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Abstract Regularized energies with �1-fitting have at-
tracted a considerable interest in the recent years and nu-
merous aspects of the problem have been studied, mainly to
solve various problems arising in image processing. In this
paper we focus on a rather simple form where the regulariza-
tion term is a quadratic functional applied on the first-order
differences between neighboring pixels. We derive a semi-
explicit expression for the minimizers of this energy which
shows that the solution is an affine function in the neigh-
borhood of each data set. We then describe the volumes of
data for which the same system of affine equations leads to
the minimum of the relevant energy. Our analysis involves
an intermediate result on random matrices constructed from
truncated neighborhood sets. We also put in evidence some
drawbacks due to the �1-fitting. A fast, simple and exact op-
timization method is proposed. By way of application, we
separate impulse noise from Gaussian noise in a degraded
image.

Keywords Non-smooth analysis · �1 data-fitting · Image
denoising · Signal denoising · Random matrices · Tikhonov
regularization · Impulsive noise · Nonsmooth optimization ·
Numerical methods

1 Introduction

For any positive integer p > 0 (e.g. the number of the pixels
in an image) we denote

I
def= {1, . . . , p}.

M. Nikolova (�)
CMLA, ENS Cachan, CNRS, PRES UniverSud, 61 Av. President
Wilson, 94230 Cachan, France
e-mail: nikolova@cmla.ens-cachan.fr

With every index i ∈ I we associate a subset Ni ⊂ I such
that ∀i ∈ I and ∀j ∈ I , we have

{
i /∈ Ni,

j ∈ Ni ⇔ i ∈ Nj .
(1)

Typically, Ni represents the set of the neighbors of i. Thus
we call (Ni)i∈I the neighborhood system on I . We consider
the following minimization problem: for any y ∈ R

p ,

find x̂ such that F (x̂, y) = min
x∈Rp

F (x, y),

where F (x, y) =
p∑

i=1

|xi − yi | + α

2

p∑
i=1

∑
j∈Ni

(xi − xj )
2, (2)

where α > 0 is a parameter. In this paper we study how the
solution x̂ depends on y.

The practical context we have in mind is signal or image
processing where y is the data and x̂ is the sought-after sig-
nal or image. In the latter case we assume that all pixels of
the image are arranged in a p-length vector and that (Ni)i∈I

is an usual neighborhood system corresponding to the 4 or
the 8 adjacent pixels. (E.g., for a m × n-size picture whose
columns are concatenated in a p = mn-length vector, the 4
adjacent neighbors of a pixel i in the interior of the image are
Ni = {i − m, i − 1, i + m, i + 1}.) Any other configuration
fitting (2) can also be considered. The continuous version of
the energy in (2), where α corresponds to a Lagrange mul-
tiplier for an underlying constrained optimization problem,
was considered in [19] to denoise smooth (H 1

0 -regular) im-
ages. The authors propose and analyze an active-set method
for solving the constrained non-smooth optimization prob-
lem.

Regularized energies with �1-fitting were considered by
Alliney in [1, 2] in the context of one-dimensional filters.
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Energies involving general non-smooth data-fitting terms
were analyzed in [21] where it was shown that the corre-
sponding minimizers x̂ satisfy

x̂i = yi for numerous indexes i. (3)

This result initially suggested applications for impulse noise
processing. The geometric properties of images restored us-
ing �1-fitting and total-variation (TV) regularization were
studied by Chan and Esedoglu in [9] and applied to the
restoration of binary images in [10]. Deblurring under im-
pulse noise using �1-fitting and different regularization
terms was explored in [3–5]. Fast optimization methods for
this kind of problems were proposed by [13, 14, 16]. The
first two papers, written by Darbon and Sigelle, are based
on graph-cuts and suppose that images are quantized. A lot
of papers using �1-fitting with regularization were published
in the last years and it is hard to evoke all of them.

In this paper we focus on �1-fitting with a simple
Tikhonov-like regularization for two main reasons: (i) in
this context it is possible to obtain a lot of explicit results on
the properties of the solution and (ii) we can provide a fast
and simple numerical scheme.

Our Contribution

Our main contribution is to show that F , as defined in (2), is
minimized by an x̂ which is a locally affine function of the
data y. We exhibit an affine formula giving the result and
determine a subset of data where the same formula leads
to the minimum of the relevant energy. Such a set is seen
to be a polyhedron of R

p which is unbounded. Since many
components of the solution satisfy x̂i = yi , we decompose
the remaining samples (x̂i �= yi ) into connected components.
We show that each connected component is estimated using
a matrix with non-negative entries applied to the adjacent
pixels satisfying x̂i = yi , plus a fixed vector dependent only
on the sign of all yi − x̂i in the connected component. An in-
teresting intermediate result is to prove the invertibility and
the positivity of this matrix (which is random, since it corre-
sponds to randomly truncated neighborhoods). We also give
a very fast and simple minimization scheme which easily re-
covers the most difficult points—those where the energy is
non-differentiable, namely x̂ = yi . It is fully explicit (there
is no line-search) and involves only sums and comparisons
to a fixed threshold. Numerical results on data contaminated
with impulse noise are provided in order to illustrate the
properties of the energy and the minimization scheme. Other
applications can certainly be envisaged.

1.1 Notations and Definitions

We use the symbol ‖ · ‖ to denote the �2-norm of vectors,

‖x‖ =√〈x, x〉.

Next, we denote by N
∗ the positive integers. For a subset

ζ ⊂ I , the symbol #ζ stands for its cardinality while ζ c is
the complement of ζ in I .

Definition 1 A subset ζ ⊂ I is said to be a connected com-
ponent with respect to (Ni)i∈I if either ζ is a singleton, say
ζ = {i} and ζ ∩ Ni = ∅, or if the following hold:

∀(i, j) ∈ ζ 2, ∃n ∈ N
∗, ∃(ik)

n
k=1 such that{

i1 = i and in = j

ik ∈ Nik+1 ∩ ζ, ∀k = 1, . . . , n − 1,
(4)

Nζ
def=

( ⋃
i ∈ ζ

Ni

)
\ ζ ⊂ ζ c. (5)

By extending (1), we call Nζ in (5) the neighborhood
of ζ . The condition in (4) means that any i and j in ζ

are connected by a sequence of neighbors (w.r.t. (Ni)i∈I )
that belong to ζ . The requirement in (5) means that ζ is
maximal—there are no other elements in I \ ζ that can sat-
isfy (4).

Guided by the property in (3), we systematically use the
set-valued application J from R

p × R
p to the family of all

subsets of I defined by

J (x, y)
def= {

i ∈ I : xi �= yi

}
. (6)

Note that F (., y), as defined in (2), is nondifferentiable
in the classical sense; it has continuous partial derivatives
∂F (x,y)

∂xi
for i ∈ J (x, y) but not for i ∈ J c(x, y). We recall

some facts about nondifferentiable functions—see e.g. [18].

Definition 2 The right-side derivative of F (., y) at x in the
direction of u is defined by

δF (x, y)(u)
def= lim

ε↘0

F (x + εu, y) − F (x, y)

ε
,

whenever this limit exists.

This one-sided derivative always exists for the energy
in (2) since it is convex and continuous. Let us remind
that the relevant left-side derivative is −δF (x, y)(−u). If
F is nonsmooth at x along u, we have δF (x, y)(−u) �=
−δF (x, y)(u) and by the convexity of F the following in-
equality holds: −δF (x, y)(−u) < δF (x, y)(u). More de-
tails can be found e.g. in [18]. Otherwise, if F is smooth at
x along u, we just have −δF (x, y)(−u) = δF (x, y)(u). Fi-
nally, if F (., y) is differentiable at x (in the classical sense),
we have δF (x, y)(u) = 〈 ∇x F (x, y), u 〉 which is linear
in u.

