=1

)
G,(2.29)

E(x) = (H(x))
−1

βGTdiag
([

σ′(gTi x) gTi (x− F (x))
]r
i=1

)
G.(2.30)

The eigenvalues of M(x), for x ∈ R
p, are considered next.

Lemma 2.4. Under the assumptions of Theorem 2.3, then we have the spectral
radius of the matrix-valued function M : R

p → R
p×p defined by (2.29) satisfies

ρ(M(x)) ≤ K max
1≤i≤r

R(|gTi x|) ∀x ∈ R
p,(2.31)

where K and R are given in (2.20) and (2.21), respectively.
Proof of Lemma 2.4. Let us first focus on the function R defined in (2.21).

Clearly, R(t) ≤ 1 for all t ∈ R+ since φ′′(t) ≥ 0 and σ(t) > 0 for all t ∈ R. Using
(2.5), (2.6), and (2.15), for any t ≥ 0 we can write

R(t) =
1

σ(t)

(
φ′(t)

t
− φ′′(t)

)
=

−σ′(t) t

σ(t)
,(2.32)

where in particular R(0) = 0. For all t ∈ R+, Remark 3 condition 1 says that
σ′(t) ≤ 0, and hence R(t) ≥ 0. This allows us to write down that

R(|t|) =
|σ′(t)t|
σ(t)

∀t ∈ R.(2.33)

Given x ∈ R
p, let λ ∈ C be the largest-in-magnitude eigenvector of M(x). Let

u ∈ C
p be such that ‖u‖ = 1 and M(x) u = λ u. Using the expression for M , we

obtain

β(Gu)Tdiag
([ ∣∣σ′(gTi x) gTi x

∣∣ ]r
i=1

)
Gu = λ uT H(x) u ≥ 0.(2.34)

The last inequality comes from the fact that GTdiag
([ ∣∣σ′(gTi x) gTi x

∣∣ ]r
i=1

)
G is semi-

positive definite and that H(x) is positive definite. It implies that λ is real with λ ≥ 0
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and that u ∈ S. If λ = 0, then (2.31) is satisfied. In the following, consider that
λ > 0. Inserting (2.18) into (2.34) yields

β(Gu)Tdiag
([ ∣∣σ′(gTi x) gTi x

∣∣− λσ(gTi x)
]r
i=1

)
Gu = 2λ‖Au‖2 ≥ 2λν2 ≥ 0.

Using (2.33), this is equivalent to

β

r∑
i=1

σ(gTi x)
(
R(gTi x) − λ

) (
gTi u

)2
= 2λ‖Au‖2 ≥ 2λν2 ≥ 0.(2.35)

Let j ∈ {1, . . . , r} be such that

σ(gTj x)
(
R(gTj x) − λ

)
≥ σ(gTi x)

(
R(gTi x) − λ

)
∀i ∈ {1, . . . , r}.

From (2.35) we find that σ(gTj x)
(
R(gTj x) − λ

)
≥ 0. Using (2.35) yet again,

βσ(gTj x)
(
R(gTj x) − λ

)
|||G|||2 ≥ βσ(gTj x)

(
R(gTj x) − λ

)
‖Gu‖2 ≥ 2λν2.

Since σ(t) ≤ φ′′(0) for all t ∈ R (cf. Remark 3 condition 2), we obtain

R(|gTj x|) − λ ≥ 2λν2

βφ′′(0) |||G|||2
.

It follows that

λ ≤ KR(|gTj x|) ≤ K max
1≤i≤r

R(|gTi x|),

where K ≤ 1 is the constant given in (2.20).
We pursue the proof of the theorem. From (2.26) it follows that E(x̂) = 0, and

hence

DF (x̂) = M(x̂).(2.36)

On the other hand, the function R is continuous on R+ with R(0) = 0. The first
two inequalities in (2.19) are an immediate consequence of (2.36) and Lemma 2.4. If
φ′′(t) > 0, for all t ∈ R, (2.6) and (2.21) show that R(t) < 1, for all t ∈ R+, and hence

sup
0≤t≤μ

R(t) < 1,

since [0, μ] is compact. Thus, the assumption in (1.10) ensures that

K < 1 and/or sup
0≤t≤μ

R(t) < 1,

and hence (2.19).
Remark 6. Observe that F is not necessarily a contraction. By (2.28), DF

is composed of two terms, M and E. Since
∣∣∣∣∣∣E(x(k))

∣∣∣∣∣∣ is controlled by the residual

‖x(k) − F (x(k))‖, if x(k) is far from x̂, we can have ρ
(
DF (x(k))

)
> 1. The method

being convergent, as far as iterations progress,
∣∣∣∣∣∣E(x(k)

∣∣∣∣∣∣ diminishes and the conver-
gence is controlled essentially by M , which is a contraction. Since DF is continuous
at x̂, (2.19) shows that there is η > 0 such that

sup
x∈B(x̂,η)

ρ (DF (x)) < 1.
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Furthermore, there is k0 ∈ N such that

x(k) ∈ B(x̂, η) ∀k ≥ k0.

It follows that F is a contraction on B(x̂, η), i.e., in the vicinity of the minimizer x̂.

The assumption in (2.14) that φ is C3 near zero is only technical. The proof
is easy to extend to functions φ which are C2 and have φ′′′(0+) finite. Even if σ is
nondifferentiable at zero, its side derivatives there are then finite. Noticing that the
function t → σ(t)t is continuous, the analysis of M in Lemma 2.4 remains unchanged.
An example of a function φ with σ nonsmooth at zero is φ(t) = |t|/α− log (1 + |t|/α)
since we have σ′(0+) = α = −σ′(0−). Extending the proof to functions φ as discussed
above would considerably complicate the presentation.

Corollary 2.5. Under the assumptions and the notations of Theorem 2.3, then
we have the root-convergence factor C(F, x̂), given in (1.22), satisfies

C(F, x̂) ≤ K max
1≤i≤r

R(|gTi x̂|) ≤ K sup
0≤t≤μ

R(t) < 1,

whatever norm ||.|| is used in (1.22).

Proof. It is easy to check that F satisfies all conditions required in the linear
convergence theorem [26, p. 301]. By the latter theorem, C(F, x̂) = ρ(DF (x̂)). The
result follows from Theorem 2.3.

