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� Let A be a matrix of size N × M (a dictionary) and let ‖ · ‖ be a norm on �N . For
any data d ∈ �N , we consider the sparsest vector (i.e., the one with the smallest number of
nonzero entries) u ∈ �M such that ‖Au − d‖ ≤ �, for a parameter � > 0. We say that u is a
K -sparse solution if it has less than K ∈ � nonzero entries. In this article, we give a precise
geometrical description of the data sets d ∈ �N yielding a K -sparse solution. We parameterize
and measure these sets. More precisely, we measure their intersection with a ball defined by any
given norm � and a radius �. These measures are expressed in terms of the constituents of
the optimization problem—namely A, ‖ · ‖, �, � and �—and they enable these constituents to
be rated. This is the core of a new methodology, called Average Performance in Approximation
(APA), inaugurated in this work. By way of application, we give the probability of obtaining
a K -sparse solution, when d is uniformly distributed in the �-ball of radius �. Analyzing the
obtained formulas reveals what are the most important features of the dictionary and the norm
defining the data fidelity, to obtain sparse solutions. This crucial question is largely discussed.
We also provide an example when both ‖ · ‖ and � are the Euclidian norm. Some among the
wide-ranging perspectives raised by the new APA methodology are described as well.

Keywords Approximation; Best K-term approximation; Compression; Constrained
minimization; Dictionary; Estimation; Frames; �0 norm; Measure theory; Nonconvex
nonsmooth functions; Sparse representations.
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1. INTRODUCTION

1.1. The Sparsest Approximation

The model under study is the sparsest approximation of a datum
d ∈ �N using a given N × M real-valued matrix A, with M ≥ N and
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Average Performance of the Sparsest Approximation 769

rank(A) = N . We call the sparsest approximation of d any solution of the
problem1

(�d) :
{
minimize �0(u)
under the constraint: ‖Au − d‖ ≤ �,

(1)

where ‖ · ‖ is a given norm on �N , � > 0 is a tolerance parameter and for
any u = (u1, � � � ,uM ) ∈ �M

�0(u)
def= #�i ∈ �1, � � � ,M � : ui �= 0�,

where # means cardinality. By a slight abuse of language, the function �0
is commonly called the �0-norm.

The �0-norm can equivalently be written as

�0(u) =
M∑
i=1

�(ui) where �(t) =
{
0 if t = 0,
1 if t �= 0�

This function � has a long history, especially in image restoration
using Markovian priors, see for example, [1, 2, 15–17, 24] and in hard
thresholding of noisy wavelet coefficients, see [12].

Let us enumerate a few fields where problems similar to (�d) arise.
In signal and image processing, approximation is related to the

compression problem. A natural way to compress an image is to quantize
and encode a solution of an instance of (�d). In this context, the
codelength is bounded from above and from below by the value of the
minimum of (�d) multiplied by constants.

The problem (�d) is also very successful in the compressed sensing
context (see [4, 7] for an extensive list of related papers). In this context,
solving (�d) permits to recover the unknown coordinates of a sparse vector
u ∈ �M from the measurements d ∈ �N .

The main drawback of (�d) is to be NP-hard in general [10]. It
is approximatively solved using various heuristics, see [6, 8, 19, 22] for
the main historical examples. Most recently proposed algorithms are
developed and analyzed with regard to their performance in a compressed
sensing setting (see [3, 9, 20]). The performance of these algorithms
concerning their approximation abilities is usually not analyzed. In
this regard, one important consequence of the theorems obtained in
the compressed sensing literature is to guarantee that, under strong
hypotheses on the matrix A and the sparsity of the original u, these

1Notice that, because rank(A) = N , the constraint in (�d ) is nonempty whatever d ∈ �N .
Therefore, the minimum is reached since �0 takes its values in the finite set �0, � � � ,M �. Also, the
problem (�d ) may have infinitely many solutions.
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770 F. Malgouyres and M. Nikolova

heuristics give exact solutions to (Pd). The performances of typical
compressed models in terms of the “best K -term approximation” are
analyzed in [5].

1.2. Average Performance in Approximation

Let us first underline that evaluating the performances of sparsity
promoting models/algorithms is the key to important tasks such as

• discriminate between the different models/algorithms approaching the
sparsest approximation,

• tune a model/algorithm to improve its performances (i.e., design the
matrix A and, when possible, choose properly the norm ‖ · ‖).

The particular case of the sparsest approximation is an important step in
this direction because by construction (�d) is the model that provides the
sparsest approximation of the data for any given accuracy. The obtained
performance is, therefore, a limit which cannot be improved.2

Let us now sketch the proposed methodology for estimating the
performances of (�d). We denote by val(�d) the value of the minimum
in (�d). We know that, since d is a random variable, val(�d) is also a
random variable. Moreover, it takes its values3 in �0, � � � ,N �. The purpose
of the approach we inaugurate, namely the Average Performance in
Approximation (APA), is to estimate the distribution law of val(�d), given a
distribution law for d . More precisely, we estimate the probability to obtain
a K -sparse solution:

�(val(�d) ≤ K ) for all K ∈ �0, � � � ,N �� (2)

The quantities in (2) depend on �, A, ‖ · ‖, and the assumed distribution
for d . The latter ingredients could then be chosen in order to maximize
�(val(�d) ≤ K ), for K small. Such an approach promises a reasonable way
to build appropriate models that favor sparsity.

1.3. Worst Case Analysis in Nonlinear Approximation

Evaluating the performance of a sparsity promoting model/algorithm
for the purpose of realizing nonlinear approximation is a very active field
of research. For a survey, we refer to [11]. Let us sketch the typical results

2More precisely, it cannot be improved as long as we consider constraints defined by a norm.
3It is easy to see that the columns of A corresponding to the non zero coordinates of a

minimizer of (�d ) must be independent in �N . Therefore, we obviously have val(�d ) ≤ N .
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Average Performance of the Sparsest Approximation 771

which are obtained in this field on an analogue of (�d) named the “best
K -term approximation.”

The best K-term approximation looks for the best possible
approximation of data d ∈ �N when using an expansion along K columns
of A. In formulae, it searches for a minimizer of

inf
�0(u)≤K

‖d − Au‖·

The performance for a given d ∈ �N is measured by

	K (d) = inf
�0(u)≤K

‖d − Au‖·

When estimating performances, an hypothesis is made on the data. It takes
the form d ∈ B, where the data domain B is usually the unit ball for a given
norm. When the analysis can be conducted, it proves that

C1K −r ≤ sup
d∈B

	K (d) ≤ C2K −r , ∀K , (3)

where r > 0 depends on ‖ · ‖ and B. Note that C1 > 0 and C2 > 0 are
absolute constants in the sense that they are independent of K and N (see,
e.g., [11]).

Let us emphasize that, because the formula (3) contains a supremum,
the upper and the lower bounds do not have the same meaning. Indeed,
the upper bound is true whatever d ∈ B while the lower bound only
holds for few d ∈ B, which are the worst elements of B. The role of the
lower bound is to guarantee that the upper bound cannot be significantly
improved.

The clear advantage of these results over the APA is that they apply
even if one only has a vague knowledge of the data distribution. Indeed,
any data distribution whose support is included in B does enjoy the
decay C2K −r . The counterpart of this advantage is that the constants
C2 and r may be too pessimistic when confronted to real data. The
worst-case data may be indeed rare. Another important limitation of this
methodology is that very little can be said about the performances of
the best K -term approximation when M > N . Let us illustrate this by
an example. If one considers an orthonormal basis for A and �p norms
for ‖ · ‖ and B, the worst data are not unique (and they even depend
on K ). Therefore, adding a few new columns to A will not improve the
performance observed on supd∈B 	K (d). The vector spaces generated using
these new columns generally do not permit to improve the performances
for all the worst data. As a consequence, nonlinear approximation does
not provide satisfactory results when M > N (see [11]). We will see that
APA reflects the change induced by these new columns.
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772 F. Malgouyres and M. Nikolova

1.4. Framework of the Results and Notations

In order to estimate (2), we need to describe and measure some
geometrical sets related to (�d). Let us give our notations and define these
sets. These notations and hypotheses hold throughout the article.

For any integer k, u ∈ �k is a column vector with k entries ui , for
i = 1, � � � , k. The Lebesgue measure in �k is denoted by �k(·), whereas Ik
stands for the k × k identity matrix. The Euclidean norm of any u ∈ �k is
systematically denoted by ‖u‖2.

We consider that the integers M and N are fixed. The notation d
either refers to a datum d ∈ �N or a random variable taking values in �N .
It will not be ambiguous, once in context. The norm ‖ · ‖ on �N always
denotes the norm used to define the data fidelity term in (�d).

Note that the fixed integer M meets M ≥ N . Because N and M are
constant, we do not express the dependence with regard to these values.
Also we consider throughout the article a fixed N × M matrix A such that
rank(A) = N . Beyond the latter, no other assumptions on A are adopted.

