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Abstract We consider a class of convex functionals that can
be seen as C 1 smooth approximations of the �1-T V model.
The minimizers of such functionals were shown to exhibit a
qualitatively different behavior compared to the nonsmooth
�1-T V model (Nikolova et al. in Exact histogram specifica-
tion for digital images using a variational approach, 2012).
Here we focus on the way the parameters involved in these
functionals determine the features of the minimizers û. We
give explicit relationships between the minimizers and these
parameters.

Given an input digital image f , we prove that the error
‖û − f ‖∞ obeys b − ε ≤ ‖û − f ‖∞ ≤ b where b is a con-
stant independent of the input image. Further we can set the
parameters so that ε > 0 is arbitrarily close to zero. More
precisely, we exhibit explicit formulae relating the model
parameters, the input image f and the values b and ε. Con-
versely, we can fix the parameter values so that the error
‖û − f ‖∞ meets some prescribed b, ε. All theoretical re-
sults are confirmed using numerical tests on natural digital
images of different sizes with disparate content and quality.
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1 Introduction

In [11] a variational method using C 2 smoothed �1-TV
functionals were proposed. The goal was to process digital
(quantized) images so that the obtained minimizer is quite
close to the input digital image but its pixels are real-valued
and can be ordered in a strict way. Indeed, the obtained min-
imizers were shown to enable faithful exact histogram spec-
ification outperforming the state-of-the-art methods [7, 12].
The intuition behind these functionals was that their min-
imizer can up to some degree remove some quantization
noise and in this way yield an ordering of the pixels close
to the unknown original real-valued image. Such an effect
can be observed in Fig. 1 where a synthetic real-valued im-
age is quantized and then restored using the proposed varia-
tional method. The nonsmooth L1-TV model was originally
studied in [5]. The main feature of its minimizers is that
they contain parts that are equal to the data image and parts
that are constant (living in a vanishing component of the TV
term). Even though the model modification proposed in [11]
might seem trivial, the minimizers of these C 2 smoothed
�1-TV functionals exhibit a qualitatively different behav-
ior. Unlike the L1-TV (�1-TV) minimizers, it was shown
in [11] that the minimizers of the C 2 smoothed �1-TV func-
tionals generically do not have pixels equal to those of the
data image and there are no equally valued pixels. Some of
the authors of [11] observed that once the parameters of the
model were fixed, for all kind of real-world digital images
f , the residual error obeyed ‖û − f ‖∞ = b where the con-
stant b typically met b < 0.5. For this reason, they qualified
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Fig. 1 The restored image is
obtained by minimizing J (·, f )

of the form (1) where
ψ(t) =

√
t2 + α1 and

ϕ(t) =
√

t2 + α2 for N 8

this variational approach as detail preserving. Therefore we
were interested in monitoring the error ‖û − f ‖∞.

In this paper we consider a wider class of C 1 smoothed
�1-TV functionals involving also �2 data fidelity terms.
We give explicit relationships between the minimizers and
the parameters tuning the model. The observation that
‖û − f ‖∞ = b, up to a small difference, is independent of
the input image, is confirmed theoretically. Clear indications
on the role of the parameter setting and the lower and upper
bounds of ‖û−f ‖∞ enable us to give restrictions on the pa-
rameter selection. All theoretical results are confirmed using
numerical tests on a set of digital images of different sizes
with disparate content and quality.

In spite of the progress in nonsmooth convex optimiza-
tion [4], smooth approximations of nonsmooth objectives
still remain a common approach in optimization [2]. Our re-
sults can help to design smooth approximations of �1/�2-TV
functionals in a proper way.

The outline of this paper is as follows: In the next Sect. 2
we describe the variational model. Then, in Sect. 3 we esti-
mate the �∞-error between the input image f and the min-
imizer of the functional. Section 4 provides explicit param-
eter estimates for the model. In Sect. 5 we give probability
estimates for the behavior of neighboring pixels. Numeri-
cal tests demonstrate the quality of our estimates in Sect. 6.
Finally, Sect. 7 finishes with conclusions and perspectives.

2 The Fully Smoothed �1-TV Model

We consider M × N digital images f with gray values in
{0, . . . ,L − 1}. Let n := MN . To simplify the notation we
reorder the image columnwise into a vector of size n and
address the pixels by the index set In := {1, . . . , n}. Further,
we denote by I

int
n ⊂ In the subset of all inner pixels, i.e., all

pixels which are not boundary pixels.
We are interested in the minimizer û of a functional of

the form

J (u,f ) := Ψ (u,f ) + βΦ(u), β > 0 (1)

with

Ψ (u,f ) :=
∑

i∈In

ψ
(
u[i] − f [i]),

Φ(u) :=
∑

i∈In

∑

j∈Ni

ϕ
(
γi,j

(
u[i] − u[j ])),

where Ni is a neighborhood of pixel i, the γi,j > 0 are
weighting terms for the distance between neighbors, and
the functions ψ and ϕ depend on a positive parameter,
α1 and α2, respectively. To emphasize this dependence we
use the notation ψ(·, α1) and ϕ(·, α2) when necessary. So
ψ : R×(0,+∞) → R and ϕ : R×(0,+∞) → R. The func-
tions ψ and ϕ have to fulfill the properties stated below:

H0 The functions t �→ ψ(t,α1) and t �→ ϕ(t, α2) are con-
tinuously differentiable and even.
We denote

ψ ′(t, α1) := d

dt
ψ(t, α1) and

ϕ′(t, α2) := d

dt
ϕ(t, α2).