3. Additive form of half-quadratic regularization.

3.1. Preliminary facts. This form is considered under the following conditions:

(a) φ is convex,
(b) c > 0 is such that t → ct2/2 − φ(t) is convex,
(c) φ(t) = φ(−t) ∀t ∈ R,
(d) φ is continuous on R,
(e) lim

|t|→∞
φ(t)/t2 < c/2.

(3.1)

By (a)–(b), φ is differentiable.2 The dual function ψ is given by

ψ(s) = sup
t∈R

{
−1

2

(
t
√
c− s√

c

)2

+ φ(t)

}
,(3.2)

where c > 0 is as specified in (3.1). Under (3.1), ψ is convex and the requirement in
(1.12) is satisfied since

φ(t) = inf
s∈R

{
1

2

(
t
√
c− s√

c

)2

+ ψ(s)

}
.(3.3)

The connections between φ and ψ under different assumptions on φ were considered
in [3, 10, 14, 19]. For completeness, these are sketched in section 7.2 in the appendix.

2By (a), φ′(t−) ≤ φ′(t+) for all t. If for some t the latter inequality is strict, (b) cannot be
satisfied for any c. If follows that φ′(t−) = φ′(t+) = φ′(t). For example, if we apply (3.2) to
φ(t) = |t| with c = 1, we get ψ(s) = |s| + 1/2. Then (3.3) yields mins

(
ψ(s) + (s− t)2/2

)
�= φ(t).
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According to (1.11) and (1.21), J reads

J (x, b) = ‖Ax− y‖2 + β

r∑
i=1

(
1

2

(√
c gTi x− 1√

c
bi

)2

+ ψ(bi)

)

= ‖Ax− y‖2 +
β

2

∥∥∥∥√c Gx− 1√
c
b

∥∥∥∥2

+ β

r∑
i=1

ψ(bi).

(3.4)

The expression of σ for several functions φ is presented in Table 4.1. The minimizer
function σ defined by (1.17) admits an explicit form [7, 10, 3] and its derivation is
recalled in section 7.2 in the appendix:

σ(t) = ct− φ′(t).(3.5)

If (1.4) holds, the minimizer function χ defined by (1.18) reads

χ(b) = H−1
(
2AT y + βGT b

)
,(3.6)

where

H = 2ATA + βc GTG � 0(3.7)

is invertible thanks to (1.4).
As exhibited in [19], J is convex on R

p × R
r, and hence the convergence of

alternate minimization towards the minimizer x̂ of J . Convergence when x and y
are defined on a bounded domain of R

2—in the context of image restoration—was
established in [3] under appropriate assumptions on φ.

3.2. Convergence analysis. The analysis here is developed in a similar fashion
as for the multiplicative form.

Theorem 3.1. For J of the form (1.2)–(1.3), suppose that (1.4) and (1.10) hold
and that φ is C2 on R and satisfies (3.1). The sequence {(x(k), b(k))} generated by
(1.16), where σ and χ are given in (3.5) and (3.6)–(3.7), respectively, satisfies the
following:

(i) for all k ∈ N, we have

x(k) = F (x(k−1)),(3.8)

where F : R
p → R

p is C1 and reads

F (x) = x−H−1DJ(x),(3.9)

H = 2ATA + βcGTG � 0;(3.10)

(ii) for every x ∈ R
p,

ρ (DF (x)) ≤ K max
1≤i≤r

R(|gTi x|) ≤ K sup
0≤t≤μ

R(t) < 1,(3.11)

where μ = max1≤i≤r |gTi x|, K ∈ [0, 1], and R : R+ → [0, 1] is continuous and
read

K =
βc |||G|||2

2ν2 + βc |||G|||2
,(3.12)

R(t) = 1 − φ′′(t)

c
;(3.13)
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(iii) as k → ∞, {x(k)} converges to the unique minimizer x̂ of J .
The function R for several potential functions φ is presented in Table 4.2 and

Figures 4.1 and 4.2. For all potential functions cited in (1.6)–(1.9), φ′′ is monotone
decreasing on R+, and hence R is monotone increasing on R+.

Proof. Given x(k−1), iterate b(k) is calculated using (3.5):

b(k) =
[
σ(gTi x

(k−1))
]r
i=1

= cGx(k−1) −
[
φ′(gTi x

(k−1))
]r
i=1

.(3.14)

Next, x(k) is calculated using (3.6)–(3.7):

x(k) = H−1(2AT y + βGT b(k)).

Inserting (3.14) into the expression given above yields

x(k) = F (x(k−1)),(3.15)

where F : R
p → R

p reads

F (x) = H−1
(
2AT y + βcGTGx− βGT

[
φ′(gTi x)

]r
i=1

)
.(3.16)

The expression for DJ given in (2.25) yields

2AT y = 2ATAx + βGT
[
φ′(gTi x)

]r
i=1

−DJ(x)

= Hx− βcGTGx + βGT
[
φ′(gTi x)

]r
i=1

−DJ(x).

Introducing this into (3.16) leads to F (x) = H−1 (Hx−DJ(x)), and hence to (3.9).
Since J is C2, it is straightforward that F is C1 on R

p. The proof of (i) is complete.
The differential of F at an arbitrary x ∈ R

p reads

DF (x) = I −H−1
(
2ATA + βGTdiag

([
φ′′(gTi x)

]r
i=1

)
G
)

= βcH−1GTdiag
([

R(gTi x)
]r
i=1

)
G,(3.17)

where R was introduced in (3.13). The eigenvalues of DF (x), for any x ∈ R
p, are

analyzed below.
Lemma 3.2. Under the assumption of Theorem 3.1, we have

ρ(DF (x)) ≤ K max
1≤i≤r

R(|gTi x|) ∀x ∈ R
p,(3.18)

where K and R are given in (3.12) and (3.13), respectively.
Proof of Lemma 3.2. Consider first the function R introduced in (3.13). Since φ

is C2, the constant c in (3.1)(b) satisfies

φ′′(t) ≤ c ∀t ∈ R,(3.19)

and hence 0 ≤ R(t) ≤ 1 for all t ∈ R.
For x ∈ R

p, let λ ∈ C be the largest-in-magnitude eigenvector of DF (x). Let
u ∈ C

p be such that ‖u‖ = 1 and DF (x)u = λu. Then using (3.17) we get

βc(Gu)Tdiag
([

R(gTi x)
]r
i=1

)
Gu = λuTHu ≥ 0.(3.20)



ANALYSIS OF HALF-QUADRATIC MINIMIZATION METHODS 951

The last inequality above comes from the facts that H is positive definite and that
GTdiag

([
R(gTi x)

]r
i=1

)
G is semipositive definite. It shows that λ ≥ 0 and that u ∈ S.