Notice that we do not make any assumption relating N , M , A, and
�. We are aware that the benefit of such an assumption would be to
allow N and M to evolve and to get asymptotical results when they
become infinitely large. The benefit of avoiding this hypothesis is of course
generality.

We denote the columns of A by ai , for i = 1, � � � ,M . Of course, we
have ai ∈ �N . To simplify the notations, we denote I def= �1, � � � ,M �. For any
subset (also called support) J ⊂ I , we denote the vector subspace spanned
by the columns of A whose indices are in J by:

�J
def= span�aj : j ∈ J �� (4)

We also use the convention span�∅� def= �0�. For any vector subspace V of
�N , we denote by PV the orthogonal projection onto V and by V ⊥ the
orthogonal complement of V in �N . To specify the dimension of V , we
write dim(V ).

For any function f : �k → � and any � ∈ �, the �-level set of f is
denoted by

Bf (�)
def= �w ∈ �k , f (w) ≤ ��� (5)

If f is a norm, then Bf (�) is the relevant ball of radius � centered at the
origin.

Given an arbitrary � > 0, we introduce the subset of �N

��
J

def= �J + P�⊥
J
B‖·‖(�), (6)
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Average Performance of the Sparsest Approximation 773

where the sum is the direct sum between the two sets. Geometrically, ��
J is

a cylinder in �N : like a �-thick coat wrapping the subspace �J .
Let us define as well

GK
def= �J ⊂ I : dim(�J ) ≤ K �� (7)

In general, there may exist two subsets J1 and J2 ⊆ I , such that �J1 = �J2
and J1 �= J2. A non-redundant listing of all the different subspaces that can
be generated by the elements of GK is obtained as described next. For any
K = 0, � � � ,N , define �(K ) by the following three properties:

(a) �(K ) ⊂ �J ⊂ I : dim(�J ) = K �;
(b) if J1, J2 ∈ �(K ) and J1 �= J2, then

�J1 �= �J2 ;
(c) �(K ) is maximal:

if J1 ⊂ I yields dim(�J1) = K then
∃J ∈ �(K ) such that �J = �J1 �

(8)

Notice that in particular, �(0) = �∅� and #�(N ) = 1 because for any J ⊂ I
such that dim(�J ) = N we have �J = �N . Also, unless some columns of A
are aligned,4 we have #�(K ) = M !

K !(M−K )! , for K = 1, � � � ,N − 1.
Observe that GK , as defined in (7), satisfies

GK ⊃
K⋃
k=0

�(k)

and

��J : J ∈ GK � = ��J : J ∈ �(k) for k ∈ �0, � � � ,K ��� (9)

For any d ∈ �N , any solution u∗ of (�d) (see (1)) has the same �0
norm, so we systematically denote

val(�d)
def= �0(u∗)�

For any given K ∈ �0, � � � ,N � and � > 0, the subset 
�
K below


�
K

def= �d ∈ �N : val(�d) ≤ K � (10)

contains all data subsets from �N leading to a K -sparse solution.

4This is the usual condition imposed when using (�d ) in a compressed sensing framework.
This condition is much weaker than the RIP, spark, and incoherence [4, 7].
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774 F. Malgouyres and M. Nikolova

Throughout this article, we consider a norm � on �N and a positive
real �. We assume that the random variable d is uniformly distributed in
B�(�). Typically, compressible data are modeled using � equal to the l 1

norm, the Minkowski function defined by a polytope, an so on.
As is usual, we write o(t) for a function satisfying limt→0

o(t)
t = 0.

1.5. Our Contribution

In this article, we inaugurate the APA in order to estimate the ability
of the model (�d) to provide a sparse representation of data which
are uniformly distributed in B�(�). The main steps of the proposed
methodology are sketched below.

• We establish in Theorem 1 that, for K = 0, � � � ,N and � > 0,


�
K =

⋃
J ∈�(K )

��
J �

The geometry behind this formula is illustrated in Figure 1.

FIGURE 1 Example in dimension 2. Let �a1, a2, a3� be a dictionary on �2. On the drawing,
the sets P�⊥

�i�
(B‖·‖(�)), for i = 1, 2, 3, are shifted by an element of ��i�. The dotted sets represent

translations of B‖·‖(�). The set-valued function 
�
� , as presented in (10) and Proposition 1, gives

rise to the following situations: 
�
0 = B‖·‖(�) = ��

∅, 
�
1 = ��

�1� ∪ ��
�2� ∪ ��

�3� and 
�
2 = �2 = ��

�1,2� =
��

�2,3� = � � � The symbol � is used to denote the boundaries of the sets.
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Average Performance of the Sparsest Approximation 775

• Then, after some intermediate calculations, we bound both from above
and from below

�N
(

�

K

⋂
B�(�)

)
�

The precise result is given in Theorem 2. The upper and the lower
bounds are both of the form

CK

(
�

�

)N−K

�N + o
(
�

�

)N−K

�N , (11)

with

CK =
∑

J ∈�(K )

�N−K (P�⊥
J
B‖·‖(1))�K (�J ∩ B�(1))�

• When d is uniformly distributed in B�(�), we have

�(val(�d) ≤ K ) = �N (
�
K ∩ B�(�))

�N (B�(�))
�

So, we only need to divide (11) by �N (B�(�)) in order to obtain bounds
on �(val(�d) ≤ K ), see section 5. The simplified statement says that

�(val(�d) ≤ K ) = CK

�N (B�(1))

(
�

�

)N−K

+ o
(
�

�

)N−K

� (12)

This shows that asymptotically, the performance of (�d) reads in the
constants

CK

�N (B�(1))
=

∑
J ∈�(K )

�N−K
(
P�⊥

J
B‖·‖(1)

)
�K (�J ∩ B�(1))

�N (B�(1))
� (13)

Increasing these constants improves the performance of the model.
• We discuss alternative statements in section 6 and illustrate our results
in an Euclidean context in section 7.

The main limitation of (11) and (12) is that the o
(
�
�

)N−K
terms depend

on all the ingredients of the model and might require strong constraints
on �

�
. A precise and dedicated study of simple situations need to be

performed to better understand how the o(·) term behaves when N varies.
This requires to define A, ‖ · ‖ and � as a function of N and is out of
the scope of this article. Said differently, the constants exhibited in this
article depend on A, ‖ · ‖, �, but are independent of �/�. The dependence
with regard to K is specified by a subscript. This limitation being clarified,
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776 F. Malgouyres and M. Nikolova

we will see in the next paragraph that the interpretations of (13) are very
reasonable and agree with the common intuition on (�d).

Let us analyze the meaning of (13).

• The sum in (13) involves all the possible vector subspaces of dimension
K spanned by the columns of A. Moreover, all the summands are
positive. Therefore, all these subspaces contribute to the success of the
model. This is well known to the readers familiar with the subject.
A trivial consequence of the above remark is that, when adding a new
column to the matrix A, �(K ) grows. All the former subvector spaces are
still available and we add more. As a consequence, the constant CK in
(13) increases, obtaining sparse solutions is more likelly and therefore
the model is improved. This simple and intuitive statement is not visible
in the nonlinear approximation context explained in Section 1.3.

• The term �K (�J ∩ B�(1)) represents the measure of the whole set �J ∩
B�(1). This completes the previous remark and is again known to be an
important property of (�d).

• The term �N (B�(1)) in the denominator makes an impact on the results
for all K . Its consequence is that data living in a small set are easier to
capture if we manage to keep �K (�J ∩ B�(1)) fixed.

• The data fidelity term is contained in the term �N−K (P�⊥
J
B‖·‖(1)).

Maximizing the probability with regard to ‖ · ‖ means maximizing a
weighted sum of the form (13). Even in simplified settings, it is unlikely
that the Euclidean norm maximizes it. Therefore, assuming that ‖ · ‖ is
the Euclidean norm, as is common in the compressed sensing framework
(see [14, 25, 26]), appears like a strong limitation in the approximation
framework.

2. SETS OF DATA YIELDING K -SPARSE SOLUTIONS

Proposition 1. Given the notations of section 1.4, we have for any K ∈
�0, � � � ,N � and any � > 0


�
K =

⋃
J ∈GK

�J + B‖·‖(�)�

Some sets 
�
K , as defined in (10) and considered in the last

proposition, are illustrated on Figure 1.

Proof. The case K = 0 is trivial (G0 = �∅�) and we assume in the
following that K ≥ 1.

Let d ∈ 
�
K for 
�

K as given in (10). This means there is u∗—a solution
of (�d)—that satisfies �0(u∗) ≤ K . Hence, d = ∑

i∈J u
∗
i ai + w, with w ∈

B‖·‖(�), and #J ≤ K for J = �i ∈ I : u∗
i �= 0�.
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Average Performance of the Sparsest Approximation 777

Consequently, dim(�J ) ≤ #J ≤ K , which implies that d ∈ ∪J ∈GK�J +
B‖·‖(�).