The components of a matrix A are denoted by A(i, j).
Given a vector y ∈ R

p , its ith component is denoted by yi

or y(i). We will write y ≥ 0 to say that all components of
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y are nonnegative. If K ⊂ I is an ordered subset of indexes,
say K = (k1, . . . , k#K), then yK is the restriction of y to the
indexes contained in K :

[yK ](i) = yki
, ∀i = 1, . . . , #K. (7)

For definiteness, we suppose in what follows that all sub-
sequences are arranged in increasing order. For any i =
1, . . . , p, the symbol ei systematically denotes the ith vec-
tor of the canonical basis of R

p , namely ei(i) = 1 and
ei(j) = 0, ∀j �= i, for all i = 1, . . . , p.

2 Necessary and Sufficient Conditions for a Minimum

Since F (., y) is continuous, convex and coercive for every
y ∈ R

p , it always has a unique minimum and the latter is
reached on a convex set. See [18, 24] for details. First we
determine the necessary and sufficient conditions for F (., y)

to have a minimum at x̂.

Proposition 1 For y ∈ R
p , the function F (., y) given in (2)

reaches its minimum at x̂ ∈ R
p if and only if

∣∣∣∣∣x̂i − 1

#Ni

∑
j∈Ni

x̂j

∣∣∣∣∣≤
1

2α#Ni

∀i ∈ Ĵ c, (8)

⎧⎪⎨
⎪⎩

x̂i − 1

#Ni

∑
j∈Ni

x̂j = σi

2α#Ni

for σi = sign(yi − x̂i )

∀i ∈ Ĵ , (9)

where Ĵ
def= J (x̂, y) is defined according to (6).

Remark 1 It is worth emphasizing that from the definition
of Ĵ , (8) corresponds to

x̂i = yi, ∀i ∈ Ĵ c.

Remark 2 Equations (8) and (9) show that the restored x̂

(e.g. an image or a signal) involves a firm bound on the dif-
ference between each sample x̂i and the mean of its neigh-
bors:∣∣∣∣∣x̂i − 1

#Ni

∑
j∈Ni

x̂j

∣∣∣∣∣≤
1

2α#Ni

, ∀i ∈ I.

According to the value of α, textures or non-spiky noises
can be preserved in the solution x̂.

Proof Being convex, F (., y) reaches its minimum at x̂ if
and only if (see e.g. [18], vol. I, Theorem 2.2.1 on p. 253)

δF (x̂, y)(u) ≥ 0, ∀u ∈ R
p, (10)

where δF (x̂, y)(u) is the right-side derivative of F (., y) at
x̂ in the direction of u, see Definition 2. Let us decompose
F (x̂, y) in the following way:

F (x̂, y) =
∑
i∈Ĵ c

fyi
(x̂i ) + 	

Ĵc(x̂) + F̃ (x̂),

where

fyi
(xi) = |xi − yi |,

	
Ĵ c (x) = α

2

∑
i∈Ĵ c

∑
j∈Ni

(xi − xj )
2,

F̃ (x) =
∑
i∈Ĵ

(
|xi − yi | + α

2

∑
j∈Ni

(xi − xj )
2
)

.

Clearly, fyi
is nondifferentiable at x̂i for every i ∈ Ĵ c (since

x̂i = yi ) whereas 	
Ĵc and F̃ are differentiable at x̂. Using

Definition 2, for any u ∈ R
p ,

δF (x̂, y)(u) =
∑
i∈Ĵ c

(
δfyi

(x̂i)(ui) + ui

∂	
Ĵ c (x)

∂xi

∣∣∣∣
x=x̂

)

+
∑
i∈Ĵ

ui

∂F̃ (x)

∂xi

∣∣∣∣
x=x̂

. (11)

Next we calculate the terms involved in these sums. For
every i ∈ Ĵ c we have

δfyi
(x̂i )(ui) = lim

ε↘0

|x̂i + εui − yi | − |x̂i − yi |
ε

= |ui | = uisign(ui).

It is easy to find that

∂	
Ĵ c (x)

∂xi

= 2α#Ni

(
xi − 1

#Ni

∑
j∈Ni

xj

)
.

Note that the constant 2 comes from the regularization term
in (2) which involves both (xi − xj )

2 and (xj − xi)
2.

For every i ∈ Ĵ , we have x̂i �= yi and the partial derivative
below is well defined:

∂F̃ (x)

∂xi

∣∣∣∣
x=x̂

= sign(x̂i − yi) + 2α#Ni

(
x̂i − 1

#Ni

∑
j∈Ni

x̂j

)
.

Introducing these results in the expression for δF (x̂, y)

in (11) yields:

δF (x̂, y)(u)

=
∑
i∈Ĵ c

ui

(
sign(ui) + 2α#Ni

(
x̂i − 1

#Ni

∑
j∈Ni

x̂j

))

+
∑
i∈Ĵ

ui

(
sign(x̂i − yi) + 2α#Ni

(
x̂i − 1

#Ni

∑
j∈Ni

x̂j

))
.

(12)
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If Ĵ c is empty, the first sum in (12) is null and (8) is void.
Consider next that Ĵ c is nonempty. Let us apply (10) to the
expression of δF (x̂, y) in (12) with ei and −ei (as defined
at the end of Sect. 1.1) for i ∈ Ĵ c:

δF (x̂, y)(ei) ≥ 0, i ∈ Ĵ c

⇒ 1 + 2α#Ni

(
x̂i − 1

#Ni

∑
j∈Ni

x̂j

)
≥ 0,

δF (x̂, y)(−ei) ≥ 0, i ∈ Ĵ c

⇒ 1 − 2α#Ni

(
x̂i − 1

#Ni

∑
j∈Ni

x̂j

)
≥ 0,

since eisign(ei) = −eisign(−ei) = 1. Combining these re-
sults leads to

−1 ≤ 2α#Ni

(
x̂i − 1

#Ni

∑
j∈Ni

x̂j

)
≤ 1.

Hence (8).
If Ĵ is empty, the second sum in (12) is null and (9) is

void. Consider next that Ĵ is nonempty. Let us apply (10) to
the expression of δF (x̂, y) in (12) with ei and −ei for i ∈ Ĵ :

δF (x̂, y)(ei) ≥ 0, i ∈ Ĵ

⇒ sign(x̂i − yi) + 2α#Ni

(
x̂i − 1

#Ni

∑
j∈Ni

x̂j

)
≥ 0,

δF (x̂, y)(−ei) ≥ 0, i ∈ Ĵ

⇒ −sign(x̂i − yi) − 2α#Ni

(
x̂i − 1

#Ni

∑
j∈Ni

x̂j

)
≥ 0.

Combining the last two results shows that

sign(x̂i − yi) + 2α#Ni

(
x̂i − 1

#Ni

∑
j∈Ni

x̂j

)
= 0,

which is equivalent to

x̂i − 1

#Ni

∑
j∈Ni

x̂j − sign(yi − x̂i )

2α#Ni

= 0, ∀i ∈ Ĵ . (13)

This amounts to (9). �

Lemma 1 We assume the conditions of Proposition 1. The
constant σi ∈ {−1,+1} in (9) satisfies

σi = sign(yi − x̂i ) = sign

(
yi − 1

#Ni

∑
j∈Ni

x̂j

)
, ∀i ∈ Ĵ .

(14)

Proof We know that ∀i ∈ Ĵ we have

either yi − 1

#Ni

∑
j∈Ni

x̂j < − 1

2α#Ni

< 0

or yi − 1

#Ni

∑
j∈Ni

x̂j >
1

2α#Ni

> 0,

since otherwise we would find x̂i = yi and i ∈ Ĵ c according
to (8). These two cases are considered below.