When it is clear from the context, we write ψ ′(t) for
ψ ′(t, α1) and ϕ′(t) for ϕ′(t, α2). By H0, ψ ′(t) and
ϕ′(t) are continuous and odd functions.
These derivative functions have to satisfy certain con-
ditions given next.

H1ψ t �→ ψ ′(t, α1) : R → (−Y,Y ), where Y > 0, is a
strictly increasing function for any fixed α1 ∈ (0,+∞)

and maps onto (−Y,Y ).
H2ψ There is a constant T > 0 such that for any fixed

t ∈ (0, T ), the function α1 �→ ψ ′(t, α1) is strictly de-
creasing on (0,+∞).
Here the cases T = +∞ and Y = +∞ are included.

H1ϕ t �→ ϕ′(t, α2) is an increasing function for any fixed
α2 ∈ (0,+∞) satisfying

lim
t→∞ϕ′(t, α2) = 1.
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H2ϕ For any fixed t > 0, the function α2 �→ ϕ′(t, α2) is
continuous and decreasing on (0,+∞) and

lim
α2↘0

ϕ′(t, α2) = 1.

These properties imply further useful relations which are
collected in the following remark.

Remark 1 (i) By H1ψ we know that ψ is strictly convex and
monotone increasing on (0,+∞) and by H1ϕ that ϕ is con-
vex. Therefore there exists a unique minimizer of (1). This
minimizer can be computed, e.g. by using a Weiszfeld-like
semi-implicit algorithm, or the nonlinear (preconditioned)
conjugate gradient method, see [6, 11, 13], among other vi-
able algorithms.

(ii) By H1ψ there exists the inverse function (ψ ′)−1(·, α1) :
(−Y,Y ) → R, and this function is also odd, continuous and
strictly increasing.

Some relevant choices of functions θ obeying all prop-
erties H0, H1ψ , H2ψ , H1ϕ and H2ϕ are given in Table 1.
For the latter functions, t �→ θ ′(t, α) maps onto (−1,1), i.e.,
Y = 1 and T = +∞ for any α > 0. A typical graph of such
a function, its derivative and inverse derivative is depicted in
Fig. 2.

Another choice for ψ fulfilling H0, H1ψ and H2ψ is the
scaled �p-norm for p = α1 + 1:

ψ(t) := 1

α1 + 1
|t |α1+1 with

Table 1 Options for functions θ obeying all the assumptions stated
above. These functions are nearly affine beyond a neighborhood of
zero. The size of the latter neighborhood is controlled by the param-
eter α > 0

θ θ ′ (θ ′)−1

Θ1
√

t2 + α t√
t2+α

y
√

α

1−y2

Θ2 |t | − α log(1 + |t |
α

) t
α+|t |

αy
1−|y|

Θ3 α log(cosh( t
α
)) tanh( t

α
) α atanh(y)

ψ ′(t) = |t |α1 sign(t), (ψ ′)−1(y) = |y| 1
α1 , α1 > 0. (2)

Here ψ ′ maps onto R so that Y = +∞. Moreover α1 �→
ψ ′(t, α1) is strictly monotone decreasing for |t | < 1 hence
T = 1 in this case. An upper bound for ‖û − f ‖∞ when
α1 = 1 in (2) was derived in [10]. Some general results on
the functionals J for α1 = 1 in (2) can be found in [1] in a
continuous setting.

For ϕ we can also use the scaled Huber function

ϕ(t) :=
{

t2

2α2
if |t | ≤ α2,

|t | − α2
2 if |t | > α2

with

ϕ′(t) =
{

t
α2

if |t | ≤ α2,

sign(t) if |t | > α2.
(3)

Note that the functions ψ and ϕ in Table 1 and (3) are nearly
affine beyond a small neighborhood of the origin.

In this paper, we focus on the neighborhoods N 4 and N 8
depicted in Fig. 3 top. When taking the gradient of the func-
tional in (1) we have to take into account that the pixel com-
bination u[i] − u[j ] appears for j ∈ N 2

i , where N 2
i denotes

the “double” neighborhood associated with Ni in Fig. 3 bot-
tom. The usual choices are (see e.g. [8])

γi,j := 1 for vertical and horizontal neighbors,

γi,j := 1√
2

for diagonal neighbors.
(4)

In all cases we have γi,j = γj,i .
Functionals of the form (1) with functions ψ,ϕ ∈ Cs ,

s ≥ 2 having alike properties (e.g. all functions in Table 1)
were successfully used in [11] to process digital images f

so that the obtained minimizer û is quite close to the input
digital image but its pixels can be ordered in a strict way. An
analysis of the minimizers û of these functionals has shown
that with a probability close to one, û has pixel values that
are different from each other and different from the input
pixels.

Fig. 2 The function Θ1 in
Table 1, where the plots for
α = 0.05 are in solid line and
for α = 0.5 in dashed line
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Fig. 3 Neighborhoods N 4 (left) and N 8 (right) of a pixel (i, j) are
used to formulate Φ(u). The double neighborhoods N 42 and N 82 ap-
pear in the gradient of Φ(u), see (7)

3 Bounds for the �∞-Error

In this section, we give upper and lower estimates for the
�∞-error between the input image f and the image û ob-
tained by minimizing the functional J (·, f ).

If û is a minimizer of u �→ J (u,f ) we denote by h ∈ R
n

the vector with components

h[i] :=
∑

j∈N 2
i

γi,j ϕ
′(γi,j

(
û[i] − û[j ])), i ∈ In. (5)

First we provide a lemma which gives a useful expression
for ‖û − f ‖∞.