If λ = 0, then (3.18) is satisfied. In the following we consider that λ > 0. Introducing
(3.10) into (3.20) yields

βc

r∑
i=1

(
R(gTi x) − λ

) (
gTi u

)2
= 2λ‖Au‖2 ≥ 2λν2 ≥ 0.(3.21)

Let j ∈ {1, . . . , r} be such that

R(gTj x) − λ ≥ R(gTi x) − λ ∀i ∈ {1, . . . , r}.

Then (3.21) shows that R(gTj x) − λ ≥ 0 and we can write down that

βc
(
R(gTj x) − λ

)
|||G|||2 ≥ βc

(
R(gTj x) − λ

)
‖Gu‖2 ≥ 2λ‖Au‖2 ≥ 2λν2.

It follows that

λ ≤ βc |||G|||2

2ν2 + βc |||G|||2
R(|gTj x|) ≤ K max

1≤i≤r
R(|gTi x|).

The lemma is proved.
We pursue the proof of the theorem. If φ′′(t) > 0 for all t ∈ R, noticing

that R is continuous on R and that [0, μ] is compact, (3.13) and (3.19) show that
sup0≤t≤μ R(t) < 1. By the assumption given in (1.10) we have

K < 1 and/or sup
0≤t≤μ

R(t) < 1.

Combining this with Lemma 3.2 proves (ii).
Let δ ∈ (0,∞) be the radius exhibited in Remark 4. Define η = δ |||G|||; then

|gTi x| ≤ η ∀i ∈ {1, . . . , r}, ∀x ∈ B(0, δ).

Using Lemma 3.2 yet again,

sup
x∈B(0,δ)

ρ(DF (x)) ≤ K sup
x∈B(0,δ)

max
1≤i≤r

R(|gTi x|) ≤ K sup
0≤t≤η

R(t) < 1.(3.22)

It follows that the sequence {x(k)} converges; let limk→∞ x(k) = x̂. Since F is contin-
uous, letting k → ∞ in (3.8) shows that x̂ = F (x̂). Introducing the latter result into
(3.9) shows that DJ(x̂) = 0. Since J has a unique minimizer (Remark 1), it follows
that J reaches its minimum at x̂. Hence we prove (iii).

Corollary 3.3. Under the assumptions and the notations of Theorem 3.1, then
we have the root-convergence factor C(F, x̂), given in (1.22), satisfies

C(F, x̂) ≤ K max
1≤i≤r

R(|gTi x̂|) ≤ K sup
0≤t≤μ

R(t) < 1,

whatever norm ||.|| is used in (1.22).
Proof. It is easy to see that the linear convergence theorem [26] can be applied,

which shows that C(F, x̂) = ρ(DF (x̂)). The result follows from Theorem 3.1.
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Remark 7 (the optimal value of c). Based on (3.19), any c ≥ supt∈R
φ′′(t) can

be used to construct ψ in (3.2). However, (3.12) and (3.13) show that both K and
R(t), for all t ∈ R, increase with c. It follows that when c is small, the bound on the
root-convergence factor is improved. This shows that the best choice for c is

c = sup
t∈R

φ′′(t).(3.23)

Noticing that edge-preserving functions φ satisfy φ′′(0) = supt∈R
φ′′(t), (3.23) becomes

c = φ′′(0).(3.24)

This recommendation is corroborated by the experiments in section 5.

3.3. Fast additive form based on nonsmooth dual function. We now
concentrate on the Huber potential function φ:

φ(t) =

{
1
2 t

2 if |t| ≤ α,
α|t| − 1

2α
2 if |t| > α.

(3.25)

This potential function is edge preserving, since it is affine beyond α. Unlike total
variation regularization φ(t) = |t| which yields a stair-casing effect, the quadratic
part of φ in (3.25) near 0 allows smoothly varying regions in x̂ to be restored [25].
Homogeneous regions in x̂ correspond with |gTi x̂| ≤ α while edges correspond with
|gTi x̂| > α.

Remark 8. If ATA is invertible, for every y ∈ R
q, the relevant J has a unique

minimizer x̂. Analyzing the Hessian matrix D2J shows that the minimum x̂ of J is
usually strict, even if ATA is singular. Notice that φ′′ is discontinuous at −α and α.
If ATA is invertible, it is easy to see that all y ∈ R

q, yielding a minimizer x̂ such that
|gTi x̂| = α for a certain number of indexes i, belong to a closed, negligible subset of R

q.
The chance of acquiring data placed in such subsets is null. For almost every y, J is
C∞ on a neighborhood of x̂. This remains generally true even if ATA is singular.

From (3.25) we have maxt∈R{φ′′(t−), φ′′(t+)} = 1. For c > 1, the dual ψ reads

ψ(s) =

⎧⎪⎪⎨
⎪⎪⎩

s2

(2c(c− 1))
if |s| ≤ (c− 1)α,

α|s|
c− α2(c− 1)/(2c)

if |s| > (c− 1)α.

Previous papers [7, 19] recommend taking c > 1 in order to ensure that ψ is C1. Using
(3.5), the minimizer function σ is

σ(t) =

{
(c− 1)t if |t| ≤ α,
ct− α sign(t) if |t| > α.

(3.26)

Instead, for c = 1, we get

ψ(s) = α|s|.(3.27)
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It is easy to check3 that applying (3.3) leads to φ as given in (3.25). The function σ
now takes a particularly simple form:

σ(t) =

{
0 if |t| ≤ α,
t− α sign(t) if |t| > α.