• Consider that yi − 1
#Ni

∑
j∈Ni

x̂j < 0. Subtracting (13)
from the latter inequality yields

yi − 1

#Ni

∑
j∈Ni

x̂j −
(

x̂i − 1

#Ni

∑
j∈Ni

x̂j − sign(yi − x̂i )

2α#Ni

)
< 0.

Using that u = |u|sign(u) for any u ∈ R, this is equivalent
to

sign(yi − x̂i )

(
|x̂i − yi | + 1

2α#Ni

)
< 0.

Since the expression between the big parentheses is posi-
tive, we find that

σi = sign(yi − x̂i ) = sign

(
yi − 1

#Ni

∑
j∈Ni

x̂j

)
= −1.

• Consider that yi − 1
#Ni

∑
j∈Ni

x̂j > 0. Subtracting (13)
from the latter inequality yields

yi − 1

#Ni

∑
j∈Ni

x̂j −
(

x̂i − 1

#Ni

∑
j∈Ni

x̂j − sign(yi − x̂i )

2α#Ni

)
> 0.

This is equivalent to

sign(yi − x̂i )

(
|x̂i − yi | + 1

2α#Ni

)
> 0.

It follows that

σi = sign(yi − x̂i ) = sign

(
yi − 1

#Ni

∑
j∈Ni

x̂j

)
= 1.

The proof is complete. �

Now we can state a more handy formulation of the mini-
mality condition given in Proposition 1.

Theorem 1 For y ∈ R
p , the function F (., y) given in (2)

reaches its minimum at x̂ ∈ R
p if and only if

∣∣∣∣yi − 1

#Ni

∑
j∈Ni

x̂j

∣∣∣∣≤ 1

2α#Ni

∀i ∈ Ĵ c, (15)
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Fig. 1 Illustration of Example 1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x̂i − 1

#Ni

∑
j∈Ni∩Ĵ

x̂j = 1

#Ni

∑
j∈Ni∩Ĵ c

yj + σi

2α#Ni

for σi = sign

(
yi − 1

#Ni

∑
j∈Ni

x̂j

) ∀i ∈ Ĵ ,

(16)

where Ĵ
def= J (x̂, y) is defined according to (6).

Proof Using Remark 1, we obtain (15) directly from (8)
and split the first equation in (9) to obtain the first equa-
tion in (16). Then we use the expression for σi derived in
Lemma 1. �

Remark 3 Using (8) in Proposition 1, it is easy to see that

[
Ĵ = ∅] ⇐⇒ [

Ĵ c = I
] ⇐⇒ [

x̂i = yi, ∀i ∈ I
]

⇐⇒ [
y ∈ WI

]
,

where

WI
def=

{
y ∈ R

p :
∣∣∣∣yi − 1

#Ni

∑
j∈Ni

yj

∣∣∣∣≤ 1

2α#Ni

, ∀i ∈ I

}
.

(17)

Obviously, WI is a polyhedron enclosed between p = #I

pairs of affine hyperplanes in R
p . Its Lebesgue measure in

R
p is clearly positive. Obtaining a solution x̂ = y is useless,

so α should be such that y /∈ WI , hence we need

α > αmin,

where

αmin
def= min

i∈I

(
2#Ni

∣∣∣∣yi − 1

#Ni

∑
j∈Ni

yj

∣∣∣∣
)−1

.

Example 1 Consider the cost-function F : R × R → R,

F (x, y) = |x − y| + α

2
x2, (18)

illustrated in Fig. 1(a) and (b). For any y ∈ R, the energy
F (., y) above is minimized by

x̂ =

⎧⎪⎨
⎪⎩

y if |y| ≤ 1

α
,

sign(y)

α
if |y| >

1

α
.

(19)

The solution x̂ as a function of y is plotted in Fig. 1(c).

• observe that x̂ fits the data y whenever |y| ≤ 1/α;
• otherwise, for |y| ≥ 1

α
, there is a threshold effect, so the

value of x̂ is independent of the exact value of y, it de-
pends only on its sign.

The function y → x̂ is linear on each one of the subsets
(−∞,− 1

α
), [− 1

α
, 1

α
] and ( 1

α
,+∞).

Example 2 is quite pathological since under some condi-
tions, the minimizer is not unique.

Example 2 Consider the cost-function F : R
2 ×R

2+ → R of
the form (2),

F (x, y) =
2∑

i=1

|xi − yi | + α

2

2∑
i=1

∑
j∈Ni

(xi − xj )
2

= |x1 − y1| + |x2 − y2| + α(x1 − x2)
2, (20)

where the simplification comes from the facts that N1 = {2}
and N2 = {1}, and hence #Ni = 1 for i = 1,2. Several cases
arise according to the values of y1 and y2.

• If |y1 − y2| ≤ 1
2α

, Proposition 1 shows that x̂1 = y1 and

x̂2 = y2, so Ĵ = ∅. Such a case is illustrated on Fig. 2(a).
• For definiteness, let y2 − y1 > 1

2α
. Using Proposition 1,

we find that the solution is given by the segment [(y1, y1 +
1

2α
), (y2 − 1

2α
, y2)] (see Fig. 2(b)). Its extreme points cor-

respond to Ĵ c = {1} and Ĵ c = {2}. This pathological be-
havior is due to the fact that in the interior of the seg-
ment, x̂1 and x̂2 are calculated using (9) which is simpli-
fied to a unique equation, 1 + 2α(x̂1 − x̂2) = 0. Notice
also that the connected component ζ (see Definition 1)
reads ζ = Ĵ = I = {1,2}.

More generally, if Ĵ = I , then x̂ is calculated using (9)
only and the minimizer may not be unique. As seen in Sect. 7
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Fig. 2 Both figures present the
level lines of F in (20) for
α = 0.5 near the data and the
minimum. In both figures, the
data point y is plotted with a
“�”. On the left, the minimizer
x̂ match the data y. On the right,
the minimizer is any element of
the segment [(0,1), (1,2)]
(plotted with a thick line)

(Experiments), the case when Ĵ c is empty (i.e. Ĵ = I ) is ex-
ceptional; otherwise minimizers are well defined, and hope-
fully, interesting for practical applications.

Remark 4 We know from Proposition 1 in [22] that if Ĵ c is
nonempty and if the condition in (8) involves at least one
strict inequality, then the minimizer x̂ of F is unique. We
can conjecture that the cases when Ĵ c is empty or (8) in-
volves only equalities are quite exceptional in practice. If
for some y ∈ R

p the set Ĵ c is empty, then the minimality
conditions are given by (9) for all i ∈ I . Since F (., y) ad-
mits a minimizer for every y ∈ R

p , this system admits at
least one solution; the latter it is not necessarily unique. In
any case, such a solution has no practical interest since it is
quasi-independent of the data; it also indicates that the para-
meter α is too large.

3 Random Matrices from Restricted Neighborhoods

Lemma 2 Let ζ = {k1, . . . , kq} ⊂ I , where q
def= #ζ < p, be

any connected component of I w.r.t (Ni)i∈I (see (1) and De-
finition 1). Then the q × q matrix L given below:

L(i, j) =

⎧⎪⎪⎨
⎪⎪⎩

1 if i = j,

− 1

#Nki

if kj ∈ Nki
∩ ζ,

0 otherwise,

(21)

is invertible and its inverse has non-negative entries, i.e.

(
L
)−1

(i, j) ≥ 0, ∀i, j. (22)

Remark 5 Observe that L(i, i) = 1 for all i while for i �= j

we have

Li,j < 0 ⇐⇒ Lj,i < 0.

