◄homepage◄ Peer Reviewed Proceedings Papers

[49] P. Arias and M. Nikolova, “Below the Surface of the Non-Local Bayesian Image Denoising Method”, Scale-Space and Variational Methods in Computer Vision. Lecture Notes in Computer Science10302, Springer, 2017, pp. 208--220 (pdf)

[48] J. Fehrenbach, M. Nikolova, G. Steidl, and P. Weiss, ”Bilevel Image Denoising using Gaussianity tests”. in J.-F. Aujol, M. Nikolova, N. Papadakis (Eds.) : Scale-Space and Variational Methods in Computer Vision. Lecture Notes in Computer Science 9087, Springer, Berlin, 2015, pp. 117–128. 

 

[47]  J. H. Fitschen, M. Nikolova, F. Pierre, and G. Steidl, ”A Variational Model for Color Assignment”, in J.-F. Aujol, M. Nikolova, N. Papadakis (Eds.) : Scale-Space and Variational Methods in Computer Vision. Lecture Notes in Computer Science 9087, Springer, Berlin, 2015, pp. 437–448.

 

[46]  M. Nikolova, "A fast algorithm for exact histogram specification. Simple extension to colour images", Scale Space and Variational Methods in Computer Vision, June 2013 (pdf).

 

[45]  M. Nikolova, "Either fit to data entries or to locally to prior: the minimizers of energies with nonsmooth nonconvex data fidelity and regularization ", Scale Space and Variational Methods in Computer Vision, June 2011.

 

[44]  M. Nikolova, "Should we search for a global minimizer of least squares regularized with an ℓ0 penalty to get the exact solution of an under determined linear system?", Scale Space and Variational Methods in Computer Vision, June 2011.

 

[43]  R. Chan, M. Nikolova and Y.-W. Wen, "A variational approach for exact histogram specification ", Scale Space and Variational Methods in Computer Vision, June 2011.

 

[42]  M. Nikolova, "Fast dejittering for digital video images ", Scale Space and Variational Methods in Computer Vision, Eds. X.-C. Tai, K. Morken, M. Lysaker, K.-A. Lie, LNCS 5567, Springer, pp. 439-451, 2009.  (pdf)  

 

[41] Durand S., J. Fadili and M. Nikolova, "Multiplicative noise clearing via a variational method involving curvelet coefficients ", Scale Space and Variational Methods in Computer Vision, Eds. X.-C. Tai, K. Morken, M. Lysaker, K.-A. Lie, LNCS 5567, Springer, pp. 282-294,, 2009.  (pdf)

 

[40] F. Malgouyres. and M. Nikolova, "Average performance of the sparsest approximation in a dictionary ", Int. Workshop SPARS’09, April 2009. (pdf)

 

[39] M. Nikolova, "Bounds on the minimizers of (nonconvex) regularized least-squares", Scale Space and Variational Methods in Computer Vision, Springer – Lecture notes in Computer science LNCS 4485, ed. F. Sgallary, A. Murli, N. Paragios, 2007, pp. 496-507.

[38] M. Nikolova, "Counter-examples for Bayesian MAP restoration", Scale Space and Variational Methods in Computer Vision, Springer – Lecture notes in Computer science LNCS 4485, ed. F. Sgallary, A. Murli, N. Paragios, 2007, pp. 140-152.

[37] M. Nikolova, "Restoration of edges by minimizing non-convex cost-functions", IEEE Int. Conf. on Image Processing (ICIP), vol. II, pp. 786-789, Sept. 2005.

[36] T Chan T., S. Esedoglu and M. Nikolova, "Finding the Global Minimum for Binary Image Restoration", IEEE Int. Conf. on Image Processing (ICIP), vol. I, pp. 121-124, Sept. 2005.

[35] R. H. Chan, C. Ho, C.W. Leung and M. Nikolova, "Minimization of detail-preserving regularization functional by Newton’s method with continuation”, IEEE Int. Conf. on Image Processing (ICIP), vol. 1, pp. 125-128, Sept. 2005.