Lemma 1 Let H0, H1ψ and H1ϕ be satisfied. Let û be the
minimizer of u �→ J (u,f ) and h be given by (5). Then

‖û − f ‖∞ = (
ψ ′)−1(

β‖h‖∞, α1
)
. (6)

Proof In this proof we can omit the parameter α1. Using the
definition of J and taking into account that ϕ′ is odd, we
have

∂Ψ

∂u[i] = ψ ′(u[i] − f [i]) and

∂Φ

∂u[i] =
∑

j∈N 2
i

γi,j ϕ
′(γi,j

(
u[i] − u[j ])).

(7)

The minimizer û of J (·, f ) has to satisfy ∇uJ (û, f ) = 0
which can be rewritten as ∇uΨ (û, f ) = −β∇Φ(û) or as

ψ ′(û[i] − f [i])

= −β
∑

j∈N 2
i

γi,j ϕ
′(γi,j

(
û[i] − û[j ])), i ∈ In.

Using (5), the latter is equivalent to

ψ ′(û[i] − f [i]) = −βh[i], i ∈ In.

Since ψ ′ is by H0 and H1ψ odd and strictly increasing,

ψ ′(∣∣û[i] − f [i]∣∣) = ∣∣ψ ′(û[i] − f [i])∣∣ = β
∣∣h[i]∣∣. (8)

Using Remark 1(ii), we see that (8) is equivalent to

∣∣û[i] − f [i]∣∣ = (
ψ ′)−1(

β
∣∣h[i]∣∣) (9)

where (ψ ′)−1 is strictly increasing, hence

‖û − f ‖∞ = max
i∈In

(
ψ ′)−1(

β
∣∣h[i]∣∣) = (

ψ ′)−1(
β‖h‖∞

)
. �

For inner points i ∈ I
int
n we define

η :=
∑

j∈N 2
i

γi,j . (10)

Of course η does not depend on i but just on the choice of
the neighborhood. If the weights are defined as in (4), we
have

η = 4 for N 4,

η = 4 + 4√
2

= 6.8284 for N 8.

For i ∈ In \ I
int
n we have

∑
j∈N 2

i
γi,j ≤ η whose value de-

pends on the boundary conditions.
In order to extend the obtained result, we shall use a prop-

erty of (ψ ′)−1 which is stated below.

Lemma 2 Let ψ satisfy H0, H1ψ and H2ψ . Set

Ỹ := min
{
Y,ψ ′(T )

}
,

where ψ ′(T ) := limt→+∞ ψ ′(t) if T = +∞. Then for any
y ∈ (0, Ỹ ), the function α1 �→ (ψ ′)−1(y,α1) is strictly in-
creasing on (0,+∞).

Proof Let 0 < a1 < a2 and y ∈ (0, Ỹ ) be arbitrarily fixed.
Since t �→ ψ ′(t, α1) is one-to-one and odd, there exist
t1, t2 ∈ (0, T ) such that

ψ ′(t1, a1) = y = ψ ′(t2, a2). (11)
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Thus we have (ψ ′)−1(y, a1) = t1 and (ψ ′)−1(y, a2) = t2.
From H1ψ , t �→ ψ ′(t, α1) is strictly increasing for any fixed
α1 > 0 and from H2ψ , α1 �→ ψ ′(t, α1) is strictly decreasing
for any fixed t ∈ (0, T ). Therefore

t2 ≤ t1 ⇒ y = ψ ′(t1, a1) > ψ ′(t1, a2) ≥ ψ ′(t2, a2).

This contradicts (11). Consequently, t1 < t2 which implies
the assertion. �

For all functions in Table 1 and for ψ in (2) we have
Ỹ = 1.

The following theorem provides an upper bound for
‖û − f ‖∞ which is independent of f as well as of the par-
ticular shape of ϕ(t, α2) provided that the latter meets the
relevant assumptions.

Theorem 1 Assume that H0, H1ψ and H1ϕ are satisfied.
Let βη < Y , where η is given in (10). Then the minimizer û

of u �→ J (u,f ) satisfies

‖û − f ‖∞ ≤ (
ψ ′)−1

(βη,α1) =: b(β,α1). (12)

If, in addition, ψ fulfills H2ψ and βη < Ỹ , where Ỹ =
min{Y,ψ ′(T )}, then α1 �→ b(β,α1) is strictly increasing on
(0,+∞).

Proof From H1ϕ , ϕ′ is increasing with |ϕ′(t)| ≤ 1 for any
t ∈ R. Inserting this into the definition of h in (5) yields

‖h‖∞ ≤ η. (13)

Since (ψ ′)−1 is by Remark 1(ii) strictly increasing on (0, Y ),
we deduce from (6) and (13) for βη < Y that

‖û − f ‖∞ = (
ψ ′)−1(

β‖h‖∞, α1
) ≤ (

ψ ′)−1
(βη,α1).

If ψ meets H2ψ and βη < Ỹ we obtain by Lemma 2 that
the function α1 �→ (ψ ′)−1(βη,α1) is strictly increasing on
(0,+∞). �

We clarify the statement of Theorem 1 below.

• By Remark 1, the function β �→ b(β,α1) is strictly in-
creasing since η is a fixed number.

• The equality in (12) can only be met if ϕ′ attains the limit
in H1ψ , i.e., if ϕ′(t) = 1 for some t ∈ R. This is for ex-
ample the case for the scaled Huber function in (3).