Indeed, if ki ∈ ζ and j ∈ Nki
∩ ζ , we find L(i, j) =

−(#Nki
)−1. By (1), we also have ki ∈ Nkj

∩ ζ , hence
L(j, i) = −(#Nkj

)−1. Notice that we can have Li,j �= Lj,i

since different neighborhoods can have different sizes.

A matrix of the form (21) is presented in the example
below.

Example 3 Consider an image where for every pixel i which
is not at the boundary of the image, Ni is composed of its
8 adjacent neighbors. However, the pixels at the boundaries
have less neighbors. Consider a connected component ζ =
{k1, k2, k3, k4, k5} as presented below in (a):

. . .

. . .

◦ −
�

�

�

�
k2 − ◦

| × | × |
�

�

�

�
k1 −
�

�

�

�
k3 − ◦

| × | × |
◦ −
�

�

�

�
k4 −
�

�

�

�
k5

(a) Connected component ζ at the
lower right end of the image.

L =

⎡
⎢⎢⎢⎢⎣

1 −1/8 −1/8 −1/8 0
−1/8 1 −1/8 0 0
−1/8 −1/8 1 −1/8 −1/8
−1/5 0 −1/5 1 −1/5

0 0 −1/3 −1/3 1

⎤
⎥⎥⎥⎥⎦

(b) The matrix L according to (21).

Observe that k5 is on the last column and on the last row of
the image, and that k4 is on its last row. Then

#Nk4 = 5 and #Nk5 = 3, while #Nki
= 8, i = 1,2,3.
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We have: Nk1 ∩ ζ = {k2, k3, k4}, Nk2 ∩ ζ = {k1, k3}, Nk3 ∩
ζ = {k1, k2, k4, k5}, Nk4 ∩ ζ = {k1, k3, k5} and Nk5 ∩ ζ =
{k3, k4}. The matrix L corresponding to (21) is presented
in (b).

Proof The proof of the lemma is based on the following
equivalence result1 [11]: a matrix L ∈ R

q×q is invertible
and satisfies (22) if and only if the implication below holds
true:

[Lv ≥ 0] ⇒ [v ≥ 0], (23)

where the expression v ≥ 0 means that vi ≥ 0, for every
i = 1, . . . , q . In what follows, we will prove that the matrix
L defined by (21) satisfies (23). Notice that

[Lv]i = vi − 1

#Nki

∑
j∈Nki

∩ζ

vj . (24)

Below we show several preliminary implications that will
help us to prove (23).

• Let b < 0 and u ∈ R
r for r ∈ N

∗, we have the implication

[
b −

r∑
i=1

ui ≥ 0

]
⇒

[
∃j ∈ {1, . . . , r} : uj ≤ 1

r
b < 0

]
. (25)

Indeed, if the statement on the right is false, i.e. ui > b
r

for all i, then

r∑
i=1

ui >

r∑
i=1

b

r
= b.

Then the inequality on the left hand side cannot be satis-
fied.

• Let us prove the following implication:

⎡
⎢⎣a

def= vi < 0 and Nki
⊂ ζ

AND[
Lv

]
i
≥ 0

⎤
⎥⎦

⇒
⎡
⎣vj = a < 0, ∀j ∈ Nki

∪ {ki} (i)

OR
∃j ∈ Nki

such that vj < vi = a < 0 (ii)

⎤
⎦ . (26)

1For completeness, we remind the proof given in [11]. If L is invert-
ible and (22) is true, and Lv ≥ 0, then clearly v = L−1(Lv) ≥ 0.
Conversely, let (23) holds. If Lv = 0 then L(−v) = 0, hence v ≥ 0
and −v ≥ 0, i.e. v = 0 which shows that L is invertible. Since the

ith column of L−1 is vi
def= L−1ei , we have Lvi = ei ≥ 0 and hence

vi ≥ 0. The same holds true for all columns vi , 1 ≤ i ≤ q , hence
(L)−1(i, j) ≥ 0, ∀(i, j).

By (25), ∃j1 ∈ Nki
such that

1

#Nki

vj1 ≤ 1

#Nki

vi .

If vj1 < vi , then (26)(ii) holds.
Else vj1 = vi = a < 0. We can write down that

(
1 − 1

#Nki

)
vi − 1

#Nki

∑
j∈Nki

\{j1}
vj ≥ 0.

Using (25) yet again, ∃j2 ∈ Nki
\ {j1} such that

1

#Nki

vj2 ≤ 1

#Nki
− 1

(
1 − 1

#Nki

)
vi.

Hence

vj2 ≤ vki
= vj1 = a < 0.

If vj2 < vi , then (26)(ii) holds. Otherwise, vj2 = vi =
vj1 = a < 0.

Iterating this reasoning #Nki
times shows the result.

• We have a reciprocal of (i) in (26):

⎡
⎣vj = a < 0, ∀j ∈ Nki

∪ {ki}
AND[

Lv
]
i
≥ 0

⎤
⎦⇒

[
Nki

⊂ ζ
]
. (27)

Suppose that the right side of (27) is false, i.e. #
(
Nki

∩
ζ
)≤ #Nki

− 1 then

[Lv
]
i
= a − #(Nki

∩ ζ )

#Nki

a = a
#Nki

− #(Nki
∩ ζ )

#Nki

< 0

where the last inequality comes from the fact that the frac-
tion is strictly positive.

• We have the following implication:

[
a

def= vi < 0 and Nki
∩ ζ �= Nki

]
⇒ [∃j ∈ Nki

: vj < vi = a < 0
]
. (28)

Notice that #(Nki
∩ ζ ) < #Nki

. Then using (25), ∃j ∈ Nki

such that

1

#Nki

vj ≤ 1

#(Nki
∩ ζ )

vi

which shows (28).

With the help of these implications, we will prove (23) by
contradiction. So, suppose that Lv ≥ 0 but that

∃j1 ∈ {1, . . . , q} such that vj1

def= a < 0.
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According to Nj1 (either Nj1 ⊂ ζ or Nj1 ∩ ζ �= Nj1 ) we
apply (26) or (28) and find that

∃j2 ∈ Nj1 such that vj2 ≤ vj1

def= a < 0.

Since ζ is connected, we can in the same way visit all
Nji

for i ∈ {1, . . . , q} and thus find a decreasing sequence,
say of length n ≤ q , denoted (vji

)ni=1 whose elements are
≤ a < 0. Since ζ �= I , there exists k ≤ n and jk ∈ ζ such that
Njk

∩ ζ �= Njk
in which case (27) implies that vjk

< vjk−1 .
We have thus found that

b
def= vjn ≤ · · · ≤ vjk

< vjk−1 ≤ · · · ≤ j1 ≤ vj1 = a < 0.

Since we have visited all Nji
for i ∈ {1, . . . , q}, we can write

that

b = min
1≤i≤q

vi . (29)

Consider now Njn . By (29),

vj ≥ vjn, ∀j ∈ Njn. (30)

If we had

vjn = vj = b, ∀j ∈ Njn,

then (27) shows that Njn ⊂ ζ in which case we can again
iterate (26) and (28), hence we have not visited all Nji

for
i ∈ {1, . . . , q}. If follows that

∃j ∈ Nkjn
such that vj > b. (31)

Using (30) and (31), we can write down the following:

[
Lv

]
jn

= vjn − 1

#Nkjn

∑
j∈Nkjn

∩ζ

vj

= b − 1

#Nkjn

∑
j∈Nkjn

∩ζ

vj

< b − #(Nkjn
∩ ζ )

#Nkjn

b

= b
#Nkjn

− #(Nkjn
∩ ζ )

#Nkjn

≤ 0.