Conversely, let d ∈ ∪J ∈GK�J + B‖·‖(�), then d = v + w where v ∈
∪J ∈GK�J and w ∈ B‖·‖(�). Then:

• ∃ J ⊂ I such that v ∈ �J and the latter satisfies dim(�J ) ≤ K ;
• there exist �ui ∈ � : i ∈ J � involving at most dim(�J ) non-zero
components (hence, �0(u) ≤ dim(�J ) ≤ K ) such that v = ∑

i∈J uiai .
• w ∈ B‖·‖(�) means that ‖w‖ ≤ �.

It follows that d = ∑
i∈J uiai + w ∈ 
�

K . �

Next we establish that each component in the right term in the
equation of Proposition 1 is of the form ��

J .

Lemma 1. Using the notations of section 1.4, for any J ⊂ I (including J = ∅)
and any � > 0, the set ��

J in (6) satisfies

��
J = �J + B‖·‖(�)� (14)

As a consequence, for any J1 ⊂ J ⊂ I ,

��
J1

⊂ ��
J � (15)

The proof of the lemma is outlined in Appendix A.1. We can anticipate
that the form of ��

J in (6) is better adapted for the goal of measuring
subsets.

Using the above notations and the non-redundant listing �(K )
in (8), we provide a sparser formulation of 
�

K than the one given in
Proposition 1.

Theorem 1. Given the notations of section 1.4, for any K ∈ �0, � � � ,N � and
any � > 0, we have


�
K =

⋃
J ∈�(K )

��
J �

Moreover, 
�
K is closed and measurable.

Proof. The case J = ∅ (i.e., K = 0) is trivial because of the convention
span(∅) = �0� and �(0) = �∅�.

Let us first prove that 
�
K = ⋃

J ∈GK
��

J . Using Proposition 1,


�
K =

( ⋃
J ∈GK

�J

)
+ B‖·‖(�) =

⋃
J ∈GK

(
�J + B‖·‖(�)

)
�
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778 F. Malgouyres and M. Nikolova

The last equality above is a trivial observation. Using (14) in Lemma 1, this
summarizes as


�
K =

⋃
J ∈GK

��
J �

Using (9), we deduce that

���
J : J ∈ GK � = ���

J : J ∈ �(k) for k ∈ �0, � � � ,K ��,

and, therefore,


�
K =

K⋃
k=0

⋃
J ∈�(k)

��
J �

Furthermore, for any J1 ∈ �(k), for k ∈ �0, � � � ,K − 1�, there exists J ∈
�(K ) such that J1 ⊂ J . By (15) in Lemma 1, we have ��

J1
⊂ ��

J and, hence,


�
K =

⋃
J ∈�(K )

��
J �

The sets �J and P�⊥
J
B‖·‖(�) are closed and mutually orthogonal.

Therefore, ��
J is closed. As a consequence ��

J is a Borel set and is Lebesgue
measurable. Since 
�

K is a finite union of closed measurable sets, 
�
K is

closed and measurable as well. �

3. PRELIMINARIES TO MEASURE DATA SUBSETS

3.1. Motivation

Data d ∈ �N being uniformly distributed in B�(�) by assumption, the
following identity holds for all K = 1, � � � ,N :

�(val(�d) ≤ K ) = �N (
�
K ∩ B�(�))

�N (B�(�))
�

In order to evaluate �(val(�d) ≤ K ), we need to calculate �N (
�
K ∩ B�(�)).

The latter calculation presents the main difficulty in the APA methodology
developed in this work.

Using Theorem 1, it is straightforward that


�
K ∩ B�(�) =

⋃
J ∈�(K )

(
��

J ∩ B�(�)
)

(16)
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Average Performance of the Sparsest Approximation 779

and that

�N (
�
K ∩ B�(�)) = �N

( ⋃
J ∈�(K )

(
��

J ∩ B�(�)
))

� (17)

Considering the right side of the latter equality (17), we will evaluate
the measure of subsets of the form ��

J ∩ B�(�). We indeed know that
we can sum those measures to obtain an estimate of the measure of the
union if the intersections of the form (��

J1
∩ B�(�)) ∩ (��

J2
∩ B�(�)) remain

controlled whenever J1 �= J2 in �(K ).
These problems are addressed in detail in sections 3.2 and 3.3.

3.2. Measuring Bounded Cylinder-Like Subsets of ���N

Here, we characterize subsets of the form PV ⊥B‖·‖(�), see (6), for
general vector subspaces V ⊂ �N .

Lemma 2. For any vector subspace V ⊂ �N and any norm ‖ · ‖ on �N , define
the function h on V ⊥ by

h(u) def= inf
{
t ≥ 0 : u

t
∈ PV ⊥B‖·‖(1)

}
, (18)

for all u ∈ V ⊥.
Then the following statements hold:

(i) For any � ≥ 0, we have

Bh(�) = PV ⊥B‖·‖(�)� (19)

(ii) The function h in (18) is a norm on V ⊥.
(iii) There exist constants � and �2 > 0 which only depend on � and ‖ · ‖ (and

are independent of V ) such that

�(u) ≤ � h(u), ∀u ∈ V ⊥, (20)

‖u‖2 ≤ �2 h(u), ∀u ∈ V ⊥� (21)

The proof of this lemma is outlined in Appendix A.2. Note that h :
V ⊥ → � in (18) is the usual Minkowski functional of PV ⊥B‖·‖(1), see,
for example, [18, p. 131].

The next proposition, proven in Appendix A.3 is a key result that will
be used several times in what follows.
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780 F. Malgouyres and M. Nikolova

Proposition 2. For any vector subspace V of �N , any norm ‖ · ‖ on �N and
any � > 0, define

V � = V + PV ⊥B‖·‖(�)� (22)

Then the following hold:

(i) V � is closed and measurable in �N ;
(ii) Let � be any norm on �N , h : V ⊥ → � the norm defined in Lemma 2, K =

dim(V ) and 
V be any constant such that

�(u) ≤ 
V h(u), ∀u ∈ V ⊥� (23)

If � ≥ �
V , then

C�N−K (� − �
V )
K ≤ �N (V � ∩ B�(�)) ≤ C�N−K (� + �
V )

K , (24)

where

C = �N−K (PV ⊥B‖·‖(1)) �K (V ∩ B�(1)) > 0 (25)

is finite.5

Remark 1. Using Lemma 2, the condition in (23) holds for any 
V ≥ 
∗
V

for some optimal 
∗
V ∈ [0, �], where � is given in Lemma 2. Let us

emphasize that 
V and 
∗
V may depend on V (which explains the letter

“V” in the index). However, the proposition clearly holds if we take 
V = �,
where � is the constant of Lemma 2, assertion (iii). In this case, the
constant is independent of V .

Constant C depends only on the norms ‖ · ‖ and �, and potentially
on V .

Remark 2. An important consequence of Proposition 2 is that
asymptotically we get

�N (V � ∩ B�(�)) = C�N
(
�

�

)N−K

+ �N o
((

�

�

)N−K )
as

�

�
→ 0�

3.3. Measuring ����
J ∩B�(�) and the Intersection

of Two Such Sets

Using the results of section 3.2, we can address subsets of the form
��

J ∩ B�(�) as in (16), as well as intersections of such subsets relevant to
different J s. These are obtained as consequences of Proposition 2.

5Remind that for V = �0�, K = 0 and we have �K (V ∩ B�(1)) = 1.
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Average Performance of the Sparsest Approximation 781

Proposition 3. Using the notations of section 1.4, for any J ⊂ I (including
J = ∅) and any � > 0, put K def= dim(�J ). Then there exists 
J ∈ [0, �], for � as
given in Lemma 2(iii), such that for � ≥ 
J � we have

CJ �
N−K (� − 
J �)

K ≤ �N
(
��

J ∩ B�(�)
) ≤ CJ �

N−K (� + 
J �)
K , (26)

where

CJ = �N−K
(
P�⊥

J
B‖·‖(1)

)
�K (�J ∩ B�(1)) > 0 (27)

is finite.

Proof. The proposition is a direct consequence of Proposition 2. Notice
that we now write 
J for the constant 
V with V = �J in Proposition 2. �

Remind that the constant �, defined in Lemma 2, depends only on the
norms ‖ · ‖ and �.

Next we focus on the intersection of two different subsets of the
form ��

J ∩ B�(�). The proposition below confirms the intuition that
the measure of this kind of subsection is small and almost negligible
when compared with the volume of ��

J ∩ B�(�). This is illustrated on
Figure 2.