• The bound in (12) depends only on ψ(·, α1) and on β but
it is independent of the selection of ϕ provided that H1ϕ

holds.
• For all functions ψ listed in Table 1 we have Y = 1 which

limits the action of β to less than 1/η. So H2ψ furnishes a
flexible tool to control the upper bound b(β,α1) by using
α1 under the condition that βη < Ỹ , where we remind that
Ỹ = 1 for all ψ in Table 1 and in (2).

The lower bound on ‖û−f ‖∞ exhibited in the next The-
orem 2 depends on ϕ(t, α2) and on the input image f as
well. In our formula, the reliance on f is expressed via the
magnitude νf defined below:

I := {
i ∈ I

int
n

∣∣ sign
(
f [i] − f [j ]) = σ, ∀j ∈ Ni where

σ ∈ {−1,+1}},
νf := max

i∈I
min
j∈Ni

(
γi,j

∣∣f [i] − f [j ]∣∣),
(14)

where we set νf := 0 if I = ∅. The values of νf for some
real-world images can be seen in Fig. 7.

Theorem 2 Let H0, H1ψ , H2ψ and H1ϕ , H2ϕ be verified.
Let βη < Y , where η is given in (10). Assume that νf >

2b(β,α1). Then the minimizer û of u �→ J (u,f ) fulfills

‖û − f ‖∞ ≥ (
ψ ′)−1

(cβη,α1) =: 
(β,α1, α2, νf ), (15)

where

c = c(β,α1, α2, νf ) := ϕ′(νf − 2b(β,α1), α2
) ≤ 1.

The function α2 �→ 
(β,α1, α2, νf ) is decreasing on
(0,+∞) and


(β,α1, α2, νf ) ↗ b(β,α1) as α2 ↘ 0. (16)

Moreover, for ε > 0 arbitrarily close to zero, α2 can be set
so that

‖û − f ‖∞ ≥ (
ψ ′)−1(

(1 − ε)βη,α1
)
. (17)

Proof From the definition on νf , there exists i ∈ I
int
n such

that

γi,j

∣∣f [i] − f [j ]∣∣ ≥ νf , ∀j ∈ Ni .

We consider the case

γi,j

(
f [i] − f [j ]) ≥ νf > 2b(β,α1), ∀j ∈ Ni . (18)

The opposite case, namely γi,j (f [j ] − f [i]) ≥ νf >

2b(β,α1), ∀j ∈ Ni can be handled in the same way. By
Theorem 1, the minimizer û of J (·, f ) meets

−b(β,α1) ≤ û[i] − f [i],
−b(β,α1) ≤ f [j ] − û[j ], ∀j ∈ Ni .

Thus

−2b(β,α1) ≤ û[i] − û[j ] − (
f [i] − f [j ]), ∀j ∈ Ni ,

−2b(β,α1) + (
f [i] − f [j ] ) ≤ û[i] − û[j ], ∀j ∈ Ni .

(19)

Combining (18) and (19) along with the fact that γi,j ≤ 1
yields
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0 < −2b(β,α1) + νf ≤ −2b(β,α1) + γi,j

(
f [i] − f [j ])

≤ γi,j

(
û[i] − û[j ]) ∀j ∈ Ni .

Since t �→ ϕ′(t, α2) is increasing by H1ϕ , the value h[i]
in (5) satisfies

h[i] ≥
∑

j∈N 2
i

γi,j ϕ
′(νf − 2b(β,α1), α2

) = ηc(β,α1, α2, νf ).

Using yet again that y �→ (ψ ′)−1(y,α1) is strictly increasing
(Remark 1(ii)) we obtain by (9) that

∣∣û[i] − f [i]∣∣ ≥ (
ψ ′)−1

(cβη,α1).

Since ‖û − f ‖∞ ≥ |û[i] − f [i]|, it follows that

‖û − f ‖∞ ≥ (
ψ ′)−1

(cβη,α1) = 	(β,α1, α2, νf ).

Using H2ϕ , the function α2 �→ c(β,α1, α2, νf ) is continu-
ous and decreasing on (0,+∞) and limα2↘0 c(β,α1, α2, νf )

= 1. Combining the latter with Remark 1(ii) entails that
α2 �→ 	(β,α1, α2, νf ) is decreasing on (0,+∞). Then the
definition of b(β,α1) in (12) leads to (16).

Finally, H2ϕ shows that for ε arbitrarily close to zero
there is α2 > 0 such that c(β,α1, α2, νf ) = (1 − ε) and con-
sequently ‖û − f ‖∞ ≥ (ψ ′)−1((1 − ε)βη). �

Some comments on Theorem 2 may be useful.

• The expression in (17) tells us that by decreasing α2, the
lower bound 	(·) can be adjusted arbitrarily close to the
upper bound b(·). The amount of decrease of α2 needed
to reach (1 − ε) depends on the input image f and can be
calculated.

• If t �→ ϕ′(t, α2) is nonstrictly increasing on [0,+∞), as
the Huber function in (3), it is easy to see that there is α2

such that c(β,α1, α2, νf ) = 1 and hence 	(β,α1, α2, νf )

= b(β,α1).

4 Explicit Parameter Estimates

In this section we want to use the error bounds from the
previous section to give explicit parameter estimates of β ,
α1 and α2 for the functions ψ, ϕ mentioned in Sect. 2.
More precisely, for a given β satisfying a constraint and
for δ fixed, we exhibit the value α1 = α̂1 ensuring that
b(β, α̂1) = δ and then calculate 	(β, α̂1, α2, νf ).