Thus
[
Lv

]
jn

< 0 which contradicts the assumption that
Lv ≥ 0. It follows that (23) is true. The proof is complete. �

4 Semi-explicit Expression for Minimizers

Given x̂—a minimizer of F (., y)—let ζ = {i} ⊂ Ĵ be a con-
nected component with respect to (Ni)i , in the sense of De-
finition 1, which in particular implies that Ni ⊂ Ĵ c . Then

Theorem 1 tells us that

x̂i = 1

#Ni

∑
j∈Ni

yj + σi

2α#Ni

, (32)

where σi ∈ {−1,+1} is given by Lemma 1 and now reads
σi = sign(yi − 1

#Ni

∑
j∈Ni

yj ).
A more general result, considering arbitrary connected

components ζ is presented next. Since Lemma 2 holds for
connected components ζ such that #ζ < p, we will exclude
the case when Ĵ c is empty (i.e. Ĵ = I and the unique con-
nected component is ζ = I , hence #ζ = p).

Proposition 2 For y ∈ R
p , let F (., y) reach its minimum at

x̂ with Ĵ = J (x̂, y) �= ∅, Ĵ �= I , where J is defined in (6).
Let

ζ = {k1, . . . , kq} ⊂ Ĵ (33)

be any connected component w.r.t. (Ni)i∈I (see Definition 1)
and its neighborhood read Nζ = {n1, . . . , n#Nζ

}. Let us de-

fine Lζ ∈ R
q×q , Qζ ∈ R

q×#Nζ and dζ ∈ R
q as it follows:

Lζ (i, j) =

⎧⎪⎪⎨
⎪⎪⎩

1 if i = j

− 1

#Nki

if kj ∈ Nki
∩ ζ,

0 otherwise,

1 ≤ i, j ≤ q;

(34)

Qζ (i, j) =
⎧⎨
⎩

1

#Nki

if nj ∈ Nki
∩ Nζ ,

0 otherwise,

1 ≤ i ≤ q, 1 ≤ j ≤ #Nζ ; (35)

dζ (i) = σki

2α#Nki

, σki
= sign(yki

− x̂ki
), 1 ≤ i ≤ q. (36)

Then x̂ζ reads

x̂ζ = Aζ yNζ + bζ ,

where

(a) the matrix Aζ ∈ R
q×#Nζ satisfies Aζ (i, j) ≥ 0, ∀i, j

and reads Aζ = (Lζ )−1Qζ ;
(b) the vector bζ ∈ R

q reads bζ = (Lζ )−1dζ .

It is easy to see that Aζ depends only on {Ni : i ∈
ζ ∪ Nζ }, and that bζ depends only on {Ni : i ∈ ζ ∪ Nζ } and
{σi : i ∈ ζ }.

Proof Since ζ ⊂ Ĵ , (9) in Proposition 1 shows that the en-
tries of x̂ζ satisfy

x̂ki
− 1

#Nki

∑
j∈Nki

x̂j = σki

2α#Nki

, ∀i = 1, . . . , q. (37)
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For every ki ∈ ζ , we can decompose Nki
as

Nki
= (Nki

∩ ζ ) ∪ (Nki
∩ Nζ ).

Since Nζ ⊂ Ĵ c (see Definition 1), we have x̂j = yj for every
j ∈ Nζ . Introducing this into (37) yields

x̂ki
− 1

#Nki

∑
kj ∈Nki

∩ζ

x̂kj
= 1

#Nki

∑
nj ∈Nki

∩Nζ

yj + σki

2α#Nki

,

∀i = 1, . . . , q. (38)

This is a system of q affine equations with q unknowns,
which can be expressed in matrix form:

Lζ x̂ζ = Qζ yNζ + dζ , (39)

where Lζ , Qζ and dζ are given in (34), (35) and (36), re-
spectively.

The matrix Lζ is clearly of the form (21) and q < p

since by assumption, Ĵ is strictly included in I . According
to Lemma 2, Lζ is invertible and the components of (Lζ )−1

are ≥ 0. Hence Aζ in statement (a) and bζ in statement (b)
of the proposition are well defined. Moreover, it is clear that
Qζ (i, j) ≥ 0 for all i, j which entails that Aζ (i, j) ≥ 0, for
all i, j . The proof is complete. �

Using Proposition 2, we can formulate a semi-explicit ex-
pression for x̂, the minimizer of F (., y) over R

p . The theo-
rem below furnishes another formulation of the minimality
conditions stated in Theorem 1.

Theorem 2 For y ∈ R
p , let F (., y) reach its minimum at x̂

with Ĵ = J (x̂, y), Ĵ �= I , for J as defined in (6). Let m be
the number of all connected components of Ĵ (Ni)i∈I (see
Definition 1), say ζ� for � = 1, . . . ,m:

Ĵ =
m⋃

�=1

ζ�. (40)

Then x̂ reads

x̂ζ�
= Aζ�yNζ�

+ bζ�, � = 1, . . . ,m, (41)

x̂i = yi, ∀i ∈ Ĵ c, (42)

where Aζ� and bζ� , for every � = 1, . . . ,m, are as exhibited
in Proposition 2.

Furthermore, for any i ∈ Ĵ there exist ai ∈ R
#(Ĵ c) with

ai ≥ 0 and βi ∈ R such that the system in (41) is equivalent
to

x̂i = 〈ai, yĴ c 〉 + βi, ∀i ∈ Ĵ . (43)

Notice that (42)–(43) can be derived directly from Theo-
rem 1 and Remark 1; however, this is not enough to say that
all entries of ai are nonnegative, for all i ∈ Ĵ .

Proof If Ĵ is empty, then (41) is void and (42) holds for
every i ∈ I = Ĵ c . Consider next that Ĵ is nonempty. Equa-
tions (41) and (42) are a straightforward consequence of
Theorem 1 and Proposition 2.

The statement in (43) exploits the observation that Nζ�
⊂

Ĵ c, ∀� ∈ {1, . . . ,m}. Via a reordering of the components of
each ζ� and each Nζ�

, the minimizer x̂ can be put into the
form (43)–(42) where every ai contains a row of the matrix
Aζ� such that i ∈ ζ�, the remaining terms, being null, and
every βi is an element of bζ� such that i ∈ ζ�. Since the com-
ponents of every Aζ� are ≥ 0, it follows that all components
of ai are ≥ 0, for every i ∈ Ĵ . The proof is complete. �

Observe that for every i ∈ Ĵ , the linear operator ai de-
pends only on (Ni)i∈I and that the constant βi depend only
on (Ni)i∈I and {σi : i ∈ Ĵ }.

Remark 6 The pixels belonging to a connected component
ζ� ⊂ Ĵ are calculated only based on the data points yi which
are neighbors of ζ�, namely yi for i ∈ Nζ�

. All data samples
yi ∈ I \ {ζ� ∪ Nζ�

} have no contribution. In this sense, the
restoration of each x̂ζ�

is local.

5 Minimizer x̂ Is a Locally Affine Function
of the Data y

In this section we exhibit subsets of data in R
p leading ei-

ther to the same minimizer point x̂, or that satisfy the same
system of equations, as exhibited in (41)–(42).

Proposition 3 Given y ∈ R
p , let F (., y) reach its minimum

at x̂ with Ĵ
def= J (x̂, y), for J defined according to (6) and

put

σi = sign(yi − x̂i ), ∀i ∈ Ĵ . (44)

Consider the subset given below:

V
Ĵ

=
{
y′ ∈ R

p : y′
i = yi,∀i ∈ Ĵ c,

[
y′
i > 1

2α#Ni
+ 1

#Ni

∑
j∈Ni

x̂j if i ∈ Ĵ , σi = +1

y′
i < − 1

2α#Ni
+ 1

#Ni

∑
j∈Ni

x̂j if i ∈ Ĵ , σi = −1

}
.