FIGURE 2 Example of an intersection in dimension 3. ��
�1,2� is in between two planes, parallel

to ��1,2�. Same remark for ��
�3,4�. The set ��

�1,2� ∩ ��
�3,4� is of the form W + PW ⊥Bg̃ (�), where g̃ is a

norm for W = ��1,2� ∩ ��3,4�. We also have dim(��1,2� ∩ ��3,4�) < dim(��1,2�) = dim(��3,4�).
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782 F. Malgouyres and M. Nikolova

Proposition 4. Let J1 ⊂ I and J2 ⊂ I be such that �J1 �= �J2 and dim(�J1) =
dim(�J2)

def= K . Let � > 0 and � > 0. Then we have the following results:

(i) The set given below

��
J1

∩ ��
J2

∩ B�(�) (28)

is closed and measurable.
(ii) Define k = dim

(
�J1 ∩ �J2

)
. For � as given in Lemma 2(iii), there is a

constant 
J1,J2 ∈ [0, 3�] such that for � ≥ 
J1,J2� we have

�N (��
J1

∩ ��
J2

∩ B�(�)) ≤ QJ1,J2�
N−k(� + 
J1,J2�)

k ,

where QJ1,J2 reads

QJ1,J2
def= �N−k(W ⊥ ∩ B‖·‖2(2�2))�

k(W ∩ B�(1)) (29)

for W def= �J1 ∩ �J2 and �2 defined in Lemma 2(iii).

Notice that QJ1,J2 depends only on �aj : j ∈ J1� and �aj : j ∈ J2�, and the
norms ‖ · ‖ and �. A tighter bound can be found in the proof of the
proposition (see equation (80) in Appendix A.4). The bound is expressed
in terms of a norm g̃ constructed there. The proof of the proposition is
presented in Appendix A.4.

Remark 3. We have the following asymptotical result:

�N (��
J1

∩ ��
J2

∩ B�(�)) ≤ QJ1,J2�
N

(
�

�

)N−k(
1 + 
J1,J2

�

�

)k

= QJ1,J2�
N

(
�

�

)N−k

+ o
((

�

�

)N−k)
as

�

�
→ 0

= �N o
((

�

�

)N−K)
as

�

�
→ 0,

where the last inequality holds because QJ1,J2 is a constant and k =
dim(W ) < K .

4. MEASURING DATA SETS YIELDING K -SPARSE SOLUTIONS

Using the results presented in section 3.3, we now derive upper and
lower bounds on �N (
�

K ∩ B�(�)) as given in (17), namely

�N (
�
K ∩ B�(�)) = �N

( ⋃
J ∈�(K )

(
��

J ∩ B�(�)
))

� (30)
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Average Performance of the Sparsest Approximation 783

To this end, we introduce several constants based on those obtained in
section 3.3.

For any K = 0, � � � ,N , define the constants 
̂K and CK as it follows:


̂K
def= max

J ∈�(K )

J , (31)

CK
def=

∑
J ∈�(K )

CJ , (32)

where 
J ∈ [0, �] and CJ are the constants exhibited in Proposition 3.
Clearly,

0 ≤ 
̂K ≤ �� (33)

In particular,

C0 = �N (B‖·‖(1)) and CN = �N (B�(1))� (34)

With �(K ), let us associate the family of subsets:

�(K , k) def= �(J1, J2) ∈ �(K )2 such that dim(�J1 ∩ �J2) = k�, (35)

where K = 1, 2, � � � ,N and k = 0, 1, � � � ,K − 1.
Notice that �(K , k) may be empty for some k. Consider (J1, J2) ∈ �(K )2

and the classical decomposition

�J1 + �J2 = (
�J1 ∩ �J2

) ⊕ (
�J1 ∩ �⊥

J2

) ⊕ (
�J2 ∩ �⊥

J1

) ⊂ �N �

The dimension of the above vector subspace satisfies

dim(�J1 + �J2) = k + (K − k) + (K − k) ≤ N

and, therefore, k ≥ 2K − N . We see that

�(K , k) �= ∅ ⇒ k ≥ 2K − N �

Conversely,

k < kK
def= max�0, 2K − N � ⇒ �(K , k) = ∅� (36)

Notice that �(N , k) = ∅ for all k = 0, � � � ,N − 1. Moreover, for any K ≤
N − 1, we have −N ≤ −K − 1 and therefore

2K − N ≤ 2K − K − 1 = K − 1�
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784 F. Malgouyres and M. Nikolova

As a consequence, for K = 1, � � � ,N − 1, we have 0 ≤ kK ≤ K − 1. We
conclude that �(K , k) is non-empty (at most) for the indexes K =
1, � � � ,N − 1 and k = kK , � � � ,K − 1.

For K ∈ �1, � � � ,N − 1� and k ∈ �kK , � � � ,K − 1� let us define

�̂K ,k
def= max

{
0, max

(J1, J2)∈�(K ,k)

J1, J2

}
, (37)

QK ,k
def=

∑
(J1, J2)∈�(K ,k)

QJ1,J2 , (38)

where QJ1,J2 and 
J1,J2 ∈ [0, 3�] are as in Proposition 4. It follows that for any
K = 1, � � � ,N − 1 and any k = kK , � � � ,K − 1

0 ≤ �̂K ,k ≤ 3�� (39)

It is also clear that if �(K , k) = ∅ then we find QK ,k = 0 and �̂K ,k = 0. In
particular for any k,

�̂0,k = �̂N ,k = 0 and Q0,k = QN ,k = 0� (40)

Last, define recursively �0 = 
̂0 and

�K = max
{
�K−1, 
̂K , max

kK ≤k≤K−1
�̂K ,k

}
(41)

if 0 < K < N and

�N = max��N−1, 
̂N �� (42)

Using (33) and (39),

0 ≤ �K ≤ 3�� (43)

Remark 4. All the constants introduced between (31) and (41)–(42),
namely 
̂K in (31), CK in (32), �̂K ,k in (37), QK ,k in (38) and �K

in (41)–(42), depend only on the dictionary A, the norms ‖ · ‖ and �, K
and k. The latter dependence is explicitly denoted by subscripts k and K .
The upper bounds on �K and �̂K ,k use just �, as defined in Lemma 2(iii).
The constant � depends only on ‖ · ‖ and �. These constants are involved
in the theorem below which provides a crucial result in this work.

The proof of the theorem below in provided in Appendix A.5.
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Average Performance of the Sparsest Approximation 785

Theorem 2. Let K ∈ �0, � � � ,N �, the norms ‖ · ‖ and �, and the dictionary A,
be any. Let � > 0 and � ≥ ��K where �K is defined in (41)–(42). The Lebesgue
measure in �N of the set 
�

K ∩ B�(�) satisfies

CK �
N−K (� − 
̂K �)

K − �N �0(K , �, �) ≤ �N (
�
K ∩ B�(�))

≤ CK �
N−K (� + 
̂K �)

K , (44)

where �0(K , �, �) = 0 if K ∈ �0,N � while for 1 ≤ K ≤ N − 1,

�0(K , �, �) =
K−1∑
k=kK

QK ,k

(
�

�

)N−k(
1 + �̂K ,k

�

�

)k

� (45)

Here 
̂K , CK , kK , QK ,k , and �̂K ,k defined by (31), (32), (36), (38), and (37),
respectively. Moreover, (33), (39), and (43) provide bounds on 
̂K , �̂K ,k , and �K ,
respectively, which depend only on the norms ‖ · ‖ and �, via � (see Lemma 2(iii)).

Remark 5. We posit the assumptions of Theorem 2. Considering the
asymptotic of (44), we have

�N (
�
K ∩ B�(�)) = CK�

N

(
�

�

)N−K

+ �N o
((

�

�

)N−K)
as

�

�
→ 0�

Remark 6. In the proof of this theorem we notice (see (84), (86), and
(82)) that

∑
J ∈�(K )

�N (��
J ∩ B�(�)) −

K−1∑
k=kK

∑
(J1,J2)∈�(K ,k)

�N (B�(�) ∩ ��
J1

∩ ��
J2
)

≤ �N (
�
K ∩ B�(�)) ≤

∑
J ∈�(K )

�N (��
J ∩ B�(�))� (46)

These are the main approximations in the evaluation of �N (
�
K ∩ B�(�))

involved in Theorem 2. The precision of the bounds given in the theorem
could be more accurate by improving the above inequalities. The loss of
accuracy due to (46) has however the same order of magnitude as the
accuracy in the calculus of �N (��

J ∩ B�(�)).

In order to give a simplified version of (44), we introduce some
additional notations. For any integer n > 0, we denote the volume of unit
ball for the Euclidian norm ‖ · ‖2 in �n by �(n). It reads

�(n) = �n/2

�(n/2 + 1)
for �(n) =

∫ ∞

0
e−xxn−1dx , (47)
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786 F. Malgouyres and M. Nikolova

where � is the usual Gamma function. For any k = 0, � � � ,N , let us define

	(k) def= �(k)�(N − k)� (48)

We can now simplify (44). The constants �K , 
̂K and �̂K ,k , depend on
A and K , as well as on the norms ‖ · ‖ and �. Using the uniform bound
� exhibited in Lemma 2(ii) in place of 
̂K and �̂K ,k leads to the following
result.