(3.28)

The computation of each b
(k)
i = σ(gTi x

(k)) using (3.28) is much easier than using
(3.26). Typically we have |gTi x(k)| ≤ α for most of the indexes i ∈ {1, . . . , r} since

most of the pixels are in homogeneous regions. The relevant b
(k)
i are set to zero after

verifying that |gTi x(k)| ≤ α: thus, they need no calculation.
The augmented cost-function J now reads

J (x, s) = ‖Ax− y‖2 + β

r∑
i=1

(
1

2
(gTi x− si)

2 + |si|
)
.(3.29)

The convergence of alternate minimization is easily deduced from Theorem 1.4, p. 73
in [16]. Furthermore, Theorem 3.1 can be extended to potential functions φ which
satisfy (3.1) and which at several points αi have φ′′(α−

i ) and φ′′(α+
i ) different but

finite. Instead of DF , the subdifferential of F must be considered in (3.17). The
inequalities presented in the proof of Theorem 3.1 remain basically the same.

4. Theoretical comparisons of two forms.
The expressions for σ and R for both forms are displayed in Tables 4.1 and 4.2.

4.1. Extension to alternative regularization terms. In some image pro-
cessing applications, the regularization term Φ in (1.2) reads [2]

Φ(x) =

p∑
i=1

φ(‖Gix‖),(4.1)

where every Gix is a vector approximating the gradient of x at pixel i. We wish to
know whether the resultant J can be minimized using HQ regularization methods.
According to (1.11)–(1.12), an auxiliary variable bi is associated with each ‖Gix‖.

• In the multiplicative form of HQ regularization, the augmented cost-function
J is similar to (2.4):

J (x, b) = ‖Ax− y‖2 + β

p∑
i=1

(
bi
2

‖Gix‖2 + ψ(bi)

)
.

Notice that J (x, .) is separable and the minimization over b is given by p
scalar minimizer functions σ of the form (2.5). Since the function J (., b) is
quadratic, the minimizer function χ, defined in (1.18), is linear in y and has
an explicit form similar to (2.7)–(2.8). Minimization using the multiplicative
form of HQ regularization is straightforward.

3Given t ∈ R, define ht : R → R by ht(s) = (s − t)2/2 + α|s|. The function ht reaches its
minimum at ŝ ∈ R if and only if [18]

ŝ = 0 ⇒ h′
t(0

−) ≤ 0 ≤ h′
t(0

+), i.e., −t− α ≤ 0 ≤ −t + α;
ŝ �= 0 ⇒ h′

t(ŝ) = 0, i.e., ŝ− t + αsign(ŝ) = 0.

It is easily deduced that

|t| ≤ α ⇒ ŝ = 0 ⇒ infs ht(ŝ) = t2/2,
|t| > α ⇒ ŝ = t− αsign(t) ⇒ infs ht(ŝ) = α|t| − α2/2.

In other words, infs∈R

(
(s− t)2/2 + α|s|

)
= φ(t) where φ is given in (3.25).
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Table 4.1

Minimizer function σ relevant to multiplicative and additive form of HQ regularization (cf.
(2.5) and (3.5)) for different potential functions φ.

Potential function Multiplicative form Additive form

φ(t) = |t|α, α ∈ (1, 2] σ(t) = α|t|α−2 not applicable

φ(t) =
√
α + t2 σ(t) =

1√
α + t2

σ(t) = ct− t√
α + t2

φ(t)=
|t|
α

− log

(
1+

|t|
α

)
σ(t) =

1

α(α + |t|)
σ(t) = ct− t

α(α + |t|)

φ(t)=

⎧⎪⎨
⎪⎩

t2

2
, |t|≤α

α|t| − α2

2
, |t|>α

σ(t)=

{
1, |t|≤α
α

|t|
, |t|>α σ(t)=

{
(c−1)t, |t|≤α
ct−αsign(t), |t|>α

φ(t) = log(cosh (αt)) σ(t)=α
tanh(αt)

t
σ(t) = ct− α tanh(αt)

• In the additive form of HQ regularization, J reads

J (x, b) = ‖Ax− y‖2 + β

p∑
i=1

(
1

2
(‖Gix‖ − bi)

2
+ ψ(bi)

)
,

where for simplicity we take c = 1. Now the function J (., b) is nonquadratic
since it is nonsmooth. The minimizer function χ defined by (1.18) is nonlinear
in y and is difficult to calculate numerically. There is no advantage to consider
minimization using the additive form of HQ regularization when Φ is of the
form (4.1).

4.2. The bound on convergence rate. The minimization of a J of the form
(1.2)–(1.3) using either the multiplicative or the additive form of HQ regularization
amounts to constructing a sequence of iterates {x(k)} as

x(k) = F (x(k−1)),(4.2)

where F : R
p → R

p is of the form

F (x) = x− (H(x))
−1

DJ(x).

The matrix H(x) here provides a correction of the steepest descent direction −DJ(x).
Recall that the classical Newton method corresponds to H(x) = D2J(x), where

D2J(x) = 2ATA + βGTdiag
([

φ′′(gTi x)
]r
i=1

)
G.(4.3)

In the multiplicative form, the matrix H(x) given in (2.18) differs from D2J(x)
only in that the entries of the diagonal matrix above are σ(gTi x) = φ′(gTi x)/gTi x. Since
σ(t) ≈ φ′′(t) if t ≈ 0, the entries relevant to small differences |gTi x| are almost the
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same for H and for D2J . For |gTi x| large, φ′′(gTi x) ≈ 0 because φ is edge preserving;
such entries heavily deteriorate the conditioning of D2J . On the other hand, (2.21)
shows that σ(t) > φ′′(t) if t �= 0. In fact, σ(gTi x) remains larger than φ′′(gTi x) for
large differences |gTi x|, thus preventing H(x) from being as ill-conditioned as D2J(x).

In the additive form, H is constant for all x; cf. (3.10). If we choose c = φ′′(0),
as recommended in (3.24), then H ≈ D2J(1l). Here again, the entries of the diagonal
matrix in (4.3) relevant to small differences |gTi x| ≈ 0 are the same for D2J and H.

The calculation of x(k), as given by (4.2), can also be put into the form

x(k) = F k(x(0)), where F k = F ◦ · · · ◦ F︸ ︷︷ ︸
k times

.

In the multiplicative form of HQ regularization, F is not necessarily a contraction
except in the vicinity of the minimizer x̂—see Remark 6. We can expect that in
early iterations the decrease of J is relatively slow. In the additive form of HQ
regularization, Theorem 3.1 and Lemma 3.2 show that F is a contraction.