Then for every y′ ∈ V
Ĵ

, the function F (., y′) reaches its min-
imum at x̂.

Proof Let us consider x̂ that minimizes F (., y). We will
show that x̂ satisfies the conditions for a minimum of
F (., y′), for any y′ ∈ V

Ĵ
.
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Consider an arbitrary y′
i ∈ V

Ĵ
for i ∈ Ĵ . From the defini-

tion of V
Ĵ

, it is seen that for every i ∈ Ĵ we have

y′
i − 1

#Ni

∑
j∈Ni

x̂j >
1

2α#Ni

> 0 if σi = +1;

y′
i − 1

#Ni

∑
j∈Ni

x̂j < − 1

2α#Ni

< 0 if σi = −1.

Hence ∀y′ ∈ V
Ĵ

,

sign

(
y′
i − 1

#Ni

∑
j∈Ni

x̂j

)
= σi, ∀i ∈ Ĵ , (45)

where σi is given in (44). Taking into account that for every
i ∈ Ĵ c we have y′

i = yi = x̂i , (16) in Theorem 1 reads

x̂i − 1

#Ni

∑
j∈Ni∩Ĵ

x̂j = 1

#Ni

∑
j∈Ni∩Ĵ c

x̂j + sign(yi − x̂i )

2α#Ni

,

∀i ∈ Ĵ ,

where σi satisfies (45). By Theorem 1, F (., y′) reaches its
minimum at x̂.

If Ĵ c is empty, the system above amounts to say that (9)
in Proposition 1 holds for all i ∈ I . So the conclusion is the
same. �

Remark 7 Let us emphasize that V
Ĵ

is a subset whose

Lebesgue measure in R
#(Ĵ ) is infinite and that it can be seen

as a cone whose origin is translated.

Remark 8 If for y ∈ R
p , F (., y) reaches its minimum at x̂

such that Ĵ = I (i.e. Ĵ c is empty), Proposition 3 tells us that
for every y′ ∈ WI,σ , where

WI,σ ≡ W
Ĵ,σ

=
⎧⎨
⎩y′ ∈ R

p : ∀i ∈ I,

⎡
⎣y′

i > 1
2α#Ni

+ 1
#Ni

∑
j∈Ni

x̂j if σi = +1

y′
i < − 1

2α#Ni
+ 1

#Ni

∑
j∈Ni

x̂j if σi = −1

⎫⎬
⎭

and

σi = sign(yi − x̂i ), ∀i ∈ I, F (., y′)

reaches its minimum at x̂, that is

x̂′ = x̂, ∀y′ ∈ WI,σ .

Next we determine a set W
Ĵ,σ

⊂ R
p (as large as pos-

sible), such that for every y ∈ W
Ĵ,σ

, the energy F (., y)

reaches its minimum at an x̂ calculated by (41)–(42) us-
ing the same matrices Aζ� and vectors bζ� . For arbitrary sets

Ĵ c ⊂ I and σ ∈ {−1,+1}#(Ĵ ), Ĵ �= I it is possible that there
is no x̂ satisfying

x̂i = yi for all i ∈ Ĵ c

and

yi �= x̂i with sign(yi − x̂i ) = σi for all i ∈ Ĵ .

For this reason, we start with the minimizer x̂ relevant to
a given y and then we determine a set of data y′ such that
the relevant solution x̂′ is calculated using exactly the same
affine equation applied to every y′ in this set.

Theorem 3 Given y ∈ R
p , let F (., y) reach its minimum

at x̂ with Ĵ
def= J (x̂, y), Ĵ �= I , where J is defined by (6).

Put

σi = sign(yi − x̂i ), ∀i ∈ Ĵ . (46)

Let ai ∈ R
#Ĵ and βi ∈ R be such that

x̂i = 〈ai, yĴ c 〉 + βi, ∀i ∈ Ĵ , (47)

according to (43) in Theorem 2.
For all i ∈ I , define the constants βi and the affine appli-

cations hi : span
{
ei, i ∈ Ĵ c

}→ R by

βi = 1

#Ni

∑
j∈Ni∩Ĵ

βj , (48)

〈hi, y′
Ĵ c

〉 = 1

#Ni

∑
j∈Ni∩Ĵ c

y′
j

+ 1

#Ni

∑
j∈Ni∩Ĵ

〈aj , y
′
Ĵ c

〉, ∀y′ ∈ R
p. (49)

Consider the subset given below:

W
Ĵ,σ

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

y′ ∈ R
p :

⎡
⎢⎢⎢⎢⎢⎣

(a)
∣∣ y′

i − 〈hi, y
′
Ĵ c

〉 − βi

∣∣≤ 1

2α#Ni

∀i ∈ Ĵ c

(b)

{
y′
i > 1

2α#Ni
+ 〈hi, y

′
Ĵ c

〉 + βi if σi = +1

y′
i < − 1

2α#Ni
+ 〈hi, y

′
Ĵ c

〉 + βi if σi = −1

}
∀i ∈ Ĵ

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (50)
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Then for every y′ ∈ W
Ĵ,σ

, the function F (., y′) reaches its
minimum at x̂′ given by

x̂′
i = y′

i , ∀i ∈ Ĵ c, (51)

x̂′
i = 〈ai, y

′
Ĵ c

〉 + βi, ∀i ∈ Ĵ , (52)

where ai and βi , ∀i ∈ Ĵ , are the same as those given in (47).

Observe that the first sum in (49) involves only y′
j for j ∈

Ĵ c, so hi is defined on span
{
ei, i ∈ Ĵ c

}
, indeed. Remind that

from the definition of Ĵ , we have x̂i = yi for every i ∈ Ĵ c.

Proof For an arbitrary y′ ∈ W
Ĵ,σ

, let x̂′ read as in (51)–(52).
We will show that x̂′ satisfies the minimality conditions for
F (., y′) stated in Theorem 1.

From the construction of βi and hi , see (48) and (49),
respectively, we derive

〈hi, y′
Ĵ c

〉 + βi

= 1

#Ni

∑
j∈Ni∩Ĵ c

y′
j + 1

#Ni

∑
j∈Ni∩Ĵ

(〈aj , y
′
Ĵ c

〉 + βj )

= 1

#Ni

∑
j∈Ni

x̂′
j , ∀i ∈ I, (53)

where the last expression comes from (51)–(52). Combining
(53) with (a) in the definition of W

Ĵ,σ
in (50) shows that

∣∣y′
i − (〈hi, y

′
Ĵ c

〉 + βi

)∣∣=
∣∣∣∣y′

i − 1

#Ni

∑
j∈Ni

x̂′
j

∣∣∣∣≤ 1

2α#Ni

,

∀i ∈ Ĵ c. (54)

If Ĵ is empty, then x̂ = y. Using (51), the inequality in (54)
reads |y′

i − 1
#Ni

∑
j∈Ni

y′
j | ≤ 1

2α#Ni
,∀i ∈ Ĵ c = I . By Propo-

sition 1, F (., y′) reaches its minimum at x̂′ = ŷ′. Notice that
in this case (47), (50)(b) and (52) are void.

Consider next that Ĵ is nonempty. Combining (53)
with (b) in (50) shows that for every i ∈ Ĵ we have

y′
i − (〈hi, y

′
Ĵ c

〉 + βi

)

= y′
i − 1

#Ni

∑
j∈Ni

x̂′
j

⎧⎪⎪⎨
⎪⎪⎩

>
1

2α#Ni

> 0 if σi = +1,

< − 1

2α#Ni

< 0 if σi = −1.