For the functions ψ in Table 1 and in (2) we have Ỹ = 1.
When the weights γi,j are chosen as in (4) and H2ψ holds,
the assumption βη < Ỹ = 1 in Theorem 1 reads

β <
1

4
= 0.25 for N 4,

β <
1

6.8284
= 0.1464 for N 8.

(20)

In the following we choose β > 0 such that β < 1
η

. For δ > 0
fixed, let α̂1 solve the equation

b(β,α1) = (
ψ ′)−1

(βη,α1) = δ. (21)

Then we have by Theorem 1 that ‖û − f ‖∞ ≤ δ for all
α1 ∈ (0, α̂1] and there does not exist α1 > α̂1 such that
‖û − f ‖∞ ≤ δ holds true. In this sense we call α̂1 optimal
for δ. This claim is ensured thanks to H2ψ which guarantees
that α1 �→ b(β,α1) is strictly increasing (see Lemma 2). The
value c in Theorem 2 depends on ϕ and on f via νf . Given
the input image f the constant νf is easy to compute. When

z := νf − 2b(β,α1) > 0,

Theorem 2 indicates that the constant c reads

c = ϕ′(z,α2). (22)

In our experiments on real-world digital images, we always
had z � 0 for δ = 0.5. By Theorem 2 a sharper lower bound
requires a smaller value for α2. According to Theorem 1 and
Theorem 2, the upper and lower bounds for ‖f − û‖∞ and
the optimal value for α1 as defined in (21) for the functions
ψ in Table 1 and in (2) are given in Table 2.

If δ = 0.5 then û has the important property that it pre-
serves the order of the pixel values in a digital image f ∈
{0, . . . ,L−1}n. The corresponding values α̂1 and β are pre-
sented in Table 3.

Remark 2 Equation (21) offers several other exploits than
only fixing the optimal α̂1. For any β < Y

η
one can also

• calculate δ when α1 and β are given—this can be useful
e.g. when 	1-TV or 	2-TV are approximated by a fully
smooth functional;

• determine the optimal β for fixed α1 and δ—we remind
that from Remark 1, β �→ b(β,α1) is strictly increasing,
hence this value of β is unique.

5 Probability Estimates for Pixel Neighborhoods

Consider that the assumptions H0, H1ψ , H1ϕ and H2ϕ are
met and that the parameters β < Y/η, α1 and α2 are fixed.
From Theorem 2 we know that the upper bound b(β,α1) in
Theorem 1 provides a nearly perfect approximation of the
true error ‖û − f ‖∞ when c = ϕ′(νf − 2b,α2) is close to
one, which by H1ϕ means that νf is large enough. In or-
der to get an intuition—even though very rough—on the be-
haviour of νf , we assume in this section that the values of
f are realizations of a discrete random variable X taking
values in {0, . . . ,L − 1} whose probability density function
(pdf) pX is specialized to real-world digital images. Figure 4
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Table 2 Bounds and parameter
α̂1 for various functions ψ in
Table 1 and in (2). The
parameter c depends on ϕ′
by (22). The allowed values for
β by Theorem 1 are given
in (20)

ψ(t) b(β,α1) �(β,α1, α2, νf ) α̂1

√
t2 + α1

√
α1(βη)2

1−(βη)2

√
α1(cβη)2

1−(cβη)2 δ2( 1
β2η2 − 1)

|t | − α1 log(1 + |t |
α1

)
α1βη
1−βη

α1cβη
1−cβη

δ( 1
βη

− 1)

α1 log(cosh( t
α1

)) α1 atanh(βη) α1 atanh(cβη) δ
atanh(βη)

1
α1+1 |t |α1+1 (βη)

1
α1 (cβη)

1
α1

ln(βη)
ln δ

Table 3 Allowed values
β < 1/η and the optimal α̂1 for
δ = b(β, α̂1) = 0.5

ψ(t)
√

t2 + α1 |t | − α1 log(1 + |t |
α1

)

neighborhood β α̂1 β α̂2

N 4 0.2 0.1406 0.2 0.1250

N 4 0.1 1.3125 0.1 0.7500

N 8 0.1 0.2862 0.1 0.2322

N 8 0.05 1.8947 0.05 0.9645

Fig. 4 Left: Duck image. Right:
Histogram of “duck image”
furnishing an empirical estimate
of the corresponding pdf

shows an image together with its histogram which furnishes
an empirical estimate of the corresponding pdf.

First, we ask for the probability that an inner image pixel
i ∈ I

int
n fulfills

∣∣f [i]−f [j ]∣∣ ≥ a and sign
(
f [i]−f [j ]) = σ, ∀j ∈ Ni

(23)

where σ ∈ {−1,+1} and a > 0 is fixed.

Lemma 3 Let X,Xi , i = 1, . . . , k be independent and iden-
tically distributed (iid) discrete random variables taking val-
ues in {0, . . . ,L − 1}. Then it holds for a > 0 that

q(X,k, a) := P(X − X1 ≥ a, . . . ,X − Xk ≥ a)

=
L−1∑

i=0

(
P(X ≤ i − a)

)k
P (X = i). (24)

Proof Since the random variables are iid we obtain

P(X − X1 ≥ a, . . . ,X − Xk ≥ a)

=
L−1∑

i=0

P(i − X1 ≥ a, . . . , i − Xk ≥ a,X = i)

=
L−1∑

i=0

(
P(X ≤ i − a)

)k
P (X = i).