By (2.19) and (3.11), the convergence rate relevant to the multiplicative and the
additive forms of HQ regularization is upper bounded by a term of the form

K sup
|t|≤μ

R(t).(4.4)

If in the additive form we choose c = φ′′(0), as recommended in (3.24), then the
constant K is the same for both forms; cf. (2.20) and (3.12). We notice that K
decreases when ν2 increases, which means that convergence is faster if ATA is well-
conditioned. For ATA singular, K = 1. Furthermore, comparing (2.21) and (3.13)
shows that the function R has a similar expression for both the multiplicative and
the additive forms of HQ regularization. Moreover, for all edge-preserving functions
φ used in practice R is monotone increasing on R+ since φ′′ is monotone decreasing
on R+. In the multiplicative form, using that R(t) ≥ 0 for all t ∈ R+ and Remark 3,
we find that

φ′′(t) ≤ σ(t) ≤ φ′′(0) ∀t ∈ R.

These inequalities are strict in the usual situation when t → φ(
√
t) is strictly concave

and φ′′(t) > 0 for all t ∈ R. In such a case, (2.21) and (3.13) lead to

R(t) < R(t) ∀t ∈ R \ {0},
multipl. form additive form

with R(0) = 0 for both forms. Table 4.2 and Figures 4.1 and 4.2 illustrate this result.
This suggests that the multiplicative form needs fewer iterations than the additive
form in order to reach the minimizer x̂. This is corroborated by the experiments
presented in section 5. In Figure 4.2, we show R corresponding to φ(t) =

√
α + t2,

for α = 0.5 and α = 0.05. It is worth noticing that for both forms, R decreases when
α increases, hence convergence is faster if α is larger. The constant μ ∈ (0,∞) in
(4.4) is determined essentially by the magnitude of the differences |gTi x|. Since R is
monotone increasing on R+, convergence is slower if x̂ involves large differences.

4.3. Computational cost. In both the multiplicative and the additive forms
of HQ regularization, the calculation of b(k) has basically the same complexity. In the
multiplicative form, the new iterate x(k) is the solution of a linear system

H(b(k))x = 2AT y,(4.5)
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Table 4.2

The convergence factor R for multiplicative and additive HQ regularization; cf. (2.21) and (3.13).

Potential function R for the multiplicative form R for the additive form

φ(t) =
√
α + t2

t2

α + t2
1 − α

c(α + t2)
√
α + t2

φ(t)= |t|/α−log (1+|t|/α)
t

α + t
1 − 1

c(α + t)2

φ(t) =

⎧⎪⎨
⎪⎩

t2

2
, |t|≤α

α|t| − α2

2
, |t|>α

{
0, t ≤ α
1, t > α

{
1 − 1

c
, t ≤ α

1, t > α

φ(t) = log(cosh (αt)) 1 − αt

sinh(αt) cosh(αt)
1 − α2(1 − tanh2(αt))

c

0 1 2

0.5

1

t
0 1 2

0.5

1

t

φ(t) =
|t|
α
−log

(
1+

|t|
α

)
, α = 0.5. φ(t) = log(cosh (αt)) for α = 1.

Fig. 4.1. The shape of R for multiplicative (solid lines) and for additive (dotted lines) form
of HQ regularization corresponding to different functions φ. In the additive form, c = φ′′(0).

where H(b(k)) is given in (2.7). We note that the matrix H(b(k)) is changing, but the
right-hand side is fixed at each iteration. This system must be solved at each iteration.
When p is small, (4.5) can be solved using Gaussian elimination. The complexity is
then O(p3). In signal and image deblurring, A is a Toeplitz matrix. However, H(b(k))
is not necessarily Toeplitz: no benefit can be made from the special structure of A.
When p is large, the conjugate gradient method can be used to solve (4.5). Although
invertible, the matrix H(b(k)) can be ill-conditioned and/or there are a number of
clusters in the small eigenvalues of the Hessian matrix. Solving (4.5) then needs a
large number of iterations.

In the additive form, x(k) is the solution of

H x = 2AT y + βGT b(k),(4.6)

where H is given in (3.7). Now H is fixed, but the right-hand side is changing at
each iteration. If p is small, we can compute H−1 before starting iterations and
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Fig. 4.2. The shape of R as a function of α for φ(t) =
√
α + t2. Multiplicative form (solid

lines) and additive form (dotted lines) for c = φ′′(0).

then, at each iteration, x(k) = H−1
(
2AT y + βGT b(k)

)
. A stable way to solve (4.6)

is to first compute the Cholesky factorization of H and then solve the corresponding
triangular systems at each iteration. The factorization requires O(p3) operations, but
the complexity of solving a triangular system is only O(p2). Observe that if A is
a Toeplitz matrix, H is a Toeplitz-like matrix [20, 6] as well. We note that ATA
is a Toeplitz-like matrix and G is the discretization matrix of the first-order or the
second-order differential operator. There are many direct or iterative Toeplitz solvers
with costs ranging from O(p log p) to O(p2) [20, 6]. When p is large, the conjugate
gradient method can be used to solve (4.6) at each iteration. Convergence can be
improved using preconditioning techniques. When A is a Toeplitz-type or block-
Toeplitz-Toeplitz-block-type matrix, transform-based preconditioning techniques have
been proven to be very successful [24]. For example, if A is a blurring matrix generated
by a symmetric point spread function, H can be diagonalized by a fast transform
matrix; then (4.6) is solved by using three fast transforms in O(p log p) operations [24].

In conclusion, the computational cost of each iteration for the additive form of
HQ regularization is smaller than for the multiplicative form. Moreover, it can sub-
stantially be improved using fast solvers and preconditioning.

5. Numerical results.

5.1. One-dimensional signal. Our goals are first to compare the convergence
properties of the two forms of HQ regularization and second to compare them with
standard minimization methods. All the computations are done in MATLAB 6.0.
The MATLAB optimization routines are compared with our written MATLAB codes.
Their computational times are reported in the tables in this section.