Corollary 1. Let K ∈ �0, � � � ,N �, the norms ‖ · ‖ and �, and A, be any. Let
� > 0 and � ≥ 3�� where � is derived in Lemma 2(ii) and depends only on � and
‖ · ‖. The set 
�

K defined by (10) satisfies

CK �
N−K (� − ��)K − �N �u

0(K , �, �) ≤ �N (
�
K ∩ B�(�))

≤ CK �
N−K (� + ��)K , (49)

where �u
0(K , �, �) = 0, for K = 0 or K = N and

�u
0(K , �, �) =

K−1∑
k=kK

QK ,k

(
�

�

)N−k(
1 + 3�

�

�

)k

,

for K = 1, � � � ,N − 1.
Moreover, for K = 1, � � � ,N − 1 and k = kK , � � � ,K − 1, we have

QK ,k ≤ #�(K )(#�(K ) − 1)	(k)(2�2)N−k�k3, (50)

where 	(k) is given in (48) and

#�(K ) ≤ M !
K !(M − K )! � (51)

The constant �2 is defined in Lemma 2 and �3 is such that

‖w‖2 ≤ �3�(w), ∀w ∈ �N �

Proof. Equation (49) is obtained by inserting in (44) in Theorem 2
the uniform bounds on 
̂K , �̂K ,k and �K given in (33), (39), and (43),
respectively.

The upper bound for QK ,k is calculated as follows. Using (38) and (29),
we obtain

QK ,k =
∑

(J1,J2)∈�(K ,k)

�N−k((�J1 ∩ �J2)
⊥ ∩ B‖·‖2(2�2))�

k(�J1 ∩ �J2 ∩ B�(1))�
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Average Performance of the Sparsest Approximation 787

Moreover, as is standard, (see, e.g., [23])

�N−k((�J1 ∩ �J2)
⊥ ∩ B‖·‖2(2�2)) = �(N − k)(2�2)N−k ,

�k(�J1 ∩ �J2 ∩ B�(1)) ≤ �k(�J1 ∩ �J2 ∩ B‖·‖2(�3))

= �(k)(�3)k ,

and we obviously have

#�(K , k) ≤ #�(K )(#�(K ) − 1)�
�

The above corollary shows that the “quality” of the asymptotic as
�
�
→ 0 depends on ‖ · ‖, � and on the dictionary through the terms QK ,k .

The latter terms are bounded from above using (50) and (51) and they
are clearly overestimated. Even though the bounds we provide are very
pessimistic, they depend only on ‖ · ‖, � and can be computed.

Remark 7. Let us emphasize that “uniform” bounds in the spirit of
Corollary 1 can be derived from Propositions 3 and 5 as well. We leave this
task to interested readers that need to compute easily the relevant bounds.

5. STATISTICAL MEANING OF THE RESULTS

In this section, we give a statistical interpretation of our main results,
namely Theorem 2.

Proposition 5. Let � and ‖ · ‖ be any two norms and A be a dictionary in �N .
For any K ∈ �0, � � � ,N �, let � > 0 and � be such that � ≥ ��K where �K is defined
in (41)–(42). Consider a random variable d with uniform distribution on B�(�).
Then

CK

�N (B�(1))

(
�

�

)N−K(
1 − 
̂K

�

�

)K

− �0(K , �, �)
�N (B�(1))

≤ �(val(�d) ≤ K ) ≤ CK

�N (B�(1))

(
�

�

)N−K(
1 + 
̂K

�

�

)K

,

where �0(K , �, �) is given in Theorem 2, equation (45). Moreover we have the
following asymptotical result:

�(val(�d) ≤ K ) = CK

�N (B�(1))

(
�

�

)N−K

+ o
((

�

�

)N−K)
as

�

�
→ 0�
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788 F. Malgouyres and M. Nikolova

Proof. Consider the set 
�
K defined by (10). We have

�(val(�d) ≤ K ) = �(d ∈ 
�
K ∩ B�(�))

= �N (
�
K ∩ B�(�))

�N B�(�)
,

since d is uniformly distributed on B�(�). The inequality result
follows from Theorem 2, equation (44) and uses the observation that
�N (B�(�)) = �N�N (B�(1)).

The asymptotical result is a direct consequence of Remark 5. �

Remark 8. Notice that, as already noticed in (34), CN = �N (B�(1)) and
the asymptotic in Proposition 5 reads for K = N

�(val(�d) ≤ N ) = 1 + o(1) as
�

�
→ 0�

In fact a better estimate is easy to obtain in this particular case. We know
indeed that for all d ∈ �N , any solution of �d involves an independent
system of elements of A. (A sparser decomposition would otherwise exist.)
Therefore, we know that for all d ∈ �N , val(�d) ≤ N . This yields

�(val(�d) ≤ N ) = 1�

Yet, again, this clearly shows that the bounds exhibited in this article are
pessimistic.

6. VARIANTS OF THE AVERAGE PERFORMANCE
IN APPROXIMATION

6.1. A Result on the Expectation

From our estimates of the law of val(�d), we can estimate its
expectation. The expectation 
(val(�d)) of val(�d) is defined by


(val(�d)) =
N∑

K=1

K�(val(�d) = K )�

Using that

�(val(�d) = K ) = �(val(�d) ≤ K ) − �(val(�d) ≤ K − 1)

and that �(val(�d) = N ) = 1, we obtain


(val(�d)) = N −
N−1∑
K=0

�(val(�d) ≤ K )�
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Average Performance of the Sparsest Approximation 789

This yields the following theorem.

Theorem 3. Let � and ‖ · ‖ be any two norms and A be a dictionary in �N . Let
� > 0 and � be such that � ≥ �max0≤K≤N �K where �K is defined in (41)–(42).
Consider a random variable d with uniform distribution on B�(�). Then

N −
N−1∑
K=0

CK

�N (B�(1))

(
�

�

)N−K(
1 + 
̂K

�

�

)K

≤ 
(val(�d)) ≤ N −
N−1∑
K=0

CK

�N (B�(1))

(
�

�

)N−K(
1 − 
̂K

�

�

)K

− �0(K , �, �)
�N (B�(1))

where �0(K , �, �) is given in Theorem 2, equation (45). Moreover we have the
following asymptotical result:


(val(�d)) = N − CN−1

�N (B�(1))
�

�
+ o

(
�

�

)
as

�

�
→ 0�

6.2. A Result on Exactly K -Sparse Solutions

For any K ∈ �0, � � � ,N � and � > 0, all data in �N that lead to exactly
K -sparse solutions read

��
K

def= �d ∈ �N : val(�d) = K ��

From the definition of 
�
K in (10), it is straightforward that

��
K = 
�

K\
�
K−1, ∀K ∈ �0, � � � ,N �,

where we extend the definition of 
�
K with 
�

−1 = ∅. Being the difference
of two measurable closed sets, ��

K is clearly measurable. Noticing also that


�
K−1 ⊂ 
�

K ,

we get

�N (��
K ∩ B�(�)) = �N (
�

K ∩ B�(�)) − �N (
�
K−1 ∩ B�(�))�

Said differently,

�(val(�d) = K ) = �(val(�d) ≤ K ) − �(val(�d) ≤ K − 1)�

All these equalities permit to derive statements analogue to those given
in this article but for ��

K and the event val(�d) = K .
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790 F. Malgouyres and M. Nikolova

7. ILLUSTRATION: EUCLIDEAN NORMS FOR ‖ · ‖ AND �

In the example presented below, all constants derived in the previous
sections admit an explicit form.

Consider the situation when both ‖ · ‖ and � are the Euclidean norm
on �N :

‖ · ‖ = � = ‖ · ‖2 where ‖u‖2 = √〈u,u〉
with

〈u, v〉 =
N∑
i=1

uivi �

Noticing that the Euclidean norm is rotation invariant, for any vector
subspace V ⊆ �N we have

PV ⊥B‖·‖2(�) = V ⊥ ∩ B‖·‖2(�) (52)

= �u ∈ V ⊥ : ‖u‖2 ≤ ��� (53)

The equivalent norm h and the constant � derived in Lemma 2 are simply

h(u) = ‖u‖2, ∀u ∈ V ⊥,

� = 1�

The constant 
V in assertion (ii) of Proposition 2, defined by (68), reads

V = 1� Then the inequality condition on � and � is simplified to � ≥ �.