It follows that for all i ∈ Ĵ we have |y′
i − 1

#Ni

∑
j∈Ni

x̂′
j | >

1
2α#Ni

and

sign

(
y′
i − 1

#Ni

∑
j∈Ni

x̂′
j

)
= sign(yi − x̂i ) = σi. (55)

By Theorem 2 we know that (47) is equivalent to (16) in
Theorem 1. Hence x̂′

i , ∀i ∈ Ĵ , as defined in (52), is equiva-
lent to

x̂′
i − 1

#Ni

∑
j∈Ni∩Ĵ

x̂′
j = 1

#Ni

∑
j∈Ni∩Ĵ c

y′
j + σi

2α#Ni

, ∀i ∈ Ĵ ,

(56)

for σi as given in (46), for all i ∈ Ĵ . Combining (54), (55)
and (56) shows that x̂′ satisfies all conditions for a minimizer
of F (., y′), according to Theorem 1. �

Remark 9 Observe that W
Ĵ,σ

is a nonempty polyhedron
in R

p which is in addition unbounded (hence its Lebesgue
measure is infinite). By Remark 8, this holds true for Ĵ = I

as well. For every y ∈ R
p we can exhibit a W

Ĵ,σ
such that

the relevant F (., y′) are minimized by solutions satisfying
the same system of affine equations (and in particular, Ĵ c re-
mains the same). The set of all feasible sets (Ĵ , σ ) is finite.
The union of all possible W

Ĵ,σ
corresponds to a partition of

R
p—the set of all possible data.

6 A Fast Exact Numerical Method

Since F is non-smooth, the calculation of x̂ needs a spe-
cific optimization scheme. Similar optimization problems
are encountered along with total-variation methods where
F (x, y) = ‖Ax − y‖2 + α

∑
i ‖Gix‖, where for every i =

1, . . . , p, Gi is a discrete approximation of the gradient op-
erator at i, or F (x, y) = ‖Ax − y‖1 + α	(x) where 	 is
an edge-preserving regularization term. Some authors use
continuation methods [9, 20, 25]. In these cases, the non-
smooth |.| is approximated by a family of smooth functions
ϕν , ν > 0, e.g. ϕν(t) = √

t2 + ν. For every ν > 0, the min-
imizer x̂ν of the relevant Fν(x, y) can be calculated using
classical optimization tools. It can be shown that x̂ν con-
verges to the sought-after x̂ as ν decreases to zero. How-
ever, the convergence is quite slow, especially when ν ap-
proaches zero. Most of the authors just fix ν > 0 and mini-
mize a smooth approximation of the original energy, let us
cite among many others [3–5, 8, 27]. Notice that in such a
case, the solution cannot exhibit the properties relevant to
the nonsmooth term (x̂i = yi in our case) as proven in [21,
23].

Subgradient methods see e.g. [12, 26], are slow and find
the features of x̂ where F (., y) is nondifferentiable after a
huge amount of iterations.

A method for a case slightly similar to the our was de-
rived in [19] based on active sets and Lagrange multipliers.
An adaptation to our context might be possible; but our op-
timization problem is much simpler so we prefer to take a
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benefit from this. The methods in [13, 14] suppose that the
image is quantized which is not our case. The minimization
method in [16] is exact, but its implementation using an inte-
rior point method introduces an approximation towards the
points where the energy is nondifferentiable. We focus on
our method presented in [22]—an extension of a method ex-
posed in a textbook [17] published in 1976—since it finds in
priority the points of x̂ where F (., y) is non-differentiable.
Its specialization to the energy in (2) has an appreciable sim-
plicity since all steps are fully explicit. It is of the type one
coordinate at a time. Each iteration consists of p steps where
all components are updated successively.

Let the current solution read x. At step i, we minimize
the scalar function

t → F (x + (t − xi)e
i, y)

with respect to t . The updating equations come from Propo-
sition 1. The numerical scheme reads:

• Start iterations with initial guess

x(0) = y.

• For every iteration k = 1,2, . . ., consider i = k modulop

and compute

φ
(k)
i = yi − 1

#Ni

∑
j∈Ni

x
(k−1)
j . (57)

Then update x
(k)
i according to the following rule:

if
∣∣φ(k)

i

∣∣≤ 1

2α#Ni

then x
(k)
i = yi, (58)

else x
(k)
i = yi − φ

(k)
i + sign(φ

(k)
i )

2α#Ni

. (59)

• Stop when |x(k)
i − x

(k−1)
i | is small enough for all i =

1, . . . , p.

Theorem 4 The sequence x(k) defined by (57) and (58)–
(59) satisfies limk→∞ x(k) = x̂ where x̂ is such that
F (x̂, y) ≤ F (x, y), for every x ∈ R

p .

Proof The proof is based on Theorem 2 in [22]. The as-
sumptions H1, H2 and H3 required there are now trivially
satisfied. The last one, H4, amounts to require that the reg-
ularization term is locally strongly convex with respect to
each component xi independently, for all i ∈ I ; this is also
true in the present case. The rest of the proof is to calculate
the intermediate steps. These come directly from Proposi-
tion 1. �

Next we give some comment on the minimization algo-
rithm. The convergence of the algorithm presented above

is guaranteed for any initial x(0). However, after the devel-
opments in Sect. 2, we can expect that x̂ satisfies x̂i = yi

for numerous indexes i. So initializing with x(0) = y should
speed up the convergence. Notice that the algorithm can eas-
ily be extended to constraints of the form

d−
i ≤ xi ≤ d+

i , where d−
i < d+

i , 1 ≤ i ≤ p.

Let us emphasize the extreme simplicity of the numerical
scheme—it involves only summations and comparisons to
a fixed threshold, and there is no line search. This explains
the speed of the method. For all data points which match the
solution—the relevant pixels are updated according to (58),
which is just a comparison to a threshold. Hence the mini-
mization with respect to the pixels such that x̂i = yi is exact.
This is crucial since in practice numerous samples of the so-
lution fit exactly the relevant data samples, as evoked in (3).

Remark 10 The algorithm presented above is straightfor-
ward to adapt to energies form

F (x, y) = ‖x‖1 + β‖Ax − y‖2,

where A is a wavelet basis, or a frame, or a linear opera-
tor. Such problems are often encountered in approximation,
compression, coding and compressive sensing.

Running Time The computation time depends clearly on
the size of the image and the neighborhoods, the stopping
criterion and the value of α; it is higher for larger val-
ues of α. We worked on a PC (Dell Latitude, D620, Gen-
uine Intel(R) CPU T2500, 2.00 GHz and 1.00 RAM) run-
ning on Windows XP Professional and used Matlab 7.2. We
did some comparisons on a 512 × 512 image (Fig. 4(g)),
considered the four adjacent neighbors for (Ni)i∈I , α =
0.01 and the stopping rule was based on the value of
‖x(k) − x(k−1)‖∞. A precision of 0.1 was reached after 24
iterations and needed 3 seconds CPU time. For a precision
of 0.001, we had 76 iterations and 9 seconds.

Let us notice that the algorithm can be implemented in
a parallel way which can speed up its convergence using
Matlab.

7 Experiments

The results on nonsmooth data-fitting along with a smooth
regularization shown in this paper, as well in [21, 22] clearly
indicate that processing data by minimizing such an energy
cannot be successful unless there are some nearly noise-free
data samples. The main reason comes from the property
sketched in (3). Satisfying results with such energies were
obtained for denoising and deblurring under impulse noise
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Fig. 3 Piecewise polynomial
under random-valued impulse
noise

[3–5, 19, 22], as well as for the denoising of frame coef-
ficients [15], among others. For this reason, in our experi-
ments we focus on signals and images contaminated with
spiky noises. New applications will certainly appear, espe-
cially since strong results on the properties of the solutions
are already available.