We give average results based on the restoration of 1000 generated original 128-
length signals from blurred noisy data. If xo is such an original signal, observed data
read y = Axo + n, where

Ai,j = γe−0.1(i−j)2 , i, j = 1, 2, . . . , p,

γ is a normalization constant such that
∑p

i=1 Ai,1 = 1, and n is white Gaussian
noise yielding a signal-to-noise ratio (SNR) of 40dB. In Figure 5.1(a) we show an
example of a randomly generated original signal xo and in Figure 5.1(b) data y gen-
erated as explained above. For all minimization methods, the stopping criterion is
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(a) Original signal xo (b) Blurred noisy signal y
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(c) Restoration using φ(t) =
√
α + t2 (d) Restoration using the Huber function φ

Fig. 5.1. Example of restoration of a randomly generated original signal (a) from blurred noisy
data (b). Restored signals: (c) φ(t) =

√
α + t2, and α = 0.001, β = 0.8; (d) φ(t) = t2/2 if |t| ≤ α,

φ(t) = α|t| − α2/2 if |t| > α, where α = 0.1, β = 10.

||x(k) −x(k−1)||2 < 1× 10−4/||xo||, while the maximum iteration number is 1000. For
the restoration of each signal, we minimize cost-functions J defined using different
potential functions φ and different sets of parameters (α, β). Figures 5.1(c) and (d)
show two restorations obtained from the data in Figure 5.1(b). Each cost-function J
is minimized using the multiplicative form of HQ regularization, the additive form of
HQ regularization where c = φ′′(0), as well as using MATLAB optimization routines
“fminunc.m.” In the latter optimization procedure, we use quasi-Newton updating
schemes “bfgs” or “dfp,” the line search algorithm “cubicpoly,” as well as the steepest
descent scheme “steepdesc.” Tables 5.1–5.5 summarize the average number of itera-
tions (the first row of each set of parameters) and the average computational times
in seconds (the second row of each set of parameters) for each minimization method.
Below we briefly comment on the obtained results.

• The multiplicative form of HQ regularization allows us to minimize J using
a smaller number of iterations than the additive form of HQ regularization.

• The overall computational times used by the additive form are less than those
used by the multiplicative form.

• The performance of MATLAB optimization routines are poorer than those
of both forms of HQ regularization in our MATLAB implementation. These
results must be qualified by the observation that MATLAB run times for the
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Table 5.1

Average number of iterations (upper row) and computational times (lower row) for φ(t) =√
α + t2.

β α Multiplicative Additive BFGS DFP Steepest
0.8 0.00025 79.6 228.2 122.8 110.3 > 1000

5.28 2.63 11.12 8.77 > 36. 73
0.8 0.0005 74.6 207.4 110.5 101.6 > 1000

4.94 2.39 9.96 8.08 > 36.71
0.8 0.001 68.8 182.9 100.1 89.4 990.2

4.55 2.17 9.13 7.11 37.17
0.8 0.002 63.3 188.3 85.2 77.9 835.6

4.15 2.19 7.79 6.23 30.81
0.8 0.004 56.4 181.4 76.0 65.4 697.5

3.76 2.14 6.96 5.28 25.87

0.2 0.001 64.1 258.6 83.0 74.2 775.6
4.24 2.90 7.62 6.03 28.49

0.4 0.001 64.7 226.3 92.9 81.7 886.5
4.30 2.56 8.48 6.60 32.36

0.8 0.001 63.3 188.3 85.2 77.9 835.6
4.15 2.19 7.79 6.23 30.81

1.6 0.001 72.6 174.0 111.8 100.4 > 1000
4.78 2.00 10.06 7.98 > 36.74

3.2 0.001 84.7 168.0 126.4 112.4 > 1000
5.58 1.93 11.30 8.85 36.89

Table 5.2

Average number of iterations and computational times for φ(t) = t2/2, |t| ≤ α and φ(t) =
α|t| − α2/2, |t| > α.

β α Multiplicative Additive BFGS DFP Steepest
10 0.025 75.7 282.6 133.0 97.6 894.4

5.03 3.23 11.67 7.68 32.65
10 0.05 75.8 267.4 109.8 86.6 721.8

5.04 3.27 9.89 6.85 26.52
10 0.1 71.2 232.4 89.5 72.1 529.2

4.74 2.81 7.96 5.61 19.49
10 0.2 54.3 147.2 63.7 47.3 329.1

3.59 1.20 5.19 3.66 12.16
10 0.4 22.7 39.2 38.5 31.4 77.2

1.54 0.62 3.49 2.43 2.92

2.5 0.1 62.3 195.6 56.5 59.5 323.0
4.15 2.41 5.09 4.83 11.86

5 0.1 62.1 220.4 71.6 61.5 384.7
4.13 2.68 6.40 4.87 14.08

10 0.1 71.2 232.4 89.5 72.1 529.2
4.74 2.81 7.96 5.61 19.49

20 0.1 78.3 198.2 109.4 84.2 688.3
5.19 2.46 9.75 6.56 25.47

40 0.1 96.0 154.6 132.4 105.6 961.7
6.34 1.93 11.73 8.17 35.13

same operations can vary by orders of magnitude depending on the particular
coding used. This result may show that HQ regularization is a powerful tool
for the minimization of cost functions of the form (1.2)–(1.3).

• We have computed the condition numbers of the matrices H(b(k)) and H aris-
ing from the multiplicative form and the additive form of HQ regularization,
respectively. As expected, the condition number of H(b(k)) is always larger
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Table 5.3

Average number of iterations and computational times for φ(t) = |t|/α− log (1 + |t|/α).

β α Multiplicative Additive BFGS DFP Steepest
0.005 0.025 45.4 182.9 68.1 52.1 608.3

2.96 2.13 6.16 4.17 21.71
0.005 0.05 32.9 170.3 44.9 54.3 206.2

2.19 2.00 4.19 4.46 7.55
0.005 0.1 25.1 111.4 42.6 54.7 224.1

1.69 1.39 4.36 4.50 8.31
0.005 0.2 19.0 65.8 53.1 48.1 209.0

1.27 0.90 4.89 3.85 7.49
0.005 0.4 13.8 36.6 59.4 58.3 252.8

0.94 0.56 5.50 4.70 7.12

0.00125 0.1 24.8 117.4 69.6 61.6 290.5
1.65 1.45 6.48 4.99 10.49

0.0025 0.1 24.2 114.7 55.6 54.6 260.7
1.61 1.43 5.19 4.44 9.42

0.005 0.1 25.1 111.4 42.6 54.7 224.1
1.69 1.39 4.36 4.50 8.31

0.01 0.1 26.2 111.9 38.4 44.9 161.3
1.76 1.37 3.58 3.62 5.81

0.02 0.1 27.2 102.9 34.7 32.7 140.8
1.82 1.28 3.24 2.69 5.14

Table 5.4

Average number of iterations and computational times for φ(t) = log(cosh (αt)).