The constant C in (25) in the same proposition depends on K (the
dimension of the subspace V ) and reads (see [13, p. 60] for details)

C = 	(K ),

where 	(K ) is given by (48). Let us remind that using that �(n + 1) =
n�(n), it comes

	(K ) = 4�
N
2

K (N − K )�
(
N−K
2

)
�
(
K
2

) � (54)

From the preceding, the constants 
J and CJ in Proposition 3 read


J = 1, ∀J ⊂ I , (55)

CJ = 	(K ), (56)

where the expression of 	(K ) is given in (54).
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Average Performance of the Sparsest Approximation 791

The norm g arising in (75) in Proposition 4 reads

g (u) = sup�‖u1‖2 + ‖u2‖2, ‖u1‖2 + ‖u3‖2�

= ‖u1‖2 + sup�‖u2‖2, ‖u3‖2�

where u = u1 + u2 + u3 is decomposed according to (74). Then

�(u) = ‖u‖2 = ‖u1‖2 + ‖u2‖2 + ‖u3‖2 ≤ 
J1,J2g (u), ∀u ∈ W ⊥ if 
J1,J2 = 2�

The constants 
J1,J2 and QJ1,J2 in Proposition 4 read


J1,J2 = 2, (57)

QJ1,J2 = 	(k) , (58)

where we remind again that 	(k) is defined according to (48).
For any k = 1, � � � ,N , the constants 
̂k and Ck in (31)–(32) read


̂k = 1,

Ck = 	(k) #�(k)�

Clearly, #�(K ) depends on the dictionary A.
The constants �̂K ,k and QK ,k , introduced in (37) and (38), respectively,

are

�̂K ,k = 2, (59)

QK ,k = 	(k)#�(K , k)� (60)

Here, again, #�(K , k) depends on the choice of dictionary and in any case,
#�(K , k) = 0 for k < kK (where kK is defined in (36)). The constant in
(41)–(42) is �K = 2 and the inequality (43) is satisfied.

The main inequality in Theorem 2 now reads

	(K )#��(K )��N−K (� − �)K − �0(K , �, �) ≤ �N (
�
K ∩ B�(�))

≤ 	(K )#��(K )��N−K (� + �)K ,

where 	(K ) is defined by (48) and the error term �0(K , �, �) is

�0(K , �, �) = 1
2

K−1∑
k=k0

	(k)#��(K , k)��N−k(� + 2�)k �
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792 F. Malgouyres and M. Nikolova

FIGURE 3 Upper and lower bounds of �(val(�d ) ≤ K ) in the context of Euclidean norms.

In order to provide the statistical interpretation in section 5, we notice
that �N (B�(1)) = �(N ) for �(·) as given in (47) and, hence,

�N (B�(1)) = �N /2

�(N /2 + 1)
�

We display on Figure 3, a curve representing the upper and lower
bounds of �(val(�d) ≤ K ) in the context of this illustration.

8. CONCLUSION AND PERSPECTIVES

In this article, we derive lower and upper bounds for different
quantities concerning a model (�d) of the form as defined in (1).

The intuitive interpretation of these bounds is that adding more
columns to A improves the approximation performances of (�d). More
precisely, the columns of A should be such that

�K (�J ∩ B�(1))

are as large as possible for all J such that dim(�J ) = K . Moreover, the data
fidelity term should be such that

�N−K (P�⊥
J
B‖·‖(1))

is large. The performance is improved since these terms are in the
numerator of the expression for �(val(�d) ≤ K ), as seen in (12)–(13).
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Average Performance of the Sparsest Approximation 793

Typically, the difference between the upper and the lower bounds
derived in this article has an order of magnitude ( �

�
)N−K+1, 0 < �

�
�

�K (where �K is defined in (41)–(42)) while the quantities which are
estimated are propositional to

(
�
�

)N−K
. The difference between the upper

and lower bounds is made of the quantities listed next.

• The terms � ± 
V � which come from the inclusions S0 ⊆ V � ∩ B�(�) ⊆
S1, in the proof Proposition 2. This approximation is of the order(
�
�

)N−K+1
. It may be possible to reach a larger order of magnitude (e.g.,(

�
�

)N−K+2
) under the assumption that � is regular away from 0 (e.g. twice

differentiable). This would permit to improve Proposition 2 and the
theorems that use its conclusions.

• A term of the form −�N �0(K , �, �) could be added to the upper bound
in (44). This term is not present because of the approximation made
in (82) in A.2. Such a term “−�N �0(K , �, �)” could be obtained by
computing the size of the intersection of more than two cylinder-like
sets in Proposition 4 (doing so we would also avoid the approximation
in (86)) and by improving this proposition by bounding �N (��

J1
∩ ��

J2
∩

B�(�)) from below. This may be a straightforward refinement of the
current proof of Proposition 4.
This improvement is possible but not necessary in this article since
(again) this approximation yields an error whose order of magnitude
is

(
�
�

)N−K+1
. Anyway, we cannot get a better order of magnitude unless

the approximation mentioned in the previous item is not improved (i.e.,
more regularity is assumed for �).

Besides those aspects, several future developments of this work can be
envisaged:

• An important improvement would be to assume a more specialized form
for the data distribution. One first step would be a distribution of the
shape ∝ e−��(d), � > 0, which is continuous. In our opinion, one possible
goal is to deal with a data distribution defined by a kernel. This is indeed
one of the standard techniques used in machine learning theory to
approximate data distributions.

• Another way of improvement is to adapt those results to the context of
infinite dimensional spaces. This adaptation might not be trivial since
(for instance) there is no Lebesgue measure in those spaces.

• A similar analysis can be performed for the Basis Pursuit Denoising (i.e.,
�1 regularization; see, e.g., [8]) with the same asymptotic. It will clearly
show what is in common and what are the differences between �0 and �1
penalization.

• Performing a similar analysis for the Orthogonal Matching Pursuit (see,
e.g., [21, 22, 27]) would, of course, be an interesting and complementary
result.
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794 F. Malgouyres and M. Nikolova

APPENDIX

A.1. Proof of Lemma 1

The case J = ∅ is trivial because of the convention span(∅) = �0�.
Consider next that J is nonempty. Let w ∈ ��

J where ��
J is defined in (6).

Then w admits a unique decomposition as

w = v + u where v ∈ �J and u ∈ �⊥
J �

From the definition of ��
J , there exists wu ∈ B‖·‖(�) such that P�⊥

J
wu = u.

Noticing that u − wu = P�⊥
J
wu − wu ∈ �J and that v + u − wu ∈ �J , we can

see that

w = (v + u − wu) + wu

∈ �J + B‖·‖(�)�

Hence, w ∈ ��
J as given in (14) in the lemma.

Conversely, let w ∈ �J + B‖·‖(�). Then

w = v1 + v, where v1 ∈ �J and v ∈ B‖·‖(�)�

Furthermore, v has a unique decomposition of the form

v = v2 + u where v2 ∈ �J and u ∈ �⊥
J �

In particular,

u = P�⊥
J
v ∈ P�⊥

J
B‖·‖(�)

Combining this with the fact that v1 + v2 ∈ �J shows that w = (v1 + v2) +
u ∈ ��

J as defined in (6).

A.2. Proof of Lemma 2

The case V = �0� is trivial (we obtain h = ‖ · ‖). Further we assume that
dim(V ) ≥ 1.

Assertion (i). The set PV ⊥B‖·‖(1) is convex since ‖ · ‖ is a norm and
PV ⊥ is linear. Moreover, the origin 0 belongs to its interior with respect
to V ⊥. Indeed, there is � > 0 such that if w ∈ �N satisfies ‖w‖2 < �,
then ‖w‖ < 1. Consequently 0 ∈ Int

(
B‖·‖2(�)

) ⊂ B‖·‖(1). Using that ‖ · ‖2 is
rotationally invariant and that PV ⊥ is a contraction, we deduce that 0 ∈
Int

(
PV ⊥B‖·‖2(�)

) ⊂ PV ⊥B‖·‖(1). Then the application h : V ⊥ → � in (18) is
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Average Performance of the Sparsest Approximation 795

the usual Minkowski functional of PV ⊥B‖·‖(1), as defined and commented
in [18, p. 131]. Since PV ⊥B‖·‖(1) is closed, we have

PV ⊥B‖·‖(1) = �u ∈ V ⊥ : h(u) ≤ 1��

Using that the Minkowski functional is positively homogeneous, that is,

h(cu) = ch(u), ∀c > 0,

lead to the equality in (19).

Assertion (ii). For h to be a norm, we have to show that

h(cu) = |c |h(u), ∀c ∈ �

(i.e., that h is symmetric with respect to the origin). First, for any c ∈ �

h(cu) = inf�t ≥ 0 : cu ∈ PV ⊥B‖·‖(t)�

= inf
{
t ≥ 0 : u ∈ PV ⊥B‖·‖

(
t
|c |

)}
= |c | inf�t ≥ 0 : u ∈ PV ⊥B‖·‖(t)�

= |c |h(u), (61)

where in (61) we use the facts that PV ⊥ is linear and that ‖ · ‖ is a norm.
Second, it is well known that the Minkowski functional is non negative,
finite and satisfies6 h(u + v) ≤ h(u) + h(v) for any u, v ∈ V ⊥.