7.1 A Toy Illustration

The original piecewise polynomial signal is plotted in
Fig. 3(a) with a solid line. Data y, plotted in Fig. 3(a) with
a dashed line, corresponds to 5% random-valued impulse
noise. The minimizer x̂ for α = 0.02, shown in Fig. 3(b),
still contains some outliers; however the residual y − x̂ in
Fig. 3(c) shows that the set Ĵ = {i : x̂i �= yi} matches the
locations of the outliers contained in y. In the next Fig. 3(d)
we apply a simple median filter locally, only in the neigh-
borhood of the samples i ∈ Ĵ . The resultant restoration fits
the original signal. Figure 3(e) displays the minimizer x̂ for
α = 0.1: the outliers are sufficiently smoothed but the edges
in the original signal are oversmoothed—this is not surpris-
ing since the regularization term is quadratic, hence it is
not edge-preserving. The residuals in Fig. 3(f) show that Ĵ

in this case is larger than the set of the outliers in data y.
This effect is not surprising at all since the regularization
is not edge-preserving. This example suggest that an under-
smoothed x̂ can be a good indicator to locate the outliers in
the data. At a second step, the samples belonging to Ĵ need
a pertinent postprocessing.

7.2 Image Denoising under Random-Valued Impulse Noise

The image in Fig. 4(b) is contaminated with 40% random-
valued impulse noise. All results presented here correspond
to the best choice of the parameters for each method. The
solution in (c) is obtained using 5 iteration center-weighted
median2 (CWM) filter with a 5 × 5 window and multi-

plicity parameter 8. The restoration in (d) corresponds to
permutation-weight3 (PWM) filter on 7 × 7 window with
rank parameter 22. A detailed description of the CWM
and the PWM filters can be found e.g. in the textbook [6].
The image in (e) is obtained using the two-phase method
described in [7]. The restoration in (f) is the minimizer
F (., y) for α = 0.08—outliers are removed but the edges
are slightly oversmoothed. The image in (g) is the minimizer
of F (., y) for α = 0.01. As expected from the previous ex-
ample, the outliers are not cleaned but Ĵ approximates well
the locations of the outliers in the data. The final restoration
in (h) is obtained using a local median smoother near each
component in Ĵ . The zoom presented below shows that the
latter result has better preserved edges and a more natural
appearance, compared with the other methods.

7.3 Cleaning Noisy Data from Outliers

In different applications, data y result from outlier-free
degradations (e.g., distortion, blurring, quantization errors,
electronic noise), plus impulsive noise. It is well known that
classical reconstruction methods fail in the presence of out-
liers. A preliminary processing, aimed at removing the out-
liers, is usually needed before to apply standard reconstruc-
tion methods. Preprocessing is often realized using median-
based filters. It is critical that preprocessing keeps intact all
the information contained in the outlier-free data.

In our experiment, the sought image x∗, shown in
Fig. 5(b), is related to xo in (a), by x∗ = xo + n, where n

is white Gaussian noise with 20 dB SNR. The histogram of

2CWM filter. Fix a number of iterations T , an integer multiplicity pa-
rameter μ ≥ 1 and a window Ni , i /∈ Ni of neighbors for each i ∈ I . At

iteration t , pixel xi is replaced by Median{
μ times

{xi , . . . , xi} ∪{xj , j ∈ Ni}}.
3PWM filter. Choose a number of iterations T , a window Ni , i /∈ Ni

of neighbors for each i ∈ I and a rank parameter ρ such that 1 ≤ ρ ≤
0.5#Ni . At iteration t , all pixels {xj , j ∈ Ni ∪{i}} are sorted in increas-
ing order. If the ranking r of xi satisfies either r < ρ or r > #Ni − ρ,
then xi is replaced by Median{xj , j ∈ Ni ∪ {i}}; otherwise xi remains
unchanged.
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Fig. 4 Random-valued impulse
noise cleaning using different
methods

Fig. 5 Data with two-stage
degradation

n is plotted in (d), top. Our goal is to restore x∗ (the im-
age contaminated with Gaussian noise only) based on the
data y, shown in (c), which contain 10 % salt-and-pepper
noise. Restoring x∗ is a challenge since the white Gaussian
noise must be preserved. The relevance of an estimate x̂ is
evaluated by both, the error x̂ − x∗ and the closeness of
the estimated noise n̂ = x̂ − xo to the initial noise n. To
this end, we use the Mean-square error (MSE) defined by
MSE(n, n̂) = 1

p
‖n − n̂‖2. All images in this subsection are

displayed using the same gray value scaling.
All results in Fig. 6 correspond to parameters leading

to the best removal of the outliers. The image in (a) corre-
sponds to one iteration of median filter over a 3×3 window.
Almost all data samples are altered and the estimated noise,
n̂ = x̂ − xo, is quite concentrated near zero. The image in
(b) is calculated using a center weighted median (CWM) fil-
ter with a 5 × 5 window and multiplicity parameter for the
central pixel equal to 14. Even though the error MSE(x̂, x∗)
is reduced, the histogram of the noise estimate n̂, plotted on

the right, top, deviates considerably from the initial distrib-
ution, shown in Fig. 5. The image in (c) corresponds to one
iteration of permutation weighted median (PWM) filter, for
a 5 × 5 window and rank parameter 4. In all these estimates,
the distribution of the noise estimate n̂ is quite different from
the distribution of n. Figure 6(d) displays the issue of the
minimization of F as given in (2) for α = 1.3. It achieves
a good preservation of the statistics of the noise in x∗, as
seen from the histogram of the estimated noise n̂—Fig. 6(d),
right, top. Moreover, the error x̂ − x∗ is essentially concen-
trated around zero, as seen in Fig. 6(d), right, down. Notice
that this experiment takes a benefit from our Remark 2.

8 Conclusions and Perspectives

In this paper we show that the minimizers x̂ of energies
F (., y) of the form (2) are locally affine functions of the
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Fig. 6 Various restorations

data, as exhibited in Theorem 3. Energies involving a non-
smooth data-fitting are known to produce solutions that par-
tially fit the data, as evoked in (3). An important property
that we found is that the pixels x̂ζ of any connected subset ζ

that do not fit (3) is restored using a simple function of the
form x̂ζ = Aζ yNζ + βζ where all entries of Aζ are ≥ 0 and
βζ is a fixed vector that depends only on the sign of (yi − x̂i )

for i ∈ ζ . If we have some knowledge that the data y follow
a simple distribution on a bounded domain of R

p , it should
be possible to evaluate the probability to obtain a solution
given by the same set of affine equations. Even though we
propose a fast minimization scheme, we hope that the ob-
tained theoretical results can help to conceive faster mini-
mization schemes.

Semi-explicit solutions of this kind are hard to exhibit
for general regularization terms. The results of this paper
suggest how are restored the pixels satisfying x̂i �= yi under
more general regularization terms. We consider this study as
a starting point for the analysis of more elaborated energies
involving �1 data-fitting.

The approach adopted in this paper can be used to an-
alyze, as well as to derive new minimization schemes, for
energies of the form F (x, y) = ‖x‖1 + β‖Ax − y‖2, or
minimization problems such as: minimize ‖x‖1 subject to
‖Ax − y‖2 ≤ τ for τ > 0, or minimize ‖x‖1 subject to
Ax = y, where A is a wavelet basis or a frame, or any linear
operator. Such problems arise customarily in approximation,
in coding and compression, and in compressive sensing. In
these cases, #Ĵ c/p corresponds to the level of sparsity of the
obtained solution.
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