β α Multiplicative Additive BFGS DFP Steepest
0.5 0.25 3.0 3.0 32.2 324.1 132.6

0.30 0.18 3.04 14.91 5.10
0.5 0.5 3.8 4.0 23.7 120.3 59.5

0.34 0.20 2.17 5.65 2.36
0.5 1 5.5 6.1 213.5 211.7 30.8

0.44 0.22 9.23 8.78 1.23
0.5 2 13.9 20.1 707.5 510.5 335.4

0.98 0.40 30.70 22.74 12.49
0.5 4 30.5 63.7 > 1000 809.8 155.6

2.07 0.90 42.08 36.91 6.02

0.125 1 6.9 8.2 220.2 120.6 66.5
0.55 0.24 10.04 5.75 2.59

0.25 1 5.8 7.2 218.3 509.1 43.5
0.47 0.24 9.72 21.45 1.72

0.5 1 5.5 6.1 213.5 211.7 30.8
0.44 0.22 9.23 8.78 1.23

1 1 4.9 5.4 606.9 605.6 119.4
0.41 0.22 25.75 25.32 4.51

2 1 4.5 4.9 902.7 803.3 804.9
0.37 0.20 44.10 34.86 30.22

than that of H. Some average results are reported in Table 5.6.

We have tested other examples where the blurred signal is corrupted with white
Gaussian noise with SNR of 30dB or 50dB. We have also considered different point
spread functions for A, such as

Ai,j =

{
γe−0.1(i−j)2 , i, j = 1, 2, . . . , 10,
0 otherwise,
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Table 5.5

Average number of iterations and computational times for φ(t) = |t|α.

β α Multiplicative BFGS DFP Steepest
5 1.1 12.6 >1000 > 1000 > 1000

1.36 38.39 37.89 37.93
5 1.15 18.9 >1000 > 1000 > 1000

1.60 39.10 37.69 37.48
5 1.2 16.8 >1000 > 1000 > 1000

1.26 38.76 38.48 38.12
5 1.25 14.4 >1000 > 1000 > 1000

1.06 38.13 38.16 37.55
5 1.3 13.6 >1000 > 1000 > 1000

0.98 37.91 37.56 37.12

1.25 1.2 18.2 >1000 > 1000 > 1000
1.36 39.16 38.84 39.13

2.5 1.2 18.0 >1000 > 1000 > 1000
1.28 39.01 38.45 38.56

5 1.2 16.8 >1000 > 1000 > 1000
1.26 38.99 38.98 37.90

10 1.2 16.8 >1000 > 1000 > 1000
1.17 38.59 38.39 38.67

20 1.2 16.3 >1000 > 1000 > 1000
1.17 39.01 38.87 38.03

Table 5.6

Average condition numbers of H(b(k)) in multiplicative form and H in additive form; cf. (2.7)
and (3.7). Left: φ(t) =

√
α + t2. Right: φ(t) = t2/2 if |t| ≤ α, φ(t) = α|t| − α2/2 if |t| > α.

β α Multiplicative Additive
0.8 0.00025 58.68 25.34
0.8 0.0005 47.80 15.92
0.8 0.001 42.01 10.78
0.8 0.002 73.85 43.40
0.8 0.004 117.26 78.82

0.2 0.001 43.35 19.89
0.4 0.001 30.74 15.91
0.8 0.001 42.01 10.78
1.6 0.001 85.80 32.89
3.2 0.001 120.79 43.40

β α Multiplicative Additive
10 0.025 51.37 13.83
10 0.05 34.12 13.83
10 0.1 20.98 13.83
10 0.2 15.02 13.83
10 0.4 13.83 13.83

2.5 0.1 14.93 7.15
5 0.1 17.30 9.61
10 0.1 20.98 13.83
20 0.1 28.62 21.46
40 0.1 42.88 35.89

where γ is a normalization constant, and

Ai,j = γi,je
−0.1(i−j)2 , i, j = 1, 2, . . . , p,

where γi,j ∈ [0, 1] are random numbers. In the former case A is banded and in the
latter A is not Toeplitz. All observations stated above have been corroborated.

We focused on the role of the constant c involved in the definition of ψ in the
additive form of HQ regularization—see (3.1) and (3.2). The results presented in
Figure 5.2 show that the convergence rate depends linearly on the value of c. This
nicely corroborates our Remark 7 on the optimal choice for c.

5.2. Two-dimensional images. The original image and the data, degraded
by blur and noise, are shown in Figure 5.3. We consider spatial-invariant blurring,
in which case A is a Toeplitz-like matrix [23]. In the regularization term, G is the
discretization matrix of the first-order differentiation operator. The matrix H in the
additive form can be diagonalized by the discrete cosine transform matrix. Thus the
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φ(t) =
√
α + t2 The Huber function φ

Fig. 5.2. Average number of iterations as a function of the values of c in the additive form:
(left) φ(t) =

√
α + t2 (α = 0.001); (right) φ(t) = t2/2 if |t| ≤ α and φ(t) = α|t| − α2/2 if |t| > α

(α = 0.1).

Fig. 5.3. Original image (left) and blurred and noisy image (right).

computational complexity to solve (4.6) at each iteration is O(p2 log p) operations for
a p-by-p image. In the multiplicative form, the matrix H(b) cannot be diagonalized
efficiently. At each iteration, we solve (4.5) using conjugate gradient methods. The
computational complexity is O(p2 log p) per iteration.

The restored images using the Huber potential function are displayed in Figure 5.4
for the additive and the multiplicative forms with α = β = 1. The stopping criterion
of the HQ regularization iterations is ||x(k) − x(k−1)||2 < 1 × 10−3‖y‖2. For the
inner conjugate gradient iterations, we set the stopping criterion such that the H(b)-

norm of the solution error ||x(k) − x
(k)
j ||H(b) is less than 1 × 10−4, where x(k) is the

solution of the linear system (4.5) and x
(k)
j is the jth iterate of the conjugate gradient

iteration [6]. Visually, two restored images using the additive and the multiplicative
form are almost the same. From Table 5.7, we see that the multiplicative form is more
effective than the additive form in terms of the number of iterations, the objective
function values, and the relative errors. However, the differences are not significant.
The computational times required by using the additive form are significantly less
than those using the multiplicative form.
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Fig. 5.4. Restored image using the multiplicative form (left) and using the additive form (right).