�

A case relevant to our context is when X is a given inner
pixel and Xi for i ∈ {1, . . . , k} are the pixels in the “double”
neighborhood of X, see Fig. 3. Then the setting of Lemma 3
considers neighborhoods where the central pixel X is big-
ger than all its neighbors by at least the amount of a. It
is clear that the opposite case (when X − Xi ≤ −a for all
i ∈ 1, . . . , k) is of the same interest and appears with the
same probability P(X − X1 ≤ −a, . . . ,X − Xk ≤ −a) =
q(X,k, a). Of course the “iid” assumption is not realistic
for natural images.

For k = 1, the probabilities P(X − X1 ≥ a) and P(X −
X1 ≤ −a) can be easily exemplified. Let X and X1 follow
independently the same pdf pX . In order to obtain the joint
pdf of X and X1, one has to compute P(X = i1)P (X =
i2) for all gray levels i1, i2 obeying |i1 − i2| ≥ a and then
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Fig. 5 Left: Joint pdf of two iid
random variables X,X1 where
X and X1 follow the pdf of the
“ducks image” in Fig. 4 right.
Here light areas correspond to
high probability. Right: Areas
where |i1 − i2| ≥ a,
i1, i2 ∈ {0, . . . ,L − 1}. The
value 2q(X,1, a) is the sum of
the probabilities in the shaded
areas

take their sum. Figure 5 (left) shows for example the joint
pdf of X and X1 when X and X1 are iid random variables
following the pdf pX of the “ducks image” in Fig. 4 left.
At position (i1, i2) ∈ {0, . . . ,255}2 the probability P(X =
i1)P (X1 = i2) is visualized as a gray value where lighter
areas correspond to higher probability.

In Fig. 5 (right) the shaded areas show the points where
the pixel difference |i1 − i2| is larger or equal to a. The
sum of the probabilities corresponding to these areas is
2q(X,1, a).

Theorem 3 Assume that the M ×N image f is the realiza-
tion of a discrete iid random vector (Xi)

n
i=1 with iid compo-

nents Xi as X, where n = MN . Let νf be defined as in (14)
with respect to N 4. Then the probability that νf ≥ a > 0 is
not smaller than

1 − (
1 − 2q(X,4, a)

)m
, (25)

where q is defined in (24) and m = �M/3� × �N/3�.

For N 8 we have to replace q by q̃(X,4, a) :=∑L−1
i=0 (P (X ≤ i − a))4(P (X ≤ i − √

2a))4P(X = i).

Proof We consider only inner pixels i with non-overlapping
neighborhoods as depicted in Fig. 6. Then, by Lemma 3, the
probability that one of these pixels does not verify (23) is
given by 1−2q(X,4, a). Hence the probability that all these
inner pixels do not fulfill (23) is (1 − 2q(X,4, a))m and the
probability that at least one of these pixel satisfies (23) is
1 − (1 − 2q(X,4, a))m. �

Note that for q(X,4, a) > 0 the probability in (25) is in-
deed very close to 1 even for moderate sizes of m. For in-
stance, if the random variables are uniformly iid, we have

q(X,4, a)

= 1

L

L−1∑

i=a

(
i − a + 1

L

)4

= (L − a)(L − a + 1)(2(L − a) + 1)(3(L − a)2 + 3(L − a) − 1)

30L5
.

Fig. 6 Disjoint 3 × 3-adjacencies with center pixels “x”

For a = 137 and L = 256 this formula gives q(X,4, a) ≈
0.0044 and for M = N = 128 further 1−(1−q(X,4, a))m ≈
1 − 10−7.

6 Numerical Tests

The bounds on ‖û − f ‖∞ with respect to the model pa-
rameters were tested on a wide amount of images. Here
we present the results on 15 digital images of differ-
ent sizes, with gray values in {0, . . . ,255}, available at
http://sipi.usc.edu/database/. In our selection the images
have various quality and content (presence or quasi-absence
of edges, textures, nearly flat regions). They are displayed in
Fig. 7. The values of νf for N 8 under each image shows that
the assumption νf − 2b(β,α1) > 0 in Theorem 2 is gener-
ously satisfied in all these cases as far as we are interested to
fix b(β,α1) ≤ 0.5. We also performed tests with 104 random
256 × 256 images with pixel values uniformly distributed in
{0, . . . ,255}. For N 4 we obtained mean(νf ) = 224.2267
and for N 8, mean(νf ) = 137.7871.

We tested two functionals J (·, f ) as described in Sect. 2:
the first corresponds to ψ = Θ1 and ϕ = Θ1 and the sec-
ond to ψ = Θ2 and ϕ = Θ1 as given in Table 1. In all
tests, N8 was adopted with the weights γi,j given in (4).
Two choices for β satisfying (20) were considered along
with different values for α1 and α2. The minimizers û were
computed using Polak-Ribière conjugated gradients [3] with
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Fig. 7 The set of images used in the tests provided in this section. The values of νf are computed according to (14) in the case N8 for the weights
in (4)

high numerical precision. For each restored image we com-
puted ‖û − f ‖∞ and present the distance between the theo-
retical upper bound b(β,α1) and the obtained ‖û − f ‖∞:

b(β,α1) − ‖û − f ‖∞.