Finally, since Bh(0) = PV ⊥B‖·‖(0) = �0�, we have

h(u) = 0 ⇔ u = 0�

Consequently, h defines a norm on V ⊥.

Assertion (iii). For any two norms � and ‖ · ‖ on �N , there exist
constants �1 > 0 and �2 > 0 satisfying

v ∈ �N ⇒ �(v) ≤ �1‖v‖2 and ‖v‖2 ≤ �2‖v‖ · (62)

6For completeness, we give the details:

h(u + v) = inf�t ≥ 0 : (u + v) ∈ PV ⊥B‖·‖(t)�

≤ inf�t ≥ 0 : u ∈ PV ⊥B‖·‖(t)� + inf�t ≥ 0 : v ∈ PV ⊥B‖·‖(t)�

= h(u) + h(v)�
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796 F. Malgouyres and M. Nikolova

Put

�
def= �1�2� (63)

Let us first remark that

B‖·‖(1) ⊂ B‖·‖2(�2) ⊂ B�(�1�2) = B�(�)�

Combining this with (19) and the fact that ‖ · ‖2 is rotationally invariant,
we have

Bh(1) = PV ⊥B‖·‖(1) ⊂ PV ⊥B‖·‖2(�2)

= B‖·‖2(�2) ∩ V ⊥ (64)

⊂ B�(�1�2) ∩ V ⊥

= B�(�) ∩ V ⊥� (65)

We will prove (20) and (21) jointly. To this end let us consider a norm
g on �N and � > 0 such that

PV ⊥B‖·‖(1) ⊂ Bg (�) ∩ V ⊥� (66)

Using that each norm can be expressed as a Minkowski functional, for any
u ∈ V ⊥ we can write down the following:

g (u) = inf
{
t ≥ 0 : g

(u
t

)
≤ 1

}
= inf

{
t ≥ 0 : g

(�
t
u
)

≤ �
}

= � inf
{
t ≥ 0 : g

(u
t

)
≤ �

}
= � inf

{
t ≥ 0 : u

t
∈ Bg (�)

}
≤ � inf

{
t ≥ 0 : u

t
∈ PV ⊥B‖·‖(1)

}
= �h(u), (67)

where the inequality in (67) comes from (66).
If we identify g with � and � with �, (66) is satisfied according to (19)

(for � = 1) and (65), and we obtain (20). Similarly, identifying g with ‖ · ‖2

and � with �2, (66) holds yet again by (19) (for � = 1) and (64), and this
yields (21). This concludes the proof.
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Average Performance of the Sparsest Approximation 797

A.3. Proof of Proposition 2

Assertion (i). The sets V and PV ⊥B‖·‖(�) are closed. Moreover, V and
PV ⊥B‖·‖(�) are orthogonal. Therefore V � is closed. As a consequence V � is
a Borel set and is Lebesgue measurable.

Assertion (ii). Since the restriction of � to V ⊥ is a norm on V ⊥ and
the function h defined in (18) is also a norm (see Lemma 2(ii)) there
exists 
V such that

�(u) ≤ 
V h(u), ∀u ∈ V ⊥� (68)

By (20) in Lemma 2, such a 
V belongs to [0, �]. To simplify the notations,
in the rest of the proof we will write 
 for 
V .

For any u ∈ V ⊥ and v ∈ V , using (68) we have

�(v) − 
h(u) ≤ �(v) − �(u) ≤ �(u + v) ≤ �(v) + �(u) ≤ �(v) + 
h(u)�

In particular, for h(u) ≤ �, we get

�(v) − 
� ≤ �(u + v) ≤ �(v) + 
�� (69)

As required in assertion (ii), we have � − 
� ≥ 0. If in addition v ∈ V is
such that �(v) ≤ � − 
�, then

�(u + v) ≤ �� (70)

Noticing that

B�(�) = �u + v : (u, v) ∈ (V ⊥ × V ), �(u + v) ≤ ��,

this implies that

S0
def= �u + v : (u, v) ∈ (V ⊥ × V ), h(u) ≤ �, �(v) ≤ � − 
��

⊆ V � ∩ B�(�)�

Combining the left-hand side of (69) and (70) shows that �(v) ≤ � + 
�,
hence,

S1
def= �u + v : (u, v) ∈ (V ⊥ × V ), h(u) ≤ �, �(v) ≤ � + 
��

⊇ V � ∩ B�(�)�

Consider the pair of applications

�0 : Bh(1) × (V ∩ B�(1)) → �N

(u, v) → �u + (� − 
�)v
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798 F. Malgouyres and M. Nikolova

and

�1 : Bh(1) × (V ∩ B�(1)) → �N

(u, v) → �u + (� + 
�)v

Clearly, whatever i ∈ �0, 1�, �i is a Lipschitz homeomorphism satisfying
�i

(
Bh(1) × (

V ∩ B�(1)
)) = Si . Moreover, their derivatives D�i take the

form:

D�0 =
[
�IN−K 0
0 (� − 
�)IK

]
and

D�1 =
[
�IN−K 0
0 (� + 
�)IK

]
�

Then �N (Si) can be computed using (see [13] for details)

�N (Si) =
∫
u∈Bh (1)

∫
v∈V ∩B�(1)

[[�i]]dv du, (71)

where [[�i]] is the Jacobian of �i , for i = 0 or i = 1. In particular,

[[�0]] = det(D�0) = �N−K (� − 
�)K ,

[[�1]] = det(D�1) = �N−K (� + 
�)K �

It follows that

�N (S0) = C�N−K (� − 
�)K

and

�N (S1) = C�N−K (� + 
�)K ,

where the constant C (see (71)) reads

C =
∫
Bh (1)

du
∫
V ∩B�(1)

dv

= �N−K (PV ⊥B‖·‖(1))�K (V ∩ B�(1))�

Clearly, C is positive and finite. Using the inclusion S0 ⊆ V � ∩ B�(�) ⊆ S1
shows that

C�N−K (� − 
�)K ≤ �N (V � ∩ B�(�)) ≤ C�N−K (� + 
�)K �

The proof is complete.
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Average Performance of the Sparsest Approximation 799

A.4. Proof of Proposition 4

The subset in (28) is closed and measurable, as being a finite
intersection of closed measurable sets (see Proposition 2).

Let

h1 : �⊥
J1

→ � and h2 : �⊥
J2

→ �

be the norms exhibited in Lemma 2. Then by statement (i) of the same
lemma, for any � ≥ 0 we have

Bh1(�) = P�
J ⊥1
B‖·‖(�) and Bh2(�) = P�

J ⊥2
B‖·‖(�)�

Recall that by definition

W = �J1 ∩ �J2 �

By De Morgan’s law,

W ⊥ = �⊥
J1

+ �⊥
J2
�

Using that

�⊥
J1

= (
�⊥

J1
∩ �⊥

J2

) ⊕ (
�⊥

J1
∩ �J2

)
,

�⊥
J2

= (
�⊥

J1
∩ �⊥

J2

) ⊕ (
�J1 ∩ �⊥

J2

)
, (72)

we can express W ⊥ as a direct sum of subspaces:

W ⊥ = (
�⊥

J1
∩ �⊥

J2

) ⊕ (
�⊥

J1
∩ �J2

) ⊕ (
�J1 ∩ �⊥

J2

)
� (73)

From (73), any u ∈ W ⊥ has a unique decomposition as

u = u1 + u2 + u3 where
u1 ∈ �⊥

J1
∩ �⊥

J2

u2 ∈ �⊥
J1

∩ �J2

u3 ∈ �J1 ∩ �⊥
J2

(74)

Let us introduce the function g , defined for all u ∈ W ⊥ by

g (u) = sup�h1(u1 + u2), h2(u1 + u3)�, (75)

where u is decomposed according to (74). In the next lines, we show that
g is a norm on W ⊥:

• h1 and h2 being norms, g (
u) = |
|g (u), for all 
 ∈ �;
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800 F. Malgouyres and M. Nikolova

• if g (u) = 0 then u1 + u2 = u1 + u3 = 0; noticing that u1⊥u2 and that
u1⊥u3 yields u = 0;

• for u ∈ W ⊥ and v ∈ W ⊥ (both decomposed according to (74)),

g (u + v) = sup�h1(u1 + u2 + v1 + v2), h2(u1 + u3 + v1 + v3)�

≤ sup�h1(u1 + u2) + h1(v1 + v2), h2(u1 + u3) + h2(v1 + v3)�

≤ sup�h1(u1 + u2), h2(u1 + u3)� + sup �h1(v1 + v2), h2(v1 + v3)�

= g (u) + g (v)�

Furthermore, the norm g on W ⊥ can be extended to a norm g̃ on �N

such that ∀u ∈ W ⊥, we have g̃ (u) = g (u) and

Bg (�) = PW ⊥Bg̃ (�), ∀� > 0� (76)

Let us then define

W � = W + PW ⊥Bg̃ (�)