[34] Fu H., M. Ng, M. Nikolova, J. L. Barlow, W.-K. Ching, "Fast algorithms for ℓ1 norm/mixed ℓ1 and ℓ2 norms for image restoration”. ICCSA, vol. 4, pp. 843-851, 2005.

[33] Durand S. and M. Nikolova, "Restoration of wavelet coefficients by minimizing a specially designed objective function'', IEEE Int. Conf. on Computer Vision / Workshop on Variational and Level-Set Methods, vol. 2, pp. 145-152, Oct. 2003. (pdf)

[32]  M. Nikolova, ``Minimization of cost-functions with non-smooth data-fidelity terms to clean impulsive noise'', Int. workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, Lecture Notes in Computer Science, Springer-Verlag, pp. 391-406, 2003.

[31] Kornprobst, P., R. Peeters, M. Nikolova, R. Deriche, M. Ng and P. Van Hecke. ``A super-resolution framework  for fMRI sequences and its impact on resulting activation maps'', Medical Image Computing and Computer-Assisted Intervention (MICCAI), LNCS 2879, pp. 117-127, 2003. (pdf)

[30] M. Nikolova, ``Efficient removing of impulsive noise based on an 1-2 cost-function'', IEEE Int. Conf. on Image Processing (ICIP), vol. 1, pp. 14-17, Sep. 2003. (pdf)

[29] Deriche, R., P. Kornprobst, M. Nikolova and Michael Ng. ``Half-quadratic regularization for MRI image restoration'', IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), vol. VI, pp. 585-588, 2003.

[28] S. Zinger, M. Nikolova, M. Roux and H. Maitre, ``Rééchantillonnage de données 3D laser aéroporté en milieu urbain'', Congrès Vision par Ordinateeur ORASIS, pp. 75-82, Mai 2003.

[27] M. Nikolova and M. Ng, ``Comparison of the main forms of half-quadratic regularization'', IEEE Int. Conf. on Image Processing(ICIP), vol. 1, pp. 349-352, Oct. 2002.

[26] S. Zinger, M. Nikolova, M. Roux and H. Maitre, ``3D resampling for airborne laser data of urban areas'', Proceedings of ISPRS, vol. XXXIV, n. 3A, pp. 418-423, 2002.

[25] M. Nikolova. ``Image restoration by minimizing objective functions with non-smooth data-fidelity terms'', IEEE Int. Conf. on Computer Vision / Workshop on Variational and Level-Set Methods, pp. 11-18, Jul. 2001. 

[24] S. Durand and M. Nikolova, ``Stability of image restoration by minimizing regularized objective functions'', IEEE Int. Conf. on Computer Vision / Workshop on Variational and Level-Set Methods, pp. 73-80, Jul. 2001.

[23] M. Nikolova, ``Smoothing of outliers in image restoration by minimizing regularized objective functions with non-smooth data-fidelity terms'', IEEE Int. Conf. on Image Processing (ICIP), vol. 1, pp. 233-236n Oct. 2001.

[22] M. Nikolova and M. Ng, ``Fast image reconstruction algorithms combining half-quadratic regularization and preconditioning'', IEEE Int. Conf. on Image Processing, vol. 1, pp. 277-280, Oct. 2001.

[21] M. Nikolova and A. Hero III, ``Segmentation of a road from a vehicle-mounted imaging radar and accuracy of the estimation'', Proc. of IEEE Intelligent Vehicles Symposium, pp. 284-289, Oct. 2000.

[20] F. Alberge, P. Duhamel and M. Nikolova, ``Low cost adaptive algorithm for blind channel identification and symbol estimation'', EUSIPCO (Finland), pp. 1549-1552, Sept. 2000. (pdf)

[19] F. Roullot, A. Herment, I. Bloch, M. Nikolova and E. Mousseaux, ``Regularized reconstruction of 3D high-resolution magnetic resonance images from acquisitions of anisotropically degraded resolutions'', 15th Int. Conf. on Pattern Recognition, vol. 3, pp. 346-349, 2000.