The tables show also the difference between the upper and
the lower theoretical bounds on ‖û − f ‖∞:

b − � := b(β,α1) − �(β,α1, α2, νf ),

computed using the explicit formulae given in Sect. 4. Fur-
thermore, we evaluate the amount of pixels that closely ap-
proach the �∞ norm:

q = #
{
i ∈ In | ‖û − f ‖∞ − ∣∣û[i] − f [i]∣∣ < ε

}
and

Q % = 100
q

n
,

where # stands for cardinality and ε � 0 in order to account
for numerical errors. In the experiments, we set ε := 10−3.

In all tests, given 0 < β < 1/η, we fixed α1 = α̂1 so that

b(β, α̂1) = δ for δ = 1

2
.

The numerical outcomes confirm the theoretical results
on ‖û − f ‖∞ established in Sects. 3 and 4. From Tables 4,
5 and 6 the following observations can be drawn:

• Decreasing α2 > 0 towards 0 enables to make the dif-
ference between the upper and the lower bounds on
‖û − f ‖∞ arbitrarily small which leads to ‖u − f ‖∞ ≈
b(β,α1).

In this case a large percentage of the pixels i meet
|û[i] − f [i]| ≈ b(β,α1).

• An important increase of α2 > 0 entails a decrease of the
lower bound �(β,α1, α2, νf ). Moreover, the number of
pixels i verifying |û[i] − f [i]| ≈ b(β,α1) is reduced to a
few ones.

Such a situation may be preferable when one wishes
that there are not too many pixels close to the upper
bound.

Tables 7 and 8 show yet again that the gap between the
upper bound b(β,α1) and the lower bound �(β,α1, α2, νf )

vanishes when α2 is close to zero and that it increases
when α2 increases. For α2 fixed, we see that b(β,α1) −
�(β,α1, α2, νf ) tends to decrease along with β .

Figure 8 shows the histograms of the differences {f [i] −
û[i], i ∈ In} relevant to “moon”, where the upper bound was
set to b(β,α1) = 0.5, for an increasing set of values of α2.
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Table 4 Results for ψ = Θ1, ϕ = Θ1, β = 0.1 and a small and
large value of α2, respectively. Over the whole set of these images,
for α2 = 0.02 we have mean(0.5 − ‖û − f ‖∞) = 2.968 × 10−6 and

mean(0.5 − �(β,α1, α2, νf )) = 6.0678 × 10−6. For α2 = 100 these
values read mean(0.5 − ‖û − f ‖∞) = 1.307 × 10−2 and mean(0.5 −
�(β,α1, α2, νf )) = 2.491 × 10−2

image α2 = 0.02 α2 = 100

b − ‖û − f ‖∞ | ×10−6 b − � | ×10−6 Q % b − ‖û − f ‖∞ | ×10−3 b − � | ×10−2 q

chemical 4.764 14.90 4.04 22.85 6.143 2

moon 2.438 5.459 9.27 12.49 2.525 1

aerial 2.066 3.465 3.46 6.949 1.647 1

bark 2.977 7.041 6.57 13.44 3.188 1

couple 2.485 2.568 3.25 12.77 2.619 4

motioncar 19.98 33.68 0.18 77.56 11.35 1

stream 0.918 2.051 7.14 5.412 0.995 2

tank 1.960 2.815 6.95 9.297 1.351 1

man 0.025 0.619 4.94 1.581 0.307 8

Pentagon 1.181 2.388 9.12 6.368 1.153 1

clock 2.079 3.671 2.88 6.884 1.740 1

boat 1.707 4.626 6.04 8.425 2.164 2

tree 1.202 3.325 5.27 8.026 1.584 1

brick wall 0.334 0.544 11.8 1.842 0.270 43

airplane 0.412 0.667 1.73 2.089 0.330 1

N 8, ψ(t) =
√

t2 + α1 for α1 = 0.2862, β = 0.1 hence b = 0.5, ϕ(t) =
√

t2 + α2

Table 5 Results for ψ = Θ1, ϕ = Θ1, β = 0.05 and a small and large
value of α2, respectively. For α2 = 0.02 we have mean(0.5 − ‖û −
f ‖∞) = 1.777 × 10−6 and mean(0.5 − �(β,α1, α2, νf )) = 3.666 ×

10−6. For α2 = 100, we find mean(0.5 − ‖û − f ‖∞) = 8.265 × 10−3

and mean(0.5 − �(β,α1, α2, νf )) = 1.610 × 10−2

image α2 = 0.02 α2 = 100

b − ‖û − f ‖∞ | ×10−6 b − � | ×10−6 Q % b − ‖û − f ‖∞ | ×10−3 b − � | ×10−2 q

chemical 2.561 9.055 4.54 14.17 3.993 2

moon 1.580 3.300 10.2 7.649 1.572 1

aerial 0.872 2.093 3.92 4.229 1.015 2

bark 1.673 4.254 6.82 8.239 2.000 1

couple 1.642 3.432 3.25 7.830 1.632 4

motioncar 12.39 20.35 0.28 51.43 7.847 1

stream 0.727 1.240 7.19 3.291 0.608 3

tank 1.020 1.701 8.31 5.678 0.829 1

man 0.162 0.374 6.00 0.968 0.186 11

Pentagon 0.871 1.442 10.2 3.877 0.706 1

clock 1.013 2.220 2.88 4.193 1.073 1

boat 0.799 2.795 7.14 5.136 1.342 2

tree 0.993 2.009 6.06 4.895 0.975 2

brick wall 0.125 0.329 11.9 1.115 0.164 99

airplane 0.228 0.403 3.48 1.274 0.200 1

N 8, ψ(t) =
√

t2 + α1 for α1 = 1.895, β = 0.05 hence b = 0.5, ϕ(t) =
√

t2 + α2

These histograms were plotted for 100 bins equally spaced
in [−0.5,+0.5]. For very small values of α2, there are many
pixels meeting |f [i] − û[i]| ≈ ‖f − û‖∞. When α2 in-

creases, such pixels become more and more rare and the dif-
ferences |f [i] − û[i]| become centered near zero. However
they never reach zero: see the value of μ defined in the cap-
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Table 6 Results for ψ = Θ2, ϕ = Θ1, β = 0.05 and a small and large
value of α2, respectively. For α2 = 0.05 we have mean(0.5 − ‖û −
f ‖∞) = 5.441 × 10−6 and mean(0.5 − �(β,α1, α2, νf )) = 10.29 ×