Table 5.7

The performance of the multiplicative form and the additive form for the Huber potential function.

β = 1 and α = 1 Multiplicative Additive
Number of iterations required 3 3

Number of inner conjugate gradient iterations required 79 –
Objective function value 457.1436 457.3545

Relative error of the restored image 0.1240 0.1241
CPU times required in seconds 16.23 0.54

β = 1 and α = 0.5 Multiplicative Additive
Number of iterations required 3 3

Number of inner conjugate gradient iterations required 78 –
Objective function value 456.4929 456.1902

Relative error of the restored image 0.1223 0.1237
CPU times required in seconds 16.02 0.54

β = 1 and α = 0.25 Multiplicative Additive
Number of iterations required 3 4

Number of inner conjugate gradient iterations required 79 –
Objective function value 430.4126 430.5825

Relative error of the restored image 0.1173 0.1229
CPU times required in seconds 16.20 0.71

β = 0.5 and α = 1 Multiplicative Additive
Number of iterations required 3 3

Number of inner conjugate gradient iterations required 80 –
Objective function value 325.2088 325.3879

Relative error of the restored image 0.1275 0.1339
CPU times required in seconds 16.01 0.54

β = 2 and α = 1 Multiplicative Additive
Number of iterations required 3 3

Number of inner conjugate gradient iterations required 78 –
Objective function value 682.3296 682.9721

Relative error of the restored image 0.1222 0.1224
CPU times required in seconds 16.06 0.54

6. Concluding remarks. We showed that the minimization of J using both
the multiplicative and the additive form of HQ regularization amounts to finding the
fixed point of a mapping involving a pertinent correction of the steepest descent di-
rection. We presented a theoretical analysis of the convergence rate for each one of
these minimization methods. More precisely, for both forms we derived an upper
bound on the root-convergence factor. The bound for the multiplicative form was
found to be smaller than the bound for the additive form. Our experimental results
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show that minimization using the multiplicative form needs fewer iterations than the
additive form, but that it requires a higher computation time. When applicable, the
additive form is more attractive to use than the multiplicative form. Extensive exper-
iments demonstrate that in our MATLAB implementation, minimization using HQ
regularization is substantially faster (in terms of computational times) than standard
routines, such as those in the MATLAB Optimization Toolbox. These results must
be qualified by the observation that MATLAB run times for the same operations can
vary by orders of magnitude depending on the particular coding used.

7. Appendix. From the theory of convex conjugated functions [27, 18], given
f : R → R, its conjugated function g is defined by g(s) = supt∈R

{st − f(t)} and
is convex on R. If f is continuous, convex and f �≡ ∞ on R, we have reciprocally
sups∈R

{st− g(s)} = f(t).

7.1. Functions ψ and σ for the multiplicative form. We suppose that φ
satisfies all conditions given in (2.1). Define θ : R → R as

θ(t) =

{
φ(
√
t) if t ≥ 0,

−∞ if t < 0.
(7.1)

By (2.1)(b), the function −θ is convex on R. Using convex conjugacy, if

ψ(s) = sup
t∈R+

{ h(t, s) } , where h(t, s) =

(
−1

2
s

)
t− (−θ(t)) ,(7.2)

we have reciprocally

θ(t) = inf
s∈R

∗
+

{
1

2
st + ψ(s)

}
,(7.3)

where the infimum is taken over R
∗
+ because ψ(s) = +∞ if s ≤ 0. Since t ∈ R+ in

(7.2) and (7.3), we can write t2 in place of t. Using that θ(t2) = φ(t), these expressions
yield (2.2) and (2.3), respectively.

Since for any s > 0 the function t → h(t, s) is concave on R+ by (2.1)(b) and
satisfies limt→∞ h(t, s) = −∞ by (2.1)(f), it follows that h(., s) reaches its supremum
for a finite t ∈ [0,∞). We determine σ by exhibiting all the pairs (t̂, ŝ) for which the
supremum in (7.2) is reached, i.e., ψ(ŝ) = h(t̂, ŝ).

• For any ŝ ≥ 2θ′(0+), the function h(., ŝ) reaches its maximum at t̂ = 0 since
limt↘0 D1h(t, ŝ) ≤ 0 shows that h(., ŝ) is decreasing on the right side of zero.

• Consider that ŝ ∈ (0, 2θ′(0+)). Since limt↘0 D1h(t, ŝ) > 0, the function h(., ŝ)
increases on the right of zero. The supremum in (7.2) is then reached for a

t̂ ∈ (0,∞) such that D1h(t̂, ŝ) = 0, hence ŝ = 2θ′(t̂) = φ′(
√
t̂)/

√
t̂.

Using θ(t2) = φ(t) again shows that σ is as given in (2.5).

7.2. Functions ψ and σ for the additive form. We assume that φ satisfies
(3.1). Using (3.1)(b), convex conjugacy shows that if

ψ(s) +
1

2c
s2 = sup

t∈R

{ h(t, s) } , where h(t, s) = ts−
( c

2
t2 − φ(t)

)
,(7.4)

we have reciprocally

c

2
t2 − φ(t) = sup

s∈R

(
ts−

(
ψ(s) +

1

2c
s2

) )
.
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The equation in (7.4) is equivalent to (3.2) while the latter is equivalent to (3.3). Here
again, the function σ is obtained by determining all the pairs (t̂, ŝ) which achieve the
supremum in (7.4). Using (3.1)(b) and (3.1)(e), for any s ∈ R, the function h(., s) is
concave and satisfies lim|t|→∞ h(t, s) = −∞. It follows that for any ŝ, the supremum in

(7.4) is reached for a finite t̂. Since h is differentiable, any such t̂ satisfies D1h(t̂, ŝ) = 0.
Hence ŝ = σ(t̂) if σ reads as in (3.5).
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[30] S. Teboul, L. Blanc-Féraud, G. Aubert, and M. Barlaud, Variational approach for edge-

preserving regularization using coupled PDE’s, IEEE Trans. Image Process., 7 (1998),
pp. 387–397.

[31] A. Tikhonov and V. Arsenin, Solutions of Ill-Posed Problems, Winston, Washington, DC,
1977.