[18] F. Roullot, A. Herment, I. Bloch, M. Nikolova and E. Mousseaux, ``Reconstruction regularise d’images de resonance magnétique 3D de haute resolution à partir d’acquisitions anisotropes'', RFIA (Paris, France), vol. II, pp. 59-68, 2000.

[17] M. Nikolova, ``Assumed and effective priors in Bayesian MAP estimation'', IEEE Int. Conf. on Acoustics, Speech and Signal Processing(ICASSP), Jun. 2000, vol. 1, pp. 305-308. (pdf)

[16] F. Alberge, M. Nikolova and P. Duhamel, ``Adaptive Deterministic Maximum Likelihood using a quasi-discrete prior'', IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), Jun. 2000.

[15] M. Nikolova, ``Locally homogeneous images as minimizers of an objective function'', IEEE Int. Conf. on Image Processing, Oct. 1999, vol.2, pp. 11-15, invited paper.

[14] M. Nikolova, ``Local continuity and thresholding using truncated quadratic regularization'', IEEE Workshop on Higher Order Statistics, pp.  277-280, June 1999.

[13] M. Nikolova and A. Hero III, ``Noisy word recognition using denoising and moment matrix discriminants'', IEEE Workshop on Higher Order Statistics, June 1999.

[12] F. Alberge, P. Duhamel and M. Nikolova, ``Blind identification / equalization using deterministic maximum likelihood and a partial information on the input'', IEEE Workshop on Sig. Proc. Advances in Wireless Communications, May 1999.

[11] M. Nikolova, ``Estimation of binary images using convex criteria'', Proc. of IEEE Int. Conf. on Image Processing (ICIP), Oct. 1998. (pdf)

[10] M. Nikolova and A. Hero III, ``Segmentation of road edges from a vehicle-mounted imaging radar'', Proc. of IEEE Stat. Signal and Array Proc., Sept. 1998. (pdf)

[9] M. Nikolova, ``Estimation of signals containing strongly homogeneous zones'', Proc. of IEEE Stat. Signal and Array Proc., Sept. 1998.

[8] M. Nikolova, ``Reconstruction of locally homogeneous images'', European Signal Proc. Conf., Sept. 1998.

[7] M. Nikolova, ``Regularisation functions and estimators'', Proc. of IEEE Int. Conf. on Image Processing (ICIP), Nov. 1996, pp. 457-460.

[6] M. Nikolova, ``Non convex regularization and the recovery of edges'', Proc. IEEE Workshop on Nonlinear Signal and Image Processing., Greece, June. 1995, pp. 1042-1045.

[5] M. Nikolova, ``Parameter selection for a Markovian signal reconstruction with edge detection'', Proc. IEEE Int. Conf. Acoust. Speech Signal Process., Detroit, Apr. 1995, pp. 1804-1807. (pdf)

[4] M. Nikolova, ``Markovian reconstruction in computed imaging and Fourier synthesis'', IEEE Int. Conf. on Image Processing (ICIP), Nov. 1994, pp. 690-694.

[3] M. Nikolova and A. Mohammad-Djafari, ``Discontinuity reconstruction from linear attenuating operators using the weak-string model'', European Signal Proc. Conf. (EUSIPCO), Sept. 1994, pp. 1062-1065. (pdf)

[2] M. Nikolova, A. Mohammad-Djafari and J. Idier, ``Inversion of large-support ill-conditionned linear operators using a Markov model with a line process'', Proc. IEEE Int. . Acoust. Speech Signal Process. (ICASSP), Adelaide, Apr. 1994, vol. V, pp. 357-360.

[1] M. Nikolova and A. Mohammad-Djafari, ``Maximum entropy image reconstruction in eddy current

tomography'', pp. 273–278, in Proc. of the 12th Int. MaxEntWorkshop, Maximum Entropy and Bayesian

Methods, 1992.