10−6. For α2 = 100, we find mean(0.5 − ‖û − f ‖∞) = 1.09 × 10−2

and mean(0.5 − �(β,α1, α2, νf )) = 2.11 × 10−2

image α2 = 0.05 α2 = 100

b − ‖û − f ‖∞ | ×10−6 b − � | ×10−6 Q % b − ‖û − f ‖∞ | ×10−3 b − � | ×10−2 q

chemical 0.101 0.304 2.79 18.81 5.236 2

moon 5.347 11.06 7.03 10.22 2.090 1

aerial 2.670 7.019 2.63 5.663 1.354 2

bark 5.843 14.26 5.55 11.01 2.653 1

couple 5.369 11.51 3.25 10.46 2.170 4

motioncar 41.36 68.23 0.09 66.99 0.101 1

stream 1.687 4.155 6.66 4.404 0.813 3

tank 3.8069 5.703 4.45 7.592 1.107 1

man 0.673 1.255 3.14 1.298 0.249 10

Pentagon 2.723 4.837 6.55 5.188 0.943 1

clock 2.622 7.437 2.88 5.610 1.431 1

boat 3.879 9.373 3.97 6.874 1.786 2

tree 4.070 6.737 4.18 6.549 1.301 2

brick wall 0.721 1.102 11.3 1.710 0.219 61

airplane 0.682 1.352 0.74 4.983 0.268 1

N 8, ψ(t) = |t | − α1 log(1 + |t |
α1

) for α1 = 0.9645, β = 0.05, hence b = 0.5, ϕ(t) =
√

t2 + α2

Table 7 The mean value of the difference b(β,α1) − �(β,α1, α2, νf ) was computed over the selection of images shown in Fig. 7. Here we
consider the N 8 neighborhood for the weights in (4)

α2 = 0.01 α2 = 100

β = 0.1 β = 0.05 β = 0.1 β = 0.05

ψ = Θ1, ϕ = Θ1 3.034 × 10−6 1.833 × 10−6 2.491 × 10−2 1.610 × 10−2

ψ = Θ2, ϕ = Θ1 5.106 × 10−6 2.459 × 10−6 3.985 × 10−2 2.112 × 10−2

ψ(t) = 1
α1+1 |t |α1+1, ϕ = Θ1 2.994 × 10−6 1.045 × 10−6 2.542 × 10−2 0.941 × 10−2

mean (b(β,α1) − �(β,α1, α2, νf )), b(β,α1) = 0.5, N 8

Table 8 The neighborhood here is N4 with the weights given in (4). The mean is calculated over the set of images in Fig. 7

α2 = 0.01 α2 = 100

β = 0.2 β = 0.1 β = 0.2 β = 0.1

ψ = Θ1, ϕ = Θ1 2.980 × 10−6 1.278 × 10−6 2.253 × 10−2 1.104 × 10−2

ψ = Θ2, ϕ = Θ1 5.364 × 10−6 1.788 × 10−6 3.780 × 10−2 1.504 × 10−2

ψ(t) = 1
α1+1 |t |α1+1, ϕ = Θ1 3.333 × 10−6 0.812 × 10−6 2.718 × 10−2 0.722 × 10−2

mean (b(β,α1) − �(β,α1, α2, νf )), b(β,α1) = 0.5, N 4

tion of the figure. Here again, the numerical tests were done
with a high precision.

7 Conclusions and Open Questions

�1-TV and �2-TV functionals have been often minimized us-
ing a smoothed version of the form we consider in this paper

with ad hoc chosen smoothing parameters (“very small”).

The results established in our work enable to clearly evalu-

ate the resulting approximation.

The functions (ψ,ϕ) studied here have a lot of similar-

ities. However, they produce different image restorations.

The question of what couple of functions (ψ,ϕ) would give
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Fig. 8 Histograms of {f [i] − û[i], i ∈ In} for “moon” restored using ψ = Θ1, ϕ = Θ1, N 8, β = 0.05 and for different values of α2. The
parameter α1 = 1.8947 was set so that b(β,α1) = 0.5. The image has n = 65536 pixels. The value μ is defined by μ := mini∈In

|f [i] − û[i]|

a better result in the framework of a given application, re-
mains open.

Extension to the rotational-invariant (in a discrete sense)
smoothed TV, i.e. Φ(u) = ∑

i,j ϕ(‖∇i,j u‖), where ∇i,j u ∈
R

2 stands for a discrete approximation of the gradient of u

at pixel (i, j), deserves attention.
Extensions to cases when f are the coefficients of the

expansion of the input image using an orthogonal transform
as the discrete cosine transform or a frame transform as the
curvelet transform, see, e.g., [9] are of interest.

Applications to quantization noise reduction should be
envisaged.
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