= �w + u : (u,w) ∈ (W ⊥ × W ), g (u) ≤ ��� (77)

We are going to show that (��
J1

∩ ��
J2
) ⊂ W �. In order to do so, we consider

an arbitrary

v ∈ ��
J1

∩ ��
J2
� (78)

It admits a unique decomposition of the form

v = w + u1 + u2 + u3,

where w ∈ W , and u1,u2, and u3 are the components exhibited in (74).
The latter, combined with (72) and

�J1 = W ⊕ (
�J1 ∩ �⊥

J2

)
,

�J2 = W ⊕ (
�⊥

J1
∩ �J2

)
,

shows that

u1 + u2 ∈ �⊥
J1

and w + u3 ∈ �J1 ,

u1 + u3 ∈ �⊥
J2

and w + u2 ∈ �J2 �

The inclusions given above, combined with (78), show that

h1(u1 + u2) ≤ � and h2(u1 + u3) ≤ ��
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Average Performance of the Sparsest Approximation 801

By the definition of g in (74)–(75), the inequalities given above imply that
g (u) ≤ �. Combining this with the definition of W � in (77) entails that v ∈
W �. Consequently,

(��
J1

∩ ��
J2
) ⊂ W �

and (
��

J1
∩ ��

J2
∩ B�(�)

) ⊂ (
W � ∩ B�(�)

)
�

It follows that

�N (��
J1

∩ ��
J2

∩ B�(�)) ≤ �N (W � ∩ B�(�))�

Let us choose 
J1,J2 ≥ 0 such that

�(u) ≤ 
J1,J2g (u), ∀u ∈ W ⊥, (79)

Applying now the right-hand side of (24) in Proposition 2 with W � in place
of V �, g in place of h and 
J1,J2 in place of � leads to

�N (W � ∩ B�(�))N ≤ Q ′
J1,J2

�N−k(� + 
J1,J2�)
k ,

where it is easy to see, using (25) in the same proposition, that

Q ′
J1,J2

= �N−k(PW ⊥Bg̃ (�))�k(W ∩ B�(1))

= �N−k(Bg (1))�k(W ∩ B�(1))� (80)

In order to obtain (29), we are going to show that Bg (1) ⊂ (B‖·‖2(2�2) ∩
W ⊥). Using Lemma 2 (ii), if u ∈ W ⊥ is decomposed according to (74),
we obtain

‖u‖2 = (‖u1‖2
2 + ‖u2‖2

2 + ‖u3‖2
2

) 1
2

≤ ‖2u1 + u2 + u3‖2

≤ ‖u1 + u2‖2 + ‖u1 + u3‖2

≤ �2h1(u1 + u2) + �2h2(u1 + u3)

≤ 2�2g (u)�

So Bg (1) ⊂ (B‖·‖2(2�2) ∩ W ⊥) and Q ′
J1,J2

≤ QJ1,J2 , for QJ1,J2 as given in the
proposition.

At last, we have to show that 
J1,J2 ∈ [0, 3�]. Using Lemma 2(ii), if u ∈
W ⊥ is decomposed according to (74), we obtain

�(u) = �(u1 + u2 + u3)

≤ �(2u1 + u2 + u3) + �(u1)
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802 F. Malgouyres and M. Nikolova

≤ �(u1 + u2) + �(u1 + u3) + �(u1)

≤ �h1(u1 + u2) + �h2(u1 + u3) + �1‖u1‖2, (81)

where �1 is defined in (62), in the proof of Lemma 2.
Using (21) in Lemma 2, ‖u1‖2 satisfies the following two inequalities

‖u1‖2 ≤ ‖u1 + u2‖2 ≤ �2h1(u1 + u2),

‖u1‖2 ≤ ‖u1 + u3‖2 ≤ �2h2(u1 + u3)�

Adding these inequalities and using (62)–(63), we obtain

�1‖u1‖2 ≤ �

2
(h1(u1 + u2) + h2(u1 + u3))�

Using (81), we finally conclude that, for u ∈ W ⊥

�(u) ≤ 3�
2

(h1(u1 + u2) + h2(u1 + u3))

≤ 3� g (u)�

The proof is complete.

A.5. Proof of Theorem 2

When K = 0 or K = N , we have #�(K ) = 1. Using (40), we have
�0(K , �, �) = 0. By (17) and the assumption � > ��K , we have 
�

0 ∩ B�(�) =
B‖·‖(�) and 
�

N ∩ B�(�) = B�(�). Note that we can take �N = 0. Combining
these facts with (34) shows that (44) holds true and that it is an equality.

The remaining of the proof is to find relevant bounds for the right-
hand side of (17) under the assumption that 1 ≤ K ≤ N − 1.

Upper bound. By (17) and the definition of a measure, and using
Proposition 3, it is found that

�N (
�
K ∩ B�(�)) ≤

∑
J ∈�(K )

�N (��
J ∩ B�(�))

≤ �N−K
∑

J ∈�(K )

CJ (� + 
J �)
K

≤ �N−K (� + 
̂K �)
K

∑
J ∈�(K )

CJ

= CK �
N−K (� + 
̂K �)

K , (82)
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Average Performance of the Sparsest Approximation 803

where the constants 
̂K and CK are defined in (31) and (32), respectively.
This establishes the right hand side inequality in (44).

Lower bound. First we represent the right side of (16) as a union of
disjoint subsets. Since �(K ) is finite, let us enumerate its elements as

�(K ) = �J1, � � � , JL� where L = #(�(K ))�

To simplify the expressions that follow, for any J we denote

BJ
def= ��

J ∩ B�(�)� (83)

Then

⋃
J ∈�(K )

(��
J ∩ B�(�)) =

L⋃
i=1

BJi �

Consider the following decomposition:

L⋃
i=1

BJi = (BJ1) ∪
L⋃
i=2

(
BJi

∖( i−1⋃
j=1

(BJj ∩ BJi )

))
�

Since the last row is a union of disjoint sets, we have

�N

( L⋃
i=1

BJi

)
= �N (BJ1) +

L∑
i=2

�L

(
BJi

∖( i−1⋃
j=1

(BJj ∩ BJi )

))
�

Noticing that
( ⋃i−1

j=1(BJj ∩ BJi )
) ⊂ BJi entails that for all i = 2, � � � ,L, we have

�N

(
BJi

∖( i−1⋃
j=1

(BJj ∩ BJi )

))
= �N (BJi ) − �N

( i−1⋃
j=1

(BJj ∩ BJi )

)
�

Hence,

�N

( L⋃
i=1

BJi

)
=

L∑
i=1

�N (BJi ) −
L∑
i=2

�N

( i−1⋃
j=1

(BJj ∩ BJi )

)
� (84)

Using successively (83), Proposition 3, the definitions of 
̂K and CK in
(31) and (32), respectively, and the assumption that � ≥ ��K , shows that

L∑
i=1

�N (BJi ) =
∑

J ∈�(K )

�N (��
J ∩ B�(�))
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804 F. Malgouyres and M. Nikolova

≥
∑

J ∈�(K )

CJ �
N−K (� − 
J �)

K

≥ CK �
N−K (� − 
̂K �)

K � (85)

Note that by the definition of �K in (41) we have 
̂K ≤ �K .
Using the original notation (83), each term, for i = 2, � � � ,L, in the last

sum in (84) satisfies

�N

( i−1⋃
j=1

(BJj ∩ BJi )

)
≤

i−1∑
j=1

�N (BJj ∩ BJi ) =
i−1∑
j=1

�N (B�(�) ∩ ��
Jj

∩ ��
Ji
)� (86)

Let us remind that dim(�Ji ) = K for every i = 1, � � � ,L and that by the
definition of �(K ) (see (8)) we have �Jj �= �Ji if i �= j . Proposition 4 can,
hence, be applied to each term of the last sum:

�N (B�(�) ∩ ��
Jj

∩ ��
Ji
) ≤ QJi ,Jj �

N−ki ,j (� + 
Ji ,Jj )�)
ki ,j

where ki ,j = dim(�Jj ∩ �Ji )�

Then (86) leads to

�N

( i−1⋃
j=1

(BJj ∩ BJi )

)
≤

i−1∑
j=1

QJj ,Ji �
N−ki ,j (� + 
Jj ,Ji �)

ki ,j �

By rearranging the last sum in (84) and taking into account (36),
we obtain

L∑
i=2

�N

( i−1⋃
j=1

(BJj ∩ BJi )

)
≤

K−1∑
k=kK

QK ,k�
N−k(� + �̂K ,k�)

k , (87)

where �̂K ,k and QK ,k are given in (37) and (38), respectively.
Combining (17) along with the original notations (83) and then (84),

(85), and (87) yield

�N (
�
K ∩ B�(�)) = �N

( L⋃
i=1

BJi

)
≥ CK �

N−K (� − 
̂K �)
K − �0(K , �, �), (88)

where �0(·) is as in the proposition. This finishes the proof